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Abstract: This paper investigates the problem of calibration and validation of a battery
electrochemical model as a mandatory step towards accurate estimation of battery important
variables, like state of charge (SoC) and state of health (SoH). Here, the Single Particle
Model (SPM) is considered, which mathematically describes the battery internal governing
phenomena by means of parabolic partial differential equations (PDEs), but whose parameters
are notoriously difficult to measure or estimate. After suitable approximation of this model
through a linear finite-dimensional model, a systematic procedure of SPM calibration is here
proposed and validated against real data issued from battery cycling in an electric vehicular
application, i.e., under standard driving cycle scenarios. In a novel approach of SoC estimation,
the suitably calibrated SPM, together with measures of voltage and current, allow to analytically
connect the internal spatially distributed ions’ concentrations to the equlibrium concentration,
which, at its turn, is an image of battery SoC. Results suggest that SPM can reliably predict
the battery internal ions’ concentrations and be further used for SoC accurate estimation.

Keywords: partial-differential-equation model, electrochemical model, Single Particle Model
(SPM), model reduction, errors in variables identification, parameter identification.

1. INTRODUCTION

Use of Li-ion battery has been identified as the solution of
choice in most electrical vehicle (EV) applications, due to
its numerous advantages such as superior energy-to-weight
ratio, high output current, deep discharge capability, large
number of cycles, etc. However, optimal use of such battery
is challenged by the need of battery states estimation
throughout its useful life. Practical Li-ion cell state of
charge (SoC) estimators, used in battery management
systems, are notoriously approximative and with limited
reliability. This is mainly due to the complexity of elec-
trochemical phenomena, which renders difficult battery
modeling and parameter estimation. The search for better
SoC estimators is a richly investigated topic Di Domenico
et al. (2010), Klein et al. (2012), Moura et al. (2016),
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Zhang et al. (2020), sometimes relying upon physics-based
electrochemical models Chaturvedi et al. (2010), more
complex than the equivalent-electrical-circuit model.

The main drawback of these models is their complexity,
which involves knowledge about many parameters, their
accuracy being as good as parameters’ values succeed in
reflecting the cell real behavior. Hence, the interest of some
practical guidelines for proper calibration of such models.
This paper relies upon such battery modeling, devel-
oped from a dynamic-system, control-oriented perspec-
tive. Here, the Single Particle Model (SPM) is considered,
which has been extensively approached in the literature
– e.g., Moura et al. (2012), Pozzato et al. (2021). Thus,
an engineering-viewpoint methodology is here proposed,
which is focused on practical aspects related to parameters
identification and SPM calibration vs. a real cell operation,
prior to its use for SoC estimation. This is not obvious, as
the parameters are heavily dependent on the cell type,
technology and manufacturer and parameter dispersion



is significant for Li-ion cells, which justifies that major
research efforts have lately been dedicated to their iden-
tification – e.g., Bizeray et al. (2018), Jin et al. (2018)
and Li et al. (2020). In the same spirit, in this paper one
strives to reduce the model complexity at a minimum,
based on real data and engineering practice arguments,
while retaining description of the phenomena essential for
the cell electrochemical behavior.
This paper is organized as follows. Section 2 focuses on
battery cell modeling, while Section 3 details the steps of
SPM calibration based on a real cell behavior. Section 4
refers to model validation against real data and Section 5
concludes the paper.

2. SINGLE PARTICLE MODEL OF A LI-ION CELL

Basically, a battery cell is a sandwich comprising porous
positive and negative electrodes and the electrolyte, the
main behavior of charging/discharging being governed by
intercalation (and desintercalation) of Li into the elec-
trodes structure, as the cell is subjected to an electric
current. It is widely agreed that this phenomenon, in-
volving volumetric Li concentrations evolution within the
electrodes volume, be modeled by a Fickian diffusion pro-
cess, described by a set of parabolic partial differential
equations (PDEs) for every elementary particle (or grain)
in the electrode. The cell terminal voltage is a function of
the Li concentrations in each electrode Chaturvedi et al.
(2010). SPM (Fig. 1) has been developed as an efficient
way to predict Li concentrations evolution and uses a
single, equivalent spherical particle and a single PDE
Santhanagopalan et al. (2006), Di Domenico et al. (2010).
Next, for symplifying notations, we use subscripts “p” for
positive electrode and “n” for the negative electrode.

Fig. 1. SPM representation. The electrode is equivalent to
a single porous spherical particle.

Lithium concentration within cell electrode is governed
by a diffusion process, which, written in spherical coordi-
nate, is expressed, e.g., for positive electrode by:

∂Cp

∂t
(r, t) = Dp ·

[
2

r
· ∂Cp

∂r
(r, t) +

∂2Cp

∂r2
(r, t)

]
, (1)

where Dp is the diffusivity coefficient in the positive
electrode and r is the space variable along the sphere
radius (its radial coordinate). To this, Newman boundary
conditions are added in the particle’s center and on its
surface, respectively:

∂Cp

∂r
(0, t) = 0

∂Cp

∂r
(Rp, t) =

i(t)

DpFapALp
,

(2)

with F being Faraday’s constant, Rp the positive particle
radius, A the cell area, Lp the electrode thickness, ap the
specific interfacial surface area and i(t) the cell current,
whose sign convention is i(t) > 0 when charging and
i(t) < 0 when discharging.

By solving these equations, one obtains the concentration
on the particle surface, which has a special role, as it
determines the cell voltage potential. This variable will
be denoted by Csn(t) for the negative electrode and by
Csp(t) for the positive electrode:

Cp(Rp, t) = Csp(t). (3)

Similar equations are written for expressing the negative
electrode behavior, taking into account the inverse sense
(sign) for the input current in the second equation of (2).

In EV applications, battery current is usually lower than
1C, when considering suitable vehicle autonomy. It is
widely agreed that at these levels of current, Li concentra-
tion values remain practically constant in the electrolyte
and mass transport effects within it are negligible. Hence,
cell behavior can reasonably be given only by (1) and
(2) expressed for both particles, which give Li concentra-
tions in both electrodes. Also, experimental tests on cells
submitted to EV-specific driving cycles – here, a current
profile derived from the Worldwide Harmonized Light Ve-
hicles Test Procedure (WLTP) WLTP3 (2023) was used
– showed sufficiently small cell temperature variations
(within ±1.5◦C), so that the temperature be considered
constant within a discharge cycle.
Voltage of a cell depends on current and on Li concen-
tration on particles’ surfaces and is given by the nonlinear
equation (4) – see Butler-Volmer kinetics in Klein et al.
(2012) and Moura et al. (2012)). Voltage dependence on
current and particles’ surface concentrations is algebraic:

vbt(t) =
RT

αpF
· sinh−1

[
i(t)

2apALpi0(Csp(t))

]
−

− RT

αnF
· sinh−1

[
−i(t)

2anALni0(Csn(t))

]
+Rf · i(t)+

+ Up(Csp(t))− Un(Csn(t)),

(4)

with exchange current density, e.g., in the positive particle:

i0p(csp(t)) = kp ·
√
C0

e · Csp(t) [Cmxp − Csp(t)] (5)

and parameters: αp is the anodic transfer coefficient, kp is
the reaction rate and Cmxp is the maximum Li concentra-
tion in solid phase. Moreover, C0

e is the Li concentration in
electrolyte phase, Rf is the lumped resistance, T is the cell
temperature and R is the universal gas constant. The spe-
cific interfacial surface area writes as ap = 3εp/Rp, where
volume fraction εp is constant for a certain electrode.

A similar equation like (5) applies for the exchange current
density in the negative particle, i0n, which obviously
depends on the negative particle parameters (αn, kn, etc.).

Up(Csp(t)) and Un(Csn(t)) are the so-called equilibrium
potentials. They are material-dependent evolutions of ac-
tual normalized Li concentrations with respect to maxi-
mum ones, i.e., the potential is a function of the amount
of Li in the electrode (also called degree of lithiation) –
see Figs. 2 a) and b). They are identified for each type of
electrode material and are usually given in the concerned
literature either as look-up tables or as an equation us-
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Fig. 2. Open-circuit potential as function of normalized
concentration – Li et al. (2020): a) positive electrode,
Up; b) negative electrode, Un.

ing transcendental functions – see, for example, Li et al.
(2020). Their difference gives the so-called cell open-circuit
voltage: Vocv(t) = Up(Csp(t))− Un(Csn(t)).

The first two right-side terms of (4) denote cell overpoten-
tials (of the positive and negative electrode, respectively),
depending of both Li concentrations and the cell current.
They are seen as an aggregated effect of a series resistance,
which is variable with the Li concentrations on both par-
ticles’ surfaces. The third term of (4) can be assimilated
as an overpotential due to the lumped internal resistance,
Rf . The sum of the first three terms in (4) is next referred
to as the overvoltage, Vovm:

Vovm(t) =
RT

αpF
· sinh−1

[
i(t)

2apALpi0(Csp(t))

]
−

− RT

αnF
· sinh−1

[
−i(t)

2anALni0(Csn(t))

]
+Rf · i(t).

(6)

The state-space model of Li concentrations is obtained
by spatial derivative approximation via 1D discretization
of spatial coordinate (i.e., along the radius) within each
spherical particle. Here, for a generic electrode/particle,
for simplicity of writing, C(r, t) represents the volumetric
concentration within the sphere as function of the spatial
coordinate, r, and time variable, t. Diffusion coefficient is
noted by D and is considered constant.

For a mesh containing N nodes within the sphere, radius
R is quantized in (N + 1) domains having a quanta of
∆r = R/(N + 1). Note that this discretization defines
(N + 1) concentric spheres; Li volumetric concentrations
Ck(t) are defined within elementary volumes situated on
the surface of each sphere having the index k. We note the
time constant τ = ∆r2/D and the gain G = DFaAL.

Further, one uses the method of lines for approximat-
ing SPM PDE in (1) and explicit Euler’s forward finite-
difference method for the first spatial derivative approxi-
mation. However, in the second equation of (2) (i.e., on the
particle surface) backward differencing is used in derivative
approximation, in order to remain within the physical
range. The usual algebraic manipulations of these equa-
tions follow a similar approach as in Zhang et al. (2020)
and lead to (N + 2) equations describing the complete
model of Li concentrations’ evolution within the particle:



dC0(t)

dt
=

1

τ
[C1(t)− C0(t)]

dCk(t)

dt
=

1

kτ
[(k + 2)Ck+1(t)− 2(k + 1)Ck(t)+

+ kCk−1(t)] , k = 1..N

dCs(t)

dt
=

D

G
· N + 3

R
i(t)− 1

τ
[CN (t)− CN−1(t)] .

(7)

The system state vector is composed of the Li concentra-
tions in all spatial discretization points, including center
of the generic spherical particle and its surface:

x ≡ Cs = [C0(t) C1(t) C2(t) · · · Ck(t) · · · CN (t) Cs(t) ]
T .

The input is the cell current, u = i(t), and the output
is the concentration of Li on the surface of the particle,
y = Cs(t) ≡ CN+1(t). The ODEs describing Li diffusion
within the particle under the influence of the cell current
are thus described by (8), corresponding to a (N+2)th-
order state space model (index P comes from ”particle”):{

ẋ(t) = AP · x(t) +BP · i(t)
Cs(t) = CP · x(t) (8)

State-space matrices resulting from developing (7) for all
discretization points k in the generic particle are given in
(A.1) from Appendix A. Computation of AP eigenvalues
yields a zero eigenvalue, which shows an integration effect
within the Li concentration buildup, corresponding to the
charging/discharging process (or otherwise cell SoC evo-
lution). Also, the state matrix has a tri-diagonal structure
and depends only on the time constant, τ , and on the
number of spatial samples, N . The input matrix BP has
a single non-zero element, denoted next as current gain,
showing that the input variable, the current i(t), acts
directly only on the particle surface concentration, Cs(t).

If letting i(t) = 0 in (8) – corresponding to what is called
cell relaxation – an autonomous system is obtained, whose
steady states are by definition the equilibrium Li concen-
trations, which depend on the initial concentrations just
before zeroing the cell current. Therefore, the equilibrium
concentrations – computed as the zero-input solution of
(8) in response to initial concentrations – directly reflect
the cell SoC, namely the one (just) before relaxation. Let
us denote surface concentrations at cell equilibrium for
SoC=0, Cp0 and Cn0, and for SoC=1, Cp1 and Cn1.

Let Gin and Gip denote current gains for each of the two
particles; e.g., for the negative sphere, this gain writes as:

Gin = Dn(N + 3)/(GnRn) = (N + 3)/(3FAεnLn). (9)

Note that gains Gip and Gin depend on the respective elec-
trode geometry – surface, thickness and volume fraction –
and they have opposite signs.

In order to numerically integrate the cell SPM it is
necessary to particularize (8) and (A.1) for the positive
and the negative particle and to obtain Csp(t) and Csn(t),
respectively, as outputs. Then, these outputs and the cell
current i(t) are used in (4) to compute the cell voltage.
Next, MATLAB®/Simulink® software environment is
used whenever SPM given by (8) should be run in the
differents steps of model calibration and validation.



3. SYSTEMATIC METHOD OF SPM CALIBRATION

3.1 Adopted assumptions and methodology

It is well known that precise values of SPM-related param-
eters are very difficult, if not impossible to obtain. How-
ever, variation domains of some of them are known. Thus,
values of some of the parameters found in the literature
and likely to apply to our modeling problem are taken as
a departure point of the proposed calibration method:

• Li+ concentration in electrolyte phase, C0;
• electrodes’ transfer coefficients, αn and αp;
• maximum Li concentrations in solid phase, Cmxn and
Cmxp;

• volume fractions of solid phase, ϵn and ϵp;
• diffusivity coefficient in the solid phase, for the nega-
tive particle, Dn (the material is always graphite);

• open-circuit potential for the negative particle as
function of lithiation, Un(Csn) (the material is always
graphite);

• electrode reaction rates, kn and kp.

In a second step, some other material- and geometry-
related parameters are measured from the cell itself. This
has been done here by using scanning electron microscope,
whose results are displayed in Figs. 3 a) and b): electrode
area, A; electrodes’ thicknesses Ln and Lp; radii of positive
and negative particles, Rn and Rp, respectively, obtained
by averaging grain sizes observed in Figs. 3 a) and b).

15.75µm 13.15µm

a)

1.042µm

482.2nm

b)

Fig. 3. Measures of the elementary grain radii taken on
Panasonic NCR 18650 batteries via scanning electron
microscopy: a) negative and b) positive electrode.

Electrical measurements were also done. Pseudo-open-
circuit voltage for the entire cell as function of SoC, Voc,
is obtained from C/20 cell test, involving charging and

discharging at low C-rate. The charge and discharge curves
slightly differ, as one obtains a hysteresis-like open-circuit
voltage as function of SoC. These are further averaged for
each SoC value, to get the function Vocv = Vocv(SoC).

Next, identification aims at separately finding parameters
related to open-circuit potentials, i.e., positive diffusivity,
Dp, concentrations Cp0, Cp1 and Cn0, Cn1 and the one
related to overpotentials, i.e., internal resistance, Rf , by
using cell measurements provided by some standard bat-
tery cycler – here, BCS-800-series battery cycler BioLogic
(2023) was employed. The influence of the overvoltage
component, Vovt(t), is eliminated during cell relaxation,
because the cell current is zero.

3.2 Parameters related to open-circuit potentials

Step 1. Initial data is composed of open-circuit potential,
Un, and the initial value of Cn1, which has an educated
guess value from the literature. Because the concentration
excursion – which is suggested by the red thick line in
Fig. 2 b) – is constant for the negative particle, as it
depends on known parameters, then only a certain part
of curve Un(Csn) is selected.

Step 2. Next, the open-circuit voltage for the entire cell
as function of SoC, Vocv, is measured experimentally, by
means of C/20 cell test. The open circuit potential for the
positive particle, Up(Csp), is obtained by adding the open-
circuit potential, Un(Csn), to the open-circuit voltage,
Vocv, for the considered lithiation level range.

Step 3. The fully-charged cell is discharged at a constant
current during sufficiently long time such that to allow
for cell full polarization, then the current is cut off. The
relaxation process, which can take as long as 1.5–2 h, is
recorded, yielding the cell voltage evolution, vcell, until it
reaches the equilibrium relaxation voltage, veq. Then, the
battery voltage variation with respect to measured veq is
obtained: ∆vcell = vcell − veq.

Step 4. Then, an initial value, corresponding to SoC=1,
for the Li concentration in the positive particle, Cp1, is
chosen and the SPM simulator for the considered cell is
run. Two simulations are necessary. The first one aims at
obtaining the system state vector when the battery is fully
polarized, just before the current is cut off. This is done by
running the model simulator from the initial equilibrium
state, with constant negative cell current, i(t) = −I. Next,
cell relaxation is simulated in a second simulation run,
starting from the system state vector previously obtained,
with zero as input current, for the same time range as
in the experiment. The model-computed version of ∆vcell,
noted as ∆vbt, is thus obtained (see Fig. 5).

Step 5. Next, an iterative procedure is initiated, which
implements tuning of Dp parameter, such as to minimize
the norm of error between ∆vcell and ∆vbt in the least-
squares sense. At the end of the above steps, diffusivity of
positive particle, Dp, is obtained.

Step 6. Then, a full discharge at −1.25C (the upper current
limit of SPM validity), starting from SoC=1, is simulated.
It should be checked if Csn remains strictly positive – see
typical evolution in Fig. 6 b). If not, Cn1 value initially
taken at Step 1 is suitably increased, then go to Step 1.

Step 7. Next, Cn0 and Cp0 result from model simulation
at the previous step, by using current gains Gin and
Gip and initial respective concentrations at SoC=1; they



are further used as initial concentrations for a simulation
consisting of a full charge at +1.25C, starting from SoC=0.
It should be checked if Csp remains strictly inferior to Cmxp

– see typical evolution in Fig. 6 a). If not, Cp1 value initially
taken at Step 4 is suitably decreased, then go to Step 4.

The other limitations in Step 6 and Step 7 are out of
interest. The excursion of Csn beyond Cn1 is not critical,
as in usual cases Cn1 ≪ Cmxn; also, the excursion of
Csp under Cp1 is not critical, as habitually Cp1 ≫ Cminp.
Variation ranges of concentrations Csn and Csp should be
slightly shifted towards the center of the allowed domain
(between 0 and Cmxn or between 0 and Cmxp) to avoid
limitations when submitted to high current. This should
not significantly affect the shape of overvoltage (6).

Identification of diffusivity coefficient, Dp, can be per-
formed for any SoC value – that is, by initiating relaxation
at an arbitrary time of discharging process – to emphasize
the possible variation of this parameter with SoC. To this
end, the Coulomb counting technique can in a first place
provide a sufficiently reliable SoC estimation.

3.3 Identification of lumped internal resistance

This process is based on the observation that in the first
moment of relaxation, an instantaneous voltage drop/rise
takes place, depending on the current cell sign. This
phenomenon is instantaneous and strictly related to the
cumulated overvoltage components – see (6). The first
two terms can be computed based on (5) and (4) for
given surface Li concentrations, provided that all occurring
parameters are now known.

As in the previous identification step, one applies a certain
discharging current cell in order to reach a desired SoC
level. Then, cell current is cut and instantaneous variation
of cell voltage at the moment of zeroing the current, Vove,
just before the relaxation process, is recorded.

At the next step, SPM is run as in the previous identi-
fication procedure, by using the parameters identified so
far and an educated guess value of internal resistance, in
order to obtain the simulated cell voltage jump, Vovm.
An iterative procedure is subsequently initiated, which
implements tuning of Rf parameter such as to minimize
the norm of error Vove−Vovm in the least-squares sense. At
the end of the above steps, internal resistance value, Rf ,
is obtained. Likewise diffusivity coefficient, identification
of internal resistance can be done for different SoC levels.

The flowchart in Fig. 4 synthesizes the calibration steps,
where the possibility of parallel execution is suggested and
different colors represent the different types of operations:
orange for experiments, blue for model simulation and
green for off-line iterative tuning.

4. MODEL VALIDATION AGAINST REAL DATA

4.1 SPM simulation at constant current and relaxation

In this paper, a fresh 3.3 Ah Panasonic NCR 18650
Ga NMC cell – see Panasonic (2023) – has been used
for SPM key parameters estimation. All tests – C/20,
cell relaxation, current interruption – have been done at
controlled temperature (25◦C), the cell being connected to
the BioLogic battery cycler, and data of interest have been
collected by using the associated BT-Lab® software.

Fig. 4. Calibration algorithm yielding SPM parameters
diffusivity coefficient Dp and internal resistance Rf .

Fig. 5 is related to Steps 1–5 of the algorithm presented
in Section 3.2. The blue line represents voltage cell vari-
ation, ∆vcell, showing cell relaxation towards equilibrium
voltage, initial SoC level being 0.8 and the cell being fully
polarized. The red line is the output of SPM simulation
plotted after the parameter identification. It represents
the modeled cell voltage variation, ∆vbt, computed for the
same initial conditions as the real cell. One can note a close
fit between these curves, with a maximum relative error of
about 0.15% of the cell rated voltage. Parameters’ values
used for SPM numerical integration are given in Table A.1
from Appendix A.
Figs. 6 a) – b) concern the Steps 6–7 of algorithm presented
in Section 3.2. They show evolution of Li concentrations
for all the N + 2 discrete points in the spherical particles
while the current is constant, −1C, the cell current being
further cut off at t = 3600 s. One can see the integration
effect corresponding physically to Li accumulation and
mathematically to the zero eigenvalue of state matrix AP

in (8). Note the significant dispersion of concentration val-
ues, corresponding to cell polarization at constant current,
and then the relaxation process, started at i(t) = 0, which
emphasizes convergence of all concentrations to the unique
equilibrium one.
The transient regime differs following the cell current step
signs (positive/negative), which may seem weird for a lin-
ear system. The relaxation regime at the end of simulation
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lasts significantly longer vs. the initial dynamic regime, at
the beginning of simulation. This is because the relaxation
begins at a moment when the concentration values are dis-
persed, the system being excited. On the contrary, in the
initial regime all the concentrations are equal, the system is
initially in equilibrium and the associated dynamic regime
lasts significantly shorter.
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Fig. 6. Discharge at constant current (1C). Evolution of
Li concentrations: a) in the positive particle; b) in
the negative particle.

4.2 EV-context SPM simulation using identified parameters

A second simulation scenario supposes the application of
an EV-specific driving cycle, which here is derived from

the WLTP class 3 current profile – see WLTP3 (2023) and
Fig. 7 a). Maximum value in discharge is 1.25C, maximum
charging current is 0.55C, average is at 0.15C. This current
profile is repeated as long as the cell SoC varies from 1 to
0.2. Fig. 7 b) shows the evolution of simulated cell voltage.
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Fig. 7. Discharge with WLTP current profile: a) cell
current profile; b) cell voltage evolution.

Fig. 8 shows the SPM-predicted dynamic behavior while
submitted to WLTP current profile vs. the one of the real
cell, in the same conditions, with initial cell SoC around
0.8, i.e., around the identification operation point. A small
offset of 0.1 V – i.e., less than 2.5% of the cell rated voltage
– amplitude differences around 20 mV and negligible
dynamic differences can be noted. However, for some other
different SoCs these differences are slightly larger. The
offset can be explained by an imprecise identification of
the aggregated Li-concentration-variable series resistance
corresponding to cell overpotentials (the first two right-
side terms of (4) in Section 2). Figs. 9 a) and b) show zooms
of Li concentrations’ evolutions within the positive and
negative particles, in response to the same WLTP current
profile. Note that Li concentrations’ dispersion within the
spheres is larger as the current magnitude is larger.
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Fig. 8. Voltage behavior in response to WLTP current
profile: blue line – cell real data, red line – SPM.

5. CONCLUSION

In this paper, the Single Particle Model (SPM) of Li-
ion batteries’ internal behavior has been approached as
a pertinent solution towards improving estimation accu-
racy of important characteristics, such as state of charge



a)

6

C0p(t)

?

Csp(t)

Csp ≡ C(N+1)p

Ckp [mol/m3]

t [s]

b)

6

Csn(t)

?

C0n(t)

Csn ≡ C(N+1)n

Ckn [mol/m3]

t [s]

Fig. 9. Discharge with WLTP current profile. Li concen-
tration evolutions: a) in the positive particle; b) in the
negative particle.

(SoC) and state of health (SoH), because of its capacity of
predicting dynamics of relevant internal variables, such as
lithium concentrations within electrodes, and cell voltage
response at a certain input current (here, the temperature
has been supposed invariant). However, SPM accuracy is
counteracted by its complexity, as its numerous parame-
ters are notoriously difficult to measure or estimate.
In SPM each electrode is assimilated to a spherical particle
in which spatial Li concentrations evolve according to
a diffusion-like process, described by parabolic PDEs.
An ODE-based linear dynamic system was obtained as
a finite-dimensional approximation, whose states are the
volumetric concentrations of Li within the particle (from
its center to its surface). Further, the main idea of a
SPM-based SoC estimation is that the Li equilibrium
concentration – obtained as an unique steady-state value
of all volumetric concentrations in response to zero cell
current, i.e., after the so-called relaxation phase – is
an image of battery SoC. The equilibrium concentration
can easily be computed by the ODE-approximated-SPM
numerical integration, provided that all model parameters
are either known or properly identified. Thus, a first step
of this novel SoC estimation approach has been to propose
a systematic, engineering-practice-based method of SPM
calibration and validation against real data provided by a
dedicated battery cycler.
An electric vehicular application has been chosen as rel-
evant validation scenario, which has allowed pertinent
identification of key parameters. Results suggest good re-
liability of SPM for estimation of battery various states.

Future work will focus on using previously-calibrated SPM
for SoC and SoH estimation, in order to embed them as
advanced functions of a battery management system.
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Appendix A. SPM STATE-SPACE MODEL AND
PARAMETERS
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Table A.1. SPM parameter values.
Symbol Signification Value

Common parameters

N [–] No. of discretization points 30

A [m2] Electrode area 0.1

Ce
0 [mol/m3] Electrolyte Li+ concentration 1000

Rf [Ω] Internal ohmic resistance 0.020

T [K] Cell temperature 298.15

R [J/mol/K] Universal gas constant 8.31446

F [C/mol] Faraday constant 96487

Negative particle

Dn [m2/s] Diffusivity in graphite 3.9 · 10−14

εn Electrode volume fraction 0.75

αn Reaction transfer coefficient 0.5

Cmxn [mol/m3] Maximum Li concentration 30555

Ln [m] Electrode thickness 83 · 10−6

Rn [m] Particle radius 20 · 10−6

an [m2/m3] Specific interfacial surface area 1.125 · 105

kn [m4/mol s] Electrode reaction rate 2 · 10−6

τn [s] Time constant 10.67

Gin [mol/m3/s/A] Current gain 0.555

Positive particle

Dp [m2/s] Diffusivity in active material 1.92 · 10−16

εp Electrode volume fraction 0.5

αp Reaction transfer coefficient 0.5

Cmxp [mol/m3] Maximum Li concentration 51555

Lp [m] Electrode thickness 75 · 10−6

Rp [m] Particle radius 0.75 · 10−6

ap [m2/m3] Specific interfacial surface area 2 · 106

kp [m4/mol s] Electrode reaction rate 1.25 · 10−7

τp [s] Time constant 3.05

Gip [mol/m3/s/A] Current gain −0.921


