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Photonic multiplexing techniques for optical neuromorphic 
networks  
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Abstract: The simultaneous advances in artificial neural networks and photonic integration technologies have spurred 

extensive research in optical computing and optical neural networks (ONNs). The potential to simultaneously exploit mul-
tiple physical dimensions of time, wavelength and space give ONNs the ability to achieve computing operations with high 

parallelism and large-data throughput. Different photonic multiplexing techniques based on these multiple degrees of free-

dom have enabled ONNs with large-scale interconnectivity and linear computing functions. Here, we review the recent 

advances of ONNs based on different approaches to photonic multiplexing, and present our outlook on key technologies 

needed to further advance these photonic multiplexing/hybrid-multiplexing techniques of ONNs. 

Keywords: optical neural network, photonic multiplexing, optical computing operation, integrated optics. 

1 Introduction 

Artificial neural networks (ANNs) are mathematical models that emulate the biological brain, with their computing 

speed and capabilities determined by the underlying computing hardware. Mainstream electronics based on the von Neu-

mann architecture has been widely employed, leading to significant breakthroughs in machine learning with unprecedented 

performance in computer vision, adaptive control, decision optimization, object identification and more [1-6].  

However, with the ever-growing demand for processing capacity, it is clear that electronic computing alone will not be 

able to meet future practical requirements [7-10]. Its main limitation arises from the separation of the processing unit and 

memory, which requires significant energy and computing power during the reading and writing of data, which leads to 

limited efficiency when processing ultra-large matrices. Although advanced hardware architectures, such as graphics and 

tensor processing units, have enabled dramatic improvements in performance, several inherent bottlenecks of electrical 

digital processers still exist. For example, limited by the electronic bandwidth bottleneck, the clock frequency of tradition-

al electrical digital processors is limited to under a few GHz [11]. Further, electronic processors with higher computational 
power generally need a larger circuit scale and higher integration density, which will inevitably lead to high energy con-

sumption and heat dissipation [12]. These limitations will lead to the failure of Moore’s law, thus making the realization of 

significantly more advanced neural networks challenging or even impossible. The development of new techniques that 

have the potential to overcome these limitations and achieve unprecedented computing performance are needed [13-14]. 

The unique advantages of light, such as its ultrawide bandwidths of up to 10’s of THz, the low propagation loss and 

the inherent nature of its analog architecture, make optical neuromorphic computing hardware promising to address the 

challenges faced by their electronic counterparts [14-25]. Ultimately hybrid opto-electronic computing hardware that lev-

erage the broad bandwidths of optics without sacrificing the flexibility of digital electronics may provide the ideal solution. 

Light contains multiple degrees of freedom including wavelength, amplitude, phase, mode, and polarization states, thus 

supporting the simultaneous processing of data in multiple dimensions via multiplexing techniques [26-35], mirroring 

approaches that have been widely used in optical communications. Photonic techniques have significant potential in im-
plementing large-scale fan-in/out and weighted interconnects between neurons for optical neural networks (ONNs), thus 

simplifying the hardware architecture and addressing the demands for increased computing power [36-43].  

Optical neural networks use light as the information carrier and can simultaneously achieve the desired computing 

functions while propagating through specially designed dielectric structures or free space, and so the processing and stor-

age functions are no longer separated. This passive process effectively improves the energy efficiency [44-46] and reduces 

the latency of ONNs — especially for approaches based on integrated platforms [47-49]. More importantly, optical neural 

networks have critical advantages for certain demanding applications such as autonomous vehicles, robotics, computer 

vision and other emerging fields, that require extremely rapid processing of optical and image signals. For ONNs, convert-

ing the optical and image signals into digital signals before being processed can be omitted [18], thus saving considerable 

time and energy.  

Recently, the advances in ONNs have been reviewed from a number of different perspectives [14-25], including intro-

ducing: optical field interferences for visual computing applications [18], integrated neuromorphic systems and the under-
lying hardware for implementing weighted interconnects and neurons [19], the training methods [21], energy consumption 

[22] and prospects and applications of ONNs [23]. Here, we review the most recent advances of ONNs from the perspec-

tive of the fundamental photonic multiplexing techniques that offer physical parallelism for the implementation of ONNs. 

These photonic multiplexing techniques include space-division multiplexing (SDM), wavelength-division multiplexing 

(WDM), time-division multiplexing (TDM), mode-division multiplexing (MDM), and polarization-division multiplexing 

(PDM). Further, we discuss the key technologies needed for the further enhancement of the computing parallelism of 

ONNs’, which typically aim to achieve more efficient use of photonic multiplexing techniques. The paper is structured as 

follows. In section 2, we survey in detail how different photonic multiplexing techniques are leveraged for the parallel 
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signal input of vector matrix X and the optical weighted interconnection of the weight matrix W in ONNs. The typical 

structures of optical computing operations based on different multiplexing methods are outlined, which include matrix 

multiplication, Fourier transform, convolution. In section 3, spiking neurons and spiking neural networks based on optical 

multiplexing techniques are reviewed. In section 4, we discuss how to further exploit photonic multiplexing/hybrid-

multiplexing techniques in ONNs. The key technologies that further enhance the computing power through the use of 

photonic multiplexing/hybrid-multiplexing techniques are highlighted, including integrated optical frequency comb, inte-

grated high-speed electronic-optical interfaces and hybrid integrated technologies. 

 

 
Fig. 1 The different facets of optical neural networks. 

2 Multiplexing techniques for optical neural networks 

Neural networks typically consist of multiple layers, each formed by multiple neurons densely interconnected by 

weighted synapses. Each neuron has multiple input nodes, and the signals from different input nodes X are weighted via 

synapses W and summed as Y=X·W. This multiply-and-accumulate operation (MAC) accounts for the majority of compu-

tations in neural networks [50-51]. The neural network’s capacity to address complicated tasks is dictated by the scale of 

network (i.e., the number of neurons, synapses and layers), and thus the key to achieve maximum acceleration (using ana-

log hardware) lies in achieving sufficiently high parallelisms and throughput to map X (input nodes/data) and W (weighted 

synapses) onto the practical parameters of the physical system. Analog photonics offer multiple physical degrees of free-

dom for multiplexing, and are thus capable of implementing large-scale fan-in/-out and synapses, with high throughput 

enabled by the broad optical bandwidths. Typical ONN architectures based on multiplexing techniques are introduced in 

this section. 
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Fig. 2 Approaches to optical neural networks using different multiplexing techniques. 
 

2.1 ONNs based on space-division multiplexing 

Spatial-division multiplexing is a fundamental approach to boost the computing parallelism and enhance the overall 

computing speed, as has been widely used in traditional digital computing systems [14-25]. ONNs based on SDM feature 

architectures where the input nodes X and/or weighted synapses W are mapped onto the spatial division. The weighting 

process is achieved via manipulating the optical fields carrying data X, and the sum operation is achieved via construc-

tive/destructive interference. 

Fourier optics [52-56], using a free space lens to perform Fourier transform, is a classic example of computing based 

on SDM and was first proposed by K. Bieren in 1971 [52]. Thereafter, W. Goodman established the model of parallel and 
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high-speed optical discrete Fourier transforms (Fig. 3(A)) in 1978 [53], which have been widely used to perform matrix 

multiplication operations [57-59]. Subsequently, the convolution operation - a more sophisticated computing operator 

which takes on the heaviest computational burden of convolution neural networks - was realized optically based on the 4F 

system (Fig. 3(B)) by G. Wetzstein et al [54]. In that system, the encoded input signals X go through a Fourier lens to 

perform a Fourier transform, and are then convolved with the convolution kernel W encoded onto an optimized phase 

mask. Later, ONNs were demonstrated with Fourier optics [55-56], such as using Fourier lenses for the optical linear oper-

ations [55] and laser-cooled atoms with electromagnetically induced transparency for nonlinear functions (Fig. 3(C)). 

Since classical free space optics setups are relatively bulky, novel approaches such as gradient index technology, me-
ta-surface, diffraction structures and so on, have been exploited using SDM to achieve optical computing operators and 

ONNs in more compact form. In 2018, X. Lin et al. proposed an optical diffractive deep neural network (D2NN) (Fig. 3(D)) 

[60], in which the information was encoded onto both the amplitude and phase of optical waves. As each pixel of the dif-

fractive lens serves as a neuron in free space, a fully connected network involving large input nodes and neurons was real-

ized. Following this, Q. Dai et al proposed a Fourier-space D2NN (Fig. 3(E)) based on diffractive modulation layers [56]. 

The combination of diffractive optics and Fourier optics can achieve all-optical segmentation of the salient objects for the 

target scene after deep learning design of modulation layers, and obtained higher classification accuracy and a much more 

compact structure compared to real-space D2NN. Following this, Q. Dai et al [61] further optimized the diffractive neural 

network and proposed a reconfigurable optoelectronic neural network (Fig. 3(F)). The key fundamental building block was 

here was the reconfigurable diffractive processing unit consisting of large-scale diffractive neurons and weighted optical 

interconnections. The input nodes were achieved with SDM-based spatial light modulators, with the weights tuned by 

changing the diffractive modulation of the wavefront. Benefiting from the high parallelism of SDM-based lenses, the pro-
posed large-scale diffractive neural network can support millions of neurons. Soon after, T. Yan applied the integrated 

diffractive photonic computing units to the diffractive graph neural network (Fig. 3(G)) that can perform optical message 

passing over graph-structured data [62], which can fulfill the recognition of skeleton-based human action. This work has 

inspired researchers to combine deep learning with the application-specific integrated photonic circuits design. In another 

example, diffractive optics were leveraged to achieve optical dot products (Fig. 3(H)) with extremely low optical energy 

consumption, thus experimentally proving the advantages of photonic techniques in low-power-consumption computing 

[63]. Further to this, a programmable D2NN based on a digital-coding metasurface array [64] was proposed (Fig. 3(I)). 

This D2NN consisted of multiple programmable physical layers, capable of dealing with image recognition, feature detec-

tion and multi-channel encoding and decoding in wireless communications by processing electromagnetic waves in free 

space.   

The interference of light represents another form of SDM based on the superposition of waves, and this can also be 
used to achieve optical computing [65-72]. The fundamental principle is to divide coherent input light into different paths 

in free planar space, after which optical matrix multiplication can be achieved by appropriately designing the propagation 

paths of the multiply-coherent light. Typical structures to achieve interference-based computing mainly consist of Mach-

Zehnder interferometers (MZIs), which are formed by beam splitters/couplers and phase shifters. In 1994, M. Reck et al. 

introduced a theoretical model for MZI-based meshes [65]. Later, W. Clements et al. proposed a novel universal matrix 

transformer in 2016 [66], with the footprint and loss further optimized. In 2017, Y. Shen et al. proposed an all-optical 

neural network architecture (Fig. 3(J)) based on a silicon photonic integrated circuit, in which 56 programmable MZIs 

were used for optical matrix multiplications [36]. In 2021, H. Zhang et al. proposed a complex neural network (Fig. 3(K)) 

[67] based on coherent detection, in which information was encoded on both the magnitude and phase of light. In contrast 

to real-valued ONNs, this work can offer an additional degree of parallelism and achieve better performance in terms of 

computational speed and energy efficiency. An integrated-chip diffractive neural network (Fig. 3(L)) was proposed in [68], 
where diffractive cells were introduced to implement discrete Fourier transforms. This chip is capable of performing Fou-

rier transform and convolution operations, bringing prominent advantages in space-efficient and low-power-consuming 

implementations of large-scale photonics computational circuits for neural networks. 

The reported ONNs based SDM also include those that adopt an array of grating couplers [73], spatially distributed 

phase-change material (PCM) meshes [38], vertical-cavity surface-emitting lasers (VCSELs) arrays [74] and so on. In [73], 

an integrated photonic deep neural network (Fig. 3(M)) with optoelectronic nonlinear activation functions was demonstrat-

ed, capable of directly processing optical waves impinging on an array of grating couplers and fulfilling image classifica-

tion. A 5×6 array of input grating couplers distributed in free space served as input nodes to capture the image of the target 

object, and the weight vectors were controlled by tuning the input voltages of the PIN attenuator array. After achieving the 

weighted sum of the neuron inputs, the optoelectronic nonlinear response of a PN junction micro-ring modulator was used 

as a rectified linear unit (ReLU) which yielded the neuron’s output. This work is a significant step for the implementation 

of fully integrated end-to-end ONNs, and experimentally proves the advantages of ONNs for directly processing optical 
and image signals. In [38], the spatially distributed PCM meshes served as weighted interconnections to implement the 

weight addition. 

Finally, SDM has also been exploited for reservoir computing (RC) [74-84] with the nodes implemented with tailored 

optical connection topologies [75-79]. In 2011, K. Vandoorne et al. demonstrated an integrated optical RC based on spa-

tially distributed semiconductor optical amplifiers (SOAs) [76], whose steady state characteristics implement hyperbolic 

tangent nonlinear functions. Later, the authors further demonstrated that RC can be achieved on an integrated silicon pho-

tonic chip (Fig. 3(N)) [77], which consists of passive elements such as optical waveguides, optical splitters and combiners. 

In 2015, D. Brunner and I. Fischer presented a spatially extended optical RC based on diffractive optical coupling. The 

diffractive-optical element (DOE), incorporated with an imaging lens, created coupling with the emitters of a laser array 



5 

 

[74]. Limited only by the imaging aberration, potentially much larger network scales are possible with this diffractive 

coupling scheme. Later, the authors further proposed a large-scale RNN (Fig. 3(O)) consisting of 2025 nonlinear network 

nodes via the DOE [80], which can individually or simultaneously realize spatial- and wavelength-division multiplexing of 

the output.  

A B C

D E F

G H I

J K L

SDM-ONNs based on Fourier optics

 SDM-ONNs based on diffractive units

SDM-ONNs based on MZIs

SDM-ONNs based on other various formats

M N O

 
Fig. 3 Advances in SDM-based ONNs. (A) The first optical MVM system model [53]. (B) Performing optical convolution based on the 4F system [54]. 

(C) A fully functioning all-optical neural network based on Fourier optics [55]. (D) An optical diffractive deep neural network [60]. (E) A Fourier-space 

D2NN [56]. (F) A reconfigurable diffractive neural network [61]. (G) A diffractive graph neural network [62]. (H) Performing optical dot products with 

extremely low optical energies [63]. (I) A programmable D2NN based on a digital-coding metasurface array [64]. (J) An all-optical neural network archi-

tecture based on MZI meshes [36]. (K) A complex neural network based on MZI meshes and the coherent detection [67]. (L) An integrated diffractive 

neural network [68]. (M) An integrated photonic deep neural network based on spatially distributed array of input grating couplers [73]. (N) A spatially 

distributed 16-node on-chip RC [77]. (O) A large scale RNN consisting of 2025 nonlinear network nodes [80]. 
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2.2 ONNs based on wavelength-division multiplexing 

WDM is the prime embodiment of light’s remarkable advantages over electronics. The wide optical bands support 

massive wavelength channels for implementation of parallel input nodes and weighted synapses, and potentially much 
higher clock rates up to 10’s of GHz. Specifically, the optical computing operations based on WDM can be realized by 

combining multi-wavelength sources with weight bands or wavelength-sensitive elements [85-107], such as micro-ring 

resonators (MRRs) [85-95], SOAs [96-98], and PCMs [37-38, 99].  

In 2011, Q. Xu et al. proposed a WDM circuit to perform incoherent summation by collecting light outputs of different 

wavelengths into a waveguide via a tunable MRR [85]. Soon after, L. Yang et al. designed an optical matrix vector multi-

plier (Fig. 4(A)) that was composed of an array of cascaded lasers and modulators, wavelength multiplex-

ers/demultiplexers, an MRR matrix and photodetectors, capable of performing 8×107 MACs per second [86]. The input 

data vector was mapped onto the optical power of different wavelengths, and the element aij of the weight vector was con-

verted to the transmittance of the MRR at row i, column j. Such structures were further investigated in [107] (Fig. 4(B)), in 

which the weight vector was added by the modulator, capable of supporting four different operations on the same photonic 

hardware: multi-layer, convolutional, fully-connected and power-saving layers. 

In parallel, A. Tait et al. proposed the broadcast-and-weight protocol in 2014 [87] and further demonstrated it with an 
MRR weight bank in 2017 (Fig. 4(C)) [88]. This protocol broadcast input data onto all wavelength channels via electro-

optic modulation, simultaneously weighting the replicas by controlling the power of the wavelength channels. Recently, C. 

Huang et al. implemented the WDM-based ONN with a broadcast-and-weight architecture (Fig. 4(D)) on a silicon photon-

ic platform [95], in which the input data of difference neurons were loaded on the multiple optical wavelengths and then 

multiplexed on the same optical waveguide; the interconnections between the neurons were realized by using a power 

splitter; the weights were applied by controlling the partial transmission of the signal via an array of MRR banks. The 

WDM-assisted ONN can be used to compensate for fiber’s nonlinearity, leading to an improved Q factor in optical com-

munication systems.  

In 2020, Indium Phosphide (InP) platforms were employed to realize a photonic feed-forward neural network (Fig. 

4(E)) [96], where SOAs were employed to simultaneously compensate for losses and achieve synaptic weights. As another 

alternative to achieve weighted interconnects, PCM cells can make the synaptic waveguides highly transmissive or mostly 
absorbing by switching phase states. In 2019, J. Feldmann et al first demonstrated a spiking ONN based on PCM cells. In 

2021, the authors further proposed an integrated photonic tensor core (Fig. 4(F)) to accelerate convolution operations. The 

employed on-chip PCM matrix [38] can implement highly parallel matrix multiplication operations, potentially at trillions 

of MAC operations per second. 

With the recent advances in chip-scale frequency combs, wideband and low-noise integrated optical sources are readi-

ly available, greatly expanding the potential of WDM-based ONNs. Recently, an optical convolution accelerator (Fig. 4(G)) 

achieving a vector computing speed at 11.3 TOPS was demonstrated based on a time-wavelength interleaving technique 

[39], capable of extracting the features of large-scale data with scalable convolutional kernels. The schematic of the convo-

lution accelerator is shown in Fig. 4(G). Input data was mapped onto the amplitudes of temporal waveforms via digital-to-

analog converters (i.e., TDM); and the convolutional kernels’ weight matrices were mapped onto the power of microcomb 

lines via an optical spectral shaper (i.e., WDM). After electro-optic modulation, the input data were broadcast onto multi-

ple wavelength channels featuring progressive time delays due to second-order dispersion of the subsequent fiber spool. 
By setting the progressive time delay step the same as the symbol duration of the input waveform, convolution operations 

between the input data and convolutional kernels can be obtained after photodetection. The convolution accelerator can be 

further leveraged for convolutional neural networks, which feature greatly simplified parametric complexity in contrast to 

fully connected ONNs.  
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Fig. 4 Advances in WDM-based ONNs. (A) An optical matrix vector multiplier based on WDM and MRMs [86]. (B) A programmable ONN based on 

WDM and coherent light [107]. (C) A continuous time RNN based on WDM and MRR weight bank [88]. (D) A WDM-based ONN for compensating the 

fiber nonlinearity [95]. (E) A photonic feed-forward neural network based on WDM and SOAs [96]. (F) An ONN based on WDM and PCM [38]. (G) An 

optical convolution accelerator based on a time-wavelength interleaving multiplexing technique [39]. 

 

2.3 ONNs based on time-division multiplexing 

A key advantage of ONNs is the ultra-wide bandwidths offered by optics. This yields massive numbers of wavelength 

channels to greatly enhance the parallelism, as introduced above for WDM-based ONNs. It also enables high data 

throughputs of up to 10’s of Giga Baud, (corresponding to the clock rate of electronic hardware) — which requires high-

speed electro-optic interfaces (i.e., modulators and photodetectors), and tailored network protocol/architecture of the input 

nodes employing TDM techniques [108-110]. Here, we review the fundamental building blocks, architectures, and recent 

advances of TDM-based ONNs. 

In [39], a high throughput exceeding 11 TOPS was demonstrated by interleaving the time- and wavelength-divisions. 

Here, in this work, TDM has been employed to sequentially map the input nodes/data into the time domain. Assisted by 

high-speed electro-optic modulators and photodetectors (>25GHz analog bandwidth), the data rate reached ~62.9 Giga 

Baud (Fig. 5(A)). 
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Fig. 5 Advances in TDM-based ONNs. (A, B) ONNs exploiting TDM to implement large-scale fan-in/-out [39], [110]. (C) Time-delay reservoir compu-

ting (TD-RC) based on SOA [119]. (D) TD-RC based on electro-optic phase-delay oscillator [121]. (E) TD-RC based on an optically pumped spin 

VCSEL [123]. (F) TD-RC based on a silicon microring [124]. (G) Scalable RC on coherent linear photonic processor [133]. 

 

The accumulation operations of TDM-based ONNs are achieved generally based on interference between signals and 

replicas having different delays. This can be implemented using either integrated or fiber delay lines or via dispersive 

media. The former is widely used in RC architectures [111-112].  

The concept of RC, defined by D. Verstraeten et al. [115], was derived from the echo state network (ESN) proposed 

by J. Herbert in 2001 [113] and the liquid state machines (LSM) reported by W. Maass in 2002 [114]. RC is a simple and 

efficient machine learning algorithm suitable for processing sequential signals. It consists of an input layer, a reservoir and 

an output layer. The input signal is first preprocessed, and then nonlinearly mapped into a high-dimension state space by 

the reservoir. Afterwards, the output layer generates processed results according to the node states of the reservoir and the 

connection weights of the output layer. Specifically, the connection weights of the input layer and the reservoir are ran-
domly generated and remain unchanged during the training process, while only the connection weights of the output layer 

are trained. In 2011, L. Appeltant et al. proposed a RC network that exploited a single nonlinear node with a time-delay 

feedback loop that yielded a large number of virtual nodes, which simplify the hardware implementation of the reservoir 

[116]. In 2012, L. Larger et al. [117] and Y. Paquot et al. [118] first experimentally demonstrated RC using an electro-

optical feedback loop with electrical gain nested, and F. Duport et al. implemented an all-optical RC (Fig. 5(C)) based on a 

time delay feedback loop with the nonlinear function achieved with a SOA [119]. In 2013, D. Brunner et al. realized an 
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all-optical RC using a semiconductor laser diode as the nonlinear node in the time delay feedback loop [120]. In 2017, L. 

Larger et al. employed electro-optic phase-delay oscillator and other traditional photonic devices to construct a photonic 

RC (Fig. 5(D)) that was capable of classifying a million words per second [121].  

Recently, advances of optical RC hardware based on time delay feedback loops including those using the dual-

polarization dynamics of a VCSEL [122], an optically pumped spin VCSEL (Fig. 5(E)) [123], a silicon MRR (Fig. 5(F)) 

[124], and others [125-132]. In 2021, M. Nakajima et al. reported an on-chip RC architecture (Fig. 5(G)) based on hybrid 

photonic architectures/devices [133]. The input data was spatially divided into multiple branches/temporal nodes, which 

were then progressively delayed via an array of delay lines and weighted by optical cross connecting units, thus achieving 
the input mask of RC for subsequent time-series forecasting and image classification. 

 

2.4 ONNs based on mode- and polarization- division multiplexing 

In addition to the approaches to ONNs introduced above, polarization- and mode-division multiplexing can also be 

employed to enhance the transmission capacity of optical communications [134-136] and computing parallelism of ONNs. 

We note that MDM and PDM are generally compatible with other multiplexing techniques, and thus can potentially lead to 

dramatic increases in the ONNs’ computing power. Here, we review recent advances in ONNs using those two multiplex-

ing techniques. 

A

B

ONNs based on MDM

ONNs based on PDM

 
Fig. 6 Advances in PDM- and MDM-based ONNs. (A) An ONN based on MDM and WDM [137]. (B) An ONN based on PDM and SDM [138]. 

 

In order to implement on-chip ONNs based on MDM, mode multiplexers/demultiplexers with low modal crosstalk 

and losses are critical. As an ideal material with optical programmability, the PCM can be employed to build programma-

ble waveguide mode converters (other than programming the synaptic weights). Specifically, the TE0 and TE1 modes of 

photonic waveguides can be converted to the other via large refractive index changes of PCM Ge2Sb2Te5 (GST) during 
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phase transition. C. Wu et al. proposed a multimode photonic convolutional neural network (Fig. 6(A)) based on an array 

of programable mode converters made from PCM in 2021 [137], as shown in Fig. 6 (A). In detail, the patches of pixels of 

the image were encoded onto the power of multiple wavelength channels with variable optical attenuators (i.e., WDM). 

The weighted data was programmed as the mode contrast coefficient of each PCM mode converter, by controlling the 

tunable material phases of the GST, and the transmitted results of difference modes were obtained with photodetectors.  

PDM can straightforwardly double the capacity/parallelism for information transmission/processing and has been 

widely used in optical communications, imaging, and sensing. Recently, J. Li et al. proposed a diffractive ONN based on 

PDM (Fig. 6(B)), which is potentially capable of fulfilling multiple, arbitrarily-selected linear transformations [138]. In 
this work, the computing parallelism was improved with PDM between the input and output field-of-view of the diffrac-

tive network, where the polarization states of the light will not affect the phase and amplitude transmission coefficients of 

each trainable diffractive feature. 2- and 4-channel optical diffractive computing based on PDM were designed for arbitrar-

ily-selected linear transformations.  

3 Multiplexing techniques for spiking neurons  

Representing the third generation of ANNs [139], spiking neural networks (SNN) operate on time-discrete spiking 

signals instead of continuous signals. Inspired by the biological human brain neurons, artificial spiking neurons encompass 

binary states (active and inactive), and are only active and output spikes at firing events. The spiking characteristics of 

SNNs bring about enhanced noise robustness and capabilities of processing temporally varying information, enabling the 

great superiority of SNNs in dealing with event-based applications. Here, we survey existing structures of optical spiking 

neurons, one of the most fundamental components of optical SNNs, and discuss the roles of photonic multiplexing tech-

niques in achieving them. 

TDM techniques were employed in most optical spiking neural networks, where the spikes/pulses are sequentially 

distributed in the time division. The model of spiking neurons was first proposed by W. Maass in [139]. Afterwards, the 

spiking neuron was experimentally demonstrated based on a nonlinear fiber and an SOA (Fig. 7(A)) by D. Rosenbluth et al. 

in 2009 [140]. The SOA and the Ge-doped nonlinear fiber can achieve leaky temporal integration of a signal with thresh-

olding functions. Later in 2011, W. Coomans et al. designed an optical spiking neuron based on a semiconductor ring laser 
and demonstrated the mechanism of utilizing a single triggering spike to excite consecutive spikes [141].  

Since then, various lasers have been exploited as excitable devices for spiking neurons, such as distributed feedback 

lasers [142-145], VCSELs [146-151], and excitable fiber lasers [152-155]. For instance, M. Nahmias et al. proposed a 

spiking neuron based on photodetectors and DFB lasers (with saturable absorbers inside), in which the input spiking sig-

nals were weighted by a tunable filter and summed by the photodetector, then drove the excitable laser to output spikes 

[142]. Later, they also embodied the saturable absorbers into VCSELs to form spiking neurons, utilizing the gain variation 

of VCSELs with input pulses at different wavelengths [103]. After that, S. Xiang et al. proposed a VCSEL-based SNN 

[147], and further presented a photonic approach for binary convolution [150]. Then they also emulated the sound azimuth 

detection function of the human brain based on VCSELs, in which the time interval of two spikes indicates the sound azi-

muth [151].  

Other nonlinear optical cavities can also implement spiking dynamics [156-167]. In 2016, B. Shastri et al. experimen-
tally verified that graphene laser-based all-optical fiber neurons (Fig. 7(B)) can implement spiking dynamics including 

consecutive spike generation, suppression of sub-threshold responses, refractory periods, and bursting behaviors with 

strong inputs [153]. A. Jha et al. proposed a spiking neuron using a graphene-on-silicon MRR, which enables spikes deliv-

ered at a high speed and improves the overall power efficiency [156]. Besides, with highly contrasting optical and electri-

cal features between the amorphous and crystalline states, PCM can also implement spiking neurons. In 2018, I. 

Chakraborty et al. demonstrated an optical spiking neuron based on the phase change dynamics of GST embedded on the 

top of a MRR [99]. Soon after, J. Feldman et al. constructed an optical spiking neuron composed of the PCM and MRRs in 

2019 [37], where the PCM unit on the ring resonator served as the excitable devices. In [149], a VCSEL-based spiking 

neuron with integrate-and-fire capability was demonstrated (Fig. 7(D)), achieving power summation of multiple fast input 

pulses. In [166], a spiking neuron network based on a degenerate optical parametric oscillator was constructed (Fig. 7(F)). 

It consists of a fiber-ring cavity and opto-electronic feedback system, which could accommodate more than 5000 time-

domain multiplexed pulses in the 5-μs round-trip time.  
The WDM technique has also played a significant role in achieving photonic SNNs. The optical pulses encoded on to 

different wavelengths are inherently transmitted without crosstalk, and the weighted optical signals from different nodes 

can be detected/summed via photodetectors. In 2014, A. Tait et al. proposed an optical SNN (Fig. 7(C)) based on the 

WDM technique [87], supporting large-scale parallel interconnections among high-performance optical spiking neurons 

(as introduced in Section 2.2). The following year, M. Nahmias et al. presented a method to cascade DFB spiking neurons 

into a large-scale network [143], where the capacity of each waveguide was boosted by WDM. Afterwards, J. Feldman et 

al. demonstrated a WDM-based optical SNN (Fig. 7(E)), with input spikes at different wavelengths multiplexed and inte-

grated via post-synaptic spiking neuron [37]. 

Compared to continuous-valued ONNs, spiking ONNs are more similar to the intuitive model of biological brains. 

While current research mostly focuses on building high-performance spiking neurons, the network structure, data fan-

in/out, and hardware integration remains an unsolved puzzle. 
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Fig. 7 Advances in optical SNNs. (A) A spiking neuron based on SOA [140]. (B) Graphene laser-based all-optical fiber neurons [153]. (C) A spiking 

neuron network based on WDM [87]. (D) A spiking neuron based on VCSEL and TDM [149]. (E) A spiking neuron network based on WDM and PCM 

[37]. (F) Schematic diagram of a DOPO neural network based on time-domain multiplexing in a 1-km fiber-ring cavity [166]. 

4 Outlook 

The key to neuromorphic photonic computing hardware is to achieve a sufficiently large parallelism to in order to 

map the input nodes and synapses onto physical parameters, as the optical systems are analog, as well as to boost the over-
all computing speed in cooperation with high-speed electro-optic interfaces. Although significant advances have been 

made in neuromorphic optics, the unique advantage of optics, such as the ultra-large bandwidths and multiple dimensions 

for multiplexing, have yet been fully realized. Extensive progress remains to be made in terms of collectively combining 

existing techniques to develop devices tailored for ONNs, especially in terms of key components and integration plat-

forms, optical computing operators/algorithms, and electro-optic hybrid logics/architectures), in order to boost the compu-
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ting performance of optics, making them comparable with, and ultimately enabling them to partially replace, their elec-

tronic counterparts. 

The key components and integration platforms for ONNs are mainly centred around those that are critical to imple-

menting multiplexing techniques. SDM is implemented with massive optical devices (both passive and active) densely 

integrated onto a single chip, which requires: low propagation loss waveguides and crossings, such as ~1dB/m achieved by 

SiN platforms using the Damascence reflow process [168]. Also important are heterogeneous integration techniques that 

enable compact footprints for computing cores involving active (ie., gain media or light sources), photodetectors, modula-

tors and passive computing cores (such as MZI arrays) [169-171]. Finally, multi-layer photonic circuits exploiting the 
vertical dimension of integration, other than planar circuits [172] can also be exploited.  

WDM is implemented mainly through the use of optical frequency combs that provide a large number of evenly 

spaced wavelength channels, and spectral shapers to manage the wavelength channels. Microcombs generated via paramet-

ric oscillation in high-Q micro-resonators, are promising optical frequency comb sources, as they offer a large number of 

wavelengths in integrated platforms. Significant advances have been made in microcombs, leading to a wideband, com-

pact, high-energy-efficiency (even battery driven operation), turnkey and mass-producible comb sources for WDM-based 

ONNs [173-183].  
TDM is implemented based on high-speed electro-optic interfaces including modulators and photodetectors, which com-

municate with external electronics (such as analog-to-digital converters, digital-to-analog converters, and memories). A diverse 

range of integrated platforms, including lithium niobate (LiNbO3) [184], hybrid silicon and LiNbO3 [185], thin-film 

LiNbO3-on-insulator (LNOI) [186], InP [187], and hybrid silicon polymer [188], have readily demonstrated these high-

speed interface devices.  
PDM and MDM are additional dimensions of optics for multiplexing, and they can greatly scale the parallelism of ONNs as 

they can operate together with other multiplexing techniques. The key to construct PDMs or MDM-based ONNs lies in 
achieving on-chip polarization/mode sensitive devices to offer suitable fan-in/-out, such as the dual-polarization LNOI 

modulator that can utilize two polarization states [189], and the PCM cells capable of switching supported optical modes 

[137]. In addition, while multiplexing techniques address the mapping of neurons’ input nodes and synapses, the nonlinear func-

tions, albeit demonstrated in [55], remains challenging for integrated platforms. They can be potentially achieved via either high-
ly-nonlinear optical materials/structures, or electro-optic devices [73] employed in the interfaces of ONNs. 

 
Fig. 8 Schematic of a hybrid integrated neuromorphic photonic processor architecture. 

 
While analog optics features potentially much higher computing power and energy efficiency, they are inherently limited in 

terms of flexibility and versatility in contrast to digital electronics based on Von Neumann structures with distributed processors 

and memories. As such, hybrid opto-electronic neuromorphic hardware is a promising solution that leverages the advantages 

of both optics and electronics, where optics undertakes the majority of specific computing operations while electronics 

manages hardware parameters and data storage. Under such architectures, the optical computing cores serve as callable 
modules embedded in external electronic hardware, with the data rate and analog bandwidths matching each other. It is 

optimistically expected that, with more categories of optical computing operations, algorithms and architectures being 

demonstrated, ONNs can serve as a universal building block for diverse machine learning tasks [183], [190-195]. Integrat-

ed microcombs in particular have experienced dramatic advances in the past 5 years, [196-217] enabling breakthroughs in 

many areas including microwave photonics [218-239] and quantum optics. [240-251] These will certainly play a central 

role in future optical neural network systems. With the dramatically accelerated computing speed brought about by the 

hybrid opto-electronic computing architecture, much more complicated neural networks can be enabled, potentially leading 

to revolutionary advances in applications such as automated vehicles, real-time data processing, and medical diagnosis. 
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5 Conclusion 

Photonic multiplexing techniques have remarkable capacity for implementing the optoelectronic hardware that is 

isomorphic to neural networks, which can offer competitive performance in connectivity and linear operation of neural 

network. In this review, we have presented typical architectures and the recent advances of ONNs that utilize different 

photonic multiplexing/hybrid-multiplexing techniques involving SDM, WDM, TDM, MDM, and PDM to achieve inter-

connection and computing operations. The challenges and future possibilities of ONNs are also discussed.  
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