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MiR‑320 inhibits PRRSV replication 
by targeting PRRSV ORF6 and porcine CEBPB
Xiaoxiao Gao1†, Xiangbin You1,4†, Guowei Wang1, Mengtian Liu1, Longlong Ye1, Yufeng Meng1,2,3, Gan Luo1,2,3, 
Dequan Xu1,2,3 and Min Liu1*    

Abstract 

Porcine reproductive and respiratory syndrome (PRRS), a highly contagious disease caused by Porcine reproductive 
and respiratory syndrome virus (PRRSV), results in huge economic losses to the world pig industry. MiRNAs have been 
reported to be involved in regulation of viral infection. In our study, miR-320 was one of 21 common differentially 
expressed miRNAs of Meishan, Pietrain, and Landrace pig breeds at 9-h post-infection (hpi). Bioinformatics and experi-
ments found that PRRSV replication was inhibited by miR-320 through directly targeting PRRSV ORF6. In addition, 
the expression of CCAAT enhancer binding protein beta (CEBPB) was also inhibited by miR-320 by targeting the 3ʹ 
UTR of CEBPB, which significantly promotes PRRSV replication. Intramuscular injection of pEGFP-N1-miR-320 verified 
that miR-320 significantly inhibited the replication of PRRSV and alleviated the symptoms caused by PRRSV in piglets. 
Taken together, miR-320 have significant roles in the infection and may be promising therapeutic target for PRRS.
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Introduction
Porcine reproductive and respiratory syndrome (PRRS) is 
a highly contagious disease also known as “porcine blue 
ear disease”, which is characterized by reproductive dis-
orders in pregnant sows and respiratory diseases in pigs 
of various ages, especially in piglets [1, 2]. PRRS was first 

detected in Beijing, China, in 1995, followed by a massive 
outbreak in 2006 [3–5]. Now, various types of porcine 
reproductive and respiratory syndrome virus (PRRSV) 
strains are widespread and cause a lot of economic losses 
[6, 7]. The common reproductive clinical symptoms 
of PRRS include delayed returns to estrus, premature 
birth, late abortion, stillbirth, weak and mummy fetuses 
in sows, a lack of libido and decreased semen quality in 
boars.

PRRSV is a single-stranded positive sense, non-
segmented RNA virus and consists of 9 open reading 
frames (ORFs), ORF1a, ORF1b, ORF2a, ORF2b, ORF3, 
ORF4, ORF5, ORF6, and ORF7 [8, 9]. ORF1a and 
ORF1b encode non-structural proteins related to viral 
replicase and RNA polymerase [10]. ORF2a, ORF2b, 
and ORF3 ~ ORF7 are located at the 3’ end of the viral 
genome and encode major structural proteins [11].

MicroRNAs (miRNAs) are a class of endogenous 
non-coding RNAs with regulatory function that are 
about 20–25 nucleotides in length [12]. MiRNAs guide 
RNA-induced silencing complex (RISC) to degrade the 
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mRNA or hinder translation by base pairing with target 
mRNA [13]. Numerous studies have shown that miRNAs 
are involved in the regulation of cell growth, tissue 
differentiation, embryonic development and disease 
[14–16]. Previous reports also indicated that miRNAs 
are involved in PRRSV infection. Xiao et  al. has shown 
that PRRSV replication was promoted by miR-22 by 
targeting the host factor HO-1 [17]. Another report has 
shown that PRRSV replication was inhibited by miR-23 
through directly targeting PRRSV and upregulating type 
I interferon [18]. In addition, several studies also have 
shown that miR-30c, miR-181, miR-130 could be used to 
treat PRRSV-infected pigs in vivo [19–21].

In this study, miR-320 was found to be significantly 
differentially expressed in infected/mock-infected 
porcine alveolar macrophages (PAMs) of Meishan, 
Pietrain, and Landrace pig breeds. Furthermore, miR-
320 was predicted to target PRRSV ORF6, which was 
confirmed by double fluorescence reporter assay. In 
addition, miR-320 also inhibited the expression of CEBPB 
by targeting the 3’ UTR of CEBPB, which promotes 
PRRSV replication. And the replication of PRRSV was 
inhibited by intramuscular injection of pEGFP-N1-
miR-320, alleviating the symptoms caused by PRRSV 
in piglets. Taken together, miR-320 inhibits PRRSV 
replication by targeting ORF6 and CEBPB.

Materials and methods
Ethics statement
All animal procedures were approved by the Scientific 
Ethic Committee of Huazhong Agricultural University, 
Wuhan, China (ID number: HZAUSW2015-018).

Cell line and virus
Marc-145 cells were obtained from China Center for 
Type Culture Collection (CCTCC) and cultured in 
DMEM (Hyclone, Logan, UT, USA) supplemented with 
10% fetal bovine serum (CLARK Bioscience, Virginia, 
USA) and maintained in an incubator at 37  ℃ with 
5% CO2. PRRSV WuH3 strain (GenBank accession 
No.HM853673) was kindly provided by Dr Xiao Shaobo.

MiRNA‑seq, bioinformatics and luciferase reporter assay
PAMs were isolated from Pietrain (P), Qingping 
(QP), Meishan (MS), and Landrace (L) pig breeds by 
bronchoalveolar lavage under aseptic conditions [45]. 
The washed cells were incubated in 10 cm2 culture dishes 
at 37  °C and 5% CO2 for 2  h; the unadhered cells were 
removed and the remaining cells were digested and 
transferred to a suitable cell culture plate for subsequent 
experiments. Then, the PAMs of 5 pigs of each breed 

were infected with PRRSV strain WuH3 at multiplicity 
of infection (MOI) of 0.1 PFU/cell. The PRRSV-infected 
PAMs were collected at 9, 36, and 60 hpi and mixed 
evenly. The control group (mock-infected) PAMs were 
infected with culture medium and collected at 9, 36, and 
60  h. Total cellular RNA was isolated using the Trizol 
reagent (Invitrogen, Cashman, CA, USA). The miRNA 
fragments (18–30 nt) were isolated from total RNA by 
polyacrylamide gel electrophoresis and 3′-adaptor (TGG​
AAT​TCT​CGG​GTG​CCA​AGG) was first ligated to the 
RNA 3′ ends. Then the 5′ adaptor (GTT​CAG​AGT​TCT​
ACA​GTC​CGA​CGA​TC) was ligated to 5′end of the 
preparation. T4 RNA Ligase (Takara, Dalian, China) was 
used in the ligation reaction. The adaptor-ligated miRNA 
was then converted to cDNA using SuperScript II 
Reverse Transcriptase (Life Technologies, Carlsbad, CA, 
USA). The resulting cDNA was amplified on the PCR 
machine. The purified PCR products were recovered 
with QIAquick Gel Extraction Kit (Qiagen, Beijing, 
China) following the manufacturer’s instruction and 
assessed on an Agilent Technologies 2100 Bioanalyzer 
(Agilent Technologies, Santa Clara, CA, USA). Each 
miRNA library was sequenced individually using 
Illumina/solexa Genome Analyzer (BGI, Shenzhen, 
China. The expression of miRNAs was normalized and 
analyzed by calculating fold-change and p-value [46, 
47]. A miRNA was labeled as differentially expressed, 
when |log2(fold change)|≥ 1 and p ≤ 0.01. TargetScan, 
miRbase, and RNAhybrid software were used to predict 
the target mRNAs of miRNAs. MiR-320, which is 
strongly downregulated in patients with COVID-19 
induced severe respiratory failure [48], is differentially 
expressed before and after infection with PRRSV among 
different pig breeds. The potential miR-320 binding sites 
in the genome of PRRSV WuH3 strain were predicted 
using ViTa and RNA hybrid software. Using porcine 
genome DNA as template, the 3’UTR of CEBPB and 
ORF6 containing putative miR-320 binding site were 
amplified by PCR with primers CEBPB-W-F/CEBPB-
W-R and ORF6-W-F/ORF6-W-R, and cloned into 
pmirGLO vector (Promega, Madison, Wisconsin, USA) 
and designated as pmirGLO-CEBPB-WT and pmirGLO-
ORF6-WT, respectively. Mutations (CGG​TCT​ and CCG​
TCG​T) in the miR-320 predicted target site (CCC​AGT​ 
and CCC​GGC​T) in the 3’UTR were generated by PCR 
with primers CEBPB-M-F/CEBPB-M-R and ORF6-M-F/
ORF6-M-R, and cloned into pmirGLO vector (Promega, 
Madison, Wisconsin, USA) and designated as pmirGLO-
CEBPB-MUT and pmirGLO-ORF6-MUT respectively. 
The primers for vector construction are shown in 
Additional file 1. Marc-145 cells were co-transfected with 
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pmirGLO-CEBPB-WT, pmirGLO-ORF6-WT, pmirGLO-
CEBPB-MUT or pmirGLO-ORF6-MUT plasmid and 
miR-320 mimics, miR-320 inhibitor or negative control 
using lipofectamine 2000, respectively. Twenty-four 
hours later, the luciferase activity was measured with 
PerkinElmer 2030 Multilabel Reader (PerkinElmer, 
Boston, MA, USA).

Transfection of siRNA and miRNAs
SiRNA oligos against pig CEBPB (sense 5′-CCU​CGC​
AGG​UCA​AGA​GUA​ATT-3′), miR-320 mimics (sense 
5′-AAA​AGC​UGG​GUU​GAG​AGG​GCGAA-3′) and 
miR-320 inhibitor (sense 5′-UUC​GCC​CUC​UCA​ACC​
CAG​CUUUU-3′) were designed and synthesized by 
GenePharma (GenePharma Shanghai, China). For cell 
transfection, siRNAs or miRNAs were conducted with 
Lipofectamine 2000 (Invitrogen, Cashman, CA, USA) 
as advised by the manufacturer’s protocol. Five hours 
after transfection of siRNA and miRNA, 3% of the 
cell maintenance solution was replaced. PRRSV strain 
WUH3 at MOI of 0.1 was infected with Marc-145 for 1 h 
and then replaced with standard growth solution, and 
cells were harvested for 36 h.

QRT‑PCR
Total RNA was extracted from Marc-145 cells or tissues 
with TRIzol reagent (Invitrogen, Cashman, CA, USA) and 
reversely transcribed with RevertAid First Strand cDNA 
Synthesis Kit (Thermo Fisher Scientific, Waltham, MA, 
USA). The levels of mRNA were detected by quantitative 
realtime PCR (qRT-PCR). The qRT-PCR reaction was 
performed in LightCycler 480 II (Roche, Mannheinm, 
Germany) system. Primers used in qRT-PCR are shown 
in Additional file  2. U6 or β-actin was applied as the 
internal control, while the fold changes were calculated 
using the 2−ΔΔCt method. Absolute quantification was 
used to detect the PRRSV copy number. The primer 
ORF7-F/R and ORF7-probe were shown in Additional 
file  2. The efficiency of PCR reactions was calculated 
for each primer set by carrying out serial dilutions of a 
cDNA template and plotting CT values against the log 
of the template concentrations. The experiments were 
repeated three times.

Plasmids construction
To investigate whether miR-320-mediated inhibition 
of PRRSV replication can be used in therapy, the pre-
miR-320 was amplified by PCR with primers miR-320-pF 
and miR-320-pR using porcine genome DNA as tem-
plate, the pEGFP-N1-miR-320 plasmids were constructed 
by inserting the pre-miR-320 into the pEGFP-N1 vector 
(Clontech, Mountain View, CA, USA) (Figure  4A). The 

primers for vector construction are shown in Additional 
file 1.

Animals
Six, four-week-old piglets were divided into two groups: 
the pEGFP-N1-miR-320 treatment group and the control 
group. pEGFP-N1-miR-320 or pEGFP-N1 (2.5  mg/kg 
of body weight per dose) mixed with D5W solution in a 
final volume of 3 mL were administered to pigs through 
intramuscular injection, 1.5 mL of PRRSV strain WUH3 
(105.2 TCID50) were administered by intramuscular 
injection after 5  h. The weight, rectal temperature 
and mental state of piglets were measured twice a day 
and blood was collected every 3  days. On day 14, we 
performed pathological dissection and collected all the 
lungs and PAMs of the pigs.

Western blot analysis
Marc-145 cells or pig tissues were lysed in RIPA buffer 
containing 1% (v/v) phenylmethylsulfonyl fluoride 
(PMSF) (Beyotime, Jiangsu, China). The antibodies 
and their dilutions were shown as follows, anti-CEBPB 
(GTX100675, GeneTex, Alton Pkwy Irvine, CA, USA, 
1:1000), anti-PRRS virus Nucleocapsid (GTX129270, 
GeneTex, Alton Pkwy Irvine, CA, USA, 1:1000), anti-
β-tubulin (GB11017B, Servicebio, Wuhan, China, 
1:1000), anti-β-actin (AC026, ABclonal, Wuhan, China, 
1:20 000). The protein expression levels were normalized 
to corresponding β-actin or β-tubulin. ImageJ software 
was utilized for the quantitative analysis of Western blot 
results.

Histological assay
After being fixed in 4% paraformaldehyde, lung tissues 
were embedded in paraffin. Lung tissues were analyzed 
by Hematoxylin–Eosin staining (H&E). The experimental 
procedures were as previously reported [49]. Finally, 
these sections were observed under an optical 
microscope (Olympus BX53, Tokyo, Japan) to detect 
morphological changes in lung tissue.

Statistical analysis
All experiments were performed at least three times 
in triplicate. The differences were assessed using two-
tailed t-test or one-way ANOVA. Data were presented 
as mean ± SD, and p-value of < 0.05 and < 0.01 were 
considered to be significant. All the histograms and 
graphs were generated with GraphPad Prism version 5.0 
and Adobe Photoshop CS5 software, respectively.
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Results
MiR‑320 was differentially expressed in PRRSV‑infected/
mock‑infected PAMs from 4 pig breeds
Our previous research on small RNA deep sequencing 
showed that miR-320 was one of 21 common differen-
tially expressed miRNAs of Meishan, Pietrain, and Lan-
drace pig breeds [22]. The expression level of miR-320 
was significantly decreased after 9 h of PRRSV infection 
in Meishan, Pietrain, and Landrace breeds (Figure  1A), 
and was not differential in Qingping breed probably 
caused by low susceptibility to PRRSV. In addition, after 
36 and 60 h of PRRSV infection in PAM cells, the expres-
sion level of miR-320 showed different trends in the four 
breeds (Figures 1B and C).

MiR‑320 directly targets PRRSV ORF6
MicroRNAs have been shown to interact directly with the 
viral genome to inhibit virus replication. The predicted 
result by bioinformatics showed that miR-320 could tar-
get ORF6 at 14,696 to 14,702  bp of PRRSV genome. In 
addition, miR-320 could target 9 strains of PRRSV-2 and 
1 strain of PRRSV-1 (Figure 2A). Further, it was verified 
that miR-320 could bind to ORF6 by luciferase reporter 
analysis. The pmirGLO-ORF6-WT luciferase reporter 
plasmid was co-transfected with miR-320 mimics or 
miR-320 inhibitor into Marc-145 cells, and luciferase 
activity was found to be significantly (p < 0.05) suppressed 
by miR-320 (Figure 2B). However, miR-320 had no effect 
(p > 0.05) on pmirGLO-ORF6-MUT luciferase reporter 
plasmid (Figure 2C).

MiR‑320 inhibits the replication of PRRSV
To investigate whether miR-320 inhibition of PRRSV 
replication is caused by binding to ORF6, Marc-145 
cells were transfected with miR-320 mimics and miR-
320 inhibitor, followed by infection with PRRSV strain 
WuH3 at an MOI of 0.1cells for 36  h. The absolute 
quantification results showed that PRRSV copy number 
was significantly (p < 0.05) inhibited by miR-320 mimics 

and significantly (p < 0.05) increased by miR-320 inhibitor 
in Marc-145 cell (Figure  2E). The Western blot results 
showed that PRRSV N protein level was significantly 
reduced by miR-320 mimics. In contrast, the expression 
of PRRSV N protein was significantly increased by miR-
320 inhibitor in Marc-145 cells (Figure  2F). The above-
mentioned findings provided evidence that miR-320 
could inhibit the PRRSV replication by targeting the 
genome of PRRSV.

MiR‑320 binding to the CEBPB mRNA
Host miRNAs were shown to influence the life cycle of 
RNA viruses by altering host cell gene expression. Using 
qRT-PCR, 5 predicted potential target mRNAs were 
examined after miR-320 mimics were transfected into 
Marc-145 cells. The results showed that STAT4, IRAK2, 
CEBPB andTNFSF7 were significantly (p < 0.05) inhib-
ited by miR-320 mimics (Figure 3A). At the protein level, 
Western blot analysis also revealed that the expression 
of CEBPB was significantly inhibited by miR-320 (Fig-
ure  3B). To confirm that miR-320 directly targets the 
3’UTR of CEBPB, dual-luciferase reporter plasmids car-
rying the CEBPB 3’UTR with the wild-type or base-pair 
mutant miR-320 binding regions was constructed (Fig-
ure  3C). The results showed that the fluorescent activ-
ity of pmirGLO-CEBPB-WT was significantly (p < 0.01) 
inhibited by the miR-320 mimics. The fluorescence activ-
ity of pmirGLO-CEBPB-WT was significantly (p < 0.01) 
enhanced when Marc-145 cells were transfected with 
miR-320 inhibitor (Figure 3D). Neither miR-320 mimics 
nor miR-320 inhibitor could affect the fluorescence activ-
ity of pmirGLO-CEBPB-MUT (Figure  3E). These data 
demonstrated that miR-320 specifically inhibited CEBPB 
expression by directly targeting its 3’UTR.

CEBPB significantly promotes PRRSV replication
In order to elucidate the role of CEBPB in PRRSV 
infection, Marc-145 cells were transfected with 
si-CEBPB, followed by infection with PRRSV for 

Figure 1  MiR-320 was differentially expressed in mock vs PRSSV -infected PAMs from 4 pig breeds. MiR-320 expression levels were analyzed 
in miRNA-sequencing data of PRRSV-infected/mock-infected PAMs from Pietrain (P), Landrace (L), Qingping (QP), and Meishan (MS) pig breeds at 9 
(A), 36 (B), and 60 (C) hpi. Mock-infected PAMs represent PAMs that were infected with culture medium and collected at 9, 36, and 60 h respectively, 
PRRSV-infected PAMs represent PAMs that were infected with PRRSV and collected at 9, 36, and 60 h respectively. the y-axes on the left present 
miR-320 RPKM (Reads Per Kilobase per Million mapped reads) expression levels. *p < 0.05, **p < 0.01.
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36  h. The results showed that PRRSV replication was 
significantly (p < 0.05) inhibited by interfering with 
CEBPB (Figure 3F). In addition, at the protein level, the 
expression of PRRSV N protein was also significantly 
inhibited when compared to the NC group (Figure 3G). 
These results showed that CEBPB is necessary for PRRSV 
replication.

MiR‑320 inhibits PRRSV replication in piglets
Furthermore, the expression of PRRSV ORF7 in Marc-
145 cells was significantly (p < 0.01) inhibited by the over-
expression of miR-320, transfecting pEGFP-N1-miR-320 
(Figure  4B). Subsequently, in 6 four-week-old Landrace 
piglets, we found that the body temperature of the pigs in 
thepEGFP-N1 control group increased rapidly and con-
tinued to increase after a period of fluctuation. However, 

Figure 2  MiR-320 inhibits the replication of PRRSV. Bioinformatical predication showed that ORF6 was a putative target mRNA 
of miR-320 (A). The dual luciferase reporter assay was used to detect the luciferase activity in cells co transfected with pmirGLO-ORF6-WT/ 
pmirGLO-ORF6-MUT and miR-320 mimics (B) or miR-320 inhibitor (C). Marc-145 cells were transfected with miR-320 mimics or miR-320 inhibitor 
to detect miR-320 expression (D). Marc-145 cells were transfected separately with miR-320 mimics and miR-320 inhibitor, and then infected 
with PRRSV (MOI = 0.1). The cells were harvested at 36 h post PRRSV infection, and qRT-PCR (E) and Western blot (F) was carried out to detect PRRSV 
replication. All values represent the mean ± SD of three independent experiments. *p < 0.05.
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the body temperature of the pEGFP-N1-miR-320 experi-
mental group was slowly increased and then main-
tained at a stable temperature. The results showed that 
pEGFP-N1-miR-320 could significantly alleviate the 
fever caused by PRRSV (Figure  4C). At the same time, 
pEGFP-N1-miR-320 also alleviated the slow growth 
caused by PRRSV (Figure 4D). Viral load in pig lung tis-
sue was significant reduced in the miR-320 experimen-
tal group using qRT-PCR (Figure 4E). The expression of 
CEBPB in  vivo also significantly inhibited by miR-320 
(Figure 4F). The lungs of pigs in the pEGFP-N1-miR-320 
experimental group showed fewer pathological changes 
than piglets in the pEGFP-N1 control group (Figure  5). 
These results showed that miR-320 could inhibit PRRSV 
replication in vivo.

Discussion
Many studies have been done on miRNAs and viruses 
in recent years [23–25]. Previous reports also showed 
that miRNAs regulated PRRSV replication by directly 
targeting the PRRSV genome [20, 21]. Li et  al. [20] 
reported that miR-130 family members targeted the 
5’UTR of the PRRSV genome and inhibited viral rep-
lication. In our study, miR-320 was one of 21 common 
differentially expressed miRNAs of Meishan, Pietrain, 
and Landrace pig breeds at 9 hpi. In addition, a previ-
ous study found that miR-320a inhibited the infec-
tion and replication of enteritis virus in F81 cells by 
targeting the 3’UTR of transferrin receptor [26]. And 
miR-320 inhibitor was found to be effective in improv-
ing EBOV-induced cytotoxicity [27]. Bioinformatics 
and experiments found that miR-320 directly targeted 

Figure 3  miR-320 regulate target mRNA CEBPB. Marc-145 cells were transfected with miR-320 to detect the expression of the potential target 
mRNAs (A). CEBPB protein expression was detected by Western blot after the transfection of Marc-145 cells with miR-320 mimics or miR-320 
inhibitor (B). The potential target mRNAs predicted by bioinformatics for miR-320 (C). The dual luciferase reporter assay was used to detect 
the luciferase activity in cells co-transfected with miR-320 mimics/inhibitor and pmirGLO-CEBPB-WT (D) or pmirGLO-CEBPB-MUT (E). Marc-145 cells 
were transfected with si-CEBPB, and then infected with PRRSV (MOI = 0.1). The cells were harvested at 36 h post PRRSV infection, and qRT-PCR (F) 
and Western blot (G) was carried out to detect PRRSV replication. All values represent the mean ± SD of three independent experiments. * p < 0.05, 
** p < 0.01, *** p < 0.001.
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PRRSV ORF6, which encoded nonglycosylated mem-
brane protein M [28]. Previous reports have shown 
that artificial miRNAs significantly inhibited PRRSV 
replication by targeting PRRSV ORF6 (amirM-82, 
-217, -263) in Marc-145 cells [29]. Another report 
showed that the small interfering RNAs of ORF6 could 

effectively inhibited PRRSV-JXwn06 replication in cul-
tured cells in vitro [30]. It is consistent with our results 
that miR-320 significantly inhibited PRRSV replica-
tion. These results suggest that miR-320 could inhibit 
replication of PRRSV by targeting ORF6. What is 
more, the PRRSV GP5 (ORF5 encoded) and M proteins 

Figure 4  miR-320 inhibits PRRSV replication in vivo. Marc-145 cells were transfected with pEGFP-N1-miR-320 or pEGFP-N1 (4 µg) to detect 
miR-320 expression (A) and the virus copy number (B). Daily average body temperatures (C) and weight gain (D) of piglets infected PRRSV 
after injection with plasmid pEGFP-N1 for the positive control group and pEGFP-N1-miR-320 for the experimental group. Virus copy number (E) 
and CEBPB mRNA expression (F) were detected in the lungs of piglets from the experimental group and positive control group. All values represent 
the mean ± SD of three independent experiments. * p < 0.05, ** p < 0.01.
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are known to form a heterodimeric complex which is 
important for viral structure and infectivity [31]. It 
could be concluded that miR-320 had a significant role 
in PRRSV infection.

Previous studies have also shown that miRNAs 
inhibited PRRSV replication by targeting host factors. In 
this study, we have demonstrated that miR-320 inhibited 
PRRSV replication by directly targeting PRRSV ORF6. 
Moreover, the results of bioinformatics analysis and 
experiment also confirmed that CEBPB was a target 
mRNA of miR-320. Previous studies showed that CEBPB 
was essential for efficient HIV replication in macrophages 
and had been reported to play an important role in 
regulating HIV/SIV replication in alveolar macrophages 
[32–34]. Other studies showed that CEBPB−/− mice 
were found to be resistant to oral candidiasis, showing 
increased susceptibility only under conditions of steroid-
induced immunosuppression [35]. Previous studies had 
shown that increased miR-155 level could help to reduce 
HBV load by targeting CEBPB in  vitro [36]. Consistent 
with earlier reports, the knockdown of CEBPB by 
siRNA inhibited the replication of PRRSV. This result 
demonstrated that CEBPB significantly promoted the 
replication of PRRSV. Our studies also showed that 
overexpression of miR-320 in Marc-145 cells significantly 
down-regulated the expression of both CEBPB mRNA 
and protein. These results indicated that miR-320 also 
regulated PRRSV replication via CEBPB.

Prevention and control of many livestock and poultry 
viral infections can no longer rely on traditional 
vaccines such as inactivated and attenuated vaccines 

[37, 38]. The emergence of DNA vaccines has improved 
this situation [39, 40]. Plasmid DNA encoding different 
antigenic genes, can cause substantial and long-lasting 
immune responses in many species of vertebrates such 
as mammals, birds and fish. Meng cloned the GP5 gene 
into a eukaryotic expression plasmid under the control 
of the cytomegalovirus early promoter to prepare a 
DNA vaccine, which could induce the production of 
antibodies after immunization of piglets [41]. More 
and more studies showed that miRNAs could be used 
to treat PRRS [42–44]. In our research, intramuscular 
injection of pEGFP-N1-miR-320 could reduce the 
replication of PRRSV in pigs. In addition, miR-320 
could effectively alleviate the symptoms caused by 
PRRSV in vivo. The average weight gain was particularly 
significant. The pigs in the control slightly increased 
their body weight after infection with the virus, while 
the weight gain of the miR-320 treatment piglets was 
substantial. HE staining experiments showed that 
miR-320 could protect the piglets from damage. The 
interstitial pneumonia was more severe in the lungs of 
the  control group than that of the experiment group. 
The interstitial enlargement and congestion were 
more prominent in the control group than that in the 
experiment group.

In summary, the present study demonstrated that 
miR-320 bound to the CEBPB 3’UTR by seed sequence 
pairing to regulate CEBPB expression and targeted 
ORF6 of PRRSV, thereby inhibiting PRRSV replication. 
In addition, miR-320 could effectively alleviate the 
symptoms caused by PRRSV in  vivo. It could be 
concluded that miR-320 played an essential role during 

Figure 5  Histopathological analyse of lungs of piglets from the control and experimental groups in vivo. Histological sections of lungs 
of piglets from the experimental group injected with pEGFP-N1-miR-320 and PRRSV infection (B1, B2, B3), the control group injected with pEGFP-N1 
and PRRSV infection (A1, A2, A3) were stained with hematoxylin–eosin.
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PRRSV infection. These insights may be applicable to 
PRRS prevention and control.

In summary, we discovered that miR-320 significantly 
inhibited PRRSV replication by suppressing the 
expression of CEBPB and directly targeting PRRSV 
ORF6. These data suggest that miR-320 has significant 
roles in the infection and may be promising therapeutic 
target for PRRS.
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