
HAL Id: hal-04580380
https://hal.science/hal-04580380v1

Submitted on 19 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Portable, Simple, Embeddable Type System
Jim Newton, Adrien Pommellet

To cite this version:
Jim Newton, Adrien Pommellet. A Portable, Simple, Embeddable Type System. ELS 2021, the 14th
European Lisp Symposium, May 2021, Online, Unknown Region. pp.11–20, �10.5281/zenodo.4709777�.
�hal-04580380�

https://hal.science/hal-04580380v1
https://hal.archives-ouvertes.fr


A Portable, Simple, Embeddable Type System
Jim E. Newton

jnewton@lrde.epita.fr
EPITA/LRDE

Le Kremlin-Bicêtre, France

Adrien Pommellet
adrien@lrde.epita.fr

EPITA/LRDE
Le Kremlin-Bicêtre, France

ABSTRACT
We present a simple type system inspired by that of Common
Lisp. The type system is intended to be embedded into a host lan-
guage and accepts certain fundamental types from that language
as axiomatically given. The type calculus provided in the type sys-
tem is capable of expressing union, intersection, and complement
types, as well as membership, subtype, disjoint, and habitation (non-
emptiness) checks. We present a theoretical foundation and two
sample implementations, one in Clojure and one in Scala.

CCS CONCEPTS
• Theory of computation→Data structures design and anal-
ysis; Type theory.
ACM Reference Format:
Jim E. Newton and Adrien Pommellet. 2021. A Portable, Simple, Embeddable
Type System. In Proceedings of the 14th European Lisp Symposium (ELS’21).
ACM, New York, NY, USA, 10 pages. https://doi.org/10.5281/zenodo.4709777

1 INTRODUCTION
1.1 Long-term Motivations
The motivation for this research is two-fold. In the larger sense we
will lay the groundwork, so that in a future publication we will be
able reason about the regularity of heterogeneous sequences [28]
in programming languages which support them. By heterogeneous
sequence, we mean a sequence of arbitrary, finite length for which
elements are of various types such as ["Alice" 12 "Bob" 54
"Eve" -3]. Typically, such a sequence does not contain completely
random data, but rather data which follows a pattern: each element
of the sequence must in turn be of a type determined by some sort
of specification.

By reason about the regularity of these sequences we mean some-
how specifying regular (in the sense of regular expressions) se-
quences of types, and to ask questions such as whether a given
sequence (at run-time) belongs to this set. The theory of finite
automata [20] describes how such a question can be answered in
linear time, regardless of the complexity of the expression, provided
that membership of the so-called alphabet can be determined in
constant time for any element of the sequence in question. Other
forms of reasoning might be to ask (at compile-time) whether an
arbitrary sequence in one such set also belongs to another simi-
larly specified set, or to compute a specifier for the intersection of

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’21, May 03–04 2021, Online, Everywhere
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.5281/zenodo.4709777

such sets and ask whether that intersection is inhabited or empty.
These latter questions can be answered by exploiting an algebra of
operations defined on deterministic finite automata (DFA).

Novice, non-Java-savvy Scala [33, 34] users may be surprised
that the pattern matcher can distinguish between Int and Double
and between List and Array, but cannot distinguish between
List[Int] and List[Double] as this distinction is obviated by
Java type-erasure [6]. We see sequences of constant type as a spe-
cial case of type patterns which may also appear in input data such
as JSON [37] or as s-expression [27].

The theory of deterministic finite automata is a powerful tool for
such verification: however, it can only handle sequences on a finite
alphabet instead of arbitrary values from the infinite set of objects
representable in a programming language. A reasonable intuition
would thus be to consider a finite alphabet of decidable types: each
type representing a potentially infinite set of values. However, these
types may intersect and thus violate the determinism requirement
if a value in the sequence belongs to two overlapping types that
lead to different branches of a given algorithm. Because of their
nice algebraic properties, we wish to employ deterministic finite
automata (DFA), as opposed to non-deterministic (NFA). We must
thus avoid such non-determinism at DFA construction time.

In a smaller sense, we want to be able to compute a proper
partition of the type space (defined formally in Definition 3.1) in
order to decompose large types into smaller non-overlapping types.
By compute a partition of the type space, we mean to express the set
of all objects in the programming language as a disjoint union of
subsets, where each subset is expressed in terms of intersections,
unions, and complements of more fundamental types.

We state clearly that in this article, we will not describe
how to recognize sequences of heterogeneous types yet such as
Array<Int>: this goal would be premature. In [29] we addressed a
generalization of this problem, but only for Common Lisp. Our long
term goal is to extend that approach to work with any programming
language for which SETS has been implemented.

To do so, we need to define beforehand a simple embeddable type
system (SETS) which can be used in such a recognition flow. This
type system is intended to be simple, and not intended to replace
that of Common Lisp, nor is it intended to be powerful enough
to implement the Common Lisp type system. The type system
encapsulates just enough of the Common Lisp type system needed
to implement the regular sequence recognition flow as described
in [28] to other languages.

1.2 Goals and Contributions
We will therefore present in this article the first necessary step to
address the goal of type-based sequence recognition. We introduce
a simple type system (SETS) that defines fundamental types, and

https://doi.org/10.5281/zenodo.4709777
https://doi.org/10.5281/zenodo.4709777


ELS’21, May 03–04 2021, Online, Everywhere Jim E. Newton and Adrien Pommellet

which makes it possible to compute a partition of a type space us-
ing a given set of types and set-theoretic operations (∪,∩, , ∈ , ⊂).
This simple type system will be used as a building block for later
development in a future publication, but deserves careful consider-
ation in its own right.

Our previous work addressed this problem for Common Lisp, as
described in [28]; we begin in this article our goal of generalizing
the method to a larger class of languages. We demonstrate the SETS
type system by implementing it in three programming languages.

• Clojure [18, 19] was chosen because it is a lisp, and we hoped
that it would provide a logical transition for a theory based
in Common Lisp.

• Scala runs on the same JVM [25] as does Clojure, thus al-
lows similar sequences and type reflection operations despite
syntactic differences.

• Python [48] is a dynamic language that makes different as-
sumptions about types than do JVM based languages.

All three of these languages support heterogeneous sequences,
and provide a type system with reflection. The implementation in
Python is in its infancy, and the details of its implementation are
discussed sparingly in this article.

The current article lays a foundation by defining a portable,
Simple, Embeddable Type System (SETS). The principles of SETS,
defined formally in Section 3.2, are inspired by the type system of
Common Lisp, which we outline in Section 2.4. We have identified
some limitations of the Common Lisp type system in Section 4.5
and propose solutions in SETS. We then present two sample imple-
mentations of SETS, one in Clojure and one in Scala in Sections 4.2
and 4.3 respectively.

2 PREVIOUS WORK
2.1 Type-based Sequence Recognition
In [28] we discussed the flow for developing type based sequence
recognition in the explicit context of Common Lisp [2], as Com-
mon Lisp provides a built-in type system capable of expression
Boolean combinations of types of arbitrary complexity. We pre-
sented several algorithms for computing Maximum Disjoint Type
Decomposition (MDTD) [30], but those algorithms make heavy
use of the assumption that the underlying type system is that of
Common Lisp.

A notable implementation detail of rational type expressions in
Common Lisp [29] is that the type definition makes reference to the
satisfies type. This use of satisfies means that in many cases,
subtypep cannot reason about the type. In the current work, we
define the building blocks of a type system which can be extended
(without resorting to satisfies) in a future publication which will
be able to more easily reason about such types.

2.2 Types as Boolean Combinations
Castagna et al. [7] argue that many programmers are drawn to the
flexibility and development speed of dynamically typed languages,
but that even in such languages, compilers may infer types from the
program if certain language constructs exist. The authors argue that
adding set theoretical operations (union, intersection, complement)

to a type system facilitates transition from dynamic typing to static
typing while giving even more control to the programmer.

Researchers in early programming languages experimented with
set semantics for types. Dunfield [13] discusses work related to
intersection types, but omits acknowledging the Common Lisp type
system. He mentions the Forsythe [39] language from the late 1980s,
which provides intersection types, but not union types. Dunfield
claims that intersections were first developed in 1981 by Coppo et
al. [9], and in 1980 by Pottinger [38] who acknowledges discussions
with Coppo and refers to Pottinger’s paper as forthcoming. Work
on union types began later, in 1984 by MacQueen et al. [26].

Languages which support intersection and union types [7, 8, 36],
should also be consistent with respect to subtype relations. Frisch et
al. [15] referred to this concept as semantic subtyping. In particular,
the union of types 𝐴 and 𝐵 should be a supertype of both 𝐴 and 𝐵,
the intersection of types𝐴 and 𝐵 should be a subtype of both𝐴 and
𝐵, and if 𝐴 is a subtype of 𝐵, then the complement of 𝐵 should be a
subtype of the complement of 𝐴. While Coppo and Dezani [10] dis-
cuss intersection types in 1980, according to a private conversation
with one of the authors, Mariangiola Dezani, theoretical work on
negation types originates in Castagna’s semantic subtyping.

The theory of intersection types seems to have influenced mod-
ern programming language extensions, at least in Java [16] and
Scala. Bettini et al. [4] (including Dezani, mentioned above) discuss
the connection of Java 𝜆-expressions to intersection types.

The standard library of Scala language [33, 34] supports a
type called Either. This type serves some of the purpose of
a union type. Either[A,B] is a composed type, but has no
subtype relation neither to 𝐴 nor to 𝐵. Either lacks many of
the mathematical properties of union; it is neither associative
Either [Either [𝐴, 𝐵],𝐶] ≠ Either [𝐴, Either [𝐵,𝐶]], nor commutative
Either [𝐴, 𝐵] ≠ Either [𝐵,𝐴]. Sabin [44] discusses user level exten-
sions to the Scala type system to support intersection and union
types. Yet, Sabin [43] recommends that no one use his implementa-
tion in real code. Doeraene [12, 22] introduces pseudo-union types
in Scala.js. Scala 3 [1, 31, 42] supports intersection and union types
in a type lattice, but not complementary types. However, according
to the Scala 3 specification1, the type inferencer may not consider
union types while computing the least upper bound of two types.

2.3 Difficulties with the Subtype Relation
Grigore [17] addresses subtype decidability in Java [16]: deciding
whether one type is a subtype of another is equivalent to the halt-
ing problem. Kennedy2 and Pierce [24] identify several restrictions
which when imposed, make the question decidable. They investi-
gate the effect of restricting these capabilities in different ways in
Java [16], Scala [32, 33], C#, and .NET Intermediate Language.

In Scala, the operator <:< attempts to compute the subtype rela-
tion, returning true if this relation can be proven, else false. Thus,
the Scala <:< conflates cannot compute with computed to be false.
The method isAssignableFrom defined on java.lang.Class is
also available to the Scala programmer. This (decidable) method

1See https://dotty.epfl.ch/docs/reference/new-types/union-types.html for a description
of the behavior of Union Types in Scala 3
2Curiously, Kennedy [24] from Microsoft Research gives citations for Java and Scala,
but not for C# and .NET Intermediate Language. Perhaps authors believe the reader is
more familiar with C# and .NET IL than with other languages.

https://dotty.epfl.ch/docs/reference/new-types/union-types.html


A Portable, Simple, Embeddable Type System ELS’21, May 03–04 2021, Online, Everywhere

unsigned-byte
bit

fixnum

rational

float

number

Figure 1: ExampleCommonLisp typeswith intersection and
subset relations

computes the subtype relation, returning true if the subtype relation
is provided by the class hierarchy, and false otherwise.

Bonnaire [5] presents typed Clojure, but does not rigorously
define a Clojure type, and does not implement anything as ambitious
as Common Lisp’s subtypep. The Clojure [18, 19] language offers
an isa? predicate, which is simple and decidable but is ultimately
based on isAssignableFrom which is provided by the JVM [16].

In Common Lisp [2] subtypep can be computationally intensive
in general. Even in cases where the subtype relation is decidable, a
Common Lisp implementation is allowed to return don’t know in
cases deemed to be too computationally intensive. [3, 47]

2.4 Types in Common Lisp
A detailed discussion of Common Lisp types can be found in the
Common Lisp specification [2, Section 4.2.3]. A summary thereof
emphasizing peculiarities of function types can be found in [28]. We
present here a shorter version of that exposé, emphasizing features
potentially portable to other programming languages.

In Common Lisp, a type is a (possibly infinite) set of objects at
a particular point of time during the execution of a program [2].
As illustrated in Figure 1, Common Lisp programmers may take
many ideas about types from the intuition they already have from
set algebra. An object can belong to more than one type. Two
given types may intersect, such as the case of unsigned-byte
and fixnum in the figure, (unsigned-byte ∩ fixnum) ≠ ∅. Types
may be disjoint such as float and fixnum, (float ∩ fixnum) = ∅.
Types may have a subtype relation such as fixnum and number,
(fixnum ⊂ number) or more complicated relations such as

(
bit ⊂

(fixnum ∩ unsigned-byte) ⊂ rational
)
.

Types are never explicitly represented as objects by Common
Lisp. Instead, a type is referred to indirectly by so-called type speci-
fiers, which designate types. The symbol string and the list (and
number (not bit)) are type specifiers [2]. Since types are not ob-
jects specified in the language, but rather designated by specifiers, it
becomes challenging to reason about types. I.e., programmers must
construct algorithms to determine whether designated types are
inhabited vs. empty, and to efficiently represent types designated
by composing type specifiers in various ways.

Two important Common Lisp functions pertaining to types are
typep and subtypep. The function typep, a set membership test,

⊥

symbol

fixnum

string

bignum

float

T

number

integer

Figure 2: Example hierarchy of hosted types. Arrows point
from subtype to supertype.

is used to determine whether a given object is of a given type. Type
specifiers indicating compositional types are often used on their
own, such as in the expression (typep x ’(or string (eql 42))),
which evaluates to true either if x is a string, or is the integer 42.
The function subtypep, a subset test, is used to determine whether
a given type is a recognizable subtype of another given type. The
function call (subtypep T1 T2) distinguishes three cases: (1) that
T1 is a subtype of T2, (2) that T1 is not a subtype of T2, or (3) that
the subtype relationship cannot be determined. Newton [28] and
Valais [46] discuss scenarios which fall into this third case.

3 PORTABLE AND EMBEDDABLE
Here we present a type systemwhich exhibits some notable features
of the Common Lisp type system, in particular, union, intersection,
and complement types, type membership and subtype predicates.
The type system we present is intended to be implementable in
other languages, and should allow run-time code to reason about
sets of values. We present our assumptions with respect to the host
language in Section 3.1, an abstract definition of SETS in Section 3.2,
explain some subtleties of the subset relation in Section 3.4, then dis-
cuss different subset algorithms in Section 3.5. Sections 4.2 and 4.3
present sample implementations in Clojure and Scala respectively.

3.1 Hosted Types
We are interested in embedding a simple type system into a
host language. We will assume that said host language provides
a set of fundamental types which we will accept as given as
well as a distinct set Υ0 of designators for those fundamental
types. Just as Common Lisp distinguishes between types and
type specifiers, we will also distinguish between the types (sets
of values) and their designators (syntactical elements). E.g. con-
sider Υ0 = {symbol, string, number, integer, float, bignum, fixnum}
as shown in Figure 2. See Section 4.1 for a discussion of parameter-
ized types such as List<Int>.



ELS’21, May 03–04 2021, Online, Everywhere Jim E. Newton and Adrien Pommellet

We further assume that the host language provides membership
and subset relations with respect to Υ0. The membership relation
must be decidable and properly implemented in the host program-
ming language. For example, we must be able to determine that
"hello world" ∈ string and that 1.2 ∉ integer .

We also require that the programming language provide a sub-
type query mechanism with respect to Υ0. For example, in Figure 2,
we see that fixnum ⊂ integer ⊂ number and that string ⊄ integer .
Even if the subtype relation is sometimes undecidable, we intend
to exploit the cases when it is decidable. See Section 2.3 for further
discussion of the decidability of the subtype relation.

In Common Lisp, the typep and subtypep functions are built-in,
and symbols implement type designators (called type specifiers in
Common Lisp) for built-in types.

In Clojure, the functions instance? and isa? correspond re-
spectively to the Common Lisp functions typep and subtypep as
far as low level types are concerned. In Python, the functions are
isinstance and issubclass.

In Scala, a class is an object that belongs to a sort of meta-class,
java.lang.Class, and that class has methods named isInstance
and isAssignableFrom. We have access to the (meta-)class object
via that classOf[] syntax.

1 // membership test in Scala
2 classOf[java.lang.String]
3 .isInstance("hello world")
4 // subtype test in Scala
5 classOf[java.lang.Number]
6 .isAssignableFrom(classOf[java.lang.Integer])

3.2 Formal definition of SETS
Different programming languages make different assumptions
about types. We assume a type system in accord with Definition 3.2.

Definition 3.1 (type, type space). Let Σ denote the set of all values
expressible in a given programming language. A type space is the
set 2Σ of subsets of Σ. Each subset of Σ is called a type.

Definition 3.2 (simple embedded type system). A simple embed-
ded type system (SETS) consists in a set Υ of type designators, two
operators ∈ and ⊂, and a type designation function ⟦⟧ : Υ → 2Σ.
Intuitively, each 𝜐 ∈ Υ designates a type which is the set ⟦𝜐⟧. For-
mally, the set Υ and the function ⟦⟧ are defined inductively, using
the following atomic elements:

• Hosted types: let Υ0 be a set of native type designators of
the host language, such that to each 𝑣 ∈ Υ0, a native type 𝜎𝑣
can be matched. Then Υ0 ⊂ Υ and ∀𝑣 ∈ Υ0, ⟦𝑣⟧ = 𝜎𝑣 .3

• Universal type: there is a symbol ⊤ ∈ Υ, and ⟦⊤⟧ = Σ.
• Empty type: there is a symbol ⊥ ∈ Υ, and ⟦⊥⟧ = ∅.
• Singletons: ∀𝑎 ∈ Σ, there is a matching element {𝑎} ∈ Υ,
and ⟦{𝑎}⟧ = {𝑎}.

• Predicates: for any decidable function 𝑓 mapping Σ to
{true, false}, there is a symbol 𝔖𝔞𝔱𝑓 ∈ Υ, and ⟦𝔖𝔞𝔱𝑓 ⟧ =

{𝑥 ∈ Σ | 𝑓 (𝑥) = true}.
And the following constructors:

3Recall from Section 3.1 that we axiomatically assume that this makes sense.

• Union: if 𝜐1, 𝜐2 ∈ Υ, then 𝜐1 ∪ 𝜐2 ∈ Υ and ⟦𝜐1 ∪ 𝜐2⟧ =

⟦𝜐1⟧ ∪ ⟦𝜐2⟧.
• Intersection: if 𝜐1, 𝜐2 ∈ Υ, then 𝜐1 ∩𝜐2 ∈ Υ and ⟦𝜐1 ∩𝜐2⟧ =

⟦𝜐1⟧ ∩ ⟦𝜐2⟧.
• Complement: if 𝜐 ∈ Υ, then 𝜐 ∈ Υ and ⟦𝜐 ⟧ = Σ \ ⟦𝜐⟧.

Moreover, the relations ∈ and ⊂ on Υ should verify the following
properties:

(1) The operator ∈ defines a decidable membership relation be-
tween values and type designators. Formally, given 𝜐 ∈ Υ
and 𝑎 ∈ Σ, 𝑎 ∈ 𝜐 holds if only if 𝑎 ∈ ⟦𝜐⟧, and 𝑎 ∈ 𝜐 if and
only if 𝑎 ∉ ⟦𝜐⟧.

(2) There is a partial subset relation ⊂ on types. Given 𝜐1, 𝜐2 ∈ Υ,
⟦𝜐1⟧ ⊂ ⟦𝜐2⟧ if and only if 𝜐1 ⊂ 𝜐2. However, this subset
relation may be undecidable. See Sections 2.3 and 3.4. △

The 𝔖𝔞𝔱𝑓 type is capable of defining many of the same sets
definable by other types in SETS by clever enough choices of 𝑓 .
However, doing so will limit reasoning power. For example, given
two predicates 𝑓 and 𝑔 it is not possible in general to determine
whether𝔖𝔞𝔱𝑓 ⊂ 𝔖𝔞𝔱𝑔 or whether 𝔖𝔞𝔱𝑓 ∩ 𝔖𝔞𝔱𝑔 is inhabited.

We do not specify how the programming language represents
type designators: possibly as part of the language specification [45,
Chapter 4] as in Common Lisp, or as an Algebraic Data Type
(ADT) [21] implemented as an add–on library.

3.3 Relating SETS to Common Lisp
SETS as described in Section 3.2 is based on the type system of
Common Lisp but simplified, and omitting some features which
make the subtype relation difficult to compute. For example, we
omit interval (such as (float -1.0 (2.0))), mod, and member types
as well as composed forms such as (vector double-float 100).
Whereas Common Lisp defines a member type, SETS represents
such types as a finite union of singleton types.

The hosted types of SETS correspond to the types designated
by the atomic forms of the type specifiers mentioned Figure 2-4 of
Section 4.2.3 in the Common Lisp specification [2] as well symbolic
names of Common Lisp classes, conditions, and structures. List
forms of types mentioned in Figure 4-3 of Common Lisp specifi-
cation Section 4.2.3 are omitted in SETS, such as (cons float),
(function (t)), and (simple-array * 4).

The universal and empty types of SETS are respectively des-
ignated by t and nil in Common Lisp. Singleton types in SETS
are represented by eql in Common Lisp. Predicates in SETS are
represented by satisfies in Common Lisp. Union, intersection,
and complement in SETS are represented respectively by or, and,
and not in Common Lisp.

The ∈ operation in SETS is implemented by the Common Lisp
typep function. The ⊂ operation in SETS is implemented by the
Common Lisp subtypep function, which returns two values. A
second such value of nil means the subtype relation undecidable;
otherwise a first value of true or false correspond to the decidable
true and false.

3.4 A Challenging Subtype Relation
Note that the subtype relation is the atomic function for detecting
intersection, disjointness, and emptiness [3, Sec 6]. We need these



A Portable, Simple, Embeddable Type System ELS’21, May 03–04 2021, Online, Everywhere

checks in order to minimize a partition of the type space. Although
we use functions such as disjoint? and inhabited? in our code,
these are merely semantic wrappers around subtypep?, at least
from the API perspective, if not from the internal implementation
perspective.

However, the subset relation may not always be decidable. Thus,
the decision function in SETS should be allowed to return dont-
know in a manner appropriate to the host language, although we
would like it to be as decisive as possible. We discuss here three
scenarios when such an indecision might occur.

The most obvious situation involves𝔖𝔞𝔱 . Given two arbitrary
decidable predicates 𝑓 and 𝑔, it is not possible to know whether
𝔖𝔞𝔱𝑓 ⊂ 𝔖𝔞𝔱𝑔 . This is a direct consequence of not being able to
decide whether a given recursive language is a subset of another.

A second scenario involves a hidden empty set. Consider disjoint
sets 𝐴 and 𝐵. 𝐴 ∩𝐶 ⊄ 𝐵 if and only if 𝐴 ∩𝐶 ≠ ∅. However, it may
be impossible to decide whether𝐴∩𝐶 is empty, as it is undecidable
to determine whether a given recursive language is empty.

Consider a third scenario featuring two types 𝐴 and 𝐵 that are
disjoint such as the number types Double and Long in the JVM.
We wish to confirm that 𝐿𝑜𝑛𝑔 ⊂ 𝐷𝑜𝑢𝑏𝑙𝑒 . Note that 𝐴 ⊂ 𝐵 if
𝐴 ∩ 𝐵 = ∅ and 𝐴 ≠ 𝐵. If we want to determine whether 𝐴 ⊂ 𝐵 ,
testing whether 𝐴 = 𝐵 would be a mistake: we would have to test
both 𝐴 ⊂ 𝐵 and 𝐵 ⊂ 𝐴, thus introducing an infinite loop in our
subtype procedure.

We consider the subtype procedure inaccurate if it returns dont-
know in a decidable case. We use the term inaccurate deliberately
after considering alternative terminology. The only way we have of
knowing whether the subtype relation is satisfied is to determine
so (or not so) algorithmically. Given two algorithms, 𝑋 and 𝑌 , if
𝑋 determines that 𝐴 ⊂ 𝐵 or that 𝐴 ⊄ 𝐵, but 𝑌 returns dont-know
then we consider 𝑌 less accurate then 𝑋 in this regard. Thus, in
some cases, it is algorithmically impossible to distinguish between
an inaccurate answer and an undecidable problem.

Our current solution to the question of whether 𝐿𝑜𝑛𝑔 ⊂ 𝐷𝑜𝑢𝑏𝑙𝑒

is to include an admittedly inaccurate special case in the subtype
procedure which checks whether it is dealing with hosted types
and their complements. We may then use known properties of
hosted types, as in Algorithm 1 of Section 4.4, to determine that
𝐷𝑜𝑢𝑏𝑙𝑒 ⊄ 𝐿𝑜𝑛𝑔. We may however not be able to directly handle
relations involving more complex types such as {0} ⊂ {1} ∪ {0} .

Undetermined cases can cause a cascade effect in in-
creasing the complexity of a procedure. Indeed, consider
two types 𝐴 and 𝐵. Their standard partition is defined as
{𝐴 ∩ 𝐵,𝐴 ∩ 𝐵 , 𝐴 ∩ 𝐵, 𝐴 ∩ 𝐵 } \ {∅}. The automata-theoretic ap-
proach, alluded to in Section 5.2, heavily relies on such partitions.
The maximum size of this partition is 4, but various subtype rela-
tions may decrease it: as an example, if 𝐴 ⊂ 𝐵 then 𝐴 ∩ 𝐵 = ∅.
Given that the size of standard partitions can grow exponentially
with the number of types involved, it is of the utmost importance
to keep it as small as possible. Thus an inaccuracy in the algorithm
may cause unnecessary performance problems when constructing
finite automata.

3.5 Computing the Subtype Relation
The specification of SETS does not impose any particular algorithm.
We discuss here three known approaches which have been used
to compute subtypep in Common Lisp: (1) Baker’s algorithm, (2)
Binary Decision Diagrams, and (3) Symbolic Boolean manipulation.

Baker’s [3] algorithm (approach 1) was presented anew by
Valais [47] in attempt to make it more understandable. At a high
level, the algorithm attempts to represent every type designator
by a bit-mask, allowing union, intersection, and complement to be
computed by Boolean operations of bit-vectors. Equivalent types
have the identical bit-masks; the empty type has an all zero bit-
mask. Baker’s algorithm decides whether 𝐴 is a subtype of 𝑋 by
computing the bit-wise AND of 𝑎 and 𝑥 given a bit-vector 𝑎 of 𝐴
and a bit-vector 𝑥 of 𝑋 . If the result is 0, then 𝐴 ⊂ 𝑋 . The ECL [41]
Common Lisp compiler uses a variant of Baker’s algorithm.

We [30] presented Binary Decision Diagrams (BDDs) (approach
2) as computation tools for manipulating Common Lisp type speci-
fiers. BDDs are a powerful tool for manipulating Boolean functions.
A BDD can represent a type specifier, and Boolean operations be-
tween BDDs compute canonical forms for union, intersection, and
complement types.

Approach 3 employs a symbolic Boolean manipulation approach.
A type designator represents an abstract syntax tree (AST) for
a Boolean expression. Computing the subtype relation involves
checking a long but inexhaustive series of conditions, some neces-
sary, some sufficient, and some both necessary and sufficient. If a
necessary condition fails, false is returned. If a sufficient condi-
tion succeeds, true is returned. If all these conditions fail to decide
the result, then dont-know is returned. The SBCL[40] Common
Lisp compiler’s implementation of subtypep relies on a similar yet
augmented procedure [23].

The sample implementations of SETS presented in Section 4 rely
on the third approach. In the Scala implementation (Section 4.3)
of SETS, dynamic dispatch is used on the class of the type des-
ignator object to direct the computation away from tests known
to be irrelevant. In the Clojure implementation (Section 4.2), type
designators are represented by s-expressions, which are examined
by an ad-hoc pattern matcher which determines according to the
first element (and, or, not, etc) which irrelevant checks it should
eliminate. Examples of such conditions are:

• necessary and sufficient: 𝐴 ⊂ 𝑋 if and only if 𝑋 ⊂ 𝐴.
• sufficient: 𝑋 ⊂ 𝐴 ∪ 𝐵 if 𝑋 ⊂ 𝐴 or 𝑋 ⊂ 𝐵.
• sufficient: 𝐴 ∩ 𝐵 ⊂ 𝑋 if 𝐴 ⊂ 𝑋 or 𝐵 ⊂ 𝑋 .
• necessary: 𝑋 ⊂ 𝐴 ∩ 𝐵 only if 𝑋 ⊂ 𝐴 and 𝑋 ⊂ 𝐵.

We must also take into account the computational complexity
of the solution. Our representation of a type designator is an ex-
pression tree. Some operations on such a tree have exponential
complexity in terms of the height of the tree. It is possible to mini-
mize the depth of the tree by converting the expressions to DNF
(disjunctive normal form) or CNF (conjunctive normal form), but
the conversion itself has an exponential worst case complexity. Yet,
conversion to a normal form can significantly increase the accuracy
of the decision procedures, as we will demonstrate in Section 5.1.



ELS’21, May 03–04 2021, Online, Everywhere Jim E. Newton and Adrien Pommellet

4 IMPLEMENTATIONS OF SETS
Three implementations of SETS are currently available, one in
Clojure as described in Section 4.2, a second in Scala as described
in Section 4.3, and a third which is currently under development
in Python. The Python implementation (called Genus) is publicly
available at https://gitlab.lrde.epita.fr/jnewton/python-rte, but we
do not discuss specific details thereof in this article.

4.1 Java Subclass vs. SETS Subtype
In order to avoid confusion later, we clarify here that types in SETS
are not the same as what a Java programmer might otherwise think
of as a type, nor the Scala or Clojure programmer.

The Clojure and Scala implementations of SETS both fundamen-
tally manipulate the same low-level objects within the JVM, albeit
the derived classes of objects expressible in each language are dif-
ferent. Both at the Scala level and the Clojure level, no substantial
difference is made between classes and interfaces—a fact which
might be unfamiliar to the Java programmer. The Scala and Clojure
implementations of SETS treat interfaces and classes identically in
the sense that a type (in the SETS sense) is a set of objects which
share a particular java.lang.Class in a particular list of super
classes.

If 𝐶𝐶 is a class in Java, then SETS associates with 𝐶𝐶 the set
of all (Scala or Clojure) objects whose java.lang.Class contains
𝐶𝐶 in its list of super classes. Similarly, if 𝐶𝐼 is an interface in
Java, then SETS associates with 𝐶𝐼 the set of all objects whose
java.lang.Class contains 𝐶𝐼 in its list of super classes. In this
sense 𝐶𝐼 ⊂ Object in SETS even though a Java programmer might
insist that 𝐶𝐼 is not a subclass of Object. That is to say, when we
speak of subtype-ness in SETS, we are strictly referring to whether
one set of objects is a subset of another set, not whether Java
considers the classes as subtypes.

In order to avoid confusion, we state explicitly that we have not
extensively experimented with parameterized Java types such as
List<String>. Java type-erasure makes some such introspection
impossible, but we do not know to what extent (if at all) it is pos-
sible to query such types at run-time via the Java reflection API.
Furthermore, we do not know to what extent a user of Genus can
confuse the system by using such parameterized types.

4.2 Genus, SETS in Clojure
The Clojure implementation of SETS is called Genus. The documen-
tation is available publicly, at https://gitlab.lrde.epita.fr/jnewton/
clojure-rte/-/blob/master/doc/genus.md. The source code is avail-
able as part of a larger project called clojure-rte at https://gitlab.
lrde.epita.fr/jnewton/clojure-rte. Readers familiar with the Com-
mon Lisp type system will find Clojure Genus to be intuitive, and
will recognize that we are, in user space, imposing a simplified
version of the Common Lisp type system onto Clojure.

4.2.1 How Clojure-Genus is used. The API of Genus consists of
an implicit data structure which implements the type designators,
following the pattern described in Definition 3.2. In Clojure Genus,
a type designator is one of the following:

• Hosted types:A symbol, 𝑠 for which (resolve s) has type
java.lang.Class. E.g., String or clojure.lang.Symbol.

• Universal: :sigma.
• Empty: :empty-set.
• Singletons: A list of the form (= x). E.g., (= 0).
• Predicates: A list of the form (satisfies f). f is a symbol
resolving to a function. E.g., (satisfies odd?).

• Union: A list of the form (or ...). Operands are type
designators. E.g., (or String (satisfies keyword?)).

• Intersection: A list of the form (and ...). Operands are
type designators. E.g., (and Long (satisfies pos?)).

• Complement: A list of the form (not x). Operand is a type
designator. E.g., (not (or Long String)).

As required by Definition 3.2, two functions typep and subtype?
on type designators implement the ∈ and ⊂ operators. The typep
(binary) function can be used as in (typep "hello" ’(or String
clojure.lang.Symbol)), and returns true or false.

The subtype? function is more complicated; it accepts two ar-
guments 𝐴 and 𝐵, and returns one of true, false, or :dont-know.
If subtype? proves that 𝐴 ⊂ 𝐵, it returns true; if it proves that
𝐴 ⊄ 𝐵, it returns false. Otherwise, it returns :dont-know.

In addition to subtype? two other functions are provided for
reasoning about types via type designators:

• disjoint?, returns true, false, or :dont-know indicating
whether two types are disjoint, i.e. their intersection is empty.

• inhabited? returns true, false, or :dont-know indicating
whether the type is not empty.

The disjoint? and inhabited? functions are not required by
the SETS specification. We have implemented them here to facil-
itate the implementation of the subtype predicate. In fact, given
a fully functional, self-contained implementation of subtypep?,
disjoint? and inhabited?, if needed, could be implemented in
terms of subtype?. Two types are disjoint if their intersection is a
subtype of the empty type. A type is inhabited if it is not a subtype
of the empty type. Special care would need to be taken for the case
that subtype? returns dont-know.

4.2.2 How Clojure-Genus is implemented. The implementation
of the public API (including the functions typep, subtype?,
disjoint?, and inhabited?) is around 1600 lines of Clojure code.
Space does not permit a full explanation of all the code. We invite
the reader to peruse the code. We will summarize some details of
the functions typep and disjoint?.

The typep function is implemented as a multi-method, where
each method implements the type membership decision for a par-
ticular type designator. Two such methods are shown here.

1 (defmethod typep 'not [a-value [_a-type t]]
2 (not (typep a-value t)))
3

4 (defmethod typep 'and [a-value [_a-type & others]]
5 (every? (fn [t1] (typep a-value t1)) others))

Whereas methods implement typep directly, other functions are
implemented with a shadow function; e.g., -subtype?, -disjoint,
and -inhabited. These are not methods in the normal Clojure
sense, but rather are called according to a Common Lisp-like
method-combination [35]. The method-combination calls each of
the methods in turn. Each method attempts to prove sufficient

https://gitlab.lrde.epita.fr/jnewton/python-rte
https://gitlab.lrde.epita.fr/jnewton/clojure-rte/-/blob/master/doc/genus.md
https://gitlab.lrde.epita.fr/jnewton/clojure-rte/-/blob/master/doc/genus.md
https://gitlab.lrde.epita.fr/jnewton/clojure-rte
https://gitlab.lrde.epita.fr/jnewton/clojure-rte


A Portable, Simple, Embeddable Type System ELS’21, May 03–04 2021, Online, Everywhere

conditions or disprove necessary conditions as explained in Sec-
tion 3.5 and thus return true, false, or :dont-know. The method-
combination continues to call the methods until one is conclusive,
returning :dont-know as a last resort. The disjoint? function is
an exception. Its method-combination assures that (disjoint A
B) returns the first conclusive value of either (-disjoint? A B)
or (-disjoint B A), or :dont-know as a last resort.

1 (defmethod -disjoint? 'or [t1 t2]
2 (cond (not (gns/or? t1))
3 :dont-know
4 ;; sufficient
5 (every? (fn [t1'] (disjoint? t1' t2 false))
6 (rest t1))
7 true
8 ;; necessary
9 (some (fn [t1'] (not (disjoint? t1' t2 true)))
10 (rest t1))
11 false
12 :else :dont-know))
13

14 (defmethod -disjoint? :subtype [sub super]
15 (cond (and (subtype? sub super false)
16 (inhabited? sub false))
17 false
18 :else :dont-know))

In the -disjoint? ’or method above, the code asks whether
the first argument called is a type designator of the form (or ...).
If it is not of this form, then :dont-know is returned. Otherwise
other necessary and sufficient conditions are tested. If they are
inconclusive, :dont-know is returned, indicating to the caller to
continue with other methods of the method combination.

Two tests are made (in the 2nd and 3rd clause of the cond). First,
a sufficient condition examines each of operand (or ...) to detect
whether all of them designate a type which is disjoint from t2; if
so, then the types are deemed to be disjoint. Second, a necessary
condition examines each operand of (or ...) to detect whether
at least one of them is definitely NOT disjoint from t2; if such a
type is found, then we conclude that that t1 and t2 are not disjoint.
Finally, if the tests were inconclusive we return :dont-know.

The -disjoint :subtype method shown above checks an ex-
pensive but general condition. The method attempts to detect
whether the two designated types are in a subtype relation. If𝐴 ⊂ 𝐵

then the types are not disjoint, except in the case that𝐴 = ∅. Since ∅
is disjoint from every type, including itself, we must assure that the
type in question is inhabited, via a call to the inhabited? method.

We show the implementation of this method to partially justify
the reason we have included the inhabited? method in our pro-
tocol. During our implementation of Clojure Genus we found the
existence of inhabited? simplifies the logic of certain subtype and
disjoint decisions, even if not strictly necessary. In Common Lisp
(not (subtypep A nil)) serves a similar purpose, understand-
ing the caveat that if Common Lisp (subtypep A nil) returns a
second value of nil then (not (subtypep A nil)) still evaluates
to true, even though A may not really be inhabited.

The method-combination assures that once the method above
with dispatch value ’or returns true or false, then the method
whose dispatch value is :subtype is averted.

4.3 Genus, SETS in Scala
The Scala Genus implementation is about 1500 lines of Scala code—
roughly the same size as the Clojure version. The code is avail-
able publicly at https://gitlab.lrde.epita.fr/jnewton/regular-type-
expression/-/tree/master/cl-robdd-scala/src/main/scala/genus.

In Scala Genus a type designator is implemented as an abstract
class named SimpleTypeD (simple-type-designator), and several
leaf classes which extend the abstract class. There is one leaf class
per type designator, e.g. the case class SAnd defines the type desig-
nator implementing intersection, and analogously SOr for union.
There are also two singleton objects STop and SEmpty representing
the top and bottom types in the type lattice. The class SAtomic
serves to implement the hosted types, interfacing the Genus system
with the class system of the JVM. Finally, the classes SEql (single-
tons), SCustom (predicates), SNot (complements) complete the list
of cases required in Definition 3.2.

The class, SimpleTypeD, declares methods named typep,
disjoint, inhabited, and subtypep, and each subclass overrides
the methods in these protocols to implement case specific logic.
The method typep returns type Boolean; however, whereas the
corresponding methods in Clojure return true/false/:dont-know,
these Scala methods return Option[Boolean] with Some(true)
and Some(false), and None. That these methods return an Option
as opposed to a Boolean alleviates the temptation to the program-
mer of treating the return value as a Boolean, as further discussed
in Section 4.5.

We omit more details of the Scala implementation in this article,
and invite the curious reader to download the Scala code.

4.4 Disjoint decision on JVM hosted classes.
In Section 3.1 we explained how the Clojure function isa? and the
Scala method isAssignableFrom are used to determine the sub-
type relation for JVM classes which are the classes we are hosting
in our simple, embedded type system.

We wish now to discuss how the disjoint decision is computed.
Note that we are not trying to ask whether the two classes have a
common superclass. The question, rather, is about the intersection
of two sets of objects: all the objects of class 𝑐1 and all the objects
of class 𝑐2. We ask whether it is provable that those sets have no
common elements. A simple example is that if 𝐴 and 𝐵 are two
distinct final classes. Then there is no object which is a member
of both classes simultaneously. I.e., the set of objects of class 𝐴 is
disjoint from the set of objects of class 𝐵. The question is trickier
when considering interfaces, abstract classes, and other classes.

Some readers may object to the fact that we refer to Java in-
terfaces and Java classes both as classes. In fact, within the JVM
both interfaces and classes are themselves objects whose type
is java.lang.Class, thus we unapologetically refer to them as
classes. Various flavors of Java classes may be distinguished us-
ing the Java reflection API which is available both from Clojure
and also Scala. The Clojure interface is a bit easier so we start
there. The Clojure clojure.reflect library provides a function

https://gitlab.lrde.epita.fr/jnewton/regular-type-expression/-/tree/master/cl-robdd-scala/src/main/scala/genus
https://gitlab.lrde.epita.fr/jnewton/regular-type-expression/-/tree/master/cl-robdd-scala/src/main/scala/genus


ELS’21, May 03–04 2021, Online, Everywhere Jim E. Newton and Adrien Pommellet

type-reflect which returns a data structure (a map) with a
:flags field. We use the value of this field to distinguish between
four cases: :interface, :final, :abstract, and :public. The
code is shown here.

1 (defn class-primary-flag [t]
2 (let [r (refl/type-reflect (find-class t))]
3 (cond (contains? (:flags r) :interface) :interface
4 (contains? (:flags r) :final) :final
5 (contains? (:flags r) :abstract) :abstract
6 :else :public)

In Scala Genus, we have implemented the same ca-
pability using JVM methods directly. The Java library
java.lang.reflect.Modifier is available to the Scala pro-
grammer and provides methods Modifier.isFinal, and
Modifier.isInterface. These methods are sufficient as the
disjoint decision treats abstract and public classes identically.

Since we can detect whether a JVM class is an interface, final, or
abstract/public class, the disjoint decision follows Algorithm 1.

In Algorithm 1 we check on line 1 whether either class is a
subclass of the other, including whether the two classes are equal
(a potentially optimizable special case). If so, every object of one
type is in the other, so they are not disjoint.

The astute reader will recognize a loophole which line 1 ignores.
We are implicitly supposing the types are inhabited. If a given Java
class designates a vacuous type, our assumption will be violated.
An empty type is disjoint from every type, including itself. More
research is needed to accommodate Java classes for which they nor
any subclass thereof can be instantiated.

On line 3 we ask whether either is final, encompassing two cases:
exactly one is final, or both are final. If exactly one is final, then
we’ve already determined on line 1 that the final class does not
inherit from the non-final class. So in this case they are disjoint as
no object can be of both classes. Second case is if both classes are
final, which by definition designate disjoint sets.

On line 5 we ask whether either is an interface, knowing that
neither is final. Thus we have an interface and some other non-final
class. Here we chose to return false, because we cannot prove that
no class inherits from both of these. If both classes are interfaces,
then it is possible to create another class (abstract or final) which
extends both of them. If one, say 𝐼 , is an interface, and the other,
say 𝐶 , is public or abstract, then again is it possible declare a third
class which inherits from 𝐶 and implements interface 𝐼 .

Note that the decision at line 5 to return false is one which
determines the semantics of our system. It might happen be true
that there exists no class which includes both classes in its lineage
list. If this is the case, then indeed the two designated sets are in fact
disjoint. However, since new classes can be loaded at run-time, and
we cannot predict the future, we chose to return false saying that
there are cases when the two sets intersect, thus are non-disjoint.
The semantics of our system are currently undefined if classes are
modified at runtime or if an object is mutated in a way which
changes its type. See Section 5.2 for a discussion of defining these
system semantics differently.

Finally, on line 7, we are in a position that neither class is final,
neither is an interface, and neither is a subclass of the other; i.e., they

are either abstract classes or otherwise public classes in separate
hierarchies which cannot be further mixed using class inheritance.
Therefore we return true as they designate disjoint sets.

Algorithm1: Compute the disjoint relation between JVM classes

Input: 𝑐1, 𝑐2 : two JVM classes
Output: Boolean indicating whether the classes are disjoint

1 if 𝑐1 ⊂ 𝑐2 or 𝑐2 ⊂ 𝑐1 then
2 return false
3 else if 𝑐1 is final or 𝑐2 is final then
4 return true
5 else if 𝑐1 is interface or 𝑐2 is interface then
6 return false
7 else
8 return true

4.5 Perceived Limitations of CL Type System
SETS addresses some of our perceived limitations of the Common
Lisp type system. In the Genus implementations of SETS we have
separated the subtype predicate from the inhabited and disjoint
predicates. This distinction is not strictly necessary, as also dis-
cussed in Section 4.2.1; nevertheless we found the separation sim-
plifies some of the logic and facilitates unit testing in some cases.
For some types, such as hosted types, it is straightforward to define
disjointness and habitation and to define subtype in terms of those.

In Common Lisp, the return value of (subtypep (and string
A) number) depends on whether A designates an inhabited type. If
A is defined using satisfies, then (subtypep (and string A)
number) is apt to return dont-know. Genus allows the definition of
a new type to specify the behaviors of the subtype, inhabited, and
disjoint predicates with respect that that new type. In portable Com-
mon Lisp, user defined types cannot be integrated into subtypep.
There is simply no facility for doing so. In Genus, subtype is defined
in terms of extensible code allowing applications defining a type to
specify the behavior with respect to the new type.

Another problem (feature) of cl:subtypep is that it can acci-
dentally be used as a predicate. The user may make believe that it
returns true or false. But in reality such usage is prone to error as
the usage conflates dont-know with false. When (subtype A B)
returns false, the caller should not assume that A is not a subtype
of B. Nevertheless, this mistake is exceedingly easy to make.

Scala Genus defines subtypep with return type
Option[Boolean], rather than Boolean. Although this may
sometimes be an annoyance, it forces in the programmers to
remember that subtypep is not a 2-way predicate. Clojure Genus,
admittedly, does fall prey to this potential delusion. In Clojure,
subtype? takes three arguments, the third of which is the value
to return in the dont-know case, and is a gentle reminder to the
programmer of the 3-way nature of the function. Nevertheless, the
programmer can still accidentally use logic like: (if (subtype?
A B :dont-know) ...), which will follow the true path even
if :dont-know is returned, because :dont-know is considered a
truthy value in Clojure.



A Portable, Simple, Embeddable Type System ELS’21, May 03–04 2021, Online, Everywhere

(1) (2) (3) (4)
Scala Scala Clojure Clojure

default inhabited default inhabited
accuracy % 66.6 57.8 49.4 52.9
accuracy DNF % 81.0 92.0 61.7 83.0
gain % 18.0 35.5 20.2 33.0
loss % 3.6 1.4 7.9 2.4

Table 1: Accuracy results of subtypep

5 CONCLUSION
5.1 Results
We have conducted experiments to measure the accuracy of the
SETS algorithm in Clojure and Scala. In both implementation host
languages the test proceeds similarly. We select two type designa-
tors, td1 and td2, by constructing them at random but limiting
them to a maximum depth. Next we test whether td1 is a subtype
of td2. At each iteration we remember whether this test returns
true, false, or dont-know. Thereafter, we canonicalize the two
type designators to DNF, dnf1 and dnf2; and perform the subtype
test on the new type designators. We repeat this procedure 10000
times and tally the results.

The use of randomly generated test cases without regard to
likelihood is a common practice in property based testing [14].

Column 1 of Table 1 summarizes the results when run in Scala.
Canonicalizing to DNF form gives an apparent 18% increase in
accuracy. However, we did notice that in 3.6% of the cases, subtypep
was able to determine the relation on the non-normalized forms,
but was lost that ability after converting to DNF.

These results are highly dependent on the generator of random-
ized type designators. We observed that about 50% of the time, a
type designator was generated for which it was impossible to de-
termine its habitation, and that td1 and td2 were equivalent types
20.5% of the time. In the second test we restricted the generator
to produced pairs of type designators which are inhabited and not
equivalent. Results of this second test are shown in column 2.

Columns 3 and 4 show similar results for Clojure Genus. We
notice that the percentages are different for Clojure as compared to
Scala. The subtype decision procedure is roughly 20 to 30 percent
more accurate if the type designators are canonicalized. However,
there is a small set of cases (2 to 8 percent) where the subtype
relation is computable before canonicalization but not after.

Recall that by accurate we are not referring to whether the sub-
type relation can be determined, but rather whether one algorithm
is able to determine it while another algorithm reports dont-know.

To help the reader understand some reasons why the testing
results differ for the two Genus implementations, we offer several
comments. (1) The random type generator for the intersection
and union types in the Clojure implementation, always generates
binary operations, while the Scala generator generates from 1 to 5
arguments, thus the random sample of types is different. (2) The
subtype? in Clojure diverges from the corresponding code in Scala
because they have been developed at different times. An audit of
the code is needed to verify that the two implementations have
exactly the same sets of necessary and sufficient conditions. (3) The

set of base types in the Scala Genus code base includes user defined
classes, to model the fact that Scala programs may make heavy use
of user defined types; whereas the Clojure Genus code base has no
such test cases, to model the fact that user defined types are much
rarer in Clojure programs.

5.2 Perspectives
In the next phase of our research, we will present a theory describ-
ing how symbolic finite automata [11, 49] can be used in pattern
recognition of heterogeneous sequences of types belonging to SETS.
In order to accept such sequences, we will consider finite automata
whose transitions are labeled by SETS. This possibly infinite alpha-
bet prevents a direct determinization process. However, the Boolean
operations provided by SETS will make it possible to computate
an appropriate partition that allows us to make these automata
finite and deterministic. This work already exists [28] for Common
Lisp, and we consider it important to generalize to a wider class of
programming languages with a sound theoretical foundation.

In Section 4.3 we defined the semantics of our subtype search to
allow for classes to be loaded at compile time. It would be interesting
to experiment with a model which assumes a disabled class loader.
Our current research involves investigating the question in the
Python Genus implementation of which we can walk down the
class graph, determining definitively whether two given classes
have a common subclass. We have not yet investigated whether the
JVM reflection API allows us to perform such a downward search
for classes currently defined.

In Section 4.1 we stated that the results are undefined if the
Genus user employs parameterized Java types such as Array[Int].
We would like to characterize to which extent, if any, such types
could be used, or at least whether such types could be detected
and explicit exceptions thrown rather than leaving the behavior
undefined.

As experimental support for our symbolic finite automata theory,
we will implement regular type expressions (RTEs) for Clojure and
Scala, and eventually also for Python. RTEs will allow us to specify
and efficiently recognize regular patterns in sequences, as was
alluded to in Section 1.1. The implementation in Clojure is well
underway and is available in its preliminary form.

Baker’s [3] algorithm contains many assumptions about the
Common Lisp type system, such as how to handle ranges, com-
plex numbers, and CLOS objects. SETS is by definition, a simpler
type system; nevertheless, it is currently unclear how to enhance
the SETS specification to make it possible to implement Baker’s
algorithm. We consider it a matter of ongoing research.

REFERENCES
[1] Nada Amin. Dependent Object Types. unknown, page 134, 2016.
[2] Ansi. American National Standard: Programming Language – Common Lisp.

ANSI X3.226:1994 (R1999), 1994.
[3] Henry G. Baker. A Decision Procedure for Common Lisp’s SUBTYPEP Predicate.

Lisp and Symbolic Computation, 5(3):157–190, 1992. URL http://dblp.uni-trier.de/
db/journals/lisp/lisp5.html#Baker92a.

[4] Lorenzo Bettini, Viviana Bono, Mariangiola Dezani-Ciancaglini, Paola Giannini,
and Betti Venneri. Java & Lambda: a Featherweight Story. Logical Methods in
Computer Science, 2018. URL http://www.di.unito.it/~dezani/papers/bbdgv18.pdf.
to appear.

[5] Ambrose Bonnaire-Sergeant, Rowan Davies, and Sam Tobin-Hochstadt. Practical
optional types for clojure, 2018.

http://dblp.uni-trier.de/db/journals/lisp/lisp5.html#Baker92a
http://dblp.uni-trier.de/db/journals/lisp/lisp5.html#Baker92a
http://www.di.unito.it/~dezani/papers/bbdgv18.pdf


ELS’21, May 03–04 2021, Online, Everywhere Jim E. Newton and Adrien Pommellet

[6] Gilad Bracha. Generics in the java programming language. July 5, 2004. URL
http://www.cs.rice.edu/~cork/312/Readings/GenericsTutorial.pdf.

[7] G. Castagna and V. Lanvin. Gradual Typing with Union and Intersection Types.
Proc. ACM Program. Lang., unknown(1, ICFP ’17, Article 41), sep 2017.

[8] Giuseppe Castagna and Alain Frisch. A Gentle Introduction to Semantic Subtyp-
ing. In Proceedings of the 7th ACM SIGPLAN International Conference on Principles
and Practice of Declarative Programming, PPDP ’05, pages 198–199, New York,
NY, USA, 2005. ACM. ISBN 1-59593-090-6. doi: 10.1145/1069774.1069793. URL
http://doi.acm.org/10.1145/1069774.1069793.

[9] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Functional Characters of
Solvable Terms. Mathematical Logic Quarterly, 27(2-6):45–58, 1981. doi: 10.1002/
malq.19810270205. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/malq.
19810270205.

[10] Mario Coppo and Mariangiola Dezani-Ciancaglini. An extension of the basic
functionality theory for the 𝜆-calculus. Notre Dame Journal of Formal Logic, 21
(4):685–693, 1980. doi: 10.1305/ndjfl/1093883253. URL https://doi.org/10.1305/
ndjfl/1093883253.

[11] Loris D’Antoni and Margus Veanes. The power of symbolic automata and trans-
ducers. In Computer Aided Verification, 29th International Conference (CAV’17).
Springer, July 2017. URL https://www.microsoft.com/en-us/research/publication/
power-symbolic-automata-transducers-invited-tutorial/.

[12] Sébastien Doeraene. Pseudo-union types in scala.js, August 2015. URL https:
//www.scala-js.org/news/2015/08/31/announcing-scalajs-0.6.5/.

[13] Joshua Dunfield. Elaborating Intersection and Union Types. SIGPLAN Not., 47
(9):17–28, September 2012. ISSN 0362-1340. doi: 10.1145/2398856.2364534. URL
http://doi.acm.org/10.1145/2398856.2364534.

[14] George Fink and Matt Bishop. Property-based testing: A new approach to testing
for assurance. SIGSOFT Softw. Eng. Notes, 22(4):74–80, July 1997. ISSN 0163-5948.
doi: 10.1145/263244.263267. URL https://doi.org/10.1145/263244.263267.

[15] Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. Semantic subtyping:
Dealing set-theoretically with function, union, intersection, and negation types.
J. ACM, 55(4):19:1–19:64, September 2008. ISSN 0004-5411. doi: 10.1145/1391289.
1391293. URL http://doi.acm.org/10.1145/1391289.1391293.

[16] James Gosling, Bill Joy, Guy L. Steele, Gilad Bracha, and Alex Buckley. The
Java Language Specification, Java SE 8 Edition. Addison-Wesley Professional, 1st
edition, 2014. ISBN 013390069X, 9780133900699.

[17] Radu Grigore. Java generics are turing complete. CoRR, abs/1605.05274, 2016.
URL http://arxiv.org/abs/1605.05274.

[18] Rich Hickey. The clojure programming language. In Proceedings of the 2008
symposium on Dynamic languages, page 1. ACM, 2008.

[19] Rich Hickey. A history of clojure. Proc. ACM Program. Lang., 4(HOPL), June 2020.
doi: 10.1145/3386321. URL https://doi.org/10.1145/3386321.

[20] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Au-
tomata Theory, Languages, and Computation (3rd Edition). Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2006. ISBN 0321455363.

[21] Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A history of
haskell: Being lazy with class. In Proceedings of the Third ACM SIGPLAN Con-
ference on History of Programming Languages, HOPL III, page 12–1–12–55, New
York, NY, USA, 2007. Association for Computing Machinery. ISBN 9781595937667.
doi: 10.1145/1238844.1238856. URL https://doi.org/10.1145/1238844.1238856.

[22] Lionel Parreaux Jim Newton, Sébastien Doeraene. Union types in scala 3, feb
2020. URL https://contributors.scala-lang.org/t/union-types-in-scala-3/4046.

[23] Douglas Katzman. Email conversation with SBCL developer about the undocu-
mented subtypep implementation with SBCL, February 2021.

[24] Andrew Kennedy and Benjamin C. Pierce. On decidability of nominal
subtyping with variance. In International Workshop on Foundations and
Developments of Object-Oriented Languages (FOOL/WOOD), January 2007.
URL https://www.microsoft.com/en-us/research/publication/on-decidability-of-
nominal-subtyping-with-variance/.

[25] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java Virtual
Machine Specification, Java SE 8 Edition. Addison-Wesley Professional, 1st edition,
2014. ISBN 013390590X.

[26] David MacQueen, Gordon Plotkin, and Ravi Sethi. An Ideal Model for Recursive
Polymorphic Types. In Proceedings of the 11th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, POPL ’84, pages 165–174, New York,
NY, USA, 1984. ACM. ISBN 0-89791-125-3. doi: 10.1145/800017.800528. URL
http://doi.acm.org/10.1145/800017.800528.

[27] John McCarthy. Recursive functions of symbolic expressions and their computa-
tion by machine, part i. Commun. ACM, 3(4):184–195, April 1960. ISSN 0001-0782.
doi: 10.1145/367177.367199. URL https://doi.org/10.1145/367177.367199.

[28] Jim Newton. Representing and Computing with Types in Dynamically Typed
Languages. PhD thesis, Sorbonne University, November 2018.

[29] Jim Newton, Akim Demaille, and Didier Verna. Type-Checking of Heterogeneous
Sequences in Common Lisp. In European Lisp Symposium, Kraków, Poland, May
2016.

[30] Jim Newton, Didier Verna, and Maximilien Colange. Programmatic Manipulation
of Common Lisp Type Specifiers. In European Lisp Symposium, Brussels, Belgium,
April 2017.

[31] Martin Odersky. Dotty Documentation, 0.10.0-bin-SNAPSHOT, August 2018.
URL http://dotty.epfl.ch/docs/reference/overview.html.

[32] Martin Odersky and Matthias Zenger. Scalable component abstractions. vol-
ume 40, pages 41–57, 10 2005. doi: 10.1145/1103845.1094815.

[33] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Stphane Miche-
loud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, and Matthias Zenger. The
scala language specification, 2004.

[34] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala: A Compre-
hensive Step-by-step Guide. Artima Incorporation, USA, 1st edition, 2008. ISBN
0981531601, 9780981531601.

[35] Andreas Paepcke. User-Level Language Crafting – Introducing the CLOS
metaobject protocol. In Andreas Paepcke, editor, Object-Oriented Program-
ming: The CLOS Perspective, chapter 3, pages 65–99. MIT Press, 1993. URL
http://infolab.stanford.edu/~paepcke/shared-documents/mopintro.ps. Download-
able version at url.

[36] David J. Pearce. Rewriting for sound and complete union, intersection and
negation types. In Proceedings of the 16th ACM SIGPLAN International Conference
on Generative Programming: Concepts and Experiences, GPCE 2017, Vancouver, BC,
Canada, October 23-24, 2017, pages 117–130, 2017. doi: 10.1145/3136040.3136042.
URL http://doi.acm.org/10.1145/3136040.3136042.

[37] Felipe Pezoa, Juan L. Reutter, Fernando Suarez, Martín Ugarte, and Domagoj
Vrgoč. Foundations of json schema. In Proceedings of the 25th International
Conference on World Wide Web, WWW ’16, page 263–273, Republic and Canton
of Geneva, CHE, 2016. International World Wide Web Conferences Steering
Committee. ISBN 9781450341431. doi: 10.1145/2872427.2883029. URL https:
//doi.org/10.1145/2872427.2883029.

[38] G. Pottinger. A type assignment for the strongly normalizable lambda-terms.
In J. Hindley and J. Seldin, editors, To H. B. Curry: Essays on Combinatory Logic,
Lambda Calculus and Formalism, pages 561–577. Academic Press, 1980.

[39] John C. Reynolds. Design of the Programming Language Forsythe. Technical
report, 1996.

[40] Christophe Rhodes. SBCL: A Sanely-Bootstrappable Common Lisp. In Robert
Hirschfeld and Kim Rose, editors, Self-Sustaining Systems, pages 74–86, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-89275-5.

[41] Juan Jose Garcia Ripoll. ECL 9 release notes, may 2003. URL https://mailman.
common-lisp.net/pipermail/ecl-devel/2003-May/000288.html.

[42] Tiark Rompf and Nada Amin. Type Soundness for Dependent Object Types
(DOT). SIGPLAN Not., 51(10):624–641, October 2016. ISSN 0362-1340. doi:
10.1145/3022671.2984008. URL http://doi.acm.org/10.1145/3022671.2984008.

[43] Miles Sabin. Miles sabin via twitter. URL https://twitter.com/milessabin/status/
953713425124818949?lang=en.

[44] Miles Sabin. Unboxed union types in Scala via the Curry-Howard isomorphism,
June 2011. URL http://milessabin.com/blog/2011/06/09/scala-union-types-curry-
howard/.

[45] Guy L. Steele, Jr. Common LISP: The Language (2nd Ed.). Digital Press, Newton,
MA, USA, 1990. ISBN 1-55558-041-6.

[46] Leo Valais. SUBTYPEP: An Implementation of Baker’s Algorithm. Technical
report, EPITA/LRDE, July 2018. URL https://www.lrde.epita.fr/wiki/Publications/
valais.18.seminar.

[47] Léo Valais, Jim Newton, and Didier Verna. Implementing baker’s SUBTYPEP
decision procedure. In 12th European Lisp Symposium, Genova, Italy, April 2019.

[48] Guido Van Rossum and Fred L Drake Jr. Python tutorial. Centrum voor Wiskunde
en Informatica Amsterdam, The Netherlands, 1995.

[49] Margus Veanes, Nikolaj Bjørner, and Leonardo de Moura. Symbolic automata
constraint solving. In Christian G. Fermüller and Andrei Voronkov, editors, Logic
for Programming, Artificial Intelligence, and Reasoning, pages 640–654, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg. ISBN 978-3-642-16242-8.

http://www.cs.rice.edu/~cork/312/Readings/GenericsTutorial.pdf
http://doi.acm.org/10.1145/1069774.1069793
https://onlinelibrary.wiley.com/doi/abs/10.1002/malq.19810270205
https://onlinelibrary.wiley.com/doi/abs/10.1002/malq.19810270205
https://doi.org/10.1305/ndjfl/1093883253
https://doi.org/10.1305/ndjfl/1093883253
https://www.microsoft.com/en-us/research/publication/power-symbolic-automata-transducers-invited-tutorial/
https://www.microsoft.com/en-us/research/publication/power-symbolic-automata-transducers-invited-tutorial/
https://www.scala-js.org/news/2015/08/31/announcing-scalajs-0.6.5/
https://www.scala-js.org/news/2015/08/31/announcing-scalajs-0.6.5/
http://doi.acm.org/10.1145/2398856.2364534
https://doi.org/10.1145/263244.263267
http://doi.acm.org/10.1145/1391289.1391293
http://arxiv.org/abs/1605.05274
https://doi.org/10.1145/3386321
https://doi.org/10.1145/1238844.1238856
https://contributors.scala-lang.org/t/union-types-in-scala-3/4046
https://www.microsoft.com/en-us/research/publication/on-decidability-of-nominal-subtyping-with-variance/
https://www.microsoft.com/en-us/research/publication/on-decidability-of-nominal-subtyping-with-variance/
http://doi.acm.org/10.1145/800017.800528
https://doi.org/10.1145/367177.367199
http://dotty.epfl.ch/docs/reference/overview.html
http://infolab.stanford.edu/~paepcke/shared-documents/mopintro.ps
http://doi.acm.org/10.1145/3136040.3136042
https://doi.org/10.1145/2872427.2883029
https://doi.org/10.1145/2872427.2883029
https://mailman.common-lisp.net/pipermail/ecl-devel/2003-May/000288.html
https://mailman.common-lisp.net/pipermail/ecl-devel/2003-May/000288.html
http://doi.acm.org/10.1145/3022671.2984008
https://twitter.com/milessabin/status/953713425124818949?lang=en
https://twitter.com/milessabin/status/953713425124818949?lang=en
http://milessabin.com/blog/2011/06/09/scala-union-types-curry-howard/
http://milessabin.com/blog/2011/06/09/scala-union-types-curry-howard/
https://www.lrde.epita.fr/wiki/Publications/valais.18.seminar
https://www.lrde.epita.fr/wiki/Publications/valais.18.seminar

	Abstract
	1 Introduction
	1.1 Long-term Motivations
	1.2 Goals and Contributions

	2 Previous work
	2.1 Type-based Sequence Recognition
	2.2 Types as Boolean Combinations
	2.3 Difficulties with the Subtype Relation
	2.4 Types in Common Lisp

	3 Portable and Embeddable
	3.1 Hosted Types
	3.2 Formal definition of SETS
	3.3 Relating SETS to Common Lisp
	3.4 A Challenging Subtype Relation
	3.5 Computing the Subtype Relation

	4 Implementations of SETS
	4.1 Java Subclass vs. SETS Subtype
	4.2 Genus, SETS in Clojure
	4.3 Genus, SETS in Scala
	4.4 Disjoint decision on JVM hosted classes.
	4.5 Perceived Limitations of CL Type System

	5 Conclusion
	5.1 Results
	5.2 Perspectives

	References

