
HAL Id: hal-04580365
https://hal.science/hal-04580365v1

Submitted on 19 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model checking with generalized Rabin and Fin-less
automata

Vincent Bloemen, Alexandre Duret-Lutz, Jaco van De Pol

To cite this version:
Vincent Bloemen, Alexandre Duret-Lutz, Jaco van De Pol. Model checking with generalized Rabin
and Fin-less automata. International Journal on Software Tools for Technology Transfer, 2019, 21 (3),
pp.307–324. �10.1007/s10009-019-00508-4�. �hal-04580365�

https://hal.science/hal-04580365v1
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Model Checking with Generalized Rabin and Fin-less automata

Vincent Bloemen · Alexandre Duret-Lutz · Jaco van de Pol

the date of receipt and acceptance should be inserted later

Abstract In the automata theoretic approach to explicit
state LTL model checking, the synchronized product of the
model and an automaton that represents the negated formula
is checked for emptiness. In practice, a (transition-based
generalized) Büchi automaton (TGBA) is used for this pro-
cedure.

This paper investigates whether using a more general
form of acceptance, namely a transition-based generalized
Rabin automaton (TGRA), improves the model checking
procedure. TGRAs can have significantly fewer states than
TGBAs, however the corresponding emptiness checking
procedure is more involved. With recent advances in prob-
abilistic model checking and LTL to TGRA translators, it
is only natural to ask whether checking a TGRA directly is
more advantageous in practice.

We designed a multi-core TGRA checking algorithm
and performed experiments on a subset of the models and
formulas from the 2015 Model Checking Contest and gen-
erated LTL formulas for models from the BEEM database.
While we found little to no improvement by checking
TGRAs directly, we show how various aspects of a TGRA’s
structure influences the model checking performance.

In this paper, we also introduce a Fin-less acceptance
condition, which is a disjunction of TGBAs. We show how
to convert TGRAs into automata with Fin-less acceptance
and show how a TGBA emptiness procedure can be ex-
tended to check Fin-less automata.

V. Bloemen
University of Twente, Enschede, The Netherlands
E-mail: v.bloemen@utwente.nl

A. Duret-Lutz
LRDE, EPITA, Kremlin-Bicêtre, France
E-mail: adl@lrde.epita.fr

J. van de Pol
University of Aarhus, Aarhus, Denmark
E-mail: jaco@cs.au.dk

Keywords Model checking, Explicit state, LTL, ω-
automata, on-the-fly, Generalized, Büchi, Rabin, Multi-
core, Parallel

1 Introduction

Model Checking. Model checking is a way to ensure that a
system modelled by a Kripke Structure K satisfies some be-
havioural properties expressed as an LTL formula ϕ . In the
automata theoretic approach to LTL model checking [34],
the formula ϕ is first transformed into a Büchi automaton
A¬ϕ capturing forbidden behaviours. This automaton is then
synchronized with the system K, and the procedure then
amounts to testing whether the language of this synchro-
nized product is empty: L (K⊗A¬ϕ) = /0. If the language
of the product is non-empty, it means there exists a coun-
terexample: an execution of K that does not satisfy ϕ .

When performed explicitly (i.e., not using any kind of
symbolic representation of those automata) the procedure is
limited by the well-known state-space explosion problem,
where the product automaton K⊗A¬ϕ becomes too large to
handle.

In what follows, we will focus on the emptiness check
procedure, i.e., the algorithm that takes an automaton A as
input, and decides if its language L (A) is empty. We ab-
stract away that fact that in a model checker A is a product,
but we have to account for the fact that A can be quite large.

On-the-fly model checking mitigates the state-space
memory constraints by only storing the states (not the tran-
sitions) encountered during the emptiness check. The search
procedure is launched from an initial state. Reachable states
are computed on demand via a successor function, and in
case a counterexample is detected the search may end well
before the entire state-space is explored. A consequence is

2 Vincent Bloemen et al.

that in practice emptiness checks rely on depth-first search
(DFS) exploration [33].

With current hardware systems one can further improve
the model checking performance by using multiple cores.
This way, the time to model check can be significantly re-
duced; related work shows that even though the problem
is difficult to parallelize, in practice an almost linear im-
provement with respect to the number of cores can be ob-
tained [20,16,32,8].

Finally a way to reduce the size of the product automa-
ton is to keep the sizes of the system’s state-space and the
negated property automaton as small as possible. In partic-
ular, smaller property automata can be obtained by using
more complex acceptance conditions.

The automata-theoretic approach to LTL model check-
ing is often performed using Büchi automata (BAs), or even
transition-based generalized Büchi automata (TGBAs). TG-
BAs can be linearly more concise than BAs, resulting in
smaller products, and can be emptiness checked using an
algorithm that enumerates strongly-connected components
(SCCs) at no extra cost compared to SCC-based algorithms
on BAs [10].

Our Goal: Emptiness Checks Using Generalized Rabin Au-
tomata. For probabilistic model checking, working with de-
terministic automata is important, as otherwise the resulting
product automaton might not be a Markov chain [3]. Since
it is well known that not all BAs can be determinized, prob-
abilistic model checkers use Rabin automata (RAs) instead.
More recently, order-of-magnitude speedups were reported
when performing probabilistic model checking using a gen-
eralized acceptance condition called transition-based gener-
alized Rabin Automata (TGRAs) [9]. Also, there has been a
lot of interest into building tools such as LTL3DRA [2] and
Rabinizer 3&4 [22,15,24] for translating LTL formulas
into small deterministic TGRAs.

Our objective is to study whether the speedups observed
with TGRAs in probabilistic model checking also hold for
non-probabilistic explicit model checking. There are plenty
of algorithms for checking BAs and TGBAs (both sequen-
tially and multi-core) [33,16,32,8], however for Rabin ac-
ceptance there is only a recent work on a GPU algorithm for
checking (non-generalized) RAs [35] and a TGRA checking
algorithm for probabilistic model checking [9].

None of these works address our question: in a set-
ting where determinism is not necessary, is there any ad-
vantage to using Transition-based Generalized Rabin Au-
tomata (TGRAs) over Transition-based Generalized Büchi
Automata (TGBAs)? To do so, we introduce a multi-core
emptiness-check procedure for TGRAs. We implement it in
LTSMIN [21], and benchmark several model-checking tasks
realized using TGRAs or TGBAs.

We should also point out that having an efficient empti-
ness check for TGRAs has more applications than just
model checking, because generalized Rabin acceptance can
be thought of as a normal form for any acceptance condi-
tion. Such a TGRA emptiness check could therefore be use-
ful to ω-automata libraries such as Spot [12] that work with
automata using arbitrary acceptance conditions [1]. In Spot
2.5.2, ω-automata with complex acceptance conditions are
first converted into TGBAs before being emptiness-checked.

Two recent tools called LTL3TELA (no publication yet)
and Delag [30], convert LTL formulas into automata with
unconstrained acceptance conditions: the acceptance is sim-
ply chosen to help the translation into smaller (in the case
of LTL3TELA) or deterministic (Delag) automata. So far it
is not clear if these translations can be useful in the context
of explicit model checking. By looking at TGRAs, we con-
tribute a partial answer to this question.

This paper is an updated version of an article published
in the Spin’17 conference [6]. We extend that previous work
in two ways.

First, in this paper we also introduce a Fin-less accep-
tance condition, which is a disjunction of TGBAs. We show
how a TGBA emptiness procedure can be trivially extended
to support Fin-less acceptance and we empirically compare
how automata with a Fin-less acceptance relate to TGBA
and TGRA in terms of model checking performance.

Second, we extend the set of experiments to include
benchmark models from the BEEM database [31], accom-
panied by randomly generated LTL formulas (obtained from
[4]). In total, more than 3,000 model and formula combi-
nations were added. We observed that the TGRAs gener-
ated from these formulas have a more complex structure
compared to the ones from prior experiments. Experiments
show how this affects the relative performance of checking
TGRAs versus TGBAs. We also provide a more detailed
analysis of the results.

Overview. The remainder of the paper is structured as fol-
lows. We provide preliminaries in Section 2 and present our
algorithm in Section 3. We discuss related work in Section 4.
Implementation details and experiments are discussed in
Section 5 and we conclude in Section 6.

2 Preliminaries

We define ω-automata using acceptance conditions that are
positive Boolean formulas over terms like Fin(T) (the transi-
tions in T should be seen finitely often) or Inf(T) (infinitely
often). This convention, inspired from the HOA format [1]
allows us to express all traditional acceptance conditions,
and is similar to the formalism used by Emerson & Lei
30 years ago [14] using state-based acceptance.

Model Checking with Generalized Rabin and Fin-less automata 3

Table 1: Acceptance condition formulas corresponding to
classical names. Fi and Ii denote sets of transitions.

(B) Büchi Inf(I1)
(GB) generalized-Büchi

∧
i Inf(Ii)

(C) co-Büchi Fin(F1)
(R) Rabin

∨
i Fin(Fi)∧ Inf(Ii)

(GR) generalized-Rabin
∨

i Fin(Fi)∧ Inf(I1
i)∧ Inf(I2

i)∧ . . .∧ Inf(I
pi
i)

(FL) Fin-less
∨

i Inf(I
1
i)∧ Inf(I2

i)∧ . . .∧ Inf(I
pi
i)

(EL) Emerson-Lei any positive formula of Fin(Fi) and Inf(Ii)

Definition 1 (TELA) A transition-based Emerson-Lei au-
tomaton (TELA) is a tuple A = (Σ ,Q,q0,δ ,Acc) where Σ

is an alphabet, Q is a finite set of states, q0 ∈ Q is the ini-
tial state, δ ⊆ Q× Σ ×Q is a transition relation, Acc is a
positive Boolean function over terms of the form Fin(T) or
Inf(T) for any subset T ⊆ δ . For a transition t ∈ δ we note
ts its source, t` its label, and td its destination: t = (ts, t`, td).

Runs of A are infinite sequences of consecutive transi-
tions:

Runs(A)={ρ ∈ δ
ω | ρ(0)s= q0∧∀i≥ 0 : ρ(i)d= ρ(i+1)s}

The acceptance of a run ρ is defined by evaluating the
acceptance condition Acc over ρ such that:

– Fin(T) is true iff all the transitions in T occur finitely
often in ρ .

– Inf(T) is true iff some transitions in T occurs infinitely
often in ρ .

Let ρ` ∈ Σ ω be the word recognized by a run ρ ∈
Runs(A) defined by ρ`(i) = ρ(i)` for all i ≥ 0. The lan-
guage of A , denoted L (A), is the set of all words ρ` rec-
ognized by some accepting run ρ .

Some shape of acceptance conditions Acc are given
names, as shown in Table 1. We use the abbreviation TXA,
were X is any value of the first column of Table 1, to denote
a TELA whose acceptance condition has the shape given in
the last column.

For instance, a Transition-based Generalized Büchi Au-
tomaton (TGBA) is a TELA where Acc= Inf(T1)∧ Inf(T2)∧
. . .∧ Inf(Tn) for some n, meaning that any accepting run has
to visit infinitely often one transition from each set Ti.

As an example, automaton A1 from Figure 1 represents
a TGBA for the formula GFa∧GFb. Here, transitions are
labelled by all possible assignments of a and b, i.e., elements
of Σ = {āb̄, āb,ab̄,ab} (ā denotes the negation of a), and
transitions are also marked using 0 and 1 to denote their
membership to the sets used in the acceptance condition. A
run of A1 is accepted if it visits both acceptance marks 0

and 1 infinitely often.
A Transition-based Generalized Rabin Automaton

(TGRA) is a TELA where Acc has the form
∨n

i=1
(
Fin(Fi)∧

Inf(I1
i)∧ Inf(I2

i)∧ . . .∧ Inf(I
pi
i)
)

for some values of n, and

0ab 0
1

ab̄
0

āb1

āb̄

Inf(0)∧Inf(1)(A1)

0 1

a,ā

a

a
0

Inf(0)(A2)

0

ā
0

a

Fin(0)(A3)

Fig. 1: (A1) a deterministic transition-based generalized
Büchi automaton recognizing GFa ∧ GFb. (A2) a non-
deterministic transition-based Büchi automaton recogniz-
ing FGa. (A3) a deterministic transition-based co-Büchi au-
tomaton recognizing FGa.

p1, p2, . . . , pn. This is a generalization of Rabin acceptance
in the sense that in Rabin acceptance pi = 1 for all i. Each
conjunctive clause of the form Fin(Fi)∧ Inf(I1

i)∧ Inf(I2
i)∧

. . .∧ Inf(Ipi
i) is called a transition-based generalized Rabin

pair (TGRP). A transition-based co-Büchi automaton is a
TGRA with n = 1 and p1 = 0; co-Büchi acceptance consists
of a single clause of the form Fin(F1).

The two automata A2 and A3 from Figure 1 represent
the formula FGa using the alphabet Σ = {ā,a} and different
acceptance conditions: A2 is a Transition-based Büchi Au-
tomaton while A3 is a Transition-based co-Büchi Automa-
ton. Both automata are minimal in their number of states and
illustrate that allowing Fin acceptance can reduce the size of
an automaton. Moreover, A3 is a deterministic automaton,
whereas no equivalent deterministic BA exists.

Figure 2 depicts a deterministic TGRA (A4) and a non-
deterministic TGBA (A5), both representing the property
FG(FaUb). A4 is accepting if either 1 is visited infinitely
often without visiting 0 infinitely often, or if 2 is visited
finitely often and both 1 and 3 are visited infinitely often.
Only one of the two TGRPs has to be satisfied. In this case,
by comparing A4 and A5 we can (again) observe that Fin
acceptance aids in reducing the size of the automaton.

Since generalized Rabin acceptance is just a disjunc-
tion of TGRPs, it can serve as a normal form for any ac-
ceptance condition. Any acceptance condition can be con-
verted into generalized Rabin acceptance by distributing ∧
over ∨ to obtain a disjunctive normal form, and then replac-
ing any conjunctive clause of the form Fin(F1)∧Fin(F2)∧
. . .∧Fin(Fm)∧ Inf(I1)∧ Inf(I2)∧ . . .∧ Inf(Ip) by the TGRP
Fin(

⋃n
i=1 F i)∧ Inf(I1)∧ Inf(I2)∧ . . .∧ Inf(Ip). This conver-

sion can be done without changing the transition structure
of the automaton; but the downside is that it may introduce
an exponential number of TGRPs.

Strongly-connected components (SCCs) are usually de-
fined as maximal with respect to inclusion, but this extra
constraint is not always desirable in an emptiness check,
where we are just looking for one accepting cycle. We there-
fore use the terms partial SCC and maximal SCC when we
need to be specific.

4 Vincent Bloemen et al.

0 1ab̄ 0
1

ab,āb

1
3

ab̄,āb̄
0
1

2

āb̄
0

3 āb

0 āb̄

0 1
ab̄

1 3
ab

(
Fin(0)∧Inf(1)

)
∨
(
Fin(2)∧Inf(1)∧Inf(3)

)
(A4)

0 1 2

āb̄, āb,ab̄,ab

āb,ab̄,ab

ab,āb

0
1

ab̄ 0

āb̄
1

āb

0 āb̄

0
ab̄

0 1
ab

Inf(0)∧Inf(1)(A5)

Fig. 2: Two automata recognizing FG((Fa)Ub). (A4) a non-
deterministic transition-based generalized-rabin automaton
with two pairs. (A5) a non-deterministic transition-based
generalized Büchi automaton.

Definition 2 (SCC) Given a TELA of the form A =

(Σ ,Q,q0,δ ,Acc), a partial Strongly Connected Component
(partial SCC) is a pair C := (CQ,Cδ) ∈ 2Q×2δ with CQ 6= /0
such that any ordered pair of states of CQ can be connected
by a sequence of consecutive transitions from Cδ . We say
that C is a maximal SCC if C is maximal with respect to
inclusion, thus the case where both CQ and Cδ cannot be ex-
tended without losing strong connectivity. An SCC is called
trivial if Cδ = /0, and hence CQ consists of a single state.

In a TGBA whose acceptance condition has n accep-
tance sets of the form Inf(T1)∧ . . .∧ Inf(Tn), finding an ac-
cepting run boils down to searching for a trace from the ini-
tial state to a reachable partial SCC C for which ∀1≤i≤n :
Ti∩Cδ 6= /0 holds, i.e., a partial SCC that intersects each ac-
ceptance set.

In a TGRA, an accepting run has to satisfy one TGRP.
A TGRP Fin(F)∧ Inf(I1)∧ Inf(I2)∧ . . .∧ Inf(Ip) has an ac-
cepting run if there is a trace from the initial state to a reach-
able partial SCC C with F ∩Cδ = /0 and Ii ∩Cδ 6= /0 for all
1≤ i≤ p. In other words a partial SCC that contains a tran-
sition from every Inf set and no transition from the Fin set.

Note that in the case of a TGBA, it is always valid to re-
place the search for a partial SCC intersecting all acceptance
sets by the search for a maximal SCC intersecting these sets.
However this cannot be done when the acceptance condi-
tion uses Fin sets. For instance consider the automaton A4
in Figure 2 checked against the TGRP Fin(0)∧ Inf(1): the
automaton has a unique maximal SCC, consisting of both
states and every transition, which does not satisfy 0 ∩Cδ =

/0∧ 1 ∩Cδ 6= /0. However, those constraints hold on the par-
tial SCC that consists of state 0 and the loop above it. For
this reason our algorithm will build partial SCCs that do not
include transitions labelled by Fin sets.

0 1

0,1 1,1

0,2 1,2

ab, āb,
ab̄, āb̄

āb̄

ab, āb

ab̄,ab̄,ab

āb̄

āb, āb̄

ab̄,ab

āb
ab

āb, āb̄

ab̄,ab

āb

1
ab

1
ab, āb

ab̄ 1

ab,āb

1
3 āb̄ 3

āb

āb̄

1
ab̄

1 3
ab

Inf(1)∨
(
Inf(1)∧Inf(3)

)
(B4)

Fig. 3: Application of Proposition 1 to transform the TGRA
A4 of Figure 2 into a TFLA B4. The dashed transitions cor-
respond to non-deterministic jumps added to some copies of
the original automaton. Each copy handles one generalized
Rabin pair of the original acceptance condition. In the orig-
inal acceptance 1 was used in both pairs, but since Propo-
sition 1 creates a different set of each use, we distinguish
these two sets with 1 and 1 here.

At the cost of introducing non-determinism, any gener-
alized Rabin automaton can be converted into what we have
called Fin-less automaton1 (TFLA) in Table 1.

Proposition 1 (Fin-removal) Given a TGRA A =

(Σ ,Q,q0,δ ,
∨n

i=1Fin(Fi)∧ Inf(I1
i)∧ Inf(I2

i)∧ . . .∧ Inf(I
pi
i)),

the TFLA B = (Σ ,Q′,q0,δ
′,
∨n

i=1 Inf(J
1
i)∧ Inf(J2

i)∧ . . .∧
Inf(Jpi

i)) where:

– Q′ = Q∪Q×{1,2, ...,n}
– δ

′ = δ

∪{(ts, t`,(td , i)) | i ∈ {1,2, ...,n}∧ t ∈ (δ \Fi)}
∪{((ts, i), t`,(td , i)) | i ∈ {1,2, ...,n}∧ t ∈ (δ \Fi)}

– J j
i = {(ts, i), t`,(td , i) | t ∈ (I j

i \Fi)} for i ∈ {1,2, ...,n}
and j ∈ {1,2, ..., pi}

is such that L (A) = L (B).

Any accepting run of A will eventually reach a point
where all the transitions it visited satisfy one of the gen-
eralized Rabin pairs. The above construction, illustrated by
Figure 3, works by introducing non-determinism to guess
this point and the pair satisfied. The non-deterministic tran-
sitions (pictured with dashed lines) connect to clones of the
original automaton2, in which taking the transitions of Fi
(for pair i) is forbidden from now on, and the acceptance

1 Strictly speaking, a Fin-less automaton could use any formula us-
ing only Inf terms. We assume that the formula is under disjunctive
normal form for simplicity and because this is what the construction of
Proposition 1 produces.

2 When implementing this construction, the number of non-
deterministic jumps can be reduced: only one such jump is needed per
cycle of the sub-automaton created for each generalized Rabin pair.

Model Checking with Generalized Rabin and Fin-less automata 5

condition is set so that the other Inf sets still have to be vis-
ited infinitely often.

Given a TFLA B with acceptance
∨n

i=1 Inf(J
1
i) ∧

Inf(J2
i)∧ . . .∧ Inf(J

pi
i), an accepting run has to satisfy one

Inf conjunction. This means that there is an accepting run
if, for some 1 ≤ i ≤ n, there is a trace from the initial state
to a reachable partial SCC C such that Jk

i ∩Cδ 6= /0, for all
1≤ k ≤ pi.

A TGBA checking algorithm can be easily extended to
also check for TFLA emptiness. This is achieved by tracking
all acceptance sets in each found partial SCC. Thus, given
the automaton B4, we would track whether 1 , 1 , and 3

have a non-empty intersection in each SCC C. Then, when
checking whether a partial SCC C contains an accepting cy-
cle, the algorithm iterates over 1 ≤ i ≤ n to search for an i
such that Jk

i ∩Cδ 6= /0 holds for all 1 ≤ k ≤ pi. Note that,
as with the case for TGBAs, it is also always valid to only
check for maximal SCCs instead of partial SCCs.

The Fin-removal construction procedure, in combina-
tion with the extended TGBA emptiness checking algo-
rithm, could be regarded as a method for checking TGRAs.
In fact, the non-determinism introduced by the Fin-removal
construction is very similar to non-deterministically choos-
ing to check for one of the TGRPs. An accepting run on a
TFLA starts by first forming a trace from the initial state
of a TGRA to an arbitrary state in the TGRA. Then, a non-
deterministic choice is made to decide which TGRP will be
checked. Finally, the trace is continued to a reachable partial
SCC that does not contain any Fin transitions from the cho-
sen TGRP. Note that this accepting run is also accepting in
the corresponding TGRA. The downsides of using the Fin-
removal construction are that it introduces non-determinism
in the automaton, and it linearly increases the size of the
automaton (in the number of TGRPs).

3 Algorithm for TGRA emptiness

In this section, we present a direct algorithm for checking
emptiness on TGRAs, without removing Fin sets first. We
start by splitting up the TGRA acceptance into individual
TGRPs, and show how these can be checked.

3.1 Checking Rabin Pairs

Checking TGRAs can be achieved by checking each Rabin
pair separately, as shown in Algorithm 1. In case an ac-
cepting cycle is found by TGRPACC, that sub-procedure
should report Acc and exit. Thus, in case none of the
TGRPACC sub-procedures report acceptance, the algorithm
returns with No Acc. The TGRPACC procedure itself will
be explained later.

Algorithm 1: Checking TGRA by checking
TGRPs.
1 function TGRACheck (Q,q0,TGRA= {TGRP1, . . . ,TGRPn})
2 forall i ∈ {1, . . . ,n} do
3 TGRPAcc(Q,q0,TGRPi)

4 return No Acc // No TGRPAcc call reported Acc

We assume that prior to each TGRPACC call, we have
no knowledge on the individual TGRPs and therefore treat
them equally and separately. In theory, this assumption may
lead to missed opportunities, for example, if TGRP1 =
TGRP2. Even an overlap in the Fin and/or Inf fragments of
the TGRPs might offer an opportunity to combine gained
information.

3.2 TGRP Checking Algorithm

Throughout this section we consider checking a TGRP with
acceptance of the form Acc = (F,{I1, . . . , Ip}). We note that
a TGRP can be seen as an extension of a TGBA, in which a
Fin constraint is added. The algorithm that we propose is an
extension of the best parallel algorithm for checking TGBAs
that we know [7,8]. We present the algorithm’s sequential
execution and show how it can be parallelized.

Abstract idea of the algorithm. The general idea of the algo-
rithm, which we present in Algorithm 3 (a simplified version
of the algorithm is given in Algorithm 2), is to perform an
SCC decomposition of the automaton without allowing any
F transitions from being part of the SCCs. As a result, we
obtain SCCs that contain all edges except those in F . For-
mally, we have that each SCC C is a partial SCC of A that is
maximal on the TGRP Aδ\F := (Σ ,Q,q0,δ \F,Acc). C is an
accepting SCC if Cδ ∩ Ii 6= /0 for each 1≤ i≤ p, i.e., C con-
tains transitions such that every Ii can be visited infinitely
often. By definition of Aδ\F , we have that Cδ ∩F = /0. If C
is also reachable from q0 via transitions from δ (including F
transitions), it can be reported that a counterexample exists.

Preventing F transitions from being considered. The algo-
rithm detects the aforementioned ‘constrained’ SCCs in lin-
ear time and in an on-the-fly setting, without relying on vis-
iting states multiple times3. It does so by performing a con-
strained SCC decomposition of A from q0. Once a transi-
tion t = (ts, t`, td) ∈ F is encountered, state td is stored in
a so-called Fstates set and t is further disregarded since t
cannot appear in any accepting cycle. Once this search is
finished, all states are marked as Dead and all SCCs are
decomposed on the automaton A ′, which is formed by a

3 The parallel search is based on swarmed verification, making it
unlikely that states are visited only once in practice, but in theory and
in a sequential setting this is not necessary for correctness.

6 Vincent Bloemen et al.

C1

C2

C3

q0

p
w

x

tu
v

s

r

3

0

0

(
Fin(0)∧Inf(1)∧Inf(2)

)
∨
(
Fin(3)∧Inf(4)

)
pair 1 pair 2

Fig. 4: Example of running an emptiness check on an TGRA
with two pairs. C1, C2, and C3 represent components (not
necessarily strongly connected) that do not contain any tran-
sition in the sets 0 or 3 . Workers doing the emptiness
check for the first pair will first explore C1 ∪C3, attempt-
ing to find a cycle satisfying Inf(1)∧Inf(2) without cross-
ing the 0 -transitions leading to u and t. If no accepting cy-
cles are found, they will continue their exploration in C2,
starting in states u and v, and ignoring all transitions going
back to C1∪C3. Workers doing the emptiness for the second
pair, will similarly first look for cycles satisfying Inf(4) in
C1∪C2, postponing the exploration of C3 that is only acces-
sible via a 3 -transition.

reachability from q0 over the transitions δ \F . In case a non-
trivial SCC contains transitions from all Ii sets we have de-
tected a counterexample. Otherwise, we pick a state s from
the Fstates set and consider the following two cases:

1. s is marked Dead, meaning that it was added to Fstates
but it was also reachable in A ′ (without taking any F
transitions). Thus, we have already explored this state
and can ignore it.

2. s is not marked Dead, meaning that s is not part of A ′

and we launch a new SCC decomposition from s.

The search procedure is illustrated in Figure 4. Here, two
TGRPs are checked separately. Note that due to the way how
0 and 3 are located in the automaton, the initial searches for
the first and second pair lead to different components. The
search for pair 1 detects A ′

1 =C1∪C3 (avoiding 0) and the
search for pair 2 detects A ′

2 = C1 ∪C2 (avoiding 3). Con-
sider the search for pair 1. After the initial search it found
the Fstates u and t. Both have not been explored so sup-
pose that u is arbitrarily chosen as a ‘new’ initial state. We
assume that the search from u visits all states in C2

4. If we
now find the edge from v to r, thus from C2 to C1, we should

4 Consider for example what happens when there is no path from u
to t. After the search for u ends, all reachable states from u are marked
Dead and the search from t is started. Once it observes a Dead state
it will not continue searching that state, hence no redundant states are
explored.

not report an accepting cycle as it would contain the 0 mark.
This is guaranteed, since the search from u is initiated after
the search from q0 is complete; so r is already marked Dead

and thus ignored. In fact, even when we allow the search
from u to start before all states in C1 ∪C3 are marked Dead

it may in the worst case only add redundant explorations.
This is because the edge from s to u is not included as an
edge in the SCC decomposition and hence no cycle can be
formed with a 0 mark.

Algorithm 2: Simplified algorithm for one TGRP.
1 Visited := Dead := Fstates := /0 // Initializing sets

2 function TGRPAccSimple (Q,s,TGRP= (FM ,IM))
3 Visited := Visited∪ s // Mark s as visited

4 forall (acct , t) ∈ suc(s) do // Explore successors

5 // Ignore fully explored (Dead) states

6 if t ∈ Dead then continue
7 else if t /∈ Visited then // Unseen state t
8 // Store F transitions for later

9 if acct ∩FM 6= /0 then Fstates.addState(t)
10 else // recursively explore otherwise

11 TGRPAccSimple(Q, t,TGRP)
12 // If visited before, we found a cycle

13 else if acct ∩FM = /0 then // No F transition

14 Unite states and combine acc sets on cycle
15 if IM = ‘combined acc set’ then
16 report Acc and exit // Accepting cycle

17 Dead := Dead∪ s // Explored s, mark s as Dead

18 // If backtracking from the ‘initial’ state

19 if Dead= Visited then
20 if ¬Fstates.isEmpty() then // Stored F states

21 f := Fstates.pickState() // Try next one

22 TGRPAccSimple(Q, f ,TGRP) // New search

23 else exit // No accepting cycle found

Simplified algorithm. In Algorithm 2 we present a simpli-
fied version of the TGRP checking algorithm. The function
should be initially called with s := q0 and it recursively
explores the graph in a depth-first order. A state is marked
visited, then it’s successors are processed, then the state is
explored and it gets marked Dead. All Dead states are ig-
nored when processing successors. If the successor t has not
been visited yet, depending on whether it is reached via an
F transition, we either store it in the Fstates set, or we re-
cursively explore the state. If t has been visited before and it
is not reached via an F transition, then we detected a cycle.
We then want to combine the states and transition marks on
this cycle to check if this is an accepting cycle. Once the ini-
tial state is fully explored, we check if there are stored states
in Fstates, and if so, we start searching from these states
until we processed the entire state-space.

Data Structures. To represent the Fin and Inf fragments of
a TGRP, we use a set of accepting marks per transition. We

Model Checking with Generalized Rabin and Fin-less automata 7

assign a unique mark to each F and Ii set, for 1≤ i≤ p, and
refer to these marks with FM and Ii

M . We denote the set of
all Inf marks by IM , i.e., IM :=

⋃
1≤i≤p Ii

M . The complete
set of markings M is thus defined as M := {FM, I0

M, . . . , Ip
M}.

Each transition t is associated to a set of acceptance marks
acc⊆M, indicating whether t ∈ F or t ∈ Ii for 1≤ i≤ p.

We define S as a mapping from states to pairs, con-
sisting of a set of states and a set of marks. Thus S (s) =
(states,acc) and formally, S : Q → 2Q × 2M . By imple-
menting S with a union-find structure, we can maintain the
following invariant at all times:

∀u,v ∈ Q : u ∈S (v).states⇔S (v) = S (u)

This further implies that every state is part of exactly one set
of states. In the algorithm, we use S to associate each state
u to its partial SCC that contains the states S (u).states and
visits all the marks in S (u).acc. S pairs can be combined
using a Unite function. We use an example to illustrate S
and the Unite function. Let S (u) := ({u,w},{FM}) and
S (v) := ({v},{FM, I1

M}), we can use the Unite function
to combine the two structures. After calling Unite(S ,u,v)
we have S (u) = S (v) = ({u,v,w},{FM, I1

M}), while keep-
ing all other mappings the same. For more details on this
structure, we refer to Bloemen et al. [7]. We use an addi-
tional function AddAcc to ‘add’ (the union of) acceptance
marks to the set, thus AddAcc(S ,v,{I1

M, I2
M}) will ensure

that S (v).acc becomes {FM, I1
M, I2

M}.
The Fstates structure is implemented as a cyclic list

that contains all states added to the list (by means of
Fstates.addState). Fstates.pickState returns a state
from the list, in case the list is nonempty. Finally, states are
removed from the list by calling Fstates.removeState.
For efficient list containment and to avoid duplicated states
from being added, we store the list on top of an array, in
which the elements point to each other.

Detailed Algorithm. The detailed sequential algorithm for
checking a TGRP is presented in Algorithm 3. We repeat-
edly perform SCC decompositions, using Dijkstra’s algo-
rithm [11]. To this end, we will maintain a stack R, which
can be regarded as an extension to the roots stack from Dijk-
stra’s SCC algorithm [11].

First, all data structures are initialized in lines 2-5.
Then, the algorithm continuously picks a state s (ini-
tially q0) and calls the TGRPACCRECUR procedure. Af-
ter the TGRPACCRECUR is finished, s is removed from the
Fstates list and a new state is picked from the list. If the
list is empty, then the complete state-space must have been
visited and since no Acc was reported, we can conclude that
no counterexample exists for this TGRP.

In the TGRPACCRECUR procedure, state s is marked
as visited and pushed on top of the R stack, along with the
accompanying acceptance set accs (note that since there is

Algorithm 3: Algorithm for checking a TGRP.
1 function TGRPAcc (Q,q0,TGRP= (FM ,IM))
2 ∀s ∈ Q : S (s) := ({s}, /0) // Initialize map

3 Visited := Dead := /0 // Sets

4 R := /0 // Roots stack of (acc,state) pairs

5 Fstates := {q0} // Cyclic list of init states

6 while ¬Fstates.isEmpty() do
7 s := Fstates.pickState()
8 if s /∈ Dead then TGRPAccRecur(/0,s)
9 Fstates.removeState(s)

10 return // No Acc got reported in the search

11 function TGRPAccRecur (accs,s)
12 Visited := Visited∪{s}
13 R.push(accs,s)
14 forall (acct , t) ∈ suc(s) do
15 if t ∈ Dead then continue // Explored

16 else if t /∈ Visited then // ‘New’ state

17 if acct ∩FM 6= /0 then // Avoid F
18 Fstates.addState(t)
19 else TGRPAccRecur(acct , t)
20 else if acct ∩FM = /0 then // Cycle

21 while S (s) 6= S (t) do
22 (accr,r) := R.pop()
23 Unite(S ,r,R.top().state)
24 AddAcc(S ,r,accr)

25 AddAcc(S ,s,acct) // Add acct to S (s)
26 if IM = S (s).acc then // Acc. cycle

27 report Acc and exit
28 if s = R.top() then // Completed SCC

29 Dead := Dead∪S (s).states
30 R.pop()

no transition to the initial state, the empty set is given in line
8). All successors of s are considered in lines 14-27. For
each successor t we consider three cases:

– t ∈ Dead (line 15), this implies that t has already been
completely explored and can thus be disregarded.

– t is unvisited (lines 16-19), meaning that t has not been
encountered yet. If t is part of the Fin set, we add it to the
Fstates list and ignore it for the current search. Other-
wise, we recursively search t.

– t is not Dead but it has been visited before (lines 20-
27). This implies that there is some state r′ on the R
stack such that t ∈S (r′).states and hence a cycle can be
formed. The algorithm then continuously takes the top
two states from the R stack and unites them (and adds
the acceptance mark) until S (s) and S (t) are the same.
Finally, the acceptance marks from acct are added. At
line 26, S (s) contains all states in the cycle from s to t
and forms a partial SCC. S (s) is then checked if it con-
tains all Inf acceptance marks. If so, an accepting SCC
is found and is reported.

After all successors are explored, the algorithm backtracks.
In case s equals the top of the R stack (line 28), s is the last
state of the SCC and the entire SCC is marked as being fully
explored by marking it as Dead.

8 Vincent Bloemen et al.

0 1 2 3

4 5 6

1 0 1

2

0 0

2

Fstates: {}

(a) The automaton to check.

0 1 2 3

4 5 6

1 0 1

2

0 0

2

Fstates: {2}

(b) DFS discovers a Fin edge, and postponed its
exploration by adding its destination to Fstates.

0 1 2 3

4 5 6

1 0 1

2

0 0

2

Fstates: {2,5}

(c) DFS discovers another Fin edge, and save the
destination again.

1

0 1 2 3

4 5 6

1 0 1

2

0 0

2

Fstates: {2,5}

(d) DFS closes a cycle, and unites all its states.

1

0 1 2 3

4 5 6

1 0 1

2

0 0

2

Fstates: {2,5}

(e) As the SCC is fully explored and non-
accepting, mark all its states as Dead.

1

0 1 2 3

4 5 6

1 0 1

2

0 0

2

Fstates: {2}

(f) DFS starts over from one of the Fstates, then
discovers (and ignores) a Dead state.

1

0 1 2 3

4 5 6

1 0 1

2

0 0

2

Fstates: {2,6}

(g) Another Fin edge is found, and postponed.

1

2

0 1 2 3

4 5 6

1 0 1

2

0 0

2

Fstates: {2,6}

(h) A cycle is discovered. The union-find struc-
ture learns about 2 .

1

2

0 1 2 3

4 5 6

1 0 1

2

0 0

2

Fstates: {2,6}

(i) Since entire SCC is explored and non-
accepting, mark it as Dead.

1

2

0 1 2 3

4 5 6

1 0 1

2

0 0

2

Fstates: {6}

(j) Start a DFS from a new state from Fstates.

1

2

0 1 2 3

4 5 6

1 0 1

2

0 0

2

Fstates: {6}

(k) Continue DFS.

1

2

1
2

0 1 2 3

4 5 6

1 0 1

2

0 0

2

Fstates: {6}

(l) A cycle is found, its states are united, and the
component is discovered to be accepting.

Fig. 5: Example of running the algorithm on a small automaton and a single TGRP: Fin(0)∧ Inf(1)∧ Inf(2). In this case,
transitions labelled by 0 should be avoided. Unexplored transitions are dotted. States and transitions on the DFS stack are
in bold. Dead states are coloured. The grey background represents the current view of the SCCs as stored in the union-find
data structure; for instance

1
u v means that S (u) = S (v) = ({u,v}, 1).

Figure 5 shows an example run of the algorithm on a
small automaton.

Outline of Correctness. We argue that the TGRPACC algo-
rithm decomposes the TGRP automaton in maximal SCCs
when defined over the transitions δ \F and that it correctly
reports accepting cycles; it reports Acc when a reachable
SCC contains a transition from each Ii sets, for 1 ≤ i ≤ p,
and no transition from F . Due to the conditions of line 17
and 20, for a transition with acct ∩F 6= /0 it is not possible
to start a recursive call with acct (thus acct never appears on
the R stack) nor is it possible to call AddAcc with acct as an
argument. All such transitions are ‘avoided’ and unvisited

successors are added to Fstates. We thus conclude that no
F transition can be contained in any formed SCC.

Because we do allow and explore all other (non-F) tran-
sitions during the search, assuming a correct SCC algorithm,
the acceptance set of each SCC cannot be further extended
without also having to include an F transition.

Since all states that did not get visited were added to
the Fstates list, and each state from this list is eventually
picked as an initial state, we argue that the complete state-
space has been explored after the algorithm terminates on
line 10.

Complexity. One can observe that every state and tran-
sition is visited at most once in the algorithm. The

Model Checking with Generalized Rabin and Fin-less automata 9

TGRPACCRECUR procedure will mark a state as visited
and will never be called twice for the same state. The bottle-
neck of the algorithm becomes maintaining the S structure.
From previous work [7] we know that the union-find struc-
ture (without tracking acceptance marks) causes the com-
plete algorithm to operate in quasi-linear time. By assuming
that the number of acceptance marks |M| (= 1+ p) is a small
constant (which holds in practice), tracking the acceptance
can be achieved in constant time per modification to the
structure, hence the total time complexity is upper bounded
by O(|M| · |δ | · log(|δ |)) for each TGRP (the log(|δ |) factor
acts as an over approximation for the quasi-linear time).

The space complexity is limited by the sizes of the R,
S , and Fstates structures. R may contain up to |Q| states
and acceptance marks in the worst case (by visiting every
state in a single path). S can be implemented as an array of
length |Q| of structs that are of constant size, plus |M| bits
for tracking acceptance, and Fstates can be implemented
as an array of |Q| elements. In total O(|Q| · |M|) memory is
used.

3.3 Parallel Implementation

We now present two ways in which parallelism can be used
to speed up the checking process for TGRAs.

Parallel TGRA Checking. We first consider Algorithm 1 for
checking each TGRP separately. After a TGRPACC call has
finished, the next Rabin pair is selected and a new sub-
procedure is started, until all n pairs have been checked.
Since we are working in a multi-core environment, we can
assign different worker instances to different Rabin pairs.
Suppose there are P workers available, we can choose to ei-
ther use all P workers for checking a single Rabin pair, or
we can distribute the workers over the different pairs. By
distributing the workers evenly, for n Rabin pairs, each pair
is checked by P

n workers.
A disadvantage of the latter setup is that each of the n

groups of P
n workers processing the same TGRP needs its

own copy of the shared data structure. This means that by
checking all pairs in parallel, approximately n times more
memory is required5.

However one advantage of checking all pairs in parallel
is that these jobs are completely independent, so this could
be the basis for a distributed algorithm. We expect better
scalability, since parallel workers on a single pair have to
synchronize on a shared datastructure (our implementation
uses a concurrent hashtable and a shared union-find datas-
tructure). Also, when P gets large compared to the size of

5 All global (shared) data structures have to be copied for the n
pairs, but the memory overhead for the local data structures remains
the same.

the (remaining) graph, the probability that workers have to
wait for each other, or perform duplicate work, increases.

Another advantage could be that counterexamples may
be detected faster in the latter setting. Suppose for example
that only the nth pair contains a counterexample that is de-
tected by visiting only part of the state-space. Then the par-
allel pairs approach prevents traversing the complete state-
space n−1 times.

We have experimented with these two extreme paralleli-
sation approaches, but it is conceivable that a more flexi-
ble job scheduler with load balancing leads to even higher
speedups. Note, however, that in practice the number of Ra-
bin pairs is quite limited.

Parallel TGRP Checking. Algorithm 3 can be parallelized
by swarming the search instances; by starting multiple
worker instances from the initial state and using a random-
ized successor function to steer the workers towards differ-
ent parts of the state-space. The TGRPACCRECUR func-
tion can be seen as an extension to the multi-core SCC algo-
rithm from Bloemen et al. [7,8]. The key to this algorithm is
to globally communicate locally detected cycles. This way,
multiple workers can cooperatively decompose SCCs. Ad-
ditionally, (partly) unexplored states in an SCC are tracked
globally and once a worker fully explores a state, none of
the other workers have to explore this state again. Once all
states of an SCC are fully explored, the entire SCC must be
fully explored and thus can be marked Dead.

During Unite procedures, the involved parts of the
union-find structure are briefly locked to guarantee correct-
ness. During this locking phase, the acceptance set can be
updated atomically without interfering with other parts. This
is also implemented in our existing TGBA checking algo-
rithm [8].

The Fstates list is implemented by using a fine-grained
locking mechanism to add states to the list, such that all
states remain on the cycle. The reason for implementing
Fstates as a cyclic list becomes clear in the next example.
Suppose the Fstates list contains two states, u and v. To
avoid contention, the algorithm attempts to divide the work-
load by assigning half of the workers to search from u and
the other half to search from v. Now, assume that u does
not have any successors and a large part of the state-space
is reached from v. If the search from u completes, we ide-
ally want to let the workers aid in the search from v. By
maintaining Fstates as a cyclic list, without much effort
we can check which searches have not been completed yet.
The Fstates list is implemented similarly as the cyclic list
in the union-find structure, which is discussed in [7].

The time complexity of the algorithm is in the worst case
increased by a factor P, for P workers, since the algorithm
tracks a bit per worker instance in the union-find structure.
However, in practice we observe a significant performance

10 Vincent Bloemen et al.

improvement over the sequential implementation. For the
same reason the memory complexity is also increased by
P, and additionally every worker contains its own R stack.
Moreover, if all TGRPs are checked simultaneously, a copy
of the global data structures has to be made for each group
of workers that process a different TGRP. As a result, n
times more memory is required for these structures in case
there are n TGRPs. Though, as mentioned before, checking
TGRPs simultaneously could reduce the computation time
(compared to checking every TGRP one-by-one).

4 Related Work

Related Work on Checking Büchi Automata. Explicit state
on-the-fly algorithms for checking can be distinguished in
two classes, namely Nested Depth-First Search (NDFS) and
SCC-based algorithms. Schwoon and Esparza provide a
great overview on these techniques [33]. The advantage of
SCC-based algorithms over NDFS is that they can handle
generalized Büchi automata efficiently.

In a multi-core setting, we consider the CNDFS algo-
rithm [16] to be the state-of-the-art NDFS-like algorithm. It
is based on swarm verification [19] and operates by spawn-
ing multiple NDFS instances and globally communicating
‘completed’ parts of the state-space.

For state-of-the-art multi-core SCC-based algorithms, in
prior work we showed that the algorithm from Bloemen et
al. [8] outperforms other techniques and performs compara-
ble to the CNDFS algorithm. The algorithm is also based on
swarmed searches, and detected partial SCCs are communi-
cated globally and maintained in a shared structure. Notable
related multi-core SCC algorithms are those from Renault et
al. [32] and Lowe [28].

Related Work on Checking Rabin Automata. As mentioned
in Section 1, when checking LTL properties for probabilistic
systems, the automaton needs to be deterministic [3]. Chat-
terjee et al. [9] present an algorithm to check determinis-
tic TGRA conditions in the context of (offline) probabilistic
model checking. The idea is to consider each generalized
Rabin pair (Fi,{I1

i , . . . , I
li
i }) separately and for each pair: (1)

remove the set of states Fi from the state space, (2) Compute
the maximal end-component (MEC) decomposition, and (3)
check which MECs have a non-empty intersection with ev-
ery I j

i , for j = 1, . . . , li. These sets are then used for com-
puting maximal probabilities. The paper reports significant
improvements over checking a non-generalized variant of
deterministic Rabin automata. They also present improve-
ments for computing a winning strategy in LTL(F,G) games
by using a fixpoint algorithm for generalized Rabin pairs.
Our algorithm is different in that it operates on-the-fly and
in a multi-core setting.

Wijs [35] recently presented an on-the-fly GPU algo-
rithm for checking LTL properties for non-generalized de-
terministic Rabin automata. Here, the choice for (determin-
istic) Rabin automata, instead of non-deterministic Büchi
automata, is motivated by the observations that it can speed
up the successor construction and that it can reduce the state
space of the cross-product. In that paper, a BFS-based search
is used, in particular a variation on the heuristic piggyback-
ing search [20,18]. This approach is incomplete due to situa-
tions referred to as shadowing and blocking, but these cases
can be detected and resolved with a depth-bounded DFS.
Our approach differs in that we allow (generalized) TGRAs
and do not require repair procedures.

Related Work on co-Büchi emptiness checks. Livelock de-
tection algorithms such as the DFSfifo algorithm [17,25]
search the state-space for cycles that avoid “progress tran-
sitions”. If we label all progress transitions with 1 , such
a search amount to the emptiness check of an automaton
with acceptance Fin(1), i.e., a transition-based co-Büchi au-
tomata. DFSfifo detects non-progress cycles by performing a
DFS that is restricted to non-progress transitions, but that re-
members the set F of all states that are the destination of an
ignored progress transition. Once the “restricted” DFS ter-
minates, it is started again from one of the F sets. The sim-
ilarity with Algorithm 3 should not be a surprise: co-Büchi
acceptance is just a generalized Rabin pair without any Inf
set. In our case, the DFS has to track (partial) strongly con-
nected components simply to ensure we visit each Fin set
infinitely often.

This similarity suggests another application of our algo-
rithm: detection of non-progress cycles under fairness. For
instance assume a communicating-process model where two
clients C1, C2 are in contact with three servers S3, S4, S5.
We want to know if any of the client can livelock under the
fairness assumption that the servers progress infinitely of-
ten. If we denote by T1,T2, . . . ,T5 the set of progress transi-
tions of each of these five processes, the problem amounts to
the emptiness check of the state space with the generalized
Rabin condition (Fin(T1) ∧ Inf(T3) ∧ Inf(T4) ∧ Inf(T5)) ∨
(Fin(T2)∧ Inf(T3)∧ Inf(T4)∧ Inf(T5)).

Related Work on Checking Different Automata. Emerson
and Lei [14] show that the emptiness check of an ω-
automaton with arbitrary acceptance condition is NP-
complete. They also present a polynomial algorithm for
the case where the acceptance condition is provided as a
disjunction of Streett acceptance conditions. Streett accep-
tance is the negation of Rabin acceptance, a conjunction of
Fin(I)∨ Inf(F) instances (or equivalent, Inf(I)⇒ Inf(F)),
and Streett acceptance closely relates to fairness checking.

Duret-Lutz et al. [13] present a sequential algorithm for
checking Streett objectives by performing an SCC decom-

Model Checking with Generalized Rabin and Fin-less automata 11

position and tracking thresholds to prevent ‘rejecting’ cy-
cles from occurring in the SCCs. In a multi-core setting, the
algorithm by Liu et al. [27] performs an initial SCC decom-
position and for every SCC a new instance is launched in
parallel that ignores certain transitions.

5 Experiments

5.1 Experimental Setup

All experiments were performed on a machine with 4 AMD
OpteronTM 6376 processors, each with 16 cores, forming a
total of 64 cores. There is a total of 512GB memory avail-
able. We performed all experiments using 16 cores.

Implementation. References to all the tools involved in the
experiments are given in Table 2. The TGRA checking al-
gorithm is implemented in a development version of the
LTSMIN toolset. Additionally, we used several external
tools and libraries for generating and parsing the automata:

– We used Rabinizer 3 to generate deterministic
transition-based generalized Rabin automata.

– The tool LTL3DRA was also used to generate determin-
istic automata with transition-based generalized Rabin
acceptance. However LTL3DRA only supports a subset of
LTL, called LTL\GUX in [5], which is slightly stricter
than the set of LTL formulas where no until (U) operator
may occur in the scope of any always (G) operator.

– We used some tools from Spot: ltl2tgba for generat-
ing TGBAs, and autfilt for converting automata with
other accepting conditions into TGRAs or TFLAs.

– We used LTL3TELA to generate nondeterministic
automata with an arbitrarily complex transition-
based acceptance. We then used Spot’s autfilt

--generalized-rabin to convert these automata to
TGRAs.

– We used the cpphoafparser library to parse a HOA
automaton [1] and create an internal representation for
LTSMIN.

The commands used to generate automata from LTL are
summarized in Table 3.

We used the algorithm from Bloemen et al. [8] to model
check TGBAs and TFLAs, and used the algorithm presented
in this paper for checking TGRAs, both are implemented in
LTSMIN. The algorithms make use of LTSMIN’s internal
shared hash tables [26], and the same randomized succes-
sor distribution method is used throughout. The shared hash
table is initialized to store up to 228 states.

Experiments. The models and properties for our experi-
ments were obtained from the 2015 Model Checking Con-
test [23], and from models from the BEEM benchmark [31]

for which a set of non-trivial, randomly generated LTL for-
mulas is available [4].

The MCC model set was restricted to those that do not
describe obligation properties because using non-Büchi ac-
ceptance cannot help producing smaller automata on this
class [29]. This selection is further reduced by selecting
only the instances where the ‘TGRA generators’ (LTL3DRA,
Rabinizer 3 and LTL3TELA) create TGRAs with at least
one non-empty Fin set. Otherwise, a TGRP is the same as
a TGBA, and hence the TGBA emptiness check could be
used instead. For this selection, we report results on the ex-
periments (118 in total) for which the time to model check
using the TGBA checking algorithm is between 1 second
and 10 minutes. We remark that this selection is in favour of
the TGBA checking algorithm, since all cases where time-
outs and memory errors occurred in the TGBA algorithm
were filtered out as a result of our selection criteria.

For each pair of model M and formula ϕ we solved the
model checking task L (M⊗A¬ϕ) = /0 using 5 configura-
tions that were repeated 10 times. We take the mean of the
results to mitigate randomness introduced by the multi-core
search procedure. The configurations were: ltl2tgba us-
ing the TGBA checking algorithm, LTL3DRA, Rabinizer
3, and LTL3TELA translated to TGRA, where the latter three
cases used the TGRA checking algorithm introduced in this
paper. Every task was run with a timeout of 10 minutes. In
total the MCC experiments took approximately 5 days to
complete.

The second set of experiments consists of 3,200 formu-
las over 16 models extracted from the BEEM database [31,
4]. For each model, 100 verified (empty product) and 100
violated (non-empty product) formulas were generated [4].
We refer to this set of experiments by the BEEM experi-
ments.

For this set of experiments we generated the following
automata: TGBAs from the ltl2tgba tool, TGRAs from
LTL3DRA, Rabinizer 3, and LTL3TELA, and we also gen-
erated Fin-less automata by first generating TGRAs with
LTL3TELA and using Spot’s autfilt to convert these into
TFLAs. We only considered TFLAs that contain a disjunc-
tion of multiple TGBA acceptance sets, hence we filtered
out all TFLAs generated from a TGRA with a single Ra-
bin pair. We used the (extended) TGBA checking imple-
mentation to check the TGBAs and TFLAs, and we used
the TGRA checking implementation to check the TGRAs
and also the TFLAs. Every task was ran once with a time-
out of 10 minutes. In total the BEEM experiments also took
approximately 5 days to complete.

All our results and means to reproduce them are avail-
able on https://github.com/utwente-fmt/Rabin-STTT.

https://github.com/utwente-fmt/Rabin-STTT

12 Vincent Bloemen et al.

Table 2: Tools used in the experimental evaluation.

tool version ref. web page

Spot (ltl2tgba, autfilt) 2.5.2 [12] https://spot.lrde.epita.fr/

Rabinizer 3.1 [22,15] https://www7.in.tum.de/~kretinsk/rabinizer3.html

LTL3DRA 0.2.6 [2] https://sourceforge.net/projects/ltl3dra/

LTL3TELA 1.1.1 https://github.com/jurajmajor/ltl3tela/

cpphoafparser 0.99.2 [1] http://automata.tools/hoa/cpphoafparser/

LTSMIN 3.0 [21] http://ltsmin.utwente.nl/

Table 3: Tool configurations used for generating an automaton from an LTL formula ϕ .

key automaton type command

Rabinizer 3 TGRA java -jar Rabinizer3.jar -format=hoa -in=formula -out=std -silent ϕ

LTL3DRA TGRA ltl3dra -f ϕ

LTL3TELA TGRA ltl3tela -f ϕ | autfilt --generalized-rabin

Fin-less TFLA ltl3tela -f ϕ | autfilt --remove-fin

TGBA TGBA ltl2tgba -f ϕ

Table 4: Comparison of the geometric mean execution times (in seconds). The numbers between parentheses denote how
many times faster the TGBA checking algorithm is compared to the other configuration. We only used the experiments that
were checked in all TGRA and TGBA configurations without running out of memory or time (39 in total for the MCC
experiments, with 13 counterexamples, and 1,167 in total for the BEEM experiments, with 699 counterexamples).

MCC BEEM
LTL3TELA LTL3DRA Rabinizer 3 TGBA LTL3TELA LTL3DRA Rabinizer 3 TGBA

Counterexample 1.51 (1.89) 1.69 (2.12) 1.03 (1.29) 0.80 0.12 (1.14) 0.26 (2.41) 0.43 (4.04) 0.11
No counterexample 7.68 (1.60) 5.67 (1.18) 5.64 (1.17) 4.81 8.11 (1.44) 34.25 (6.06) 33.98 (6.02) 5.65

Total 4.47 (1.69) 3.79 (1.43) 3.20 (1.21) 2.64 0.66 (1.25) 1.83 (3.49) 2.48 (4.74) 0.52

5.2 Main Results

The main results of the experiments are presented in Fig-
ure 6 and are summarized in Table 4. We also depict spe-
cific characteristics of the experiments in Table 5, Figure 7,
and Figure 8. One thing to note is that the results are pre-
sented on a log-log scale. The (16-core) experiments for the
TGBA checking algorithm are provided on the x-axis and
the results for the TGRP and TFLA checking experiments
are shown on the y-axis. All TGRAs are checked by consid-
ering each TGRP sequentially, i.e., all workers are assigned
to the first TGRP and continue to the second pair (if there is
one) when the first TGRP is fully explored.

We encountered some errors in the experiments. There
were a number of instances that resulted in a memory er-
ror, meaning that the data structures became too large to fit
in the memory during the model checking procedure. These
errors only occurred for the TGRA checks and were pre-
sumably caused by the additional allocation of the Fstates
data structure. There are also several instances that resulted
in timeouts for some of the configurations.

We first analyse the performance of the TGRA checking
algorithm and how the different TGRA generators influence

the results, then we consider the translation to Fin-less au-
tomata, and finally we discuss some additional results.

Comparison between the three TGRAs and TGBA. We first
take a look at Figure 6 and Table 4. It becomes clear that for
most experiments it is more beneficial to model check using
TGBAs compared to TGRAs (using our algorithm). In the
scatter-plot we observe that in some cases the TGBA check-
ing algorithm is more than two orders of magnitude faster.
That being said, there are instances where the TGRA check-
ing algorithm is faster, especially for the TGRAs generated
by LTL3TELA.

We notice that there is quite some difference between
the results from the MCC experiments and the BEEM ex-
periments. We argue that the LTL formulas for the MCC
experiments are more realistic, but also less complex. The
effect is that the produced TGRAs are simpler in structure
and are therefore similar to the TGBAs. The results show
this as well; in many MCC experiments the difference be-
tween the TGRA and TGBA emptiness checks is relatively
small (compared to the BEEM experiments).

The BEEM experiments are generated randomly and
therefore do not give an accurate representation of reality.
However, the generated formulas are generally more com-

https://spot.lrde.epita.fr/
https://www7.in.tum.de/~kretinsk/rabinizer3.html
https://sourceforge.net/projects/ltl3dra/
https://github.com/jurajmajor/ltl3tela/
http://automata.tools/hoa/cpphoafparser/
http://ltsmin.utwente.nl/

Model Checking with Generalized Rabin and Fin-less automata 13

BEEM

1

2

5

10

20

50

100

200

500

1000

1 2 5 10 20 50 100 200 500 1000
Time TGBA

Ti
m

e
R

ab
in

ize
r3

−T
G

R
A

1

2

5

10

20

50

100

200

500

1000

1 2 5 10 20 50 100 200 500 1000
Time TGBA

Ti
m

e
LT

L3
TE

LA
−T

G
R

A

1

2

5

10

20

50

100

200

500

1000

1 2 5 10 20 50 100 200 500 1000
Time TGBA

Ti
m

e
LT

L3
D

R
A−

TG
R

A

1

2

5

10

20

50

100

200

500

1000

1 2 5 10 20 50 100 200 500 1000
Time TGBA

Ti
m

e
Fi

n−
le

ss

Fig. 6: Time (in seconds) comparisons of the TGBA (x-axis) and the TGRA and TFLA emptiness checks (y-axis), for various
LTL to TGRA and TFLA translations. Each point represents the time to perform an emptiness check using 16 cores. The
TGRA and TFLA algorithms performed faster for instances below the x=y line.

plex and cause the TGRAs and TGBAs to differ a lot more
than they do in the MCC experiments. We can see that
these more complex TGRAs (and TGBAs) cause the TGRA
checking algorithm to perform significantly worse, when
compared with the MCC experiments. This implies that our
algorithm for checking TGRAs performs relatively poorly
for complex LTL formulas.

We can also observe that there are significant differences
between the TGRAs generated by the three TGRA genera-
tors. The (non-deterministic) TGRAs from the LTL3TELA

generator leads to the most favourable results. Both deter-
ministic TGRA generators (especially Rabinizer 3) gen-
erate automata for which the model checking algorithm per-
forms significantly worse. Hence we argue that in our setting
we do not benefit much from deterministic TGRAs com-
pared to non-deterministic ones.

Analysing the TGRAs. We analyse how the different TGRA
generators influence the automaton sizes in Table 5. For

Table 5: Geometric mean sizes of the automata and products.
|Aut| denotes the number of states in the LTL automaton,
|Pairs| the number of TGRPs in the TGRA, and |States| and
|Trans| provide the sizes of the product automaton. We only
used data from experiments without a counterexample and
that were checked in all TGRA and TGBA configurations
without running out of memory or time (26 in total for MCC
and 468 in total for BEEM).

|Aut| |Pairs| |States| |Trans|

MCC LTL3TELA 1.00 1.53 0.71 ·106 4.26 ·106

LTL3DRA 1.00 1.00 0.47 ·106 2.78 ·106

Rabinizer 3 1.38 1.00 0.47 ·106 2.78 ·106

TGBA 1.31 1.00 0.51 ·106 3.11 ·106

BEEM LTL3TELA 2.85 1.07 4.02 ·106 13.86 ·106

LTL3DRA 4.00 1.27 10.61 ·106 42.17 ·106

Rabinizer 3 3.56 1.24 10.29 ·106 40.86 ·106

TGBA 3.23 1.00 3.80 ·106 13.74 ·106

14 Vincent Bloemen et al.

1

5

10

15

20

25

30

Number of Rabin pairs

Au
to

m
at

on
 s

iz
e

TGBA LTL3TELA LTL3DRA Rabinizer 3 Fin-less

count: 200 400 600

1 2 3 4

Fig. 7: Distribution of automaton sizes for TGBAs, TGRAs
and TFLAs. The x-axis shows the number of pairs (or Inf
sets for TFLAs) in the automaton and the y-axis shows the
size of the automaton. The size of the circle denotes how
many automata belong to the same class, i.e., an automaton
having x Rabin pairs and y states.

Table 6: Comparison of the geometric mean execution times
(in seconds) in the same format as Table 4. We only used
data from experiments that were checked in the TFLA,
LTL3TELA-TGRA, and TGBA configurations without run-
ning out of memory or time (195 BEEM experiments in to-
tal, with 89 counterexamples).

LTL3TELA Fin-less TGBA

Counterexample 0.20 (1.55) 0.13 (0.96) 0.13
No counterexample 15.02 (3.70) 4.52 (1.11) 4.06

Total 2.11 (2.49) 0.88 (1.04) 0.85

Table 7: Geometric mean sizes of the automata and prod-
ucts in the same format as Table 5. Here, |Pairs| denotes the
number of Inf sets in the TFLA. We only used data from ex-
periments without a counterexample and that were checked
in the TFLA, LTL3TELA-TGRA, and TGBA configurations
without running out of memory or time (106 in total for
BEEM).

|Aut| |Pairs| |States| |Trans|

LTL3TELA 3.31 2.21 5.22 ·106 11.30 ·106

Fin-less 5.79 2.17 2.74 ·106 9.06 ·106

TGBA 3.76 1.00 2.37 ·106 7.43 ·106

the MCC experiments we observe that the automaton sizes
for LTL3TELA and LTL3DRA are on average smaller than a
TGBA. Moreover, the product automaton for both determin-
istic automata are smaller than that of a TGBA. The product
size of the LTL3TELA TGRAs are larger than for the other

automata, and in Table 4 we see that LTL3TELA performs
the worst on the MCC experiments.

However, the automata for the BEEM experiments are
quite different from the MCC ones. Here, both deterministic
TGRA generators generate significantly larger automata and
product automata (a factor of three larger) compared to both
LTL3TELA and TGBA. Here it seems that LTL3TELA leads
to more suitable automata for emptiness checking TGRAs.
As can be observed in Table 4, the product automaton size
seems to correlate well with the TGRA emptiness check per-
formance, as LTL3TELA is clearly the favourite of the three.

In Figure 7 we show how the number of Rabin pairs cor-
relates with the size of the automaton. Note that this figure
only shows the majority of the generated automata; there are
automata with more than 30 states and more than 4 Rabin
pairs. It is clear that most of the automata contain a single
Rabin pair and have less than five states. Most of LTL3TELA
TGRAs seem to have the same number of states as the TG-
BAs, and LTL3TELA also produces small automata for multi-
ple Rabin pairs. The TGRAs from both deterministic TGRA
generators have similar characteristics. There are fewer au-
tomata with a single Rabin pair, and the automaton sizes are
larger when there are multiple Rabin pairs. This makes sense
as multiple Rabin pairs indicate that the LTL formula is
more complex, which causes the deterministic TGRA gen-
erators to require more states to remain deterministic.

Influence of the number of Rabin pairs and Fin transitions.
In Figure 8 we split up the results from Figure 6 and show
how the performance is affected when the TGRAs contain
more Rabin pairs. We can see that in general, the TGRA
checking algorithm performs relatively worse for automata
with multiple Rabin pairs compared to TGRAs with a single
pair. We can also see that most of the timeouts occur for two
or more Rabin pairs. This result is not surprising, as check-
ing a TGRA with two pairs involves traversing the entire
state-space of the product automaton twice, assuming there
is no counterexample.

We found that for most product automata (with TGRAs),
the number of Fin transitions is either a very small or
very large proportion of the total number of transitions. In
Figure 8 we coloured three classes: automata for which the
number of Fin transitions is 0-10% of the total number of
transitions (blue), automata for which this ratio is between
10% and 90% (black), and automata in which 90% or more
transitions are Fin transitions (red).

It becomes clear that this aspect greatly influences the
TGRA model checking performance. Its performance is ac-
tually comparable to TGBA for a small fraction of Fin tran-
sitions. Furthermore, there are almost no instances where
the TGRA checking algorithm performs well for cases with
many Fin transitions.

Model Checking with Generalized Rabin and Fin-less automata 15

0-10% Fin trans 10-90% Fin trans 90-100% Fin trans

1
2

5
10
20

50
100
200

500
1000

1 2 5 10 20 50 100 200 5001000

T
im

e
R

ab
in

iz
er

3−
T

G
R

A

1
2

5
10
20

50
100
200

500
1000

1 2 5 10 20 50 100 200 5001000

T
im

e
LT

L3
D

R
A

−
T

G
R

A

1
2

5
10
20

50
100
200

500
1000

1 2 5 10 20 50 100 200 5001000

Time TGBA

T
im

e
LT

L3
T

E
LA

−
T

G
R

A

1
2

5
10
20

50
100
200

500
1000

1 2 5 10 20 50 100 200 5001000

1
2

5
10
20

50
100
200

500
1000

1 2 5 10 20 50 100 200 5001000

1
2

5
10
20

50
100
200

500
1000

1 2 5 10 20 50 100 200 5001000

Time TGBA

1
2

5
10
20

50
100
200

500
1000

1 2 5 10 20 50 100 200 5001000

1
2

5
10
20

50
100
200

500
1000

1 2 5 10 20 50 100 200 5001000

1
2

5
10
20

50
100
200

500
1000

1 2 5 10 20 50 100 200 5001000

Time TGBA

Fig. 8: Time (in seconds) comparisons of the emptiness checks in the same format as Figure 6, but here the plots in the left
column only contain TGRAs that have a single Rabin pair. The middle column only shows results for TGRAs with exactly
two Rabin pairs, and the right column shows results for the remaining automata, i.e., automata with more than two Rabin
pairs.

5.3 Fin-less Results

We now discuss how the emptiness check for Fin-less au-
tomata compares with the check for TGBAs. As noted be-
fore, we only considered TFLAs with at least two Inf sets
(and hence are obtained from TFLAs with at least two Ra-
bin pairs). In Figure 6 we can see that the performance of
the TFLA checking algorithm is comparable to that of the
TGBA checking one. While there is only a small difference
in the emptiness procedure, the TFLAs are quite different
from TGBAs. In Table 6 we summarize the performance
results and indeed see that there is only a small difference
between the two emptiness checks.

It could be expected that a TFLA emptiness check per-
forms worse than the corresponding TGBA one as there is a
slightly greater overhead on verifying the acceptance condi-
tion. Also, as a result of their construction process, TFLAs

are non-deterministic and contain (linearly, in the number of
TGRPs) more states than the original TGRAs. A reason for
why a TFLA might be checked faster than a TGBA is that a
counterexample may be detected earlier as there are multiple
acceptance sets that can be checked simultaneously. Another
reason is because the acceptance condition is more lenient
than a TGBA. This allows a TFLA generator to construct
more complex automata without significantly impacting the
emptiness checking algorithm.

In Table 7 we see that a TFLA has significantly more
states than the corresponding TGBA, which holds as well
for its product automaton. The effect of the TFLA construc-
tion procedure is visible in Figure 7. TFLAs are constructed
from the TGRAs generated by LTL3TELA. One can observe
that as a result of this construction, the number of states in
the automata shifts up when comparing the TFLA with the
corresponding TGRA. Table 7 also shows that TFLAs are

16 Vincent Bloemen et al.

significantly larger than TGRAs. However, even though the
TFLAs are larger and contain more non-determinism than
TGRAs, the product automaton is on average smaller.

Figure 9 shows how the performance of the TFLA
checking algorithm compares with that for the TGRA ver-
sion of the automata. The TFLA version is significantly
faster in practically all instances. The difference is especially
large in cases where the TGRA state space consists of many
Fin transitions. We can argue that it is more advantageous to
first construct a TFLA from a TGRA and check the TFLA,
than to check the TGRA directly (using our algorithm).

0-10% Fin trans 10-90% Fin trans 90-100% Fin trans

1

2

5

10

20

50

100

200

500

1000

1 2 5 10 20 50 100 200 500 1000
Time LTL3TELA−TGRA

Ti
m

e
Fi

n−
le

ss

Fig. 9: Time (in seconds) comparisons of the emptiness
checks in the same format as Figure 8, but here the x-axis
represents the time required for LTL3TELA-TGRA and the
y-axis shows the time needed for TFLA.

5.4 Additional Results

Checking TGRPs in Parallel. In preliminary experiments
we experimented with checking TGRPs in parallel, as sug-
gested in Section 3.1. We performed experiments to com-
pare the two. In the case for products without counterex-
amples, there was no observable difference. In case there
were counterexamples, the results varied more, but there
does not seem to be a clear winner. Because the ‘parallel’
version does allocate significantly more memory (the mem-
ory consumption was almost doubled), we prefer to check
the TGRPs sequentially.

Scalability. Our existing TGBA checking algorithm [7,8]
achieves good scalability when increasing the number of
workers, at least up to 64 cores. Initial experiments for the
TGRA checking algorithm showed similar improvements,
but the performance improvement starts to drop when in-
creasing beyond 16 cores. The bottleneck of the algorithm

is most likely caused by inserting and selecting states from
the Fstates list. Future work could investigate whether the
Fstates list can be further improved, or point out whether
the bottleneck is a structural problem in the algorithm.

6 Conclusion

We introduced a multi-core, on-the-fly algorithm for explicit
checking of emptiness on TGRAs. We showed that the algo-
rithm is efficient in the sense that every state and transition
only has to be visited once and reduces to an SCC decom-
position in case there are no Fin sets in the TGRA.

Experiments show that, in general, a TGBA checking
algorithm outperforms our new algorithm. This seems to be
true in particular for cases where a large proportion of the
product state-space is part of a Fin set for the TGRA. In
general we conclude that using TGRAs is not advantageous
over TGBAs for checking emptiness, when using our algo-
rithms.

Our experiments do suggest that using TGRAs for
emptiness checks is comparable to a TGBA emptiness check
in some scenarios. We analysed various aspects of the
TGRAs and how these affect the model checking perfor-
mance. The TGRA checking algorithm seems most bene-
ficial in instances where only a small fraction of the state-
space is part of a Fin set.

We also introduced Fin-less automata, which can be con-
structed from TGRAs. We showed that the emptiness check
for such a TFLA can be implemented in a TGBA emptiness
implementation without a large performance impact. Exper-
iments showed that emptiness checks for TFLAs and TG-
BAs perform comparably. From our findings we conclude
that it is more beneficial to construct a Fin-less automaton
and check that for emptiness than to check the TGRA di-
rectly.

Future work includes further improving the TGRA
checking algorithm (there are several variations possible),
performing additional experiments, and comparing this
technique (in different contexts) with related work. Future
work is also needed to check whether our algorithm is use-
ful in settings other than model checking (e.g., equivalence
checking of automata), where synchronization that results
in a large number of Fin transitions are perhaps less likely.
Another direction for future work is to investigate a varia-
tion of the proposed algorithm to check fairness or Streett
automata.

Acknowledgements This work is supported by the 3TU.BSR project.

References

1. T. Babiak, F. Blahoudek, A. Duret-Lutz, J. Klein, J. Křetı́nský,
D. Müller, D. Parker, and J. Strejček. The Hanoi Omega-Automata

Model Checking with Generalized Rabin and Fin-less automata 17

Format. In Proc. of CAV’15, vol. 9206 of LNCS, pp. 479–486.
Springer, 2015.

2. T. Babiak, F. Blahoudek, M. Křetı́nský, and J. Strejček. Effective
Translation of LTL to Deterministic Rabin Automata: Beyond the
(F,G)-Fragment. In Proc. of ATVA’13, pp. 24–39. Springer, 2013.

3. C. Baier and J.-P. Katoen. Principles of Model Checking. The
MIT Press, 2008.

4. A. Ben Salem, A. Duret-Lutz, F. Kordon, and Y. Thierry-Mieg.
Symbolic Model Checking of Stutter-Invariant Properties Using
Generalized Testing Automata. In Tools and Algorithms for the
Construction and Analysis of Systems - 20th International Con-
ference, TACAS 2014, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS, vol. 8413 of
LNCS, pp. 440–454. Springer, 2014.

5. F. Blahoudek, M. Křetı́nský, and J. Strejček. Comparison of LTL
to Deterministic Rabin Automata Translators. In Proc. of LPAR-
19, pp. 164–172. Springer, 2013.

6. V. Bloemen, A. Duret-Lutz, and J. van de Pol. Explicit state model
checking with generalized Büchi and Rabin automata. In Proc. of
SPIN’17, pp. 50–59. ACM, July 2017.

7. V. Bloemen, A. Laarman, and J. van de Pol. Multi-core On-the-fly
SCC Decomposition. In Proc. of PPoPP’16, pp. 8:1–8:12. ACM,
2016.

8. V. Bloemen and J. van de Pol. Multi-core SCC-Based LTL Model
Checking. In Proc. of HVC’16, pp. 18–33. Springer, 2016.

9. K. Chatterjee, A. Gaiser, and J. Křetı́nský. Automata with Gen-
eralized Rabin Pairs for Probabilistic Model Checking and LTL
Synthesis. In Proc. of CAV’13, pp. 559–575. Springer, 2013.

10. J.-M. Couvreur, A. Duret-Lutz, and D. Poitrenaud. On-the-fly
emptiness checks for generalized Büchi automata. In Proc. of
SPIN’05, vol. 3639 of LNCS, pp. 143–158. Springer, 2005.

11. E. W. Dijkstra. Finding the Maximum Strong Components in a
Directed Graph. In Selected Writings on Computing: A personal
Perspective, Texts and Monographs in Computer Science, pp. 22–
30. Springer, 1982.

12. A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Re-
nault, and L. Xu. Spot 2.0 — a framework for LTL and ω-
automata manipulation. In Proc. of ATVA’16, vol. 9938 of LNCS,
pp. 122–129. Springer, 2016.

13. A. Duret-Lutz, D. Poitrenaud, and J.-M. Couvreur. On-the-fly
Emptiness Check of Transition-Based Streett Automata. In Proc.
of ATVA’09, vol. 5799 of LNCS, pp. 213–227. Springer, 2009.

14. E. A. Emerson and C.-L. Lei. Modalities for Model Checking
(Extended Abstract): Branching Time Strikes Back. In Proc. of
POPL’85, pp. 84–96. ACM, 1985.

15. J. Esparza, J. Křetı́nský, and S. Sickert. From LTL to deterministic
automata. Formal Methods in System Design, 49(3):1–53, 2016.

16. S. Evangelista, A. Laarman, L. Petrucci, and J. van de pol.
Improved Multi-Core Nested Depth-First Search. In Proc. of
ATVA’12, vol. 7561 of LNCS, pp. 269–283. Springer, 2012.

17. D. Faragó and P. H. Schmitt. Improving non-progress cycle
checks. In Proc. of the 16th International SPIN Workshop, pp.
50–67. Springer, 2009.

18. I. Filippidis and G. J. Holzmann. An Improvement of the Piggy-
back Algorithm for Parallel Model Checking. In Proc. of SPIN’14,
pp. 48–57. ACM, 2014.

19. G. Holzmann, R. Joshi, and A. Groce. Swarm Verification Tech-
niques. IEEE Transactions on Software Engineering, 37(6):845–
857, 2011.

20. G. J. Holzmann. Parallelizing the Spin Model Checker. In Proc.
of SPIN’12, vol. 7385 of LNCS, pp. 155–171. Springer, 2012.

21. G. Kant, A. Laarman, J. Meijer, J. van de Pol, S. Blom, and T. van
Dijk. LTSmin: High-Performance Language-Independent Model
Checking. In Proc. of TACAS’15, vol. 9035 of LNCS, pp. 692–707.
Springer, 2015.

22. Z. Komárková and J. Křetı́nský. Rabinizer 3: Safraless Translation
of LTL to Small Deterministic Automata. In Proc. of ATVA’14, pp.
235–241. Springer, 2014.

23. F. Kordon, H. Garavel, L. M. Hillah, F. Hulin-Hubard, A. Linard,
M. Beccuti, A. Hamez, E. Lopez-Bobeda, L. Jezequel, J. Meijer,
E. Paviot-Adet, C. Rodriguez, C. Rohr, J. Srba, Y. Thierry-Mieg,
and K. Wolf. Complete Results for the 2015 Edition of the Model
Checking Contest. http://mcc.lip6.fr/2015/results.php,
2015.

24. J. Křetı́nský, T. Meggendorfer, and S. Sickert. Rabinizer 4:
From LTL to your favourite deterministic automaton. In Proc.
of CAV’18, July 2018. To appear.

25. A. Laarman and D. Faragó. Improved on-the-fly livelock detec-
tion. In Proc. of the 5th NASA Formal Methods symposium, pp.
32–47. Springer, 2013.

26. A. Laarman, J. van de Pol, and M. Weber. Multi-Core LTSmin:
Marrying Modularity and Scalability. In Proc. of NFM’11, Lec-
ture Notes in Computer Science, pp. 506–511. Springer, 2011.

27. Y. Liu, J. Sun, and J. Dong. Scalable Multi-core Model Checking
Fairness Enhanced Systems. In Proc. of ICFEM’09, vol. 5885 of
LNCS, pp. 426–445. Springer, 2009.

28. G. Lowe. Concurrent depth-first search algorithms based on Tar-
jan’s Algorithm. International Journal on Software Tools for Tech-
nology Transfer, pp. 1–19, 2015.

29. Z. Manna and A. Pnueli. A Hierarchy of Temporal Properties. In
Proc. of PODC’87, pp. 205–205. ACM, 1987.

30. D. Müller and S. Sickert. LTL to deterministic Emerson-Lei au-
tomata. In Proc. of GandALF’17, vol. 256 of EPTCS, pp. 180–
194, Sept. 2017.

31. R. Pelánek. BEEM: Benchmarks for Explicit Model Checkers, pp.
263–267. Springer, Berlin, Heidelberg, 2007.

32. E. Renault, A. Duret-Lutz, F. Kordon, and D. Poitrenaud. Varia-
tions on parallel explicit emptiness checks for generalized Büchi
automata. International Journal on Software Tools for Technology
Transfer, pp. 1–21, 2016.

33. S. Schwoon and J. Esparza. A Note on On-the-Fly Verification
Algorithms. In Proc. of TLTL3HOoACAS’05, vol. 3440 of LNCS,
pp. 174–190. Springer, 2005.

34. M. Y. Vardi and P. Wolper. An automata-theoretic approach to
automatic program verification. In Proc. of LICS’86, pp. 322–331.
IEEE Computer Society, 1986.

35. A. Wijs. BFS-Based Model Checking of Linear-Time Properties
with an Application on GPUs. In Proc. of CAV’16, pp. 472–493.
Springer, 2016.

http://mcc.lip6.fr/2015/results.php

	Introduction
	Preliminaries
	Algorithm for TGRA emptiness
	Related Work
	Experiments
	Conclusion

