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Abstract. In this paper we develop the language theory of higher-
dimensional automata (HDAs). Regular languages of HDAs are sets
of finite interval partially ordered multisets (pomsets) with interfaces
(iiPoms). We first show a pumping lemma which allows us to expose a
class of non-regular languages. We also give an example of a regular lan-
guage with unbounded ambiguity. Concerning decision and closure prop-
erties, we show that inclusion of regular languages is decidable (hence is
emptiness), and that intersections of regular languages are again regular.
On the other hand, complements of regular languages are not regular. We
introduce a width-bounded complement and show that width-bounded
complements of regular languages are again regular.

1 Introduction

Higher-dimensional automata (HDAs), introduced by Pratt and van Glabbeek
[16, 18], are a general geometric model for non-interleaving concurrency which
subsumes, for example, event structures and Petri nets [19]. HDAs of dimension
one are standard automata, whereas HDAs of dimension two are isomorphic to
asynchronous transition systems [2, 11, 17]. As an example, Fig. 1 shows Petri
net and HDA models for a system with two events, labelled a and b. The Petri
net and HDA on the left side model the (mutually exclusive) interleaving of a
and b as either a.b or b.a; those to the right model concurrent execution of a and
b. In the HDA, this independence is indicated by a filled-in square.

Recent work defines languages of HDAs [4], which are sets of partially or-
dered multisets with interfaces (ipomsets) [6] that are closed under subsump-
tions. Follow-up papers introduce a language theory for HDAs, showing a Kleene

a b

a b

b a

a b

b a

a b

Fig. 1: Petri net and HDA models distinguishing interleaving (left) from non-
interleaving (right) concurrency. Left: models for a.b+b.a; right: models for a ‖ b.

http://arxiv.org/abs/2305.02873v2


2 A. Amrane, H. Bazille, U. Fahrenberg, K. Ziemiański

theorem [5], which makes a connection between rational and regular ipomset lan-
guages (those accepted by finite HDAs), and a Myhill-Nerode theorem [8] stating
that regular languages are precisely those that have finite prefix quotient. Here
we continue to develop this nascent higher-dimensional automata theory.

Our first contribution, in Sect. 4, is a pumping lemma for HDAs, based on
the fact that if an ipomset accepted by an HDA is long enough, then there is
a cycle in the path that accepts it. As an application we can expose a class of
non-regular ipomset languages. We also show that regular languages are closed
under intersection, both using the Myhill-Nerode theorem and an explicit prod-
uct construction.

The paper [8] introduces deterministic HDAs and shows that not all HDAs are
determinizable. As a weaker notion in-between determinism and non-determinism,
one may ask whether all regular languages may be recognized by finitely am-
biguous HDAs, i.e., HDAs in which there is an upper bound for the number of
accepting paths on any ipomset. We show that the answer to this question is
negative and that there are regular languages of unbounded ambiguity.

In Sect. 5 we introduce a translation from HDAs to ordinary finite automata
over an alphabet of discrete ipomsets, called ST-automata. The translation for-
gets some of the structure of the HDA, and we leave open the question if, and
in what sense, it would be invertible. Nevertheless, this translation allows us to
show that inclusion of regular ipomset languages is decidable. This immediately
implies that emptiness is decidable; universality is trivial given that the universal
language is not regular.

Finally, in Sect. 6, we are interested in a notion of complement. This immedi-
ately raises two problems: first, complements of ipomset languages are generally
not closed under subsumption; second, the complement of the empty language,
which is regular, is the universal language, which is non-regular. The first prob-
lem is solved by taking subsumption closure, turning complement into a pseu-
docomplement in the sense of lattice theory.

As to the second problem, we can show that complements of regular languages
are non-regular. Yet if we restrict the width of our languages, i.e., the number of
events which may occur concurrently, then the so-defined width-bounded com-
plement has good properties: it is still a pseudocomplement; its skeletal elements
(the ones for which double complement is identity) have an easy characterisa-
tion; and finally width-bounded complements of regular languages are again reg-
ular. The proof of that last property again uses ST-automata and the fact that
the induced translation from ipomset languages to word languages over discrete
ipomsets has good algebraic properties. We note that width-bounded languages
and (pseudo)complements are found in other works on concurrent languages, for
example [9, 14, 15].

Another goal of this work was to obtain the above results using automata-
theoretic means as opposed to category-theoretic or topological ones. Indeed we
do not use presheaves, track objects, cylinders, or any other of the categorical
or topological constructions employed in [5,8]. Categorical reasoning would have
simplified proofs in several places, and we do make note of this in several foot-
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notes, but no background in category theory or algebraic topology is necessary
to understand this paper.

To sum up, our main contributions to higher-dimensional automata theory
are as follows:

– a pumping lemma (Lem. 11);

– regular languages of unbounded ambiguity (Prop. 16);

– closure of regular languages under intersection (Prop. 15);

– closure of regular languages under width-bounded complement (Thm. 33);

– decidability of inclusion of regular languages (Thm. 22).

Due to space constraints, some proofs had to be omitted from this paper. These
can be found in the long version [1].

2 Pomsets with interfaces

HDAs model systems in which (labelled) events have duration and may happen
concurrently. Notably, as seen in the introduction, concurrency of events is a
more general notion than interleaving. Every event has an interval in time during
which it is active: it starts at some point in time, then remains active until
it terminates, and never appears again. Events may be concurrent, in which
case their activity intervals overlap: one of the two events starts before the
other terminates. Executions are thus isomorphism classes of partially ordered
intervals. For reasons of compositionality we also consider executions in which
events may be active already at the beginning or remain active at the end.

Any time point of an execution defines a concurrency list (or conclist) of
currently active events. The relative position of any two concurrent events on
such lists does not change during passage of time; this equips events of an ex-
ecution with a partial order which we call event order. The temporal order of
non-concurrent events (one of two events terminating before the other starts)
introduces another partial order which we call precedence. An execution is, then,
a collection of labelled events together with two partial orders.

To make the above precise, let Σ be a finite alphabet. We define three notions,
in increasing order of generality:

– A concurrency list, or conclist, U = (U, 99KU , λU ) consists of a finite set
U , a strict total order 99KU ⊆ U × U (the event order),3 and a labelling
λU : U → Σ.

– A partially ordered multiset, or pomset, P = (P,<P , 99KP , λP ) consists of a
finite set P , two strict partial orders <P , 99KP ⊆ P × P (precedence and
event order), and a labelling λP : P → Σ, such that for each x 6= y in P , at
least one of x <P y, y <P x, x 99KP y, or y 99KP x holds.

3 A strict partial order is a relation which is irreflexive and transitive; a strict total

order is a relation which is irreflexive, transitive, and total. We may omit the “strict”.
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Fig. 2: Activity intervals of events (top) and corresponding ipomsets (bottom),
cf. Ex. 1. Full arrows indicate precedence order; dashed arrows indicate event
order; bullets indicate interfaces.

– A pomset with interfaces, or ipomset, (P,<P , 99KP , SP , TP , λP ) consists of
a pomset (P,<P , 99KP , λP ) together with subsets SP , TP ⊆ P (source and
target interfaces) such that elements of SP are <P -minimal and those of TP
are <P -maximal.

We will omit the subscripts U and P whenever possible.
Conclists may be regarded as pomsets with empty precedence (discrete pom-

sets); the last condition above enforces that 99K is then total. Pomsets are ipom-
sets with empty interfaces, and in any ipomset P , the substructures induced by
SP and TP are conclists. Note that different events of ipomsets may carry the
same label; in particular we do not exclude autoconcurrency. Figure 2 shows
some simple examples. Source and target events are marked by “•” at the left or
right side, and if the event order is not shown, we assume that it goes downwards.

An ipomset P is interval if <P is an interval order [10], that is, if it admits an
interval representation given by functions b and e from P to real numbers such
that b(x) ≤ e(x) for all x ∈ P and x <P y iff e(x) < b(y) for all x, y ∈ P . Given
that our ipomsets represent activity intervals of events, any of the ipomsets
we will encounter will be interval, and we omit the qualification “interval”. We
emphasise that this is not a restriction, but rather induced by the semantics, see
also [21]. We let iiPoms denote the set of (interval) ipomsets.

Ipomsets may be refined by shortening activity intervals, potentially remov-
ing concurrency and expanding precedence. The inverse to refinement is called
subsumption and defined as follows. For ipomsets P and Q we say that Q sub-
sumes P and write P ⊑ Q if there is a bijection f : P → Q for which

(1) f(SP ) = SQ, f(TP ) = TQ, and λQ ◦ f = λP ;
(2) f(x) <Q f(y) implies x <P y;
(3) x 6<P y, y 6<P x and x 99KP y imply f(x) 99KQ f(y).

That is, f respects interfaces and labels, reflects precedence, and preserves es-
sential event order. (Event order is essential for concurrent events, but by transi-
tivity, it also appears between non-concurrent events. Subsumptions ignore such
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Fig. 3: Gluing and parallel composition of ipomsets.

non-essential event order.) This definition adapts the one of [12] to event orders
and interfaces. Intuitively, P has more order and less concurrency than Q.

Example 1. In Fig. 2 there is a sequence of subsumptions from left to right:

•acb ⊑

[

•a
((
❘❘

❘

b
c

55❧❧❧

]

⊑ [ •a→b
c ] ⊑

[

•a
b
c

]

An event e1 is smaller than e2 in the precedence order if e1 is terminated before
e2 is started; e1 is smaller than e2 in the event order if they are concurrent and
e1 is above e2 in the respective conclist.

Isomorphisms of ipomsets are invertible subsumptions, i.e., bijections f for
which items (2) and (3) above are strengthened to

(2′) f(x) <Q f(y) iff x <P y;
(3′) x 6<P y and y 6<P x imply that x 99KP y iff f(x) 99KQ f(y).

Due to the requirement that all elements are ordered by< or 99K, there is at most
one isomorphism between any two ipomsets. Hence we may switch freely between
ipomsets and their isomorphism classes.We will also call these equivalence classes
ipomsets and often conflate equality and isomorphism.

Compositions. The standard serial and parallel compositions of pomsets [12]
extend to ipomsets. The parallel composition of ipomsets P and Q is P ‖ Q =
(P ⊔Q,<, 99K, S, T, λ), where P ⊔Q denotes disjoint union and

– x < y if x <P y or x <Q y;
– x 99K y if x 99KP y, x 99KQ y, or x ∈ P and y ∈ Q;
– S = SP ∪ SQ and T = TP ∪ TQ;
– λ(x) = λP (x) if x ∈ P and λ(x) = λQ(x) if x ∈ Q.

Note that parallel composition of ipomsets is generally not commutative, see [6]
or Ex. 28 below for details.

Serial composition generalises to a gluing composition which continues in-
terface events across compositions and is defined as follows. Let P and Q be
ipomsets such that TP = SQ, x 99KP y iff x 99KQ y for all x, y ∈ TP = SQ, and
the restrictions λP ↿TP

= λQ↿SQ
, then P ∗Q = (P ∪Q,<, 99K, SP , TQ, λ), where

– x < y if x <P y, x <Q y, or x ∈ P − TP and y ∈ Q− SQ;
4

4 We use “−” for set difference instead of the perhaps more common “\”.
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•a

c

b

d

Sparse:
[

•a•
c•
d•

]

∗
[

•a
•c•
•d•

]

∗
[

b•
•c•
•d•

]

∗
[

•b
•c
•d

]

Dense: [ •a•
c• ] ∗

[

•a•
•c•
d•

]

∗
[

•a
•c•
•d•

]

∗
[

b•
•c•
•d•

]

∗
[

•b
•c•
•d•

]

∗ [ •c•
•d ] ∗ •c

Fig. 4: Ipomset of size 3.5 and two of its step decompositions.

– 99K is the transitive closure of 99KP ∪ 99KQ;

– λ(x) = λP (x) if x ∈ P and λ(x) = λQ(x) if x ∈ Q.

Gluing is, thus, only defined if the targets of P are equal to the sources of Q as
conclists. If we would not conflate equality and isomorphism, we would have to
define the carrier set of P ∗ Q to be the disjoint union of P and Q quotiented
out by the unique isomorphism TP → SQ. We will often omit the “∗” in gluing
compositions. Fig 3 shows some examples.

An ipomset P is a word (with interfaces) if <P is total. Conversely, P is
discrete if <P is empty (hence 99KP is total). Conclists are discrete ipomsets
without interfaces. The relation ⊑ is a partial order on iiPoms with minimal
elements words and maximal elements discrete ipomsets. Further, gluing and
parallel compositions respect ⊑.

Special ipomsets. A starter is a discrete ipomset U with TU = U , a terminator
one with SU = U . The intuition is that a starter does nothing but start the
events in A = U − SU , and a terminator terminates the events in B = U − TU .
These will be so important later that we introduce special notation, writing A↑U
and U↓B for the above. Starter A↑U is elementary if A is a singleton, similarly
for U↓B. Discrete ipomsets U with SU = TU = U are identities for the gluing
composition and written idU . Note that idU = ∅↑U = U↓∅.

The width wid(P ) of an ipomset P is the cardinality of a maximal<-antichain.
For k ≥ 0, we let iiPoms≤k ⊆ iiPoms denote the set of ipomsets of width at most
k. The size of an ipomset P is size(P ) = |P | − 1

2 (|SP | + |TP |). Identities are
exactly the ipomsets of size 0. Elementary starters and terminators are exactly
the ipomsets of size 1

2 .

Any ipomset can be decomposed as a gluing of starters and terminators [6],
see also [13]. Such a presentation we call a step decomposition. If starters and
terminators are alternating, the step decomposition is called sparse; if they are
all elementary, then it is dense.

Example 2. Figure 4 illustrates two step decompositions. The sparse one first
starts c and d, then terminates a, starts b, and terminates b, c and d together.
The dense one first starts c, then starts d, terminates a, starts b, and finally
terminates b, d, and c in order.

Lemma 3 ([8]). Every ipomset P has a unique sparse step decomposition.
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Dense step decompositions are generally not unique, but they all have the
same length.

Lemma 4. Every dense step decomposition of ipomset P has length 2 size(P ).

Rational languages. For A ⊆ iiPoms we let

A↓ = {P ∈ iiPoms | ∃Q ∈ A : P ⊑ Q}.

Note that (A ∪ B)↓ = A↓ ∪ B↓ for all A,B ⊆ iiPoms, but for intersection this
does not hold. For example it may happen that A ∩B = ∅ but A↓ ∩B↓ 6= ∅. A
language is a subset L ⊆ iiPoms for which L↓ = L. The set of all languages is
denoted L ⊆ 2iiPoms.

The width of a language L is wid(L) = sup{wid(P ) | P ∈ L}. For k ≥ 0 and
L ∈ L , denote L≤k = {P ∈ L | wid(P ) ≤ k}. L is k-dimensional if L = L≤k.
We let L≤k = L ∩ iiPoms≤k denote the set of k-dimensional languages.

The singleton ipomsets are [a] [•a], [a•] and [•a•], for all a ∈ Σ. The rational
operations ∪, ∗, ‖ and (Kleene plus) + for languages are defined as follows.

L ∗M = {P ∗Q | P ∈ L, Q ∈M, TP = SQ}↓,

L ‖M = {P ‖ Q | P ∈ L, Q ∈M}↓,

L+ =
⋃

n≥1
Ln, for L1 = L,Ln+1 = L ∗ Ln.

The class of rational languages is the smallest subset of L that contains

{

∅, {ǫ}, {[a]}, {[•a]}, {[a•]}, {[•a•]} | a ∈ Σ
}

(ǫ denotes the empty ipomset) and is closed under the rational operations.

Lemma 5 ([5]). Any rational language has finite width.

It immediately follows that the universal language iiPoms is not rational.
The prefix quotient of a language L ∈ L by an ipomset P is P\L = {Q ∈

iiPoms | PQ ∈ L}. Similarly, the suffix quotient of L by P is L/P = {Q ∈
iiPoms | QP ∈ L}. Denoting

suff(L) = {P\L | P ∈ iiPoms}, pref(L) = {L/P | P ∈ iiPoms},

we may now state the central result of [8].

Theorem 6 ([8]). A language L ∈ L is rational iff suff(L) is finite, iff pref(L)
is finite.

3 Higher-dimensional automata

An HDA is a collection of cells which are connected by face maps. Each cell
contains a conclist of events which are active in it, and the face maps may
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v

x

w

y

e

f

g hq

X[∅] = {v, w, x, y}

X[a] = {e, f}

X[b] = {g, h}

X[[ ab ]] = {q}

δ0a δ1a

δ0a δ1a

δ0a δ1a

δ0b

δ1b

δ0b

δ1b

δ0b

δ1b
δ1ab

δ0ab

⊥

⊥

⊤

⊤

⊤

⊥X = {v, g}

⊤X = {h, y, g} a

b

⊥

⊥ ⊤

⊤

⊤

v

e

w

yx

g hq

f

Fig. 5: A two-dimensional HDA X on Σ = {a, b}, see Ex. 7.

terminate some events (upper faces) or “unstart” some events (lower faces), i.e.,
map a cell to another in which the indicated events are not yet active.

To make this precise, let � denote the set of conclists. A precubical set

X = (X, ev, {δ0A,U , δ
1
A,U | U ∈ �, A ⊆ U})

consists of a set of cells X together with a function ev : X → �. For a conclist U
we write X [U ] = {x ∈ X | ev(x) = U} for the cells of type U . Further, for every
U ∈ � and A ⊆ U there are face maps δ0A, δ

1
A : X [U ] → X [U −A] which satisfy

δνAδ
µ
B = δµBδ

ν
A for A∩B = ∅ and ν, µ ∈ {0, 1}. The upper face maps δ1A transform

a cell x into one in which the events in A have terminated, whereas the lower face
maps δ0A transform x into a cell where the events in A have not yet started. The
precubical identity above expresses the fact that these transformations commute
for disjoint sets of events.

A higher-dimensional automaton (HDA) X = (X,⊥X ,⊤X) is a precubi-
cal set together with subsets ⊥X ,⊤X ⊆ X of start and accept cells. While
HDAs may have an infinite number of cells, we will mostly be interested in fi-
nite HDAs. Thus, in the following we will omit the word “finite” and will be
explicit when talking about infinite HDAs. The dimension of an HDA X is
dim(X) = sup{|ev(x)| | x ∈ X} ∈ N ∪ {∞}.5

A standard automaton is the same as a one-dimensional HDA X with the
property that for all x ∈ ⊥X ∪ ⊤X , ev(x) = ∅: cells in X [∅] are states, cells
in X [{a}] for a ∈ Σ are a-labelled transitions, and face maps δ0{a} and δ1{a}
attach source and target states to transitions. In contrast to ordinary automata
we allow start and accept transitions instead of merely states, so languages of
one-dimensional HDAs may contain words with interfaces.

Example 7. Figure 5 shows a two-dimensional HDA as a combinatorial object
(left) and in a geometric realisation (right). It consists of nine cells: the corner
cells X0 = {x, y, v, w} in which no event is active (for all z ∈ X0, ev(z) = ∅), the
transition cells X1 = {g, h, f, e} in which one event is active (ev(f) = ev(e) = a
and ev(g) = ev(h) = b), and the square cell q where ev(q) = [ ab ].

5 Precubical sets are presheaves over a category on objects �, and then HDAs form a
category with the induced morphisms, see [5].
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The arrows between the cells on the left representation correspond to the
face maps connecting them. For example, the upper face map δ1ab maps q to
y because the latter is the cell in which the active events a and b of q have
been terminated. On the right, face maps are used to glue cells together, so that
for example δ1ab(q) is glued to the top right of q. In this and other geometric
realisations, when we have two concurrent events a and b with a 99K b, we will
draw a horizontally and b vertically.

Regular languages. Computations of HDAs are paths, i.e., sequences α = (x0, φ1, x1, . . . ,
xn−1, φn, xn) consisting of cells xi of X and symbols φi which indicate face map
types: for every i ∈ {1, . . . , n}, (xi−1, φi, xi) is either
– (δ0A(xi),ր

A, xi) for A ⊆ ev(xi) (an upstep)
– or (xi−1,ցA, δ

1
A(xi−1)) for A ⊆ ev(xi−1) (a downstep).

Downsteps terminate events, following upper face maps, whereas upsteps start
events by following inverses of lower face maps. Both types of steps may be
empty, and ր∅ = ց∅.

The source and target of α as above are src(α) = x0 and tgt(α) = xn. The
set of all paths in X starting at Y ⊆ X and terminating in Z ⊆ X is denoted by
Path(X)ZY . A path α is accepting if src(α) ∈ ⊥X and tgt(α) ∈ ⊤X . Paths α and
β may be concatenated if tgt(α) = src(β). Their concatenation is written α ∗ β
or simply αβ.

Path equivalence is the congruence ≃ generated by (z րA y րB x) ≃
(z րA∪B x), (x ցA y ցB z) ≃ (x ցA∪B z), and γαδ ≃ γβδ whenever α ≃ β.
Intuitively, this relation allows to assemble subsequent upsteps or downsteps into
one bigger step. A path is sparse if its upsteps and downsteps are alternating, so
that no more such assembling may take place. Every equivalence class of paths
contains a unique sparse path.

The observable content or event ipomset ev(α) of a path α is defined recur-
sively as follows:

– if α = (x), then ev(α) = idev(x);
– if α = (y րA x), then ev(α) = A↑ev(x);
– if α = (xցA y), then ev(α) = ev(x)↓A;
– if α = α1 ∗ · · · ∗ αn is a concatenation, then ev(α) = ev(α1) ∗ · · · ∗ ev(αn).

Note that upsteps in α correspond to starters in ev(α) and downsteps correspond
to terminators. Path equivalence α ≃ β implies ev(α) = ev(β) [5]. Further, if
α = α1 ∗ · · · ∗ αn is a sparse path, then ev(α) = ev(α1) ∗ · · · ∗ ev(αn) is a sparse
step decomposition.

The language of an HDA X is L(X) = {ev(α) | α accepting path in X}.6

Example 8. The HDA X of Fig. 5 admits several accepting paths with target
h, for example v րab q ցa h. This is a sparse path and equivalent to the non-
sparse paths v րa e րb q ցa h and v րb g րa q ցa h. Their event ipomset

6 Every ipomset P may be converted into a track object �P , see [5], which is an HDA
with the property that for any HDA X, P ∈ L(X) iff there is a morphism �

P → X.
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is [ ab• ]. In addition, since g is both a start and accept cell, we have also g and
v րb g as accepting paths, with event ipomsets •b• and b•, respectively. We have
L(X) = {b•, •b•, [ ab• ] , [

a
•b• ] , [

a
b ] , [

a
•b ]}↓.

Lemma 9. Let X be an HDA, P ∈ L(X) and P = P1 ∗ · · · ∗ Pn be any decom-
position (not necessarily a step decomposition). Then there exists an accepting
path α = α1 ∗ · · · ∗ αn in X such that ev(αi) = Pi for all i. If P = P1 ∗ · · · ∗ Pn
is a sparse step decomposition, then α = α1 ∗ · · · ∗ αn is sparse.

Languages of HDAs are sets of (interval) ipomsets which are closed under
subsumption [5], i.e., languages in our sense. A language is regular if it is the
language of a finite HDA.

Theorem 10 ([5]). A language is regular iff it is rational.

4 Regular and non-regular languages

Pumping lemma. The next lemma is similar to the pumping lemma for word
languages.

Lemma 11. Let L be a regular language. There exists k ∈ N such that for any
P ∈ L, any decomposition P = Q1 ∗ · · · ∗Qn with n > k and any 0 ≤ m ≤ n− k
there exist i, j such that m ≤ i < j ≤ m + k and Q1 ∗ · · · ∗ Qi ∗ (Qi+1 ∗ · · · ∗
Qj)

+ ∗Qj+1 ∗ · · · ∗Qn ⊆ L.

Proof. Let X be an HDA accepting L and k > |X |. By Lem. 9 there exists an
accepting path α = α1 ∗ · · · ∗ αn such that ev(αi) = Qi for all i, and ev(α) = P .
Denote xi = tgt(αi) = src(αi+1). Amongst the cells xm, . . . , xm+k there are
at least two equal, say xi = xj , m ≤ i < j ≤ m + k. As a consequence,
src(αi+1) = tgt(αj), and for every r ≥ 1

α1 ∗ · · · ∗ αi ∗ (αi+1 ∗ · · · ∗ αj)
r ∗ αj+1 ∗ · · · ∗ αn

is an accepting path that recognisesQ1∗· · ·∗Qi∗(Qi+1∗· · ·∗Qj)r∗Qj+1∗· · ·∗Qn.
⊓⊔

Corollary 12. Let L be a regular language. There exists k ∈ N such that any
P ∈ L with size(P ) > k can be decomposed into P = Q1 ∗Q2 ∗Q3 such that Q2

is not an identity and Q1 ∗Q
+
2 ∗Q3 ⊆ L.

The proof follows by applying Lem. 11 to a dense step decomposition P =
Q1 ∗ · · · ∗ Q2 size(P ), cf. Lem. 4. We may now expose a language which is not
regular.

Proposition 13. The language L = {[ aa ]
n ∗ an | n ≥ 1}↓ is not regular.

Note that the restriction L≤1 = (aaa)+ is regular, showing that regularity
of languages may not be decided by restricting to their one-dimensional parts.
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Proof (Proof of Prop. 13). We give two proofs. The first uses Thm. 6: for every

k ≥ 1, [ aa ]
k \L = {[ aa ]

n ∗ an+k | n ≥ 0}↓, and these are different for different k,
so suff(L) is infinite.

The second proof uses Lem. 11. Assume L to be regular, let k be the constant
from the lemma, and take P = [ aa ]

k ∗ ak = Q1 ∗ · · · ∗ Qk ∗ Qk+1, where Q1 =

· · · = Qk = [ aa ] and Qk+1 = ak. For m = 0 we obtain that [ aa ]
k+(j−i)r

ak ∈ L for
all r and some j − i > 0: a contradiction. ⊓⊔

We may strengthen the above result to show that regularity of languages
may not be decided by restricting to their k-dimensional parts for any k ≥ 1.
For a ∈ Σ let a‖1 = a and a‖k = a ‖ a‖k−1 for k ≥ 2: the k-fold parallel product
of a with itself. Now let k ≥ 1 and

L =
{

(a‖k+1)n ∗ Pn
∣

∣ n ≥ 0, P ∈ {a‖k+1}↓ − {a‖k+1}
}

↓.

The idea is to remove from the right-hand part of the expression precisely the
only ipomset of width k + 1. Using the same arguments as above one can show
that L is not regular, but L≤k = (({a‖k+1}↓ − {a‖k+1})2)+ is.

Yet the k-restriction of any regular language remains regular:

Proposition 14. Let k ≥ 0. If L ∈ L is regular, then so is L≤k.

Intersection. By definition, the regular languages are closed under union, parallel
composition, gluing composition, and Kleene plus. Here we show that they are
also closed under intersection. (For complement this is more complicated, as we
will see later.)

Proposition 15. The regular languages are closed under ∩.

Proof. We again give two proofs, one algebraic using Thm. 6 and another, con-
structive proof using Thm. 10. For the first proof, let L1 and L2 be regular, then
suff(L1) and suff(L2) are both finite. Now

suff(L1 ∩ L2) = {P\(L1 ∩ L2) | P ∈ iiPoms}

=
{

{Q ∈ iiPoms | PQ ∈ L1 ∩ L2}
∣

∣ P ∈ iiPoms
}

=
{

{Q ∈ iiPoms | PQ ∈ L1} ∩ {Q ∈ iiPoms | PQ ∈ L2}
∣

∣ P ∈ iiPoms
}

= {P\L1 ∩ P\L2 | P ∈ iiPoms}

⊆ {M1 ∩M2

∣

∣M1 ∈ suff(L1), M2 ∈ suff(L2)}

which is thus finite.
For the second, constructive proof, let X1 and X2 be HDAs. We construct

an HDA X with L(X) = L(X1) ∩ L(X2):
7

X = {(x1, x2) ∈ X1 ×X2 | ev1(x1) = ev2(x2)}, δνA(x1, x2) = (δνA(x1), δ
ν
A(x2)),

ev((x1, x2)) = ev1(x1) = ev2(x2), ⊥ = ⊥1 ×⊥2, ⊤ = ⊤1 ×⊤2.

7 This is the product in the category of HDAs. Using track objects, the lemma follows
immediately.
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For the inclusion L(X) ⊆ L(X1)∩L(X2), any accepting path α in X projects
to accepting paths β in X1 and γ in X2, and then ev(β) = ev(γ) = ev(α). For the
reverse inclusion, we need to be slightly more careful to ensure that accepting
paths in X1 and X2 may be assembled to an accepting path in X .

Let P ∈ L(X1)∩ L(X2) and P = P1 ∗ · · · ∗Pn the sparse step decomposition.
Let β = β1 ∗ · · · ∗ βn and γ = γ1 ∗ · · · ∗ γn be sparse accepting paths for P in X1

and X2, respectively, such that ev(αi) = ev(βi) = Pi for all i, cf. Lem. 9.
Let i ∈ {1, . . . , n} and assume that Pi = A↑U is a starter, then βi =

(δ0Ax1,ր
A, x1) and γi = (δ0Ax2,ր

A, x2) for x1 ∈ X1 and x2 ∈ X2 such that
ev(x1) = ev(x2) = U . Hence we may define a step αi = (δ0A(x1, x2),ր

A, (x1, x2))
in X . If Pi is a terminator, the argument is similar. By construction, tgt(αi) =
src(αi+1), so the steps αi assemble to an accepting path α = α1 ∗ · · · ∗ αn ∈
Path(X)⊤⊥, and ev(α) = P . ⊓⊔

Ambiguity. It is shown in [8] that not all languages are determinizable, that is,
there exist regular languages which cannot be recognised by deterministic HDAs.
We have not introduced deterministic HDAs here and will not need them in what
follows, instead we prove a strengthening of that result. Say that an HDA X is
k-ambiguous, for k ≥ 1, if every P ∈ L(X) is the event ipomset of at most k
sparse accepting paths in X . (Deterministic HDAs are 1-ambiguous.) A language
L is said to be of bounded ambiguity if it is recognised by a k-ambiguous HDA
for some k.

Proposition 16. The regular language L = ([ ab ] cd + ab [ cd ])
+ is of unbounded

ambiguity.

5 ST-automata

We define a variant of a construction from [5] which translates HDAs into finite
automata over an alphabet of starters and terminators. This will be useful for
showing properties of HDA languages. Let Ω = {A↑U,U↓A | U ∈ �, A ⊆ U}
be the (infinite) set of starters and terminators over Σ and, for any k ≥ 0,
Ω≤k = Ω ∩ iiPoms≤k. Note that the sets Ω≤k are all finite.

Let X be an HDA and k ≥ dim(X). The STk-automaton pertaining to X is
the finite automaton Gk(X) = (Ω≤k, Q, I, F,E) with Q = X ∪ {x⊥ | x ∈ ⊥X},
I = {x⊥ | x ∈ ⊥X}, F = ⊤X , and

E = {(δ0A(x),A↑U, x) | x ∈ X [U ], A ⊆ U} ∪ {(x⊥, idU , x) | x ∈ ⊥X ∩X [U ]}

∪ {(x, U↓A, δ
1
A(x)) | x ∈ X [U ], A ⊆ U}.

We add extra copies of start cells in Gk(X) in order to avoid runs on the empty
word ǫ. Note that only the alphabet of Gk(X) changes for different k.

In what follows, we consider languages of nonempty words over Ω, which we
denote by W etc. and the class of such languages by W . Further, W(A) denotes
the set of words accepted by a finite automaton A.
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Fig. 6: HDA of Fig. 5 and its ST-automaton (identity loops not displayed).

Example 17. Figure 6 displays the ST-automaton G2(X) pertaining to the HDA
X in Fig. 5, with the identity loops (z, idev(z), z) for all states z omitted. No-
tice that the transitions between a cell and its lower face are opposite to the
face maps in X . Further, this example illustrates the necessity to duplicate
initial states: without that, the empty word would be accepted by G2(X),
while the empty ipomset is not in L(X) (see Ex. 8). We have W(G2(X)) =
{id∅b•, •b•, id∅ [

a•
b• ] [

•a
•b• ] , •b• [

a•
•b• ] [

•a
•b• ] , . . . }.

Define functions Φ : L → W and Ψ : W → L by

Φ(L) = {P1 · · ·Pn ∈ Ω∗ | P1 ∗ · · · ∗ Pn ∈ L, n ≥ 1, ∀i : Pi ∈ Ω},

Ψ(W ) = {P1 ∗ · · · ∗ Pn ∈ iiPoms | P1 · · ·Pn ∈W, n ≥ 1, ∀i : TPi
= SPi+1

}↓.

Φ translates ipomsets into concatenations of their step decompositions, and Ψ
translates words of composable starters and terminators into their ipomset com-
position (and takes subsumption closure). Hence Φ creates “coherent” words,
i.e., nonempty concatenations of starters and terminators with matching inter-
faces. Conversely, Ψ disregards all words which are not coherent in that sense.
Every ipomset is mapped by Φ to infinitely many words over Ω (because ipom-
sets idU ∈ Ω are not units in W ). This will not be a problem for us later. It is
clear that Ψ(Φ(L)) = L for all L ∈ L , since every ipomset has a step decom-
position. For the other composition, neither Φ(Ψ(W )) ⊆ W nor W ⊆ Φ(Ψ(W ))
hold:

Example 18. If W = {a• •b} (the word language containing the concatenation of
a• and •b), then Ψ(W ) = ∅ and thus Φ(Ψ(W )) = ∅ 6⊇ W . If W = {[ a•b• ][

•a
•b ]},

then Ψ(W ) = {[ ab ] , ab, ba} and Φ(Ψ(W )) 6⊆W .

Lemma 19. Φ respects boolean operations: for all L1, L2 ∈ L , Φ(L1 ∩ L2) =
Φ(L1)∩Φ(L2) and Φ(L1∪L2) = Φ(L1)∪Φ(L2). Ψ respects regular operations: for
all W1,W2 ∈ W , Ψ(W1 ∪W2) = Ψ(W1) ∪ Ψ(W2), Ψ(W1W2) = Ψ(W1) ∗ Ψ(W2),
and Ψ(W+

1 ) = Ψ(W1)
+.
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Φ does not respect concatenations: only inclusion Φ(L ∗ L′) ⊆ Φ(L) ∗ Φ(L′)
holds, given that Φ(L)∗Φ(L′) also may contain words in Ω∗ that are not compos-
able in iiPoms. Ψ does not respect intersections, given that (A ∩B)↓ = A↓ ∩B↓
does not always hold.

Let Id = {idU | U ∈ �} ⊆ Ω and, for any k ≥ 0, Id≤k = Id ∩ iiPoms≤k ⊆ Ωk.
Then Id≤kΩ

∗
≤k ⊆ Ω∗

≤k (which is a regular word language) denotes the set of all
words starting with an identity.

Lemma 20. For any HDA X and k ≥ dim(X), W(Gk(X)) = Φ(L(X)) ∩
Id≤k Ω

∗
≤k.

Proof. There is a one-to-one correspondence between the accepting paths in X
and Gk(X):

α = (x0, φ1, x1, φ2, . . . , φn, xn) 7→
(

(x0)⊥ → x0
ψ1
−−→ x1

ψ2
−−→ · · ·

ψn
−−→ xn

)

= ω

where ψi is the starter or terminator corresponding to the step φi. If P0P1 · · ·Pn ∈
W(Gk(X)), then there is an accepting path ω such that P0 = idev(x0) and
Pi = ev(xi−1, ϕi, xi). The corresponding path α in X is accepting. Hence P0 ∗
P1 ∗ · · ·∗Pn = P1 ∗ · · ·∗Pn = ev(α) ∈ L(X), and P0P1 · · ·Pn ∈ Φ(L(X)). Further,
P0 is an identity, which shows the inclusion ⊆.

Now let P0P1 · · ·Pn ∈ Φ(L(X)) ∩ Id≤k Ω
∗
≤k. Thus P0 is an identity and P0 ∗

P1 ∗ · · ·∗Pn ∈ L(X). Using Lem. 9 we conclude that the exists an accepting path
α = β1 ∗ · · · ∗ βn in X such that ev(βi) = Pi. The path ω corresponding to α
recognises P0P1 · · ·Pn, which shows the inclusion ⊇. ⊓⊔

Lemma 21. Let k ≥ 0. For all L1, L2 ∈ L≤k, L1 ⊆ L2 iff Φ(L1) ∩ Id≤k Ω
∗
≤k ⊆

Φ(L2) ∩ Id≤kΩ
∗
≤k.

Proof. The forward implication is immediate from Lem. 19. Now if L1 6⊆ L2,
then also Φ(L1) ∩ Id≤k Ω

∗
≤k 6⊆ Φ(L2) ∩ Id≤kΩ

∗
≤k, since every ipomset admits a

step decomposition starting with an identity. ⊓⊔

Theorem 22. Inclusion of regular languages is decidable.

Proof. Let L1 and L2 be regular and recognised respectively by X1 and X2, and
let k = max(dim(X1), dim(X2)). By Lemmas 20 and 21,

L1 ⊆ L2 ⇐⇒ Φ(L1) ∩ Id≤kΩ
∗
≤k ⊆ Φ(L2) ∩ Id≤kΩ

∗
≤k

⇐⇒ W(Gk(X1)) ⊆ W(Gk(X2)).

Given that these are finite automata, the latter inclusion is decidable. ⊓⊔

6 Complement

The complement of a language L ⊆ iiPoms, i.e., iiPoms − L, is generally not
down-closed and thus not a language. If we define L = (iiPoms − L)↓, then L
is a language, but a pseudocomplement rather than a complement: because of
down-closure, L∩L = ∅ is now false in general. The following additional problem
poses itself.
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Fig. 7: HDA X which accepts language L of Ex. 28 and the two generating
ipomsets in L.

Proposition 23. If L is regular, then L has infinite width, hence is not regular.

Proof. By Lem. 5, wid(L) is finite. For any k > wid(L), iiPoms− L contains all
ipomsets of width k, hence {wid(P ) | P ∈ L} is unbounded. ⊓⊔

To remedy this problem, we introduce a width-bounded version of (pseudo)
complement. We fix an integer k ≥ 0 for the rest of the section.

Definition 24. The k-bounded complement of L ∈ L is Lk = (iiPoms≤k−L)↓.

Lemma 25. Let L and M be languages.

1. L0 = {id∅} − L.

2. L ⊆M implies Mk ⊆ Lk.
3. Lk

k
⊆ L≤k ⊆ L.

4. Lk = L≤k
k

Proposition 26. For any k ≥ 0, · k is a pseudocomplement on the lattice
(L≤k,⊇), that is, for any L,M ∈ L≤k, L ∪M = iiPomsk iff Lk ⊆M .

Proof. Let L,M ∈ L≤k such that L ∪M = iiPomsk and P ∈ Lk. There exists
Q ∈ iiPoms≤k such that P ⊑ Q and Q 6∈ L. Thus, Q ∈M and since M is closed
by subsumption, P ∈M .

Conversely, let L,M ∈ L≤k such that Lk ⊆M and P ∈ iiPoms≤k−M . Then

P ∈ Mk, and we have that Mk ⊆ Lk
k
⊆ L by Lem. 25(3). Thus, P ∈ L and

then L ∪M = iiPomsk. ⊓⊔

The pseudocomplement property immediately gets us the following.

Corollary 27. Let k ≥ 0 and L,M ∈ L≤k. Then L ∪ Lk = iiPoms≤k, L
kk
k

=

Lk, L ∩Mk = Lk ∪ Mk, L ∪Mk ⊆ Lk ∩ Mk, and L ∪Mkk = Lk
k
∪ Mkk.

Further, Lk = ∅ iff L = iiPoms≤k.

For k = 0 and k = 1, k is a complement on iiPoms≤k, but for k ≥ 2 it is

not: in general, neither L = Lk
k
, L ∩ Lk = ∅, nor L ∪Mk = Lk ∩Mk hold:
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Example 28. Let A = {P ∈ iiPoms≤2 | abc ⊑ P}, L = {[ a→b
c ] , [ c

a→b ]}↓ and
M = (A − L)↓. The HDA X in Fig. 7 accepts L. Notice that due to the non-
commutativity of parallel composition (because of event order), X consists of
two parts, one a “transposition” of the other. The left part accepts [ a→b

c ], while
the right part accepts [ c

a→b ].
Now abc ⊑ [ a→c

b ] which is not in L, so that abc ∈ L2. Similarly, abc ⊑ [ a→b
c ] /∈

M , so abc ∈M2. Thus, abc ∈ L2 ∩M2. On the other hand, for any P such that
wid(P ) ≤ 2 and abc ⊑ P , we have P ∈ L ∪M = A↓. Hence abc /∈ L ∪M2.

Finally, L3 contains every ipomset of width 3, hence L3 = iiPoms≤3, so that

L ∩ L3 = L 6= ∅ and L33 = ∅ 6= L. This may be generalised to the fact that
Lk

k
= ∅ as soon as wid(L) < k.

We say that L ∈ L is k-skeletal if L = Lk
k
. Let Sk be the set of all k-

skeletal languages. We characterise Sk in the following. By Lk
kk

= Lk (Cor. 27),
Sk = {Lk | L ∈ L }, i.e., Sk is the image of L under k. (This is a general
property of pseudocomplements.)

Define Mk = {P ∈ iiPoms≤k | ∀Q ∈ iiPoms≤k : Q 6= P =⇒ P 6⊑ Q}, the
set of all ⊑-maximal elements of iiPoms≤k. In particular, Mk↓ = iiPoms≤k. Note
that P ∈ Mk does not imply wid(P ) = k: for example, [ ab ] ∈ M3.

Lemma 29. For any L ∈ L , Lk = (Mk − L)↓.

Proof. We have

Q ∈ Lk ⇐⇒ ∃P ∈ (iiPoms≤k − L) : Q ⊑ P

⇐⇒ ∃P ∈ (iiPoms≤k − L) ∩Mk : Q ⊑ P

⇐⇒ ∃P ∈ Mk − L : Q ⊑ P ⇐⇒ Q ∈ (Mk − L)↓. ⊓⊔

Corollary 30. Let L ∈ L and k ≥ 0, then Lk = iiPoms≤k iff L ∩Mk = ∅.

Proposition 31. Sk = {A↓ | A ⊆ Mk}.

Proof. Inclusion ⊆ follows from Lem. 29. For the other direction, A ⊆ Mk implies

A↓ k
k
= (Mk −A↓)↓k = (Mk −A)↓k = (Mk − (Mk −A))↓ = A↓. ⊓⊔

If A 6= B ⊆ Mk, then also A↓ 6= B↓, since all elements of Mk are ⊑-maximal.
As a consequence, Sk and the powerset P(Mk) are isomorphic lattices, hence Sk

is a distributive lattice with join L∨M = L∪M and meet L∧M = (L∩M∩Mk)↓.

Corollary 32. For L,M ∈ L , Lk =Mk iff L ∩Mk =M ∩Mk.

We can now show that bounded complement preserves regularity.

Theorem 33. If L ∈ L is regular, then for all k ≥ 0 so is Lk.
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Proof. By Prop. 14, L≤k is regular. Let X be an HDA such that L(X) = L≤k

and k = dim(X). The Ω≤k-language Id≤k Ω
∗
≤k ∩Φ(L(X)) is regular by Lem. 20,

hence so is Id≤k Ω
∗
≤k−Φ(L(X)). Ψ preserves regularity, so Ψ(Id≤k Ω

∗
≤k−Φ(L(X)))

is a regular ipomset language. Now for P ∈ iiPoms≤k we have

P ∈ Ψ(Id≤kΩ
∗
≤k − Φ(L≤k))

⇐⇒ ∃Q ⊒ P, ∃Q0Q1 · · ·Qn ∈ Id≤k Ω
∗
≤k − Φ(L≤k) : Q = Q0 ∗Q1 ∗ · · · ∗Qn

⇐⇒ ∃Q0Q1 · · ·Qn ∈ Id≤k Ω
∗
≤k : P ⊑ Q0 ∗Q1 ∗ · · · ∗Qn 6∈ L≤k

⇐⇒ P ∈ L≤k
k,

hence L≤k
k = Ψ(Id≤kΩ

∗
≤k − Φ(L≤k)). Lemma 25(4) allows us to conclude. ⊓⊔

Corollary 34. iiPoms≤k is regular for every k ≥ 0.

7 Conclusion and further work

We have advanced the theory of higher-dimensional automata (HDAs) along
several lines: we have shown a pumping lemma, exposed a regular language
of unbounded ambiguity, introduced width-bounded complement, shown that
regular languages are closed under intersection and width-bounded complement,
and shown that inclusion of regular languages is decidable.

A question which is still open is if it is decidable whether a regular language
is deterministic or of bounded ambiguity and, related to that, whether HDAs
are learnable. On a more general level, two things which are missing are a Büchi-
type theorem on a logical characterisation of regular languages and a notion of
recognizability. The latter is complicated by the fact that ipomsets do not form
a monoid but rather a 2-category with lax tensor [6].

Even more generally, a theory of weighted and/or timed HDAs would be
called for, with a corresponding Kleene-Schützenberger theorem. For timed HDAs,
some initial work is available in [3]. For weighted HDAs, the convolution algebras
of [7] provide a useful framework.

Acknowledgement. We are in debt to Emily Clement, Thomas Colcombet, Chris-
tian Johansen, Georg Struth, and Safa Zouari for numerous discussions regarding
the subjects of this paper. Any errors, however, are exclusively ours.
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4. Uli Fahrenberg, Christian Johansen, Georg Struth, and Krzysztof Ziemiański. Lan-
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Appendix: Proofs

Preliminaries. We prove here Lem. 4 and Lem. 9.

Lemma 4. Every dense step decomposition of ipomset P has length 2 size(P ).

Proof. Every element of a dense step decomposition of P starts precisely one
event or terminates precisely one event. Thus every event in P − (SP ∪ TP )
gives rise to two elements in the step decomposition and every event in SP ∪
TP − (SP ∩ TP ) to one element. The length of the step decomposition is, thus,
2|P | − 2|SP ∪ TP |+ |SP ∪ TP | − |SP ∩ TP | = 2|P | − (|SP |+ |TP | − |SP ∩ TP |)−
|SP ∩ TP | = 2 size(P ).

In the lemma below, we write Path(X)Y = Path(X)XY , Path(X)Z = Path(X)ZX ,
and Path(X) = Path(X)XX .

Lemma A.1 ([8]). Let X be an HDA, x, y ∈ X and γ ∈ Path(X)yx. Assume
that ev(γ) = P ∗Q for ipomsets P and Q. Then there exist paths α ∈ Path(X)x
and β ∈ Path(X)y such that ev(α) = P , ev(β) = Q and tgt(α) = src(β).

Lemma 9. Let X be an HDA, P ∈ L(X) and P = P1 ∗ · · · ∗ Pn be any decom-
position (not necessarily a step decomposition). Then there exists an accepting
path α = α1 ∗ · · · ∗ αn in X such that ev(αi) = Pi for all i. If P = P1 ∗ · · · ∗ Pn
is a sparse step decomposition, then α = α1 ∗ · · · ∗ αn is sparse.

Proof. The first claim follows from Lem. A.1 by induction. As to the second,
if starters and terminators are alternating in P1 ∗ · · · ∗ Pn, then upsteps and
downsteps are alternating in α1 ∗ · · · ∗ αn.

Regular and non-regular languages. We prove here Prop. 14 and Prop. 16.

Proposition 14. Let k ≥ 0. If L ∈ L is regular, then so is L≤k.

Proof. It suffices to remove from the HDA accepting L every cell x where
|ev(x)| > k.

Proposition 16. The regular language L = ([ ab ] cd + ab [ cd ])
+ is of unbounded

ambiguity.

Before the proof, a lemma about the structure of accepting paths in any HDA
which accepts L.

A cell x ∈ X is essential if there exists an accepting path in X that contains
x. A path is essential if all its cells are essential.

Lemma A.2. Let X be an HDA with L(X) = L. Let α and β be essential sparse
paths in X with ev(α) = [ ab ] cd and ev(β) = ab [ cd ]. Then

α = (v րab q ցab xրc eցc y րd f ցd z),

β = (v′ րa g ցa w
′ րb h′ ցb x

′ րcd r′ ցcd z
′)
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for some v, x, y, z, v′, w′, x′, z′ ∈ X [ǫ], e ∈ X [c], f ∈ X [d], g′ ∈ X [a], h′ ∈ X [b],
q ∈ X [[ ab ]], r

′ ∈ X [[ cd ]]. Furthermore, x 6= x′, and for

ᾱ = (v րa δ0b (q) ցa δ
0
aδ

1
a(q) ր

b δ1a(q) ցb xրc eցc y րd f ցd z),

β̄ = (v′ րa g ցa w
′ րb h′ ցb x

′ րc δ0d(r
′) ցc δ

0
dδ

1
c (r

′) րd δ1c (r
′) ցd z

′)

we have ev(ᾱ) = ev(β̄) = abcd and ᾱ 6= β̄.

Proof. The unique sparse step decomposition of [ ab ] cd is

[ ab ] cd = [ a•b• ] ∗ [
•a
•b ] ∗ [c•] ∗ [•c] ∗ [d•] ∗ [•d].

Thus, α must be as described above. A similar argument applies for β.
Now assume that x = x′. Then

γ = (v րab q ցab x = x′ րcd r′ ցcd z
′)

is a path on X for which ev(γ) = [ ab ] ∗ [
c
d ]. Since γ is essential, there are paths

γ′ ∈ Path(X)v⊥ and γ′′ ∈ Path(X)⊤z′ . The composition ω = γ′γγ′′ is an accepting
path. Thus, ev(γ′) ∗ [ ab ] ∗ [

c
d ] ∗ ev(γ

′′) ∈ L: a contradiction.
Calculation of ev(ᾱ) and ev(β̄) is elementary, and ᾱ 6= β̄ because x 6= x′.

Proof (Proof of Prop. 16). Let X be an HDA with L(X) = L. We will show
that there exist at least 2n different sparse accepting paths accepting (abcd)n.
Let P = [ ab ] cd, Q = ab [ cd ]. For every sequence R = (R1, . . . , Rn) ∈ {P,Q}n let
ωR be an accepting path such that ev(ωR) = R1 ∗ · · · ∗ Rn. By Lem. 9, there
exist paths ω1

R
, . . . , ωn

R
such that ev(ωk

R
) = Rk and ω′

R
= ω1

R
∗ · · · ∗ ωn

R
is an

accepting path. Let ω̄k
R
be the path defined as in Lem. A.2 (i.e., like ᾱ if Rk = P

and β̄ if Rk = Q). Finally, put ω̄R = ω̄1
R
∗ · · · ∗ ω̄n

R
.

Now choose R 6= S ∈ {P,Q}n. Assume that ω̄R = ω̄S. This implies that
ω̄k
R

= ω̄k
S
for all k (all segments have the same length). But there exists k such

that Rk 6= Sk (say Rk = P and Sk = Q), and, by Lem A.2 again, applied to
α = ω̄k

R
and β = ω̄k

S
, we get ω̄k

R
6= ω̄k

S
: a contradiction.

As a consequence, the paths {ω̄R}R∈{P,Q}n are sparse and pairwise different,
and ev(ω̄R) = (abcd)n for all R.

ST-automata. We prove here Lem. 19.

Lemma A.3. For all A1, A2 ⊆ iiPoms, A1↓ ∗ A2↓ = {P1 ∗ P2 | P1 ∈ A1, P2 ∈
A2}↓.

Proof. Let R ∈ A1↓ ∗ A2↓. By definition, there exists P ′
i ∈ Ai↓ such that R ⊑

P ′
1 ∗ P

′
2. Let Pi ∈ Ai such that P ′

i ⊑ Pi. Then R ⊑ P1 ∗ P2. The other inclusion
follows from the facts that Ai ⊆ Ai↓ and that the gluing composition preserves
subsumption.

Lemma 19. Φ respects boolean operations: for all L1, L2 ∈ L , Φ(L1 ∩ L2) =
Φ(L1)∩Φ(L2) and Φ(L1∪L2) = Φ(L1)∪Φ(L2). Ψ respects regular operations: for
all W1,W2 ∈ W , Ψ(W1 ∪W2) = Ψ(W1) ∪ Ψ(W2), Ψ(W1W2) = Ψ(W1) ∗ Ψ(W2),
and Ψ(W+

1 ) = Ψ(W1)
+.
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Proof. The claims for Φ are trivial consequences of the definitions. Regarding Ψ ,
the first claim follows easily using the fact that (A ∪ B)↓ = A↓ ∪ B↓. For the
second, we have

Ψ(W1) ∗ Ψ(W2) = {P1 ∗ · · · ∗ Pn | P1 · · ·Pn ∈W1, ∀i : TPi
= SPi+1

}↓

∗ {Q1 ∗ · · · ∗Qm | Q1 · · ·Qm ∈ W2, ∀i : TQi
= SQi+1

}↓

= {P1 ∗ · · · ∗ Pn ∗ Pn+1 ∗ · · · ∗ Pn+m

| P1 · · ·Pn ∈W1, Pn+1 · · ·Pn+m ∈ W2, ∀i : TPi
= SPi+1

}↓ by Lem A.3

= Ψ(W1W2).

The equality Ψ(W+
1 ) = Ψ(W1)

+ then follows by trivial recurrence, using the
equalities for binary union and gluing composition.

Complement. We prove here Lem. 25.

Lemma 25. Let L and M be languages.

1. L0 = {id∅} − L.

2. L ⊆M implies Mk ⊆ Lk.
3. Lk

k
⊆ L≤k ⊆ L.

4. Lk = L≤k
k

Proof.

1. L0 = (iiPoms≤0 − L)↓ = {ǫ} − L.
2. L ⊆M implies iiPomsk−M ⊆ iiPomsk−L, thus (iiPomsk−M)↓ ⊆ (iiPomsk−
L)↓.

3. We have iiPoms≤k − L≤k = iiPoms≤k − L ⊆ Lk, so by the previous item,

iiPoms≤k −Lk ⊆ iiPoms≤k − (iiPoms≤k −L≤k) = L≤k. Thus, L
kk ⊆ L≤k↓ =

L≤k.

4. Lk = (iiPoms≤k − L)↓ = (iiPoms≤k − L≤k)↓ = L≤k
k.

⊓⊔
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