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Abstract. Recent works have proposed to explain GNNs using activa-
tion rules. Activation rules allow to capture specific configurations in the
embedding space of a given layer that is discriminant for the GNN deci-
sion. These rules also catch hidden features of input graphs. This requires
to associate these rules to representative graphs. In this paper, we pro-
pose on the one hand an analysis of heuristic-based algorithms to extract
the activation rules, and on the other hand the use of transport-based
optimal graph distances to associate each rule with the most specific
graph that triggers them.

1 Introduction

One of the purposes of artificial intelligence is to help human beings to perform
cognitive tasks, especially categorization which is among the most important
ones. Supporting human beings in this process can be considered in two ways:
either by carrying out the process for them or by just helping them so that
they keep control of the ongoing process. In this paper, we adopt the second
point of view and consider the use of machine learning tools to automatically
associate objects with classes in a very efficient way (generally using numerical
models with many learned parameters) to then seek to interpret the classification
mechanisms to understand how the classification has been made. By making the
models explicit, we hope to increase their scope of application in areas with high
societal challenges (medicine, justice) but also for the discovery of knowledge
(scientific impact). The effectiveness of many recent learning algorithms is at
the price of their interpretability, as they rely on the learning of latent variables.
This is particularly the case for Graph Neural Networks (GNNs) [22] that classify
graphs by learning embedding vectors to represent each of the graph nodes in a
metric space so that the classification task based on these vectors is optimized.
These vectors encode a lot of information that is unreadable to humans and need
to be “interpreted”.

Interpretation is an ill-defined concept that has been specified in [5] as cov-
ering three distinct aspects: the comprehensibility, i.e. the ability for the user
to understand the model well enough to be able to apply it manually to new
data, the justifiability, which specifies whether the model is in line with existing
knowledge, and the plausibility, i.e. the pragmatic value of the model for the
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user. In this article, we mainly address the first two aspects by identifying the
main activation rules as well as the subgraph that they characterize. The first
step relies on pattern mining techniques that have been shown to be valuable
for interpreting machine learning black box models [19], especially by provid-
ing comprehensible interpretations of a latent space. The second step leverages
techniques of Optimal Transport on graphs [17] to transform comprehensible in-
terpretations into justifiable models that makes it possible to evaluate whether
the model is in line with existing knowledge expressed in a graph language.

2 Related work

GNNs are generating considerable interest thanks to their performance in several
tasks such as node classification [14], link prediction [27] and graph classifica-
tion [22,23]. Many cutting-edge techniques improve the performance of models.
However, there are few studies that address the explainability of GNNs in com-
parison to the areas of image and text where an abundance of methods have
been proposed [2,11]. As established by [26], the existing methods for the expla-
nation of convolutional neural networks for the classification of images cannot
be directly used on data which is not grid-like such as graphs. For example, the
methods that computes an abstract images via back-propagation [16] provide
non-exploitable results when they are applied to discrete adjacency matrices.
Those that learn soft masks to find important regions of images [13] do not
apply to discrete data as well. Though, some methods have been proposed to
explain GNNs over the past four years. One can identify three types of explana-
tion methods: (i) instance-level and (ii) model-level explanation methods, that
both explain the output of the model, and (iii) rule-based approaches that in
addition consider the latent space built by the GNN.

2.1 Instance-level methods

Given an input graph, instance-level methods aim to provide input-dependent
explanations by identifying important input characteristics on which the model
builds its prediction. The gradient/feature-based methods [1] use the gradients
or hidden feature map values to compute the importance of the input features.
Perturbation-based methods [9, 24] learn a graph mask by studying the predic-
tion changes when perturbing the input graphs. GNNExplainer [24] learns a soft
mask by maximizing the mutual information between the original prediction
and the predictions of the perturbed graphs. PGExplainer [9] uses a generative
probabilistic model to learn succinct underlying structures from the input graph
data as explanations. Surrogate methods [6,20] explain an input graph by sam-
pling its neighborhood and learning an interpretable model. GrapheLime [6] uses
a Hilbert-Schmidt Independence Criterion Lasso as a surrogate model. PGM-
Explainer [20] builds a probabilistic graphical model for explaining node or graph
classification models. These surrogate models can be misleading because the user
tends to generalize beyond its neighborhood an explanation related to a local
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model. GraphSVX [4] falls into these 4 categories by learning a surrogate expla-
nation model on a perturbed dataset, the explained prediction is decomposed
among input nodes and features based on their respective contribution.

2.2 Model-level methods

The only existing model-level method is XGNN [25]. It consists in training a
graph generator to maximize the predicted probability for a certain class and
uses such graph patterns to explain this class. However, it is based on the strong
assumption that each class can be explained by a single graph, which is unreal-
istic when considering complex phenomena.

2.3 Rule-based methods

INSIDE-GNN [18] does not only consider the output of the model when building
its explanations: it also considers the intern weight matrix and derive rules that
associate a set of activated components to a class. This work is rooted in the
FORSIED framework [3] which allows to address the problem of pattern flooding
by identifying a set of non redundant and informative patterns. As our work
heavily relies on it, we detail below its main characteristics.

Activation matrix. Considering a set of graphs G where each graph G =
(V,E, L) has labels L on vertices. A Graph Neural Network classifies each graph
of G into two categories {0, 1}: GNN :G→ {0, 1}. We use a Graph Convolutional
Networks (GCN) [7] that computes vectors hℓ

v associated to the ego-graph cen-
tered in vertex v with radius ℓ, recursively. Such an ego-graph is the sub-graph
of G induced by v and all its neighbors at distance ℓ. Each vector is of size K
and ℓ varies from 0 up to L (the maximum number of layers in the GNN), two
hyperparameters of the GNN. The vectors hℓ

v capture the key characteristics of
the graphs for the classification task, especially vector components of high value.
We therefore consider the activation matrix that has to be interpreted:

Ĥℓ[v, k] =

{
1 if (hℓ

v)k > 0, with k = 1 . . .K, the dimension of the embeddings
0 otherwise

Activation rules. Activation rules group vector components that are mostly
activated together in graphs having the same GNN decision. Aℓ → c is composed
of a binary vector Aℓ of size K and c ∈ {0, 1} a decision class of the GNN. A
graph gi = (Vi, Ei, Li) ∈ G activates the rule if there is a node v in Vi such that

Ĥℓ[v, k] = (Aℓ)k, ∀k = 1 · · ·K. The activated graphs with GNN decision c form
the support of the rule. Activated rules are more interesting if their supports are
largely homogeneous in term of GNN decisions, i.e. the graphs of the support
are mainly classified either in class 0 or in class 1.
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Measuring the interest of an activation rule. As theorized in the FORSIED
framework [3], the knowledge extracted from the activation matrix is modeled by
a background model that is used to evaluate the interest of a rule. Considering the

discrete random variable Hℓ[v, k] associated to the activation matrix Ĥℓ[v, k]1,
the background knowledge is defined by the probabilities P (Hℓ[v, k] = 1). Con-
sidering the assumption that all Hℓ[v, k] are independent of each other, the
interest of a rule is evaluated by the negative log-probability of the product of
P (Hℓ[v, k] = 1), for v activated by the rule and k such that (Aℓ)k = 1:

IC(R,G) =
∑

gi∈Supp(R,G)

min
v ∈ Vi,

Act(R, v)

∑
(Aℓ)k=1

log(P (Hℓ[v, k] = 1))

with R = Aℓ → c, Supp the supporting graphs and Act the nodes that activate
the rule. A pattern with a large IC is more informative but is more difficult to
assimilate. Thus, IC value is contrasted by its description length which measures
the complexity of communicating the pattern to the user:

SI(Aℓ → c,G) = IC(Aℓ → c,G)
α.|Aℓ|+ ν

with α the cost for the user to assimilate each component and ν a fixed cost
for the pattern2. However, in order to identify rules specific to a GNN decision,
we consider the difference of subjective interestingness of the measure evaluated
on the two groups of graphs. We denote by G0 (resp. G1) the graphs gi ∈ G
such that GNN(gi) = 0 (resp. GNN(gi) = 1). The subjective interest of the rule
Aℓ → c with respect to the classes is evaluated by

SI SG(Aℓ → c) = ωc SI(A
ℓ → c,Gc)− ω1−c SI(A

ℓ → c,G1−c).

The weights ω0 and ω1 are used to counterbalance the measure in unbalanced
decision problems. The rational is to reduce the SI values of the majority class.

We set ω0 = max(1, |G1|
|G0| ) and ω1 = max(1, |G0|

|G1| ).

Computing the background model. The background model is initialized
with basic assumptions about the activation matrix:∑
v

P (Hℓ[v, k] = 1) =
∑
v

P (Ĥℓ[v, k] = 1),
∑
k

P (Hℓ[v, k] = 1) =
∑
k

P (Ĥℓ[v, k] = 1).

However, these constraints do not completely specify the probability matrix. and
we choose the probability distribution with the maximum entropy.

Once a rule Aℓ → c has been extracted, it brings some information about
the activation matrix that can be integrated into P : P (Hℓ[v, k] = 1) is set to 1,

∀k such that (Aℓ)k = 1 and v such that Ĥℓ[v, k] = (Aℓ)k, ∀k = 1 · · ·K.

1 We use hats to signify the empirical values.
2 We set ν = 1 and α = 0.6, as the constant parameter ν does not influence the relative
ranking of the patterns, and with a value of 1, it ensures that the DL value is greater
than 1. With α = 0.6, we express a slight preference toward shorter patterns.
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2.4 Limitations and desiderata

Most of the introduced methods attempt to explain a GNN model from its final
decision. INSIDE GNN [18], is the only one to analyze the internal structure of
the network and to build an explication on the different layers of GNN. However,
due to the exhaustive search employed to construct the activation rules, this
method is time-consuming, which makes it difficult to use for large sets of graphs.
Moreover, these rules are not intelligible in themselves and it is important to
know which parts of the graphs they capture. These are the two limits that we
address in the following.

3 Computing activation rules

We propose and study three approaches to compute iteratively the activation rule
R = Aℓ → c with the largest SI SG value and to integrate it in the background
distribution P to take into account the knowledge provided by the rule. The
first method is an exact algorithm, the two others are approximation methods.
In the two last approaches, we are able to consider activated components (indices
k such that (hℓ

v)k > 0) and non-activated components (when (hℓ
v)k ≤ 0).

3.1 Using an exhaustive search

This enumerate-and-rank approach starts with the empty rule ∅ → c and recur-
sively add components to A. We use a branch and bound approach, updating
the current best SI SG value found so far, using the following upper bound:

UB SI(R) =
wc

α(|A|) + ν
×

∑
gi∈Supp(R,Gc)

min
v ∈ Vi,

Act(R, v)

∑
(A&D)k=1

log(P (Hℓ[v, k] = 1))

− w1−c

α(|A&D|) + ν
×

∑
g∈Supp(A&D,G1−c)

min
v ∈ Vi,

Act(R, v)

∑
(A)k=1

log(P (Hℓ[v, k] = 1))

with D a vector whose one’s values represent the activated components that can
be further added to A during the enumeration process, and A&D the bitwise
and operation between vectors A and D. |A| is the L1 norm of A. UB SI makes
the recursion stop if its value is less that the one of the current best rule found.

3.2 Using Beam Search

This algorithm is a tree search algorithm pretty similar to the breadth-first
search with the difference that in each stage it only keeps a fixed number of
descendants. A selector, an atomic proposition of the form X == Y , where X
is a component and Y ∈ {True, False}, describes the status of a component. A
conjunction D of selectors forms a description. For a description D, the length of
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the description is the number of its selectors. A graph g is in the support of D, if
D is true for at least one node of g from logical point of view. Therefore, we can
have a mapping between a rule and a description and thanks to this mapping
we can define subjective interestingness (SI SG) for a description. To this ends,
the SI SG of a description is the subjective interestingness SI SG of its mapped
rule. Each node of the beam search tree corresponds to a description and its
children are those descriptions by adding one new selector to the corresponding
description. The root of the tree is the description with length 0. Thus, nodes in
the depth = 1 are selectors. At each stage of the algorithm we use a beam-width
(bw) parameter that indicates the number of nodes that at the end of the stage
would be kept. Those with the highest SI SG values are kept. Besides discovering
the new nodes, we save the node with the best SI SG that so far we have found.
As the depth of the tree can be too high and regarding the fact that we are
interested in simple rules, we limit the exploration up to a certain depth. In our
task, bw = 20 and the maximum depth is 9. After each run, we get one rule in
return. Then we update the model with respect to the rule. We use PySubgroup
framework [8] for this task.

3.3 Using Monte Carlo Tree Search

MCTS partially explores the tree of possible rules where each node v represents
a partial rule as a tuple (free, fixed): the components of the embedding vector
are either in the free or the fixed set of the tuple. The free set contains
the components that have not been treated yet, and fixed is a set of couples
(x, y) that indicates that component x has the state y, y being either activated,
non − activated or loose meaning that x is activated, non-activated or there is
no constraint on it. A partial rule with free = ∅ is called a rule.

MCTS focuses on analyzing the most promising partial rules, expanding the
search tree based on random sampling of the search space. Monte Carlo tree
search is based on many roll-outs. In each playout, a rule is constructed by
selecting component values at random until free = ∅. The value of SI SG from
the obtained rule is then used to weight the nodes in the tree so that the best
nodes are more likely to be chosen in future roll-outs. To that end, v1 and v2 are
two numerical values also associated to each node v, with v1 is the subjective
interestingness value of the rule fixed ∪ {(x, loose) : x ∈ free}, and v2 value
is defined in the roll-out and propagation step of the algorithm. Each round of
Monte Carlo tree search consists of four steps:

– Selection: Starting from the root node, it selects successive child nodes
until a leaf node is reached. A leaf is any node that has a potential child and
from which no simulation (roll-out) has yet been done. The section of child
nodes is biased so that the tree expand towards the most promising rules,
which is the essence of Monte Carlo tree search. A child v is selected if it
satisfies SI UB(v) ≥ SI SG(best rule) and maximizes the value: v1 +

v2
nv

+

κ
√

n∗log(Nv)
nv

. Nv is the number of times the parent of v has been visited,
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nv is the number of times v has been visited, and n = |fixed|. Note that in
case nv = 0, this function equals to ∞. κ is set to 100.

– Roll-out and Propagation: From a leaf-node, if this node is not terminal
(i.e. free ̸= ∅), we randomly assign values to the components in free to
reach a rule. Then the subjective interestingness of this rule is computed
and added in v2 variables of all the nodes in the path from this node to the
root (propagation). In case that SI SG of this node is the best value found
so far, we store it as the best rule. To avoid visiting already visited terminal
nodes, we add to each ith node of the path the value (−1)i x

2i to v2, where
x = SI SG.

– Expand Children: Once a node has been visited, we expand all its children
and we pursue with the first child u such that SI UB(u) ≥ SI SG(best rule).
The expand consists in building 2 × |free| children by taking a component
in free and assigning values activated, desactivated, or loose.

Each run of the algorithm finds one rule and consists of 100,000 iterations of the
above steps. There is another termination condition for a run: if there is a node
v, with nv > 500, the run terminates. After finding a rule, we update the model
the same as the exact method. We run the MCTS until either we reach 10 rules,
or reach a rule with SI SG < 10 or there would be at least one rule r for each
component c in which c has a non-free state.

4 Transforming rules into subgraphs

The activation rules make it possible to isolate the characteristics of the graphs
useful to the task of classification. However, although we know that the graphs
supporting the rule have common characteristics, we do not know which ones it
is. We then propose to search for these properties that the graphs supporting the
rule have in common by searching for the median graph of this set. This approach
makes it possible to summarize the whole set of supporting graphs by a single
realistic graph. As we would like to calculate a median for a set of graphs, we need
to define a distance between two graphs. Being able to leverage both features
and structural information from graphs to calculate their distance can be time
consuming, requiring the combination of these two pieces of information in a
way that makes it possible to capture the similarity between graphs. We opt for
the use of a distance based on Optimal Transport known to unveil the geometric
nature of attributed graphs. Unlike Wasserstein or Gromov-Wasserstein metrics,
that focus solely and respectively on features or structure, the distance Fused
Gromov-Wasserstein (FGW) [17] exploits jointly both information.

4.1 Optimal Transport

Optimal Transport (OT) defines a distance between two probability distribu-
tions. It already prove its utility in a lot of fields, this is not yet very developed
for graphs. While features can be compared using a standard metric, such as l2,
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comparing structures requires a notion of similarity which can be found via the
concept of isometry, since the nodes of the graph are not ordered. But the natural
formulation of OT cannot exploit the structural information of objects since it
only relies on a cost function that compares their feature representations. A way
to compare two distance matrices, seen as representations of object structures, is
introduced in [10] where an OT metric, called Gromov-Wasserstein distance, is
able to compare two distributions even if they are not in the same ground space.
In [17], authors introduce the Fused Gromov-Wasserstein (FGW) using OT. It
uses both Gromov-Wasserstein distance on structure and Wasserstein distance
on features. Graphs are transformed into probability measures via histograms
which are used to identify the relative importance of vertices in the graph. On a
graph of n vertices, the vertices are associated with weights (hi)i ∈

∑
n. When all

the weights are equal, it means that all the vertices have the same relative impor-
tance, the structured data contains exactly the same information as their graph.
FGW uses a compromise parameter α ∈ [0, 1]. When α tends to zero, the FGW
distance retrieves the Wasserstein distance between features, whereas when α
tends to one, it retrieves the Gromov-Wasserstein distance between structure.

The FGW distance looks for the coupling π between the vertices of the graph
that minimizes the cost function which is a linear combination of a cost d(ai, bj)
of transporting one feature ai to a feature bj and a cost |C1(i, k) − C2(j, l)| of
transporting pairs of nodes in each structure, where C1 and C2 are the structure
matrix of the two graphs which are compared. FGW is null iff graphs have the
same number of vertices and if there exists a one to one mapping between the
vertices of the graphs which respect both shortest-paths and the features. The
complexity is in O(n2m+ nm2) and FGW defines a semi-metric.

4.2 Barycenter

A notion of barycenter is also introduced in [17] based on FGW distance. It
looks for the graph that minimizes the sum of (weighted) FGW distances within
a given set of structured data associated with structure matrices, features and
base histograms. This is the first formulation of barycenter of a set of graphs that
can leverage both structural and feature information. We cannot use directly
the barycenter in our method for the following reasons: (1) To compute the
barycenter of a set of graphs, we need to specify the parameter n that defines
the number of vertices in the generated graph; (2) Graphs that are generated are
not guaranteed to be realistic; (3) It cannot work on graphs labeled with discrete
values. This justifies our following proposal for computing median graphs.

4.3 Associating a graph to a rule

To generate completely realistic graphs with an embedding close to an activation
rule, we propose to calculate the median graph of all the graphs of the support
(those that activate the rule), and then to perform a best first enumeration to
find the subgraph with the highest score on the activation rule.
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Median graph. Computing a median graph guaranties that the graph is realist
as it is an element of the set of graphs. Also, we are sure that this graph activates
the rule. The median graph of a set G of graphs is the graph of G whose aver-
age FGW distance to other graphs of G is minimal. It requires to compute all
distances between every pair of graphs which can be time expansive. Therefore,
we propose to compute an approximation of the median. It makes it possible to
avoid considering graphs that are close to other ones.

In Algorithm 1, the approximate median of a set of graphs G starts with and
empty set of selected graphs S. It first draws a graph g uniformly at random in
G and adds it to S. Then, all the distances between g and the graphs of G are
computed. A loop starts that consists in drawing at random a new graph g from
G \ S, but this time according to the distances dist(g, S). This graph is added
to S. The loop stops when dist(g, S) is small enough.

The further the graph is from the set, the higher its probability of being
drawn and added to the set S. When the loop stops, the median graph on the
set S is computed and returned.

Algorithm 1 Approximate median graph

Require: G a set of graphs, t a threshold
Ensure: Median graph
1: S ← {}
2: g ← drawn from G
3: S ← S ∪ {g}
4: repeat
5: draw g ∼ dist(g, S)
6: S ← S ∪ {g};
7: until (dist(g, S) < t)
8: return median(S)

The approximate median graph procedure only computes
∑q

i=i(n − i)i =
q(q + 1)

(
n
2 − 2q+1

6

)
FGW distances, instead of n2, with n the size of G and q

the number of iterations3. In practice q is between 10% to 40% of n.

Improving the median graph to better describe the rule. The median
graph supports the rule but it is potentially not specific to it and may contain
additional information not related to the rule. Starting from the median graph,
or its approximation, we search for a subgraph whose embedding vector is the
closest to the activation rule. This proximity between the embedding vector and
the rule is evaluated by the Cosine metric between the vectors as in [19]. To
maximize the Cosine value from a graph g, we first compute the Cosine value
for g. Then, we enumerate all the subgraphs of g that are obtained by removing
a single vertex. The subgraph with the largest Cosine value is taken, and the
process iterates until no better graph is found.

3 ∑q
i=1 (n− i) i = n

∑q
i=1 i−

∑q
i=1 i

2 = n q
2
(1+q)− q(q+1)(2q+1)

6
= q(q+1)

(
n
2
− 2q+1

6

)
.
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5 Experiments

The purpose of the experiments is twofold: the comparative study of the algo-
rithms to extract activation rules in terms of computation time and rule quality,
and the study of distances based on the optimal transport to associate the most
specific graph to each of the rules. For these experiments, we trained a GNN with
3 layers of dimension K = 20 for each dataset. We mined at most 10 rules for
each layer and class with SI SG > 10. All the experiments have been written in
python and done on a machine with 8 Intel(R) Xeon(R) W-2125 CPU 4.00GHz
cores 128GB RAM, and Debian GNU/Linux operating system.

5.1 Datasets

We have used four datasets Aids [12], BBBP [21], Mutagen [12] and BA2 [24].
BA2 is a synthetic dataset in which graphs with the label 0 have a cycle of length
5 and the graphs of opposite class, have ”house” motifs. Graphs in the rest of
the datasets represent real molecules. Main characteristics of these datasets are
given in Table 1 (left).

Dataset Name #Graphs (#neg, #pos) Avg. Nodes Avg. Edges

Aids 2000 (400,1600) 15.69 322

BBBP 1640 (389,1251) 24.08 51.96

Mutagen 4337 (2401, 1936) 30.32 61.54

BA2 1000 (500, 500) 25 50.92

Dataset MCTS Exhaustive search

Aids 14:24 11:14

BBBP 05:15 13:29

Mutagen 35:10 69:16

BA2 00:37 02:22

Table 1. Dataset description: number of graphs, number of graphs with positive and
negative labels, and average number of nodes and edges in each dataset (left). Time
comparison for MCTS and exhaustive search. Times are in the format of hh:mm (right).

5.2 Computing rules

We evaluate two approximation methods, beam search and MCTS, in compari-
son with the exhaustive search method. The main goal of our work is to reduce
the running time. However, we should be careful what we lose in price of the
time. Therefore, we measure the total interestingness of patterns obtained by
each method in comparison to the exhaustive search. To assess how explainable
our patterns are, we use fidelity, infidelity, and sparsity measures.

Time Comparison. Among all the methods, beam search has the best time.
All the experiments have been done under twenty minutes. In the second place,
MCTS has a better time in three datasets (BA2, BBBP and Mutagen) than
exhaustive search. However, in the Aids dataset, the process did not complete
in less time than the exhaustive search. This problem is due to the computation
of rules for the last layer of the GNN. In the Table 1 (right), the time needed by
MCTS and exhaustive search methods are compared.
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Cumulative Subjective Interestingness (CSI). To evaluate how good is the
quality of the rules mined by beam search and MCTS, one factor is cumulative
subjective interestingness of them. Figure 1 shows that exhaustive search has
the best CSI in non-synthetic datasets, MCTS works better than beam search
despite its early termination in the Aids due to the runtime exceeding. Another
interesting point is in the BA2 dataset with MCTS. For the last layer and class
0, the first and second rules discovered by exhaustive search have SI SG of 700
and 261 respectively and for the same class and layer, by MCTS, the first two
rules have SI SG of 674 and 433 respectively which resulted to have a better
CSI in MCTS, which is an approximate method than exhaustive search as an
exact algorithm. Therefore, although that MCTS in some places can be time-
consuming, it can have interesting features to study.

When we consider non-activated components, although we have more general
space, we cannot get better results than when we have only activated compo-
nents, except for BA2 and Aids. In BA2 we obtain results even better than the
exhaustive search and in Aids they are better than the approximation methods
but not better than the exact one. The main drawback of the MCTS with the
mode consisting activated and non-activated components, is the running time.
We could not obtain results for the Mutagen dataset due to this problem.

Fig. 1. Cumulative subjective interestingness comparison between the three methods
(exhaustive search, MCTS and beam search). In each chart, the horizontal axis is the
number of the rules and the vertical axis is SI SG. The suffix ”.neg”, represent methods
while considering non-activated patterns.

Fidelity, Infidelity, and Sparsity. So far we have rules that are not still
human interpretable. To have some human-friendly explanations, in each graph
that activates a pattern we build a mask for that pattern. Considering a graph
g in the support of the considered rule and s ⊆ Vg is the set of its vertices that
activate all the components of the rule. Then the mask for graph g is the induced
subgraph by s ∪N(s) where N(s) is the neighbors of s. We expect the mask to
be the reason for the decision of the GNN for graph G. To measure how well
these masks capture the decision of the GNN, we use three measures fidelity,
infidelity, and sparsity [15]. Fidelity measures how the GNN decision changes
when removing the mask from the graph. It should be maximized. The infidelity
measures the difference in the GNN decision when considering the whole graph
and only the mask. It should be minimized. These metrics are not enough to
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(a) Fidelity

Model Aids BBBP Mutagen BA2

Exhaustive 0.179 0.312 0.499 0.343
MCTS 0.178 0.624 0.526 0.343
BS 0.792 0.522 0.514 0.343
MCTS neg. 0.172 0.322 N/A 0.341
BS neg. 0.808 0.304 0.417 0.343

GnnEx 0.036 0.100 0.177 0.093
PGEx 0.032 0.098 0.157 0.004
PGM-Ex 0.080 0.212 0.123 0.222
SVXEx 0.003 0.008 0.039 0.004

(b) Infidelity

Aids BBBP Mutagen BA2

0.767 0.420 0.305 0.003
0.767 0.131 0.344 0.004
0.074 0.170 0.309 0.002
0.767 0.385 N/A 0.029
0.036 0.352 0.341 0.006

0.036 0.099 0.140 0.223
0.038 0.098 0.157 0.353
0.766 0.482 0.347 0.296
0.771 0.489 0.356 0.341

(c) Sparsity

Aids BBBP Mutagen BA2

0.884 0.916 0.962 0.032
0.877 0.265 0.939 0.041
0.270 0.452 0.938 0.028
0.901 0.899 N/A 0.105
0.132 0.804 0.989 0.058

0.501 0.501 0.505 0.804
0.547 0.534 0.515 0.955
0.862 0.884 0.900 0.746
0.988 0.940 0.931 0.943

Table 2. Assessing the explanations with several metrics. A better explainer achieves
higher fidelity, lower infidelity while keeping a sparsity close to 1. The suffix (neg)
represent methods while considering activated and non-activated components.

assess a set of masks. As an illustration, assume that mi = gi for 1 ≤ i ≤ n. In
this case, infidelity can be 0. Therefore, we need another metric that is sensitive
to the proportion of a graph used as its mask: Sparsity(M) = 1

n

∑
i = 1n(1 −

|mi|
|gi| ). So in the case that we have masks identical to their corresponding graphs,

which minimizes the fidelity, sparsity will be zero too. Thus, the greater sparsity
means the better masks.

Table 2 shows the values of these metrics compared to state of the art meth-
ods for explaining GNNs. As it can be seen, on the Aids dataset, MCTS has
comparable results in all of the metrics to the exhaustive search. Although beam
search has better fidelity and infidelity than MCTS and exhaustive search, it
has lower sparsity. It can be interpreted that activation rules obtained by this
method cover too many nodes. On the BBBP, both methods in terms of fidelity
and infidelity have outperformed the exhaustive search. However, sparsity for
both of them is lower than the one of exhaustive search. On the Mutagen and
BA2 datasets, metrics are pretty close which means that rules captured by the
two approximation methods are as explainable as those captured by the exact
method.

These preliminary experiments do not make it possible to conclude on the
added-value of the non-activated components. Other rules evaluation measures
would be necessary.

5.3 Finding a representative graph for a rule

Our goal is to generate a representative graph for each rule with median approx-
imation and best first enumeration4. This experimental study aims to answer
the following questions: Is the median approximation good? Is the reduction of
the execution time of the approximation significant? How close the median ap-
proximation is to the embedding of a targeted rules? How good the best first

4 All algorithms are implemented in Python, using the FGW code given by the author
https://github.com/ElouanV/optimal transpor for gnn
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enumeration improves the score? We compare the generated graph to those gen-
erated by DISCERN [19]. For FGW, we set α = 0.9, giving more importance to
the structural information, but in molecule, features and structure information
are correlated. We use shortest path as a method for structure matrix of graphs
and sqeuclidean to compute the cost matrix between the features. In median
approximation, we set the threshold t = 10−10. In score computation, we use
Cosine metrics to compute the similarity between an ego-graph and a rule. Most
of the experiments are done on two rules of Mutagen datasets (rule 23 and 28)
as we know that they are highly correlated to the mutagenicity.

Median approximation quality. To study the median approximation quality,
the distance between the median of a set and its approximation, we compute
at each iteration the distance between the real median and the median of the
set S (see Fig. 2). But, in this set of graphs, there are a lot of graphs that are
really close to each others, and even some graphs are identical. For example, the
real median graph of this set exists in nine copies. The median approximation
function uses a threshold to stop when the distance between the newly selected
graph and the set S is too small. This distance is monitored over iterations on
the same rule and shown in Fig. 2.

Fig. 2. Distance between the selected graph and the set S at each iteration on a loga-
rithmic scale in red, distance between real median of a set of 3490 graphs supporting
rule 23 of Mutagen and the approximation of median over iterations using FGW dis-
tance in blue.

Here, the algorithm stops at iteration 1239 over 3490. It means that we only
compute the median on 35% of the graphs of the set. The distance between the
median of this set and its approximation is 0.8 which seems to far comparing
to all distances between graphs of this set, but it shows that there is a lot of
duplicated graphs in the set, and the approximation eliminates them and find a
median graph that may better represent the set. On other rules, like the rule 28
of Mutagen, the approximation converges quickly to the same graph as the real
median. On the set of graph that are not big enough i.e. less than 200 graphs,
the approximation methods is useless since.
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Fig. 3. The real median of the graphs from rule 23 of Mutagen (left) and the approxi-
mation with t = 10−10 (middle). Graphs generated by DISCERN on rule 23, red cross
highlights unrealistic bonds or molecules (right).

On Fig. 3, we compare the median graph of all graphs of the rule 28 of Mu-
tagen and the median approximation of the same set. First of all, they have the
same number of vertices. The difference between them comes from the nitrogen
atom, which is not present in the median approximation, and the structure also
is a bit different, but in both cases, we can identify three part link by an atom of
carbon in the middle. Moreover, both graphs have the same number of atoms of
carbon. When we compare it to the graph generated by the DISCERN method
on the same rule Fig. 3 (right), we find in both of our graphs the three carbon
chains, but the nitrogen atom is only present on the real median.

Median approximation execution time. We also want to study the execu-
tion time we can win to balance with the loss of accuracy. The execution time
reduction depends on each set. On the same rule of Mutagen in Fig. 4 (left),
we can observe that the execution time over iterations is almost linear, so by
selecting only 35% of the graphs, we highly reduce the execution time by almost
60%. In Fig. 4 (right), we can see the percentage of graphs use to compute the
median from a set thanks to the approximation. Among these 60 rules, some of
them contain more than 10 000 graphs, which is a lot more than what we have
seen in rule 23 of Mutagen. We can see that the percentage of graphs sectioned
for the approximation decreases when the number of graphs in the set increases.
When there is more than 10 000 graphs, we only select less than 10% of them
which allows us to reduce the computation time significantly. When there is less
than 1000 graphs, the approximation use almost all the graphs to compute the
median, but it is not an issue.

Are the result good? We compute the median approximation on the 60 rules
of AIDS dataset, and use the computed median as starting seed for the best first
enumeration. In Fig. 5, we focus on the rule 54, and we compare the median
approximation to the output of the best enumeration first. The score is increasing
from 0.48 to 0.65 thanks to the exploration, and the result is a cycle of 5 atoms.
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Fig. 4. Computation time over iterations of median approximation (rule 23 of Mu-
tagen) in second (left). Proportion of graphs use from a set in for an approximation
for the 60 rules of AIDS dataset in blue (sorted) and number of graphs in each set of
graphs in red (right).

Fig. 5. Median approximation of the rule 54 of AIDS dataset (left) and the subgraph
generated by the best first enumeration (right).

6 Conclusion

We have proposed two alternative algorithms for computing activation rules. Ex-
periments showed that beam search reduces the computation time significantly
and in terms of fidelity and infidelity has acceptable results. We have also intro-
duced a novel method for explaining internal representations of GNNs. With a
median graph computation and a better first enumeration, we associate each rule
with a realistic graph that fully embeds in the subspace defined by the activa-
tion rule. The study shows that the median approximation makes it possible to
reduce the computation time without losing the quality of the generated graphs.
In future work, we might try adding vertices and edges to the median graphs
to see if this can improve the generated graph, giving the median graph as an
exploration seed for MCTS as the method DISCERN did.
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