
HAL Id: hal-04580335
https://hal.science/hal-04580335

Submitted on 4 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Day-ahead lot-sizing under uncertainty: An application
to green hydrogen production

Victor Spitzer, Céline Gicquel, Evgeny Gurevsky, François Sanson

To cite this version:
Victor Spitzer, Céline Gicquel, Evgeny Gurevsky, François Sanson. Day-ahead lot-sizing under uncer-
tainty: An application to green hydrogen production. 8th International Symposium on Combinatorial
Optimization (ISCO 2024), May 2024, La Laguna, Tenerife, Canary Islands, Spain. �10.1007/978-3-
031-60924-4_30�. �hal-04580335�

https://hal.science/hal-04580335
https://hal.archives-ouvertes.fr


Day-ahead lot-sizing under uncertainty: An
application to green hydrogen production

Victor Spitzer1,3, Céline Gicquel1, Evgeny Gurevsky2, and François Sanson3

1 LISN, Université Paris-Saclay, Gif-sur-Yvette, France
2 LS2N, Université de Nantes, France

3 Lhyfe, Nantes, France

Abstract. This work investigates the short-term production planning
of green hydrogen obtained through water electrolysis using electricity
from a wind power source and a connection to the national electricity
grid. Electricity consumption on the grid has to be declared a day ahead
of production and cannot be adjusted afterwards, while future availabil-
ity of the wind power source is uncertain. This production problem can
be reduced to a two-stage stochastic lot-sizing model, and a cohesive
framework is introduced to solve it efficiently. First, the innovative use
of a variational auto-encoder to estimate the conditional wind power un-
certainty and generate scenarios is investigated. Then, a time-efficient
Benders decomposition approach is proposed, in which special features
of our problem are exploited to speed up its resolution. Finally, a novel
application of an adaptive partition-based approach and a stabilization
method further improve the solving time of the decomposition scheme.
A realistic simulation demonstrates the benefits of the presented frame-
work.

Keywords: Lot-sizing · Data-driven stochastic programming · Benders
decomposition · Adaptive partition · Stabilization method · Green hy-
drogen · Wind power uncertainty

1 Introduction

Hydrogen plays a crucial role in industrial processes such as glass and ammonia
production, and is mainly generated from fossil fuels. Thus, green hydrogen pro-
duction via water electrolysis powered by renewable energy sources is essential to
decarbonize those industries, consuming only electricity and water in the process
(see, e.g., [1]). However, managing this electrolysis process poses challenges, such
as ensuring that hydrogen hourly demand is met despite the uncertain availabil-
ity of renewable energy sources. This work focuses on short-term electrolytic
hydrogen production planning, considering a real-life case with a production
site connected to a wind farm and the electricity grid. The wind farm supplies
fluctuating renewable electricity at negligible cost, while grid electricity incurs
a higher cost. Wind power forecasts, although imprecise, provide information
on the future availability of this energy source. The purchase of electricity from
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the grid has to be planned and declared a day ahead of production, i.e., before
the exact availability of wind power is known. Finally, on-site hydrogen storage
offers some degree of flexibility for production planning, as it allows to produce
hydrogen in advance.

The problem is similar to the widely studied single-item lot-sizing problem
under uncertainty (see, e.g., Brahimi et al. [2]), and this work extends prior
research to include uncertainties in power supply from a local wind farm. Exist-
ing works in unit-commitment address such uncertainties (see, e.g., van Ackooij
et al. [3]), but for complex problems where decomposition schemes for a large
number of uncertainty scenarios are impractical. The use of Benders decom-
position scheme is scarce in the lot-sizing literature. Adulyasak et al. [4] and
Witthayapraphakorn et al. [5] apply it to lot-sizing problems under demand
uncertainty, identifying a network flow structure in the dual second-stage math-
ematical model. In this work, a similar structure obtained from a novel problem
approximation is leveraged to achieve a computational gain. Moreover, an adap-
tive partition-based approach as well as a stabilization method are subsequently
introduced, which to the best of our knowledge have not yet been documented
for lot-sizing problems. The estimation of the error distribution in wind power
forecasting is also a well studied problem (see, e.g., Pinson [6]). Cramer et al.
[7] present a comparison of documented approaches for wind power scenario
generation, and conclude that deep learning generative methods may offer more
benefits for day-ahead stochastic production problems. In the present work, we
use such a method called «Variational Auto-Encoder», known for the simplicity
of its implementation (see, e.g., Hernandez Capel and Dumas [8]), and illustrate
its ability to generate reliable scenarios in realistic settings. Its use is innovative
in its application to solving stochastic programming problems.

To the best of our knowledge, this work is the first one to propose a cohesive
and time-efficient framework integrating stochastic programming and machine
learning to solve a two-stage lot-sizing problem under uncertainty regarding the
available energy source.

After a short problem description, a stochastic programming model with two
decision stages is introduced in Section 2. Section 3 presents a probabilistic neu-
ral network used to generate wind power scenarios for uncertainty representation
in the problem modeling. In Section 4, the problem is addressed by a Benders
decomposition scheme, in which the mixed-integer sub-problems are approxi-
mately solved by a linear time algorithm, and the number of optimality cuts and
iterations is reduced to improve computational performance. Realistic numerical
experiments simulating the production site management over a year demonstrate
the satisfactory results of the proposed approach in Section 5.

2 Problem description

2.1 Context and assumptions

This work is motivated by industrial use-cases such as the Bouin production
plant of the Lhyfe company in France, or the renewable hydrogen demonstrator
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of Siemens Gamesa in Zealand, Danemark. Hybrid production sites, connected
to both renewable assets and the distribution grid, benefit from the cleanest
possible energy from these renewable sources, while ensuring production despite
intermittency thanks to the grid connection. Such a configuration enables the
electrolytic hydrogen industry to take advantage of the ability of electrolyzers
to adjust in near real-time to variations in energy supply and costs.

The cost of wind power is considered to be negligible compared to electricity
market prices: we aim at using as much as possible the renewable energy source
to produce hydrogen with the least greenhouse gas emissions. In practice, elec-
tricity prices from renewable assets are negotiated ahead of production and are
of constant value. Note that a realistic representation can be retrieved from this
model by subtracting the constant renewable cost from electricity market prices.

In practice, the limited hydrogen storage capacity is mainly used to reduce
production costs by anticipating the lack of wind power or the increase in electric-
ity market prices in the forthcoming hours. Consequently, the stored hydrogen is
mostly produced and consumed during the same day, and the hydrogen available
in storage at the beginning of a given day is almost always consumed during that
day. Thus, the hydrogen stock level at the beginning of a day has an impact on
the production plan for that day, but not on the production plan for the days
beyond. In other words, there is little benefit to plan production more than two
days in advance.

In the following, the uncertainty is only considered for the first day of the
production planning, and the production of the second day is incorporated in the
model in order to anticipate the impact of this uncertainty on future production
costs. The two-day production planning problem is thus modeled as a two-stage
stochastic program. Note that one may consider a longer planning horizon while
using this approach, either by only considering uncertainty for the first day or
by dynamically estimating future production costs, as described in Section 4.1.

The presented problem remains relatively general, as the proposed method
can be adapted to fit a broad range of applications, some of which are discussed
in Section 6. Therefore, this work aims at proposing a framework to address a
wide variety of use-cases, rather than focusing on a single one.

2.2 Mathematical modeling

This work aims at minimizing the costs relative to the daily declaration of the
grid electricity exploitation, for a production site equipped with a single elec-
trolyzer. As discussed above, in our case, the production decisions relative to a
given day do not affect the production plan beyond the following day. Therefore,
the planning horizon extends over two days, each one divided into 24 time steps
(hours), denoted T = {1, 2, . . . , 24}. In practice, production planning is carried
out on the basis of a rolling horizon, i.e., only first-day decisions are actually im-
plemented, and second-day decisions are incorporated into the model to ensure
that the future consequences of the first-day decisions are correctly evaluated.

At each period «day-hour» (d, t), for d ∈ {1, 2} and t ∈ T , the site has to
meet a hourly demand for hydrogen, noted qd,t. In order to produce hydrogen, the
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electrolyzer should be activated, which consumes a fixed amount of power pon. It
has a constant power-to-H2 conversion efficiency, noted h, and can produce up to
qmax kg of H2 per time-step (corresponding to a maximum power consumption
pmax = qmax/h per hour). The storage has a maximal capacity smax and its
initial stock level is noted s0. It is assumed that the demand qd,t at any hour t
and day d is lower than the production capacity qmax.

The site is connected simultaneously to a wind farm and the national power
grid. The purchase cost of wind power is negligible, but its availability at (d, t),
noted w̃d,t, is limited, time-varying and uncertain. However, there is a deter-
ministically known guaranteed minimum wind power at (d, t), denoted by wd,t.
The purchase cost of electricity from the grid at (d, t), cgd,t, is also assumed to be
known with certainty. Any purchase from the grid has to be declared a day ahead
of production, i.e., before period (d, 1) for day d and, once declared, upward or
downward adjustments of the electricity consumed during day d are forbidden.

A two-stage scenario-based stochastic programming approach is introduced
to handle this problem. The first stage represents decisions to be made before
the actual wind power availability is known. The second stage corresponds to
decisions that can be postponed until after the realization of this uncertain
parameter.

Recall that, once declared at the beginning of day d, the amount of grid
electricity to be purchased cannot be adjusted during that day. This means that
the demand might not be met on time if we rely on uncertain wind power, i.e.,
on w̃d−wd, to produce it. Thus, to avoid any shortage, the production of day d,
intended to satisfy the demand of that same day, is not allowed to rely on wind
power production beyond the minimum guaranteed output wd. Wind power
production exceeding this output, i.e., w̃d − wd, is only exploited to produce
hydrogen for storage, which is then used to meet future demand on day d+ 1.

The first decision stage corresponds to setting up the production planning,
and determining the day-ahead declaration of grid power purchase for day 1. The
following variables are introduced for each period (1, t) of day 1. First, the binary
variable z1,t represents the active/inactive state of the electrolyzer. Then, the
total power consumed for hydrogen production is denoted x1,t. It decomposes
into xw

1,t, the amount of guaranteed wind power used, and xg
1,t, the amount of

power purchased from the grid. The stock of hydrogen at the end of the period
(1, t) and available to meet hydrogen demand on day 1 is represented by s1,t.

In this work, the wind power uncertainty during day 1 is incorporated into the
modeling of the problem. This uncertainty is represented by a set S of discrete
scenarios of known probability distribution. A fixed scenario ξ ∈ S corresponds
to a potential realization wξ,1,t of the available wind power for all time-steps
(1, t), t ∈ T . Note that the uncertainty related to day 2 is ignored: it has no
significant impact on this two-day planning since it only affects the third day of
production.

The second-stage decision variables concern both day 1 and day 2. Regarding
day 1, a variable s̃ξ,1,t is introduced for each time period (1, t) and scenario ξ ∈ S,
to represent an additional quantity of hydrogen produced using the real wind
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power generated. This hydrogen is kept in stock, and it is only available to meet
customer demand at the beginning of the second day, once its exact value is
known. Regarding day 2, we use the same variables as the ones introduced for
day 1, i.e., variables zξ,2,t, xξ,2,t, xw

ξ,2,t, x
g
ξ,2,t and sξ,2,t. Note that these variables

are now indexed by the scenario ξ and the index of day 2.
Before presenting the two-stage stochastic programming model, the set of

constraints that the day-ahead production planning and declaration variables
should respect is formally described for each day d. Given an initial stock sind
and a guaranteed minimum wind power wd, we have:

xd,t = xw
d,t + xg

d,t, ∀t ∈ T (1)

xd,t ≤ zd,t · pmax, ∀t ∈ T (2)
xw
d,t ≤ wd,t, ∀t ∈ T (3)

sd,1 = sind + (xd,1 − zd,1 · pon) · h− qd,1, (4)
sd,t = sd,t−1 + (xd,t − zd,t · pon) · h− qd,t, ∀t ∈ T \ {1} (5)
sd,t ≤ smax, ∀t ∈ T (6)
xd,t, x

w
d,t, x

g
d,t, sd,t ≥ 0, ∀t ∈ T (7)

zd,t ∈ {0, 1}, ∀t ∈ T (8)

Constraints (1)-(2) compute the total power exploited by the electrolyzer and
ensure that it complies with its activation/deactivation state. Constraints (3)
limit the use of wind power to its minimum guaranteed quantity. Constraints
(4)-(5) are the hydrogen stock balance equations which, together with the non-
negativity requirements on the variables sd,t, guarantee on-time demand satis-
faction. Note that the quantity of hydrogen produced in (d, t) is calculated as
(xd,t − zd,t · pon) · h to account for the fixed activation power pon. Inequalities
(6) limit the amount of hydrogen stored to the maximum storage capacity. Let
Xd(s

in
d , wd) be the set of all production plans (xd, x

w
d , x

g
d, sd, zd) for day d com-

plying with constraints (1)-(8), where each plan component is a |T |-dimensional
vector.

Let the first-stage decision variables be denoted χ = (x1, x
w
1 , x

g
1, s1, z1), then

the two-stage stochastic programming model can be formulated as follows:

min
∑
t∈T

cg1,t · x
g
1,t + E

ξ∈S
[Q(χ, ξ)] (9)

s.t. χ ∈ X1(s
0, w1) (10)

Objective function (9) aims at minimizing the grid power purchasing costs for
day 1 and the expected value, over all scenarios, of the grid power purchasing
costs for day 2. Here, Q(χ, ξ) returns the optimal value of the second-stage sub-
problem, which computes the second-stage cost in the case where the first-stage
decisions are equal to χ and the scenario ξ realizes. This sub-problem involves
the excess stock variables relative to day 1, and the day-ahead production plan-
ning and power purchase decisions relative to day 2 for this scenario. It is thus
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formulated as:

Q(χ, ξ) :=min
∑
t∈T

cg2,t · x
g
ξ,2,t (11)

s.t. s̃ξ,1,1 ≤ (w̃ξ,1,1 · z1,1 − xw
1,1) · h, (12)

s̃ξ,1,t − s̃ξ,1,t−1 ≤ (w̃ξ,1,t · z1,t − xw
1,t) · h, ∀t ∈ T\{1} (13)

s̃ξ,1,1 ≤ qmax − (x1,1 − z1,1 · pon) · h, (14)
s̃ξ,1,t − s̃ξ,1,t−1 ≤ qmax − (x1,t − z1,t · pon) · h, ∀t ∈ T\{1} (15)
s̃ξ,1,t ≤ smax − s1,t, ∀t ∈ T (16)
s̃ξ,1,t ≥ 0, ∀t ∈ T (17)
(xξ,2, x

w
ξ,2, x

g
ξ,2, sξ,2, zξ,2) ∈ X2(s1,24 + s̃ξ,1,24, w2) (18)

Inequalities (12)-(17) deal with the management of the hydrogen produced dur-
ing day 1, using the generated wind power, and available to meet demand only
at the beginning of day 2. Note that constraints (12)-(15) directly represent the
ability to generate additional stock according to the additional available wind
power and production capacity. They can thus be considered as inventory bal-
ance equations. Finally, inequalities (16) ensure that the maximum hydrogen
storage capacity is respected, and constraint (18) reflects the need to build a
feasible production planning for day 2. Note also that the initial incoming stock
for day 2, s1,24+s̃ξ,1,24, depends on the scenario ξ, i.e., on wind power realization
during day 1.

Note that the only coupling between the first and second stages comes from
the final stock of day 1, s1,24+ s̃ξ,1,24, being the incoming stock of day 2. There-
fore, the recourse Q(χ, ξ) is relatively complete. The second-stage problem is
feasible for any first-stage decision χ and any scenario ξ, since a production plan
may be found for any incoming stock value.

3 Uncertainty modeling

Establishing a wind forecast error distribution is a complex problem (see, e.g.,
Pinson [6]). First, the uncertainty depends on the weather conditions: here the
wind power forecast is already known, and we consider that the error distribution
depends on the forecast itself. Furthermore, these errors are strongly correlated
over time and depend on the overall shape taken by the forecast across the whole
horizon. Fortunately, error models can be identified and learnt from recurrent
patterns from past forecasts that resemble those being studied. For instance, in
the case of sudden increases in wind power, forecasts may often correctly identify
the time periods of such events, but not their exact amplitude.

State-of-the-art approaches for scenario-based probabilistic energy forecasts
include Gaussian copula, auto-regressive models and more recently, deep learning
generative methods. Cramer et al. [7] compare these approaches to generate
wind power scenarios for day-ahead stochastic production problems. The authors
conclude that deep learning generative methods may present more benefits, using
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a «Normalizing Flow» technique. In the present work, a similar approach is
chosen, in the form of a probabilistic neural network called «Variational Auto-
Encoder» (see, e.g., Kingma and Welling [9]). As shown by Hernandez Capel
and Dumas [8], this method might provide poorer results for complex tasks but
it is far simpler to implement. It is, however, sufficient for the relatively simple
task of deriving scenarios from a forecast input, rather than from weather data
alone.

This machine learning method first transforms a time series representing the
forecast, used as input parameter, into the mean and variance of a multivari-
ate normal distribution by the use of a traditional, non-linear neural network.
Samples obtained from this distribution are then transformed back into output
parameters in a similar fashion, thus obtaining the desired wind power fore-
cast scenarios. The overall process corresponds to a single, probabilistic neural
network trained in a unified manner. The neural networks before and after sam-
pling are trained jointly to recognize forecast error patterns across the training
dataset.

This method is trained on a dataset comparing predicted and actual wind
power. Through scenario sampling, it constructs a discrete approximation of the
error distribution for any given forecast, based on the observed errors of similar
forecasts in the historical data. In this case study, the forecast error distribution
is estimated for the first day of the planning horizon. A comparison of actual wind
power with the forecasted and scenario-sampled ones is illustrated below. The
neural network may fail to correctly estimate the distribution, if the situation
at hand has not yet been observed in the historical data upon which it has been
trained.

Fig. 1. First example of test data Fig. 2. Second example of test data

4 Time-efficient Benders decomposition algorithm

A large number |S| of scenarios are needed to accurately represent the uncer-
tainty distribution. As the size of the mixed-integer linear problem is broadly
proportional to |S|, solving it directly as a whole leads to significant numerical
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difficulties. However, it has a block-decomposable structure that makes it suit-
able for a Benders decomposition approach (see, e.g., Rahmaniani et al. [10]).

In our case, the Benders decomposition approach relies on the formulation
(9)-(10) involving only the first-stage decision variables χ = (x1, x

w
1 , x

g
1, s1, z1)

and an approximation of a closed-form expression of the function Q(·, ξ) for
each scenario ξ ∈ S, denoted hereafter Qξ for simplicity. The objective of a
Benders decomposition algorithm thus consists in iteratively constructing such
approximations taking the form of a convex piece-wise linear function.

At iteration j of the Benders decomposition algorithm, we therefore first solve
the following relaxation of problem (9)-(10), which is called the master problem:

min
∑
t∈T

cg1,t · x
g
1,t + E

ξ∈S
[Qξ] (19)

s.t. χ ∈ X1(s
0, w1), (20)

Qξ ≥ πξ
mχ+ ρξm, ∀m ∈ {1, . . . , j − 1}, ∀ξ ∈ S (21)

Once the first-stage decisions χj are made for iteration j, the |S| single-scenario
sub-problems Q(χj , ξ) are solved, and their solution is used to generate a new
optimality cut of the form (21) which is added to the formulation of the mas-
ter problem (19)-(21) in order to improve the current under-approximation of
function Q(·, ξ). This decomposition algorithm thus iteratively solves the master
problem and a sequence of single-scenario sub-problems until convergence.

However, such an approach requires to repeatedly solve a large number of
single-scenario sub-problems, and a master problem whose size gradually in-
creases due to the iterative addition of optimality cuts. Thus, to be numerically
tractable, the single-scenario sub-problems and the master problem have to be
solved in a reasonable time. Both issues are discussed in the following.

4.1 Approximate resolution of the second-stage sub-problems

Each sub-problem Q(χ, ξ) is a mixed-integer linear program involving binary
activation variables. A Benders decomposition approach, based on the exact
resolution of a set of mixed-integer linear sub-problems at each iteration, is
likely to require prohibitive computation times. Instead, a particular feature of
our problem is exploited to speed up the resolution of each sub-problem Q(χ, ξ)
at each iteration. Namely, the set of constraints X2(s1,24 + s̃ξ,1,24, w2), relative
to the production planning of day 2, depends only on the final stock of day 1 and
is therefore scenario-independent. Consequently, Q(χ, ξ) can be reformulated as
follows:

Q(χ, ξ) := min Γ (s1,24 + s̃ξ,1,24) (22)
s.t. (12)-(17) (23)

Here, the function Γ (·) gives the value of the second-day production cost as a
function of the final stock level at the end of day 1. Note that the function Γ (·)
depends only on the stock level but neither on the scenario nor on other variables.
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Moreover, Γ (·) is a non-increasing function that would be convex without the
binary activation variables. Indeed, the greater the input stock at the beginning
of day 2, the less hydrogen production is necessary during that day, and the
lower the corresponding production cost. In addition, this input stock is used
to avoid production from the most expensive production hours to the cheapest
ones. Hence the incremental decrease in production cost on day 2 tends to become
smaller as the level of incoming stock increases, with occasional variations due
to the electrolyzer activation state.

The resolution time of each sub-problem Q(χ, ξ) is therefore reduced by solv-
ing an approximate continuous problem Q̂(χ, ξ), whose model relies on a piece-
wise linear and convex approximation Γ̂ (·) of the function Γ (·). To construct this
approximation as a pre-optimization step, we start by decomposing the interval
[0, smax] into a set N = {1, . . . , n} of sub-intervals. Let δi be the width of interval
i ∈ N . We then calculate the value of Γ (·) at each corresponding break-point
in the approximation by solving the second-day production problem for each of
these values. Finally, we construct the convex hull Γ̂ (·) of the resulting image
points to obtain Γ̂ (0), Γ̂ (δ1), Γ̂ (δ1 + δ2), . . . , Γ̂ (

∑n
i=1 δi).

The slope of the piece-wise linear approximation of Γ̂ (·) over interval i ∈ N

is given by κi =
(
Γ̂ (

∑i−1
j=1 δj) − Γ̂ (

∑i
j=1 δj)

)
/δi. Since this convex piece-wise

linear function appears in the objective of a minimization problem, it can be
expressed by introducing a set of continuous variables wi, i ∈ N :

Q̂(χ, ξ) := min Γ̂ (0)−
∑
i∈N

wi · κi (24)

s.t. (12)-(17), (25)∑
i∈N

wi ≤ s̃ξ,1,24 + s1,24, (26)

0 ≤ wi ≤ δi, ∀i ∈ N (27)

Let a, b and c be the non-negative, constant right-hand side vectors of constraints
(12)-(13), (14)-(15) and (16). The dual of the approximated sub-problem (24)-
(27) is formulated as follows:

max Γ̂ (0) −
( ∑

t∈T

[at · αt + bt · βt + ct · ηt ] + s1,24 · λ +
∑
i∈N

δi · µi

)
(28)

s.t. αt + βt + ηt ≥ αt+1 + βt+1, ∀t ∈ T\{24} (29)
α24 + β24 + η24 ≥ λ, (30)
λ+ µi ≥ κi, ∀i ∈ N (31)
αt, βt, ηt, λ, µi ≥ 0, ∀t ∈ T, ∀i ∈ N (32)

Here, α, β, η and µ are respectively the dual vectors of variables for constraints
(12)-(13), (14)-(15), (16) and (27), while λ is the dual variable for constraint (26).
This problem may be solved in linear time. Suppose that for a given scenario
ξ ∈ S, the optimal solution λξ to this problem is known. Indeed, the optimal
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values (αξ, βξ, ηξ) at time-step t depend on those at time-step t + 1, and the
values at time-step 24 depend on λξ. One may use dynamic programming to
deduce these values, by solving a shortest path problem on the directed acyclic
graph represented below. There, each variable whose corresponding node is part
of the shortest path has its optimal value equal to λξ, and any other variable
have its value equal to zero.

Source

α24

β24

η24

Destination

α1

β1

η1

αt

βt

ηt

αt+1

βt+1

ηt+1

a24

b24

c24

at

bt at

bt
ctct

0

0

0

0

Fig. 3. Directed acyclic graph for the second-stage approximate dual problem

As for the optimal values µξ, they are directly deduced so that:

µξ
i = max{0, κi − λξ}, ∀i ∈ N (33)

Hence, since the optimal values (αξ, βξ, ηξ) depend linearly on the optimal value
of λ, the only possible extreme points of this latter variable belong to the set
{0, κ1, . . . , κn}, and the variable λ is of optimal value in this set. Thus, to solve
this approximate sub-problem, it is sufficient to solve the aforementioned shortest
path problem once, and then enumerate the possible values of the variable λ.
For a solution value P of the shortest path problem, the approximate dual sub-
problem is equivalent to:

min

{
(P + s1,24) · λ+

∑
i∈N

δi ·max{0, κi − λ} : λ ∈ {0, κ1, . . . , κn}

}
(34)

Handling the sub-problem requires both this enumeration and solving the short-
est path problem, and is therefore of linear complexity O (|N |+ |T |). Note that
the set of optimal solutions is finite, since the number of paths in Figure 3, and
the possible optimal values of λ, are finite. An optimal solution (αξ, βξ, ηξ, λξ, µξ)
of the approximate dual sub-problem is finally used to infer parameters (πξ, ρξ)
like so:

ρξ =Γ̂ (0)−
(∑

t∈T

[
qmax · βξ

t + smax · ηξt
]
+

∑
i∈N

δi · µξ
i

)
(35)

πξ · χ =
∑
t∈T

[
s1,t · ηξt − (w̃ξ,1,t · z1,t − xw

1,t) · h · αξ
t

]
+
∑
t∈T

[
(x1,t − z1,t · pon) · h · βξ

t

]
− s1,24 · λξ

(36)
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The resulting optimality cut is then added to the set of constraints (21) in the
master problem.

Therefore the second-stage problem can be solved with good precision in an
efficient manner, as guaranteed by its linear complexity. Although the network
flow structure of the second-stage problem was already known for two-stage
stochastic lot-sizing problems, this particular application accounting for the pre-
sented approximation can be considered to be an original contribution.

4.2 Accelerating the Benders decomposition scheme

This sub-section tackles the difficulties met when solving the master problem
once a large number of optimality cuts has been generated. It aims at reducing
the number of generated optimality cuts at each iteration, and the number of
iterations to achieve convergence.

First, it is possible to exploit scenarios with identical second-stage dual solu-
tions to reduce the number of generated optimality cuts. An adaptive partition-
based Benders decomposition is implemented (see, e.g., Song and Luedtke [11]).
At each iteration j we solve the master problem, as well as the second-stage
dual problem for each scenario ξ ∈ S, and retrieve the corresponding second-
stage dual solution. We use this information to define a partition of the scenario
set S into K ≤ |S| non-empty subsets Sj

k, k ∈ {1, . . . ,K}, gathering scenarios of
identical dual solution. Then, we replace the optimality cuts presented in (21)
and (35)-(36) by a single one per non-empty subset Sj

k ̸= ∅ of this partition:

E
ξ∈Sj

k

[Qξ] ≥ E
ξ∈Sj

k

[
πξ
jχ+ ρξj

]
(37)

This approximate optimality cut remains precise: all scenarios in that set share
very similar parameters (πξ

j , ρ
ξ
j) since they all have an identical dual solution

(αk, βk, ηk, λk, µk). Thus, the right-hand term of the approximate optimality
cut (37) is expressed as:

E
ξ∈Sj

k

[
ρkj

]
=Γ̂ (0)−

(∑
t∈T

[
qmax · βk

t + smax · ηkt
]
+

∑
i∈N

δi · µk
i

)
(38)

E
ξ∈Sj

k

[
πξ
j · χ

]
=
∑
t∈T

[
s1,t · ηkt −

(
E

ξ∈Sj
k

[
w̃ξ,1,t

]
· z1,t − xw

1,t

)
· h · αk

t

]
+
∑
t∈T

[
(x1,t − z1,t · pon) · h · βk

t

]
− s1,24 · λk

(39)

In other words, all scenarios in that set share an identical optimality cut ex-
cept for the available wind power w̃ that depends on the considered scenario.
Rather than generating multiple and extremely similar optimality cuts, a single
one is added to the model with an available wind power approximated by its
average value across that set. This approach enables a significant reduction in
the number of optimality cuts added to the master problem. In fact, scenarios
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of different values having the same impact on certain first-stage decisions are
bundled together into a single constraint.

In practice, the partition-based acceleration improves convergence in the
early iterations of the decomposition scheme, with a fast decrease of the pre-
cision gap. Yet because of the mentioned approximation on the available uncer-
tain wind power, once a small gap is achieved, the scheme could take more time
than expected to converge. Thus one may consider dialing down the partition-
ing according to the observed gap at each iteration, for example using partial
refinement as presented by Song and Luedtke [11].

Finally, a trust-region stabilization method is introduced to reduce the num-
ber of iterations of the decomposition scheme (see, e.g., van Ackooij et al. [12]).
It forces the master problem solution of the next iteration to lie in the neigh-
borhood of the previous one. Such method improves the performance of the
decomposition scheme by decreasing its instability, i.e., the fact that two suc-
cessive first-stage decisions can be «very far apart». It is here more specifically
applied to the binary activation variable z: at iteration j + 1, there can be no
more than C changes in the variable values by adding the following constraint
to the master problem: ∑

{t:zj
1,t=1}

(1− z1,t) +
∑

{t:zj
1,t=0}

z1,t ≤ C (40)

In practice, the optimal production plan is mainly dependent on the choice to
activate the production unit at each period. Thus, one may limit the change in
activation variable values from a planning to another to effectively force them
to share a similar shape, reducing the instability of the decomposition scheme
in the process.

These acceleration methods result in a master problem of reduced size that
has to be solved for a smaller number of iterations, without loosing the finite-
optimal convergence of the Benders decomposition algorithm. To the best of
our knowledge, none were used until now to improve a Benders decomposition
scheme applied to a stochastic lot-sizing problem.

5 Numerical experiments

This section assesses the performance of the stochastic programming approach
to reduce the production overcosts induced by wind power forecast uncertainty.

To that end, a production site is considered with the following parameter
values: pon = 200 kWh, pmax = 1000 kWh, qmax = 15 kg, h = 0.015 kg/kWh,
smax = 70 kg and q = 9 kg. We simulate the day-to-day operation of this site
over a rolling one-year period. Electricity prices of the national grid network
correspond to those of France in the year 2016. Actual and forecasted wind
power values are obtained from realistic, open-access data by Pan et al. [13].
The comparison between actual and predicted wind power is carried out over
two years: the scenario generation method is trained on the first year and the
simulation is performed on the second year.
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For each day of the simulated year, we calculate the production plan provided
by the stochastic model (9)-(10), the one provided by a deterministic oracle
model having full knowledge of the future wind power availability, and the one
provided by a deterministic naive model using the forecast but not considering
any uncertainty. The stochastic model is evaluated for |S| = 1000 scenarios, a
stabilization parameter C = 3 and |N | = 10 pieces approximating the function
Γ (·). For each model, the decisions relative to the first day are implemented,
and the actual production cost and resulting storage value are recorded.

Table 1 displays the simulation results, comparing the overcosts related to the
wind power forecast error over the year. This overcost is defined as a percentage
of the theoretical minimum costs indicated by the oracle model. The stochastic
model performs better than the naive one with 0.8% less overcosts in total for
the year, which represents 21% of the loss caused by the uncertainty.

Table 1. Overcosts related to uncertainty as part (%) of the theoretical optimum

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Year average

Naive 3.1 4.9 3.5 3.4 4.3 3.7 4. 4. 3.8 3.6 3.8 3.7 3.8
Stochastic 1.9 2.2 2.9 2.8 3.1 3.9 2.8 4. 2.6 3.5 3.1 3.6 3.

We also demonstrate the benefits of the partition-based and stabilized de-
composition in reducing the runtime of the stochastic model. The day-by-day
runtime across the simulation over a year for |S| = 1000 is observed to compare
the decomposition scheme enhanced with one of these methods, both or none.
The computational experiments were conducted on a CentOS Linux machine
with 16 GB of RAM and an Intel Core CPU i7-8565U processor at 1.80 GHz.
All the mixed-integer linear programs were solved with the commercial solver
IBM CPLEX 12.10, for which a single thread was used. The algorithms were
realized in Python, and CPLEX was called via the framework of Pyomo. The
cumulative runtime over the simulation for each method is shown in Figure 4.

Using the stabilization and partition-based methods jointly in the decom-
position scheme appears to be most beneficial in reducing the runtime. Overall
when using both acceleration methods, the solving time is reduced by two third
compared to the standard decomposition scheme. Take note that although the
partition-based decomposition scheme alone doesn’t exhibit significantly better
performance compared to the standard decomposition scheme, it becomes highly
beneficial when integrated with the stabilization scheme, reducing by a third the
average solving time compared to a scheme with stabilization only.
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Fig. 4. Cumulative runtime comparison of the stochastic models

The presented numerical experiments evaluate the proposed stochastic ap-
proach in a real-life setting and for a wide variety of electricity grid prices and
wind power availability. They demonstrate the method’s ability to improve pro-
duction performance within a reasonable timeframe, for a broad range of prac-
tical cases. The data used to carry out this simulation (grid prices, wind power,
scenarios) is available for reproducibility purposes4 .

6 Conclusion

This work addresses day-ahead production planning with uncertain availability
of a wind power source and a historical dataset of forecast error. It is modelled
as a two-stage stochastic lot-sizing problem, solved by a Benders decomposition
scheme with an innovative approximation of the second-stage model and the
novel use of acceleration methods. An accurate method for generating wind
power scenarios and a time-efficient resolution provide a significant reduction in
production costs, as demonstrated by a realistic simulation of the production
site.

Possible extensions to more realistic models could be achieved from this work.
The presented problem is solved in a similar fashion when accounting for other
uncertain energy sources (e.g. photovoltaic), or for the deterministic participa-
tion to other energy markets (e.g. intra-day market). The electrolysis production
efficiency could be more precisely represented by a piecewise-linear concave ap-
proximation with continuous representation (see, e.g., Baumhof et al. [14]), with
minor changes to the network flow model of the second-stage approximate dual

4 https://github.com/VSpitzer/Stochastic-day-ahead-lot-sizing.git

https://github.com/VSpitzer/Stochastic-day-ahead-lot-sizing.git
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problem. We may also extend the work to consider a set of parallel hydrogen
production units. Finally, demand uncertainty might bear strong resemblance to
the studied uncertain power availability, as both seem equivalent to a variation
in production capacity.

Further research work would include the consideration of uncertainty relative
to day-ahead electricity grid prices, as it mainly impacts the first-stage decision.
In addition, other stabilization methods could further improve the time efficiency
of the decomposition scheme.
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