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Abstract

Analytical solutions to Fluid-Structure Interaction (FSI) problems are almost absent in the
literature. However, they are not only essential for understanding the intricate coupling
dynamics between fluids and solids, but they also serve as benchmarks for validating and
analysing the convergence of numerical algorithms. In this paper, we derive two analytical
and one semi-analytical solutions for three FSI problems, spanning a class of solutions by
varying their geometrical and physical parameters. All solutions exhibit complex nonlinear
behaviours, which we validate through numerical simulations using a monolithic method.
These three FSI problems are described in the cylindrical coordinates, drawing inspiration
from Couette flow, with two of them featuring a moving fluid-solid interface and the third
incorporating a nonlinear constitutive solid model. To the best of our knowledge, for the
first time, we present FSI problems with analytical solutions that include a moving interface.

Keywords: Fluid-structure interaction, Analytical solution, Finite element, Monolithic
method, One-velocity field

1. Introduction

Fluid-Structure Interaction (FSI) problems are prevalent across various fields, including
aerodynamics [1–4], biomedical science [2, 5–7], ocean dynamics [8–11], and so on. For most
FSI problems, analytical solutions of the controlling equations are impossible to obtain,
whereas laboratory experiments are complex, expensive, and limited in scope. Therefore,5

numerical simulations play an important role in order to understand the fundamental physics
involved in the complex interaction between fluids and structures.

1.1. A brief summary of numerical methods for fluid-structure interactions

Numerical methods for FSI problems have rapidly advanced over recent decades. Clas-
sical partitioned or segregated methods, as referenced in [2, 12–30], have been prominent10

over the past two decades. These methods utilise a single interface-fitted mesh to solve
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for both fluid velocity and solid displacement. These methods represent some of the earli-
est numerical approaches developed for FSI problems and are still evolving, particularly in
terms of parallelisation [24, 28], efficiency [25, 27], stability, accuracy [29], and adaptivity
[26, 29, 30]. For two-way coupling (or strong coupling) FSI problems, partitioned methods15

iteratively solve for the fluid and solid problems separately. They exchange information
across the fluid-solid interface until achieving a balance of variables at the interface. The
advantage of classical partitioned methods is their relative ease of implementation, often
based on the coupling of existing fluid and solid code. However, their drawback lies in the
difficulty of guaranteeing convergence during iteration, especially when there is rapid energy20

exchange between the fluid and solid at the interface [19, 20]. A simplified version of these
two-way partitioned methods is the one-way FSI method. In this method, only the fluid
problem is solved explicitly, while the solid deforms passively by following the fluid fields. It
provides an updated boundary condition for the fluid problem for every time frame [31–33].

Monolithic methods were developed to overcome the limitations of partitioned methods,25

which solve the fluid and solid equations within a single equation system. This approach has
gained widespread acceptance as a more robust numerical method compared to classic parti-
tioned methods. Initially, monolithic methods were based on an ALE interface-fitted mesh.
They solve for fluid velocity, pressure, solid displacement, and use a Lagrange multiplier to
enforce continuity at the fluid-solid interface [7, 34–36].30

Recent advancements in monolithic methods have introduced the use of a background
Cartesian grid with locally cut triangles to accommodate the fluid-solid interface, named
as the locally modified FEM [37–40]. This method solves for the variables of fluid velocity
and pressure, as well as solid displacement or velocity. In comparison to traditional ALE
methods, it circumvents the need for a moving mesh and is proficient in handling arbitrarily35

large solid deformations. However, a difficulty lies in the management of local anisotropic
FEM mesh—Edge stabilisation techniques [41] are introduced to enhance the stability.

Monolithic methods have also evolved to use two meshes [42–44]. This approach ad-
dresses fluid velocity, pressure, and solid displacement while using a distributed Lagrange
multiplier to ensure velocity consistency between the meshes. Another variation is the40

cutFEM-based FSI method [45, 46], which extends the solid foreground mesh to envelop
a surrounding artificial fluid mesh with a fitted interface. This method involves cutting
through local elements around the interface for numerical quadrature without modifying
local degrees of freedom, unlike the locally modified method. However, stability issues arise
due to possible irregularities in local meshes, leading to the adoption of Nitsche-type in-45

terface coupling strategies with ghost penalty terms [47] to guarantee stability. The initial
version of this cutFEM-based approach was presented in [48] as a partitioned approach.

Alternatively, monolithic methods have been adapted to employ a single mesh without
interface fitting, known as the fully Eulerian formulation [49–55]. These methods use an
Initial Points (IP) set to capture the fluid-structure interface, extending the unknown vari-50

ables across the entire domain with a characteristic function. The FSI system is solved in a
monolithic manner.

Recently, we developed a one-velocity method that solves for a single velocity field across
the entire FSI domain, using either a single interface-fitted mesh [56–59] or two meshes [60–
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63]. In this one-velocity method, the solid equations are first expressed in terms of velocity,55

automatically ensuring velocity consistency at the fluid-solid interface with one interface-
fitted mesh. When using two meshes, finite element isoparametric interpolation is employed
to maintain velocity consistency. We shall benchmark this one-velocity monolithic method
against the three (semi-)analytical FSI problems proposed in this paper.

1.2. Analytical solutions in special computational domains60

Analytical solutions to the Navier-Stokes equation may only be obtained for simple ge-
ometries with additional assumptions, utilising symmetry to reduce the equation to lower
dimensions, such as the Couette flow between two concentric cylinders [64, 65], or the pul-
satile flow in a pipe [66]. Both the Couette flow and the pulsatile flow can be modelled in
a cylindrical coordinate system: r − θ − z are radial, circumferential, and axial coordinates65

respectively as shown in Figure 1; exploring the symmetry, the former may be reduced to a
problem on r−θ plane while the latter on r−z plane. Additional assumptions of the velocity
profiles of the Couette and the pulsatile flow can further reduce them to one-dimensional
problems, which may be solved analytically.

Analytical solutions of FSI problems, where Navier-Stokes equations are coupled with70

solid equations, have rarely been studies. Building on the Couette and pulsatile fluid flow,
analytical FSI problems may be created to fill this gap in the FSI community. In a recent
study [67], analytical solutions of the pulsatile flow in an elastic pipe have been derived,
which is reduced to a one-dimensional ODE based on the assumption that the fluid velocity
and solid displacement are axisymmetric and axially invariant – reduced to a 2D problem on75

r − z plane, which only have the axial components. In this paper, we consider the Couette
flow around an elastic solid as shown in Figure 1, and also assume that the fluid velocity
and solid displacement are axisymmetric and axially invariant – reduced to a 2D problem on
r− θ plane. However, depending on the boundary conditions, the velocity and displacement
fields have either the radial or circumferential component: Problem II and III respectively80

in Figure 2 (b). Similar to Couette flow between two parallel plates, we will also consider an
FSI problem between two parallel plates (Problem I) as shown in Figure 2 (a). Notice that
it is also possible to consider an analytical FSI problem by applying a shearing boundary
condition as shown in Figure 2 (a), in which case both the velocity and displacement fields
only have components in the vertical direction. However, a very similar scenario has been85

studied in [67] albeit using the pulsatile-flow boundary conditions applied at the inlet and
outlet. Therefore, we shall not consider this case in the current paper and readers may refer
to [67] for the corresponding analysis.

The rest of this paper is organised as follows: the partial differential equations of the FSI
problems are introduced in Section 2, followed by a discussion of the three FSI problems90

in Sections 3, 4, and 5 respectively. In each of these sections, the FSI problem is described
first, followed by a detailed analysis and derivation of its analytical solution, with numerical
validation provided finally. Conclusions are drawn in Section 6.
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Figure 1: FSI diagram of an elastic solid and viscous fluid between concentric cylinders (R0 and R2) with
a fixed-rod being the middle cylinder.

(a) Compressed infinite parallel plates (b) Compressed and rotating concentric discs

Figure 2: In problem I and II, a periodic normal stress is enforced at outer fluid boundaries, compressing the
solids due to the compression of the fluids. In problem III, a periodic circumferential velocity is prescribed
at the outer fluid boundary, causing the solid disc to rotate forward and backward due to the rotating fluid.

2. FSI equations

In this section, we introduce the partial differential equations for the three fluid-structure95

interaction problems as illustrated in Figure 2. For the first two cases, a periodic normal
force is prescribed at the outer boundary of the fluid, as depicted, causing the solid to be
propelled by the fluid and move along the normal/radial direction. For the third case, a
periodic velocity is prescribed at the outer boundary of the fluid along the circumferential
direction, leading to the solid being dragged to rotate forward and backward.100

An incompressible Newtonian fluid is utilised for all the three problems in this paper,
described as:

ρf u̇ = µf∇ · ∇u−∇pf , (1)

∇ · u = 0, (2)
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Where u represents the velocity vector and pf denotes the pressure, with ρf and µf repre-
senting the fluid density and viscosity parameters respectively. u̇ = d

dt
u = ∂tu + u · ∇u is105

the total derivative of time.
Two solid models are considered in this paper. In problem I and II, we employ a com-

pressible linear elastic solid described in the reference configuration:

ρsd̈ = µs∇̂ ·
(
∇̂⊤d+ ∇̂d

)
+ λs∇̂(∇̂ · d), (3)

where µs and λs are the Lamé constants, ρs is the solid density, and d is the displacement
vector. In problem III, we use an incompressible hyperelastic neo-Hookean model described110

in the current configuration:

ρsd̈ = µs∇ · (FF⊤ − I)−∇ps. (4)

In the above equations (3) and (4), d̈ = d2

dt2
d represents the second-order material deriva-

tive with respect to time. The FSI system can be closed by appropriate boundary and initial
conditions. As shown in the Figure 2, we shall use a wall-boundary at X0 or R0 for all the
three problems. At the outer fluid boundary, other a normal stress (Problem I and II) or a115

tangential velocity profile is prescribed. At the fluid-solid interface (X1 or R1), the conti-
nuity of the velocity and the continuity of the normal stress are applied. We shall discuss
details of these boundary conditions, as well as the initial conditions, separately for the three
specific problems in the following sections.

In the above, ∇ and ∇̂ represent the Nabla operator in the current and reference con-120

figurations respectively. Equations (1) to (3) do not specify a coordinate system. In the
Cartesian coordinate system, we use Xi + Y j to denote a vector in the reference configu-
ration, and xi + yj to denote a vector in the current configuration, with i = (1, 0)⊤ and
j = (0, 1)⊤ being the basis vectors. In the polar coordinate system, we use rer and Rêr to
represent vectors in the current and reference configurations respectively. The polar basis125

vectors er − eθ (or êr − êθ) are functions of θ (or θ̂) and can be derived as follows: since
(x, y) = (r cos θ, r sin θ),

er =
∂r(x, y)

|∂r(x, y)|
= (cos θ, sin θ)⊤ , eθ =

∂θ(x, y)

|∂θ(x, y)|
= (− sin θ, cos θ)⊤ . (5)

Similarly, êr =
(
cos θ̂, sin θ̂

)⊤
and êθ =

(
− sin θ̂, cos θ̂

)⊤
. The relation between (er, eθ) and

(êr, êθ) is
êr = cosαer − sinαeθ, êθ = sinαer + cosαeθ, (6)

where α = θ − θ̂ is the angular displacement.130

It can also be observed that the relationship of the bases between these two coordinate
systems is given by:

(er, eθ)Q = (i, j) (7)

where

Q =

(
cos θ sin θ
− sin θ cos θ

)
. (8)
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With the above notations, it is straightforward to compute the Jacobi matrix

J = ∂(r,θ) (x, y) =

(
cos θ sin θ

−r sin θ r cos θ

)
(9)

and its inverse135

J−1 = ∂(x,y) (r, θ) =
1

r

(
r cos θ − sin θ
r sin θ cos θ

)
(10)

and further the Nabla operator in the polar coordinate system:

∇ = (i, j)∂(x,y) = (er, eθ)QJ−1∂(r,θ) =
(
er,

eθ
r

)
∂(r,θ) = er∂r + eθ

1

r
∂θ. (11)

The Nabla operator is a first-order tensor. The derivative of the polar basis:(
∂rer ∂reθ
∂θer ∂θeθ

)
=

(
0 0
eθ −er

)
= eθ(ereθ)− er(eθeθ) (12)

will also be used to derive the control equations in the following sections, which is a second-
order tensor, with basis ereθ being er ⊗ eθ for short, etc. We can further compute the dot
product of two Nabla operators which is a scalar:140

∇ · ∇ =

(
er∂r + eθ

1

r
∂θ

)
·
(
er∂r + eθ

1

r
∂θ

)
= ∂rr +

1

r
∂r +

1

r2
∂θθ. (13)

Notice that the operators in (11), (12), and (13) take the same form in the reference
coordinate system.

Remark 1. A special feature of applying normal stress (Problem I and II) is the creation of
a moving interface, rendering the FSI problem non-trivial and challenging. In contrast, for
Problem III and the pulsatile-type FSI problems described in [67], the FSI interface remains145

stationary. Here, the complexity lies more in the non-linear solid constitutive model.

Remark 2. For Problem I and II, although we consider a linear constitutive model for the
solid, the linearity is in the reference configuration – highly non-linear if expressed in the
current configuration, while the fluid equation is expressed in the current configuration. This
inconsistency makes the FSI problems more challenging and interesting.150

3. Problem I: compressed parallel plates

For the computational geometry and normal-force boundary condition shown in Figure
2 (a), we assume that only the horizontal velocity component u is non-zero, which, together
with the pressure p, depends only on x and t. The fluid equations (1) and (2) reduce to
one-dimensional PDEs as follows:155

ρf u̇(x, t) = −p′(x, t), (14)

u′(x, t) = 0, (15)

6



Similarly, we assume the solid displacement only has the horizontal component d, which is
a function of X and t. Then the solid equation (3) is reduced to

ρsd̈(X, t) = (2µs + λs)d′′(X, t). (16)

The fluid equation (14) is expressed in the current or physical domain corresponding
to the reference domain [X1, X2], while the solid (16) equation is expressed directly in the
reference domain [X0, X1]. We use the Lagrangian mapping to find the current domain for160

the fluid, i.e., extending the solid displacement d(X, t) (X ∈ [X0, X1]) to the displacement
of the fluid particles ξ(X, t) (X ∈ [X1, X2]), with ξ(X1, t) = d(X1, t) at the interface. Let
x1(t) = X1+ξ(X1, t) and x2(t) = X2+ξ(X2, t), then x(X, t) = X+ξ(X, t) with X ∈ [X1, X2]
represents a general point in the current domain [x1(t), x2(t)].

The FSI system is completed with the following boundary conditions:165

d(X0, t) = 0, (17)

ḋ(X1, t) = u(x1(t), t), (18)

(2µs + λs)d′(X1, t) = −p(x1(t), t), (19)

p(x2(t), t) = p̄(t). (20)

3.1. Analytical solution

With ω = ϕ
√
(2µs + λs)/ρs,

d(X, t) =
a

ω
sin(ϕ(X −X0)) sin(ωt), (21)

is the general solution of (16), and also satisfies the homogeneous boundary condition (17)
and initial condition d(X, 0) = 0.

ḋ(X1, t) = a sin(ϕ(X1 −X0)) cos(ωt) (22)

is the velocity at the interface and also equivalent to the fluid velocity, u(x, t), across the fluid170

domain [X1, X2], since (15): u′(x, t) = 0 ⇒ u(x, t) is constant in x. Therefore, according to
(14), the pressure is

p′(x, t) = ωρfa sin(ϕ(X1 −X0)) sin(ωt), (23)

or
p(x, t) = p0(t) + xωρfa sin(ϕ(X1 −X0)) sin(ωt). (24)

Matching the normal stresses at the interface (19) gives

p0(t) + (X1 + d(X1, t))ωρ
fa sin(ϕ(X1 −X0)) sin(ωt)

= −aϕ(2µs + λs)

ω
cos(ϕ(X1 −X0)) sin(ωt),

(25)

and this equations determines p0(t) :175

p0(t) =− (X1 + d(X1, t))ωρ
fa sin(ϕ(X1 −X0)) sin(ωt)

− aϕ(2µs + λs)

ω
cos(ϕ(X1 −X0)) sin(ωt).

(26)
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Let the initial displacement and velocity be d(X, 0) = 0 and u(x, 0) = a sin(ϕ(X1 −X0))
respectively. Since the fluid velocity, across the whole fluid domain, is the same as the
velocity at the interface. By an integration in time, we know that the displacements of the
fluid particles ξ(X, t) = d(X1, t) are independent ofX as well. Therefore, x−x1(t) = X−X1.
Based on this relation, the solutions for the FSI equations (14) to (20) are summarised as180

follows:
d(X, t) =

a

ω
sin(ϕ(X −X0)) sin(ωt), X ∈ [X0, X1]. (27)

p(x(X, t), t)

=

[
(X −X1)ωρ

fa sin(ϕ(X1 −X0))−
aϕ(2µs + λs)

ω
cos(ϕ(X1 −X0))

]
sin(ωt),

(28)

u(x, t) = a sin(ϕ(X1 −X0)) cos(ωt), x ∈ [X1, X2]. (29)

The motion of the interface is included in the solution d(X, t), i.e.: X1 + d(X1, t). The
boundary pressure is also included in the solution as:185

p̄(t) = p(x2(t), t)

=

[
(X2 −X1)ωρ

fa sin(ϕ(X1 −X0))−
aϕ(2µs + λs)

ω
cos(ϕ(X1 −X0))

]
sin(ωt),

(30)

which is periodic in time with a frequency of ω.

3.2. Numerical validation

In this section we validate the analytical solutions derived in the previous section, using
the one-velocity FSI method as described in Appendix A. The implementation is based on
FreeFem++ [68], using the parameter set in Table 1 as an example, for which the maximal190

solid displacement is around 5% = 0.05/(X1 −X0) of the width of the solid domain.

Remark 3. The analytical solutions (27), (28), and (29) hold for solid deformations larger
than 5%, despite Lamé’s equation (3) assuming small displacements in physics. However,
the numerical simulation becomes challenging due the moving mesh, and also because one has
to make sure the vertical components of the velocity and displacement are always numerically195

negligible.

ρf ρs µf µs λs X0 X1 X2 ϕ a
1 2 2 10 100 3 4 5 1.75π 2

Table 1: A group of parameters for the compressed parallel plates.

We consider computation domain of a Ω1 = (X2 −X0)×H = 2× 4 rectangle and apply
a periodic boundary at the top and bottom boundaries. We start from a relative coarse
mesh with 861 nodes and 1600 triangles as shown in Figure 3, and a time step of ∆t = 10−3

to compute up to a time of T1 = 0.5 which is more than 3 time periods of oscillations.200
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Figure 3: Diagram showing the numerical result as well as its comparison with the analytical solutions at t = 0.5: from left
to right and top to bottom, horizontal velocity on a coarse mesh, comparisons of the velocity, displacement and pressure.

All the numerical results of velocity, pressure and displacement already agree well with our
analytical solutions on this coarse mesh as shown in Figure 3, although we observe that the
errors increase gradually as time evolves.

Based on the coarse mesh (Figure 3) and ∆t = 10−3, we refine the mesh and re-
duce the time step to test the spatiotemporal convergence of the numerical methods using205

L2 ([0, T1];L
2 (Ω1)) norm: first compute the L2(Ω1) error given a specific time, denoted by

e(t), then compute L2([0, T1]) norm of e(t). We use a backward Euler scheme for the time
discretisation and P2P1 element for the space discretisation of the velocity-pressure pair.
The optimal spatiotemporal convergence is achieved as shown in Figure 4.

Remark 4. There is a special case when ϕ(X1−X0) = nπ with n ∈ N, in which u(x, t) ≡ 0.210

This means the entire fluid remains stationary, while a compressed solid wave oscillates
across [X0, X1], with the boundary pressure p̄(t) passing through the fluid and directly acting
on the solid. Please refer to Appendix Appendix B.1 for a brief test of this case and the
supporting animations at https://yongxingwang.github.io/simulation/.
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Figure 4: Spatiotemporal convergence of the displacement, velocity and pressure in space L2
(
[0, T1];L2 (Ω1)

)
, where Ω1

is the reference computational domain at t = 0. The two tables show the errors corresponding to the squared points in the
graphs, which indicate the optimal convergence of backward Euler and P2P1 element for the time and the space discretisations
respectively. The size of the coarse mesh is h = 0.1 and the initial time step ∆t = 10−3.

4. Problem II: compressed concentric discs215

In this case, both the fluid velocity and the solid displacement only have components
along the radial direction: u = uer and d = dêr. Additionally, both u = u(r, t) and
d = d(R, t) = r−R are independent of θ = θ̂, and the pressure p = p(r, t) is also independent
of θ (or θ̂). Let u′ = ∂ru and p′ = ∂rp for notation convenience.

4.1. Fluid equations220

Noticing that ėr = θ̇eθ = (uθ/r)eθ = 0, the inertial term can be expressed as:

u̇ =
d

dt
(urer) = u̇er = (∂tu+ uu′)er. (31)

10



Applying operator ∇ · ∇ to u = urer, we have

∇ · ∇u =

(
u′′ +

u′

r
− u

r2

)
er. (32)

These then yield the momentum equation

ρf (∂tu+ uu′) = µf

(
u′′ +

u′

r
− u

r2

)
− p′, (33)

by substituting equations (31) and (32) into (1).
The continuity equation (2) becomes:225

∇ · u =

(
er∂r +

1

r
eθ∂θ

)
· (uer) = ∂ru+

u

r
=

(ru)′

r
= 0. (34)

Finally, equation (34) may be substituted into equation (33) to obtain a simplified form
of the momentum equation:

ρf (∂tu+ uu′) + p′ = µf (u′ +
u

r
)′ = 0. (35)

4.2. Solid equations

Apply the operators ∇̂ and ∇̂ · ∇̂ to the displacement vector, and let d′ = ∂Rd, then

∇̂d =

(
êr∂R +

1

R
êθ∂θ̂

)
(dêr) = d′êrêr +

d

R
êθêθ, (36)

230

∇̂⊤d = d′êrêr +
d

R
êθêθ = ∇̂d, (37)

∇̂ · ∇̂d =

(
d′′ +

d′

R
− d

R2

)
êr. (38)

Similar to the continuity equation of the fluid,

∇̂ · d =

(
êr∂R +

1

R
êθ∂θ̂

)
· (dêr) = d′ +

d

R
, (39)

which however is not zero. Instead, applying the Nabla operator (11) to ∇̂ · d, we have

∇̂(∇̂ · d) =
(
êr∂R +

1

R
êθ∂θ̂

)(
d′ +

d

R

)
=

(
d′ +

d

R

)′

êr. (40)

Finally, substituting equations (38) and (40) into the solid equation (3), we obtain

ρsd̈ = (2µs + λs)

(
d′ +

d

R

)′

. (41)
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4.3. Boundary conditions235

As discussed in Section 3, the fluid equation (35) is expressed in the current or physical
domain corresponding to the reference domain [R1, R2], while the solid equation (41) is
expressed directly in the reference domain [R0, R1]. We use the Lagrangian mapping to find
the current domain for the fluid, i.e., extending the solid displacement d(R, t) (R ∈ [R0, R1])
to the displacement of the fluid particles ξ(R, t) (R ∈ [R1, R2]), with ξ(R1, t) = d(R1, t) at240

the interface. Let r1(t) = R1 + ξ(R1, t) and r2(t) = R2 + ξ(R2, t), then r(R, t) = R+ ξ(R, t)
with R ∈ [R1, R2] represents a general point in the current domain [r1(t), r2(t)].

With the above notations, the continuity of normal stress at R = R1 or r = r1(t) requires
that:

µs
(
∇̂d+ ∇̂⊤d

)
· êr + λs

(
∇̂ · d

)
I · êr = µf

(
∇u+∇⊤u

)
· er − pI · er, (42)

or equivalently,245

2µs

(
d′(R1, t)êrêr +

d(R1, t)

R1

êθêθ

)
· êr + λs

(
d′(R1, t) +

d(R1, t)

R1

)
(êrêr + êθêθ) · êr

= µf

(
u′(r1, t)erer +

u(r1, t)

r1(t)
eθeθ

)
· er − p(r1, t) (erer + eθeθ) · er.

(43)

⇒
2µsd′(R1, t) + λs

(
d′(R1, t) +

d(R1, t)

R1

)
= µfu′(r1, t)− p(r1, t). (44)

Other boundary conditions include:

d(R0, t) = 0 (45)

ḋ(R1, t) = u(r1(t), t) (46)

µfu′(r2, t)− p(r2, t) = p̄(t) (47)

where (47) specifies the normal stress at the outer fluid boundary.

4.4. Analytical solution

Assuming the solution of equation (41) is periodic and separable with respect to R and250

t, then it can be represented by the real or imaginary part of a complex form: d(R, t) =
z(R)eiωt. This representation enables us to derive the equation for d(R) by substituting
z(R)eiωt into (41), yielding:

−ρsω2z = (2µs + λs)

(
z′′ +

z′

R
− z

R2

)
. (48)

Let
√
ρsω2/(2µs + λs) = ks, the above equation can be rewritten as:

R2z′′ +Rz′ + [(ksR)2 − 1]z = 0. (49)

By change of variable: ksR = x, the above equation becomes the Bessel’s ODE of order255

one.
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x2 d
2z

dx2
+ x

dz

dx
+ (x2 − 1)z = 0, (50)

with a general solution
z(R(x)) = c1J1(x) + c2Y1(x), (51)

where J1(x) and Y1(x) are the first and second kind Bessel functions, respectively, of order
one as follows:

J1(x) =
∞∑

m=0

(−1)m

m!(m+ 1)!

(x
2

)2m+1

, (52)

260

π

2
Y1(x) =

(
γ + ln

x

2

)
J1(x)−

1

x
+

1

2

∞∑
m=1

(−1)m (Hm−1 +Hm)

(m− 1)!m!

(x
2

)2m−1

. (53)

with H0 = 0, Hm = 1 + 1/2 + 1/3 + · · · 1/m and γ = lim
m→∞

(Hm − lnm). The solution of

equation (49) can then be expressed as:

z(R) = c1J1(k
sR) + c1Y1(k

sR), (54)

with the constants c1 and c2 being determined by the boundary conditions later. Let the
d(R, t) = z(R) sin(ωt) being the solution of (41), we derive the solution of fluid equations
(34) and (35) as follows:265

First, the continuity equation (34) indicates that ru is a constant: independent of r but
possibly dependent of t. Recall the mapping between r ∈ [r1(t), r2(t)] and R ∈ [R1, R2]:
r(R, t) = R + ξ(R, t), we have

ru = (R1 + d(R1, t))ḋ(R1, t), (55)

due to the interface condition (46). This solves for the fluid velocity as:

u(r, t) =
[R1 + z(R1) sin(ωt)] z(R1)ω cos(ωt)

r
. (56)

Notice that the initial condition of the velocity is determined the expression in (56),270

which cannot be zero generally, although the initial condition for the displacement is zero.
The pressure can then be solved by the momentum equation (35)

p′(r, t) =
z(R1)ρ

fω2 [R1 sin(ωt)− z(R1) cos(2ωt)]

r
− ρf

(u2)′

2
(57)

Integrate to obtain the expression of p(x, t):

p(r, t) = z(R1)ρ
fω2 [R1 sin(ωt)− z(R1) cos(2ωt)] ln |r|

− ρf
u2(r, t)

2
+ p0(t).

(58)
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The constant p0 can be computed using the continuity of normal stress at the interface (44):

(2µs + λs)z′(R1) sin(ωt) + λsz(R1) sin(ωt)/R1 = µfu′(r1, t)− p(r1, t), (59)

⇒275

−p0(t) = (2µs + λs)z′(R1) sin(ωt) + λsz(R1) sin(ωt)/R1

+
µfz(R1)ω cos(ωt)

r1(t)
− ρf

u2(r1(t), t)

2

+ z(R1)ρ
fω2 [R1 sin(ωt)− z(R1) cos(2ωt)] ln |r1(t)|

(60)

Substituting (60) into (58), we have

p(r, t) = z(R1)ρ
fω2 [R1 sin(ωt)− z(R1) cos(2ωt)] ln

∣∣∣∣ r

r1(t)

∣∣∣∣
− ρf

u2(r, t)− u2(r1(t), t)

2
− µfz(R1)ω cos(ωt)

r1(t)

− (2µs + λs)z′(R1) sin(ωt)− λsz(R1) sin(ωt)/R1,

(61)

where r1(t) = R1 + z(R1) sin(ωt).
Finally, the two constants c1 and c2 in the expression of z(R) can be determined by two

boundary conditions: (45) ⇒ z(R0) = 0 and (47) ⇒ p(r2, t) = µfu′(r2, t)− p̄(t), given p̄(t).
However, because of the complicated form of p(r, t), it is difficult to solve for z(R1) from280

the second condition. We simply specify z(R1) as d̄ – the largest displacement at R1, to
determine the constants c1 and c2 first, and then write down the expression of p̄(t) for the
problem. To express c1 and c2 explicitly, we have the linear system

z(R0) = J1(k
sR0)c1 + Y1(k

sR0)c2 = 0, (62)

z(R1) = J1(k
sR1)c1 + Y1(k

sR1)c2 = d̄, (63)

whose solution can be expressed as:285 (
c1
c2

)
=

1

det

(
Y1(k

sR1) −Y1(k
sR0)

−J1(k
sR1) J1(k

sR0)

)(
0
d̄

)
, (64)

where det = J1(k
sR0)Y1(k

sR1)− J1(k
sR1)Y1(k

sR0).

Remark 5. To accurately evaluate Bessel functions is not trivial, especially for large argu-
ments. Classically, power series are used for small arguments and asymptotic series for large
arguments. Nonlinear sequence transformations are employed for intermediate arguments to
bridge the gap between the asymptotic expansion for large arguments and the Taylor expan-290

sion for small arguments [69, 70]. Additionally, methods such as integral representation with
the trapezoidal rule are adopted to compute Bessel functions [71–73]. Our implementation
in this article is based on the scipy.special library [74].
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4.5. Mapping between r and R

Since the solutions of fluid and solid are expressed in different configurations. In order295

to display and visualise results, such as showing the velocity of both the fluid and solid
across [R0, R2], it is necessary to write down the mapping between r and R explicitly. For
R ∈ [R0, R1], r = R + z(R) sin(ωt); for R ∈ [R1, R2], the mapping can be computed by
solving equation (55):

ru =
d

dt
(
r2(R, t)

2
) = (R1 + z(R1) sin(ωt)) z(R1)ω cos(ωt) (65)

⇒300

r2(R, t)

2
= R1z(R1) sin(ωt) +

∫
z2(R1)

ω sin(2ωt)

2
dt (66)

⇒
r2(R, t)

2
= R1z(R1) sin(ωt)− z2(R1)

cos(2ωt)

4
+ C(R). (67)

Since r(R, 0) = R ⇒ C(R) = R2/2 + z2(R1)/4, therefore,

r2(R, t)

2
= R1z(R1) sin(ωt) + z2(R1)

sin2(ωt)

2
+

R2

2
. (68)

⇒
r2(R, t) = R2 + (R1 + z(R1) sin(ωt))

2 −R2
1, (69)

which is the relation between r and R.

Remark 6. Equation (41) possesses another form of solution: d(R, t) = z(R)t, where305

z(R) = C1R + R/C2 represents the steady-state solution for (41) – an Euler PDE, with C1

and C2 being two constants. Consequently, this would yield an alternative solution for the
FSI problem, albeit with distinct boundary conditions.

4.6. Numerical validation

We validate the analytical solutions of the solid displacement d(R, t) = z(R) sin(ωt)310

as well as its velocity u(R, t) = z(R)ω cos(ωt), together with the fluid velocity (56) and
pressure (61), against the results of two-dimensional numerical simulations. We compare all
the quantities in the reference configuration based on the mapping as described in Section
4.5: the results for a typical parameter set shown in Table 2. We set z(R1) = d̄ = 0.05 to
compute the coefficients c1 and c2 in (63), which is d̄/(R1 −R0) = 5% of deformation of the315

width of the solid domain.

ρf ρs µf µs λs R0 R1 R2 ω
1 2 2 10 100 3 4 5 2π

Table 2: A group of parameters for the compressed disc.
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It can be seen in Figure 6 how the simulation results, based on a relatively coarse mesh
(see Figure 5), converge to the analytical solution over time. The evolution of the fluid-
solid interface is plotted in Figure 7, from which it can be observed that the error gradually
increases as time progresses. The results of spatiotemporal convergence are displayed in320

Figure 8, with the last figure (bottom-right) showing the time convergence of the L2(Ω2)
error at T2 = 0.5 on the medium mesh. We find that the time convergence rate is not optimal;
this is because there is an accumulated error when comparing the last figure (bottom-right)
in Figure 8 to the other three. The accumulated error may be due to our implementation
of the Bessel functions and the data transfer between Python and FreeFem++, which needs325

further investigations. The lack of optimal mesh convergence is understandable because
FreeFem++ does not use isoparametric mesh for P2P1 elements. Our focus here is on
validating the analytical solution, leaving the testing of the convergence rate of the numerical
scheme for future study.

Figure 5: A coarse mesh with 572 nodes and 1225 triangle (left), and the horizontal velocity profile at t = 0.5 (right).

Remark 7. This problem can pose significant challenges for numerical simulations when330

moving the mesh, particularly when multiple compression waves propagate within the solid.
For instance, setting R0 = 1 in the parameter set outlined in Table 2 and d̄ = 0.15 (equiv-
alent to 5% of the width of the solid domain R1 − R0 results in the emergence of a rapidly
propagating wave within the solid, as illustrated in Figure B.12.

5. Problem III: rotating concentric discs335

We assume pure rotation for this problem. For the fluid, the velocity vector u = ueθ
only has the tangential component u = u(r, t), which is independent of θ. The pressure
p = p(r, t) is also independent of θ. For the solid, pure rotation means r = R is independent
of time in the position vector rer, so its velocity, d

dt
(rer) = rθ̇eθ, only has the tangential

component. Assuming the angular displacement α = θ − θ̂ = α(r, t) is independent of θ̂,340

then θ = α + θ̂, ∂rθ = ∂rα, and ∂θ̂θ = 1, which will be used in the following derivations.
Finally, let u̇ = du

dt
, α̇ = dα

dt
, u′ = ∂ru, and α′ = ∂rα for the convenience of notation.
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Figure 6: Comparison of displacement (first row), velocity (second row), pressure (third row) at three at t = 0.25, t = 0.35
and t = 0.5 from left to right, except the plot of velocity at the second row and first column which is at t = 0.2, because the
velocity profile at t = 0.25 is very similar to t = 0.35.

5.1. Fluid equations

Since ėθ = −θ̇er = −(u/r)er, the inertial term can be expressed as:

u̇ = u̇eθ − (u2/r)er. (70)

Apply the Nabla operator to u = ueθ:345

∇u =

(
er∂r + eθ

1

r
∂θ

)
(ueθ) = ∂ruereθ −

1

r
ueθer, (71)

∇ · ∇u =

(
∂rr +

1

r
∂r +

1

r2
∂θθ

)
(ueθ) =

(
∂rru+

1

r
∂ruθ −

u

r2

)
eθ. (72)

∇pf =

(
er∂r + eθ

1

r
∂θ

)
p = ∂rp

fer. (73)
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Figure 7: Displacement of the interface as a function of time.

The continuity equation (2) is automatically satisfied since

∇ · u =

(
er∂r +

1

r
eθ∂θ

)
· (ueθ) = 0. (74)

Combining the above equations(70), 72) and (73), the momentum equation (1) can be
expressed, in the polar coordinate system, as:

ρf u̇ = µf
(
u′′ + u′/r − u/r2

)
, (75)

and350

−ρfu2/r = −∂rp
f . (76)

5.2. Solid equations

We use a large displacement formulation of an incompressible Neo-Hookean solid model.
We apply the Nabla operator ∇̂ to the position vector rer to compute the deformation
tensor:

F = ∇̂(rer) =

(
êr∂R +

1

R
êθ∂θ̂

)
(rer) = êrer + êreθ(rθ

′) + êθeθ, (77)

due to ∂Rer = eθ∂Rθ = eθθ
′ and ∂θ̂er = eθ∂θ̂θ = eθ. Then,355

FF⊤ = (êrer + êreθ(rθ
′) + êθeθ) · (erêr + eθêr(rθ

′) + eθêθ)

= [1 + (rθ′)2]êrêr + (rθ′)êrêθ + (rθ′)êθêr + êθêθ,
(78)

and further
FF⊤ − I = (rθ′)2êrêr + (rθ′)êrêθ + (rθ′)êθêr. (79)
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Figure 8: From left to right and top to bottom, the first three plots are spatiotemporal convergence of the displacement,
velocity and pressure in space L2

(
[0, T2];L2 (Ω2)

)
, where T2 = 0.5, and Ω2 is the reference computational domain at t = 0.

The last plot is the time convergence of the L2 (Ω2) error of the velocity, displacement and pressure at T2 = 0.5 on the medium
mesh. The mesh size is defined by the maximum size of the elements.

In the spirit of expressing the solid equation in the current configuration, we replace
(êr, êθ) by (er, eθ) in equation (79) using the relation (12):

FF⊤ − I = τ11erer + τ22eθeθ + τ12eθer + τ21ereθ, (80)

with τ11 = (rα′)2 cos2 α + (rα′) sin (2α), τ22 = (rα′)2 sin2 α − (rα′) sin (2α) and τ12 = τ21 =

(rα′) cos (2α)− (rα′)2

2
sin (2α), noticing that θ′ = α′. We then have360

∇ ·
(
FF⊤ − I

)
= ∂rτ12eθ +

2τ12
r

eθ + ∂rτ11er +
τ11 − τ22

r
er. (81)

The inertial term is

d̈ =
d2

dt2
(rer) =

d

dt
(rα̇eθ) = rα̈eθ − rα̇2er, (82)

bearing in mind that θ̇ = α̇.
Substituting equations (81) and (82) into the solid equation (4), we have
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ρsrα̈ = µs[∂rτ12 + 2τ12/r], (83)

and
−ρsrα̇2 = µs[∂rτ11 + (τ11 − τ22)/r]− ∂rp

s. (84)

5.3. Boundary and initial conditions365

The continuity of normal stress at the interface r = R1 indicates that:

µs
(
FF⊤ − I

)
· er − psI · er = µf

(
∇⊤u+∇u

)
· er − pfI · er, (85)

⇒
µs (τ11er + τ12eθ)− pser = µf

(
u′ − u

r

)
eθ − pfer at r = R1. (86)

⇒
µsτ12(α(R1, t)) = µf [u′(R1, t)− u(R1, t)/R1] (87)

µsτ11(α(R1, t)) = ps(R1, t)− pf (R1, t) (88)

Other boundary conditions include:370

α(R0, t) = 0, (89)

R1α̇(R1, t) = u(R1, t), (90)

u(R2, t) = ū(t). (91)

Initial conditions are:
α(r, 0) = α0 in [R0, R1], (92)

u(r, 0) = u0 in [R1, R2]. (93)

5.4. A one-velocity monolithic method375

In this section, we use a finite element method to solve the velocity equation (75) of
the fluid and the angular displacement equation (83) of the solid together in a fully-coupled
manner. In addition, we express the angular displacement α in terms of velocity and only
solve for one velocity field in domain [R0, R2]. For this method, the continuity of the velocity
at the interface (90) is automatically satisfied. The pressure equations (76) and (84) are380

decoupled from the momentum equations, and will be solved as a postprocess.
Given a test function v(r) ∈ H1

0 [R0, R2] = {v : v ∈ H1[R0, R2], v(R0, t) = 0}, the weak
form of (83) can be expressed as:

ρs
∫ R1

R0

rα̈vdr = µs

∫ R1

R0

τ12(α)[2v/r − v′]dr + µsτ12(α(R1, t))v(R1). (94)
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Considering the interface condition (87), the weak form of (75) may be expressed as:

ρf
∫ R2

R1

u̇v = µf

∫ R2

R1

[(u′ − u/r)′ + 2(u′/r − u/r2)]vdr

= −µf [u′(R1, t)− u(R1, t)/R1] + µf

∫ R2

R1

(u′ − u/r)(2v/r − v′)dr.

(95)

The sum of equations (94) and (95) leads to the monolithic formulation as follows:385

Given the initial values α0 in (92) and u0 in (93), find u(r, t) ∈ H1[R0, R2] such that
∀v(r) ∈ H1

0 [R0, R2], the following equation holds:

ρ

∫ R2

R0

u̇vdr = µs

∫ R1

R0

τ12(α)[2v/r − v′]dr + µf

∫ R2

R1

(u′ − u/r)(2v/r − v′)dr, (96)

where ρ = ρs1[R0,R1] + ρf1[R1,R2] and rα̇ = u in [R0, R1].
Function τ12(α) in (96) is non-linear in terms of α, we use the Newton method to linearise

it as follows:390

τ12(α) ≈ τ12(α
k) + δτ12(α

k;α− αk), (97)

where αk is a reference point and δτ12(α; β) is the first order Gateaux variation at α along
direction β [2, 75]:

δτ12(α; β) =
d

dϵ
τ12 (α + ϵβ)

∣∣∣∣
ϵ=0

. (98)

With this definition, we compute the variations of τ12(α):

δτ12(α; δα) = rδα′ cos (2α)− 2rα′ sin (2α)δα− r2α′ sin (2α)δα′ − (rα′)2 cos (2α)δα, (99)

Substituting (99) into (97), with δα = α− αk, we have

τ12(α) ≈ rα′ cos (2αk)− 2r(αk)′ sin (2αk)(α− αk)− r2(αk)′ sin (2αk)(α− αk)′

− [r(αk)′]2 cos (2αk)(α− αk)− (r(αk)′)2

2
sin (2αk).

(100)

Finally, we consider a linearisation in time. Given the previous values αn and un at395

time tn where n = 0, 1, 2, . . ., we use a uniform time step ∆t to compute αn+1 and un+1.
Since rα̇ = u, we express αn+1 = αn + un+1∆t/r based on the backward Euler scheme.
Dropping of the subscript n + 1 for convenience, and substituting α = αn + u∆t/r and
α′ = α′

n + ∆t(u′/r − u/r2), together with (100), to equation (96), we have the linearised
one-velocity monolithic formulation after time discretisation:400
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Given αn and un at time tn, find un+1 = u(r, t) ∈ H1[R0, R2] such that ∀v(r) ∈
H1

0 [R0, R2], the following equation holds:

ρ

∫ R2

R0

u− un

∆t
vdr + µf

∫ R2

R1

(u′ − u/r)(v′ − 2v/r)dr

+ µs

∫ R1

R0

∆t
[
cos (2αk)− r(αk)′ sin (2αk)

]
(u′ − u/r)(v′ − 2v/r)dr

− µs

∫ R1

R0

∆t
[
r((αk)′)2 cos (2αk) + 2(αk)′ sin (2αk)

]
u(v′ − 2v/r)dr

= µs

∫ R1

R0

[
−rα′

n cos (2α
k) + 2r(αk)′ sin(2αk)

(
αn − αk

)]
(v′ − 2v/r)dr

+ µs

∫ R1

R0

[
r2(αk)′ sin(2αk)

(
αn − αk

)′
+
(
r(αk)′

)2
cos(2αk)

(
αn − αk

)]
(v′ − 2v/r)dr

+ µs

∫ R1

R0

(r(αk)′)2

2
sin (2αk)(v′ − 2v/r)dr.

(101)

The pressure is computed as a post-process. Integration of equation (84) from R0 to
R ∈ (R0, R1] yields the expression of the pressure of solid:

ps(R, t) = µs [τ11 (α(R))− τ11 (α(R0))] + µs

∫ R

R0

τ11 − τ22
r

dr + ρs
∫ R

R0

u2

r
dr, (102)

given a reference pressure ps(R0, t) = 0. Integration of equation (76) from R1 to R ∈ (R1, R2]405

yields the expression of the fluid pressure as follows:

pf (R, t) = ρf
∫ R

R1

u2

r
dr + pf (R1, t), (103)

where pf (R1, t) = ps(R1, t)− µsτ11 (α(R1)) is known from the jump condition (88).

5.5. Numerical Validation

It is efficient to solve the one-dimensional problem (101) to very high accuracy, a solution
we refer to as the semi-analytical solution. We tested a range of parameters and compared410

these semi-analytical solutions to those obtained from two-dimensional simulations using the
numerical method described in Appendix A. We found that the one-dimensional and two-
dimensional solutions agree very well. We report the results of the parameter set in Table
3, where a periodic angular velocity profile is prescribed at boundary R2: Ω(t) = Ω sin (ωt)
with Ω = 3. Consequently, a complicated wave-like solution is created, and we have to use415

of a relatively fine mesh to capture this feature. A finite element mesh and the magnitude
of the velocity at t = 1 are displayed in Figure 9 to visualise the wave pattern.

The comparison of displacement, velocity, and pressure between the 1D and 2D simu-
lations is depicted in Figure 10. It can be observed that the results for displacement and
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ρf ρs µf µs R0 R1 R2 ω
1 2 2 10 3 4 5 10π

Table 3: A group of parameters for the rotating disc.

Figure 9: A coarse mesh with 2621 nodes and 5443 triangle and the magnitude of velocity profile at t = 0.5.

velocity show good agreement between the 1D and 2D simulations, while there is a notice-420

able discrepancy in pressure. We attribute this inconsistency in pressure to the discontinuity
at R = R1, despite employing the P2(P1 + P0) element [76], as can be seen in the last two
plots of Figure 10. Consequently, there is a pressure shift within the fluid region, which in
turn affects the accuracy of solid pressure as well.

6. Conclusion425

In this paper, we propose three fluid-structure interaction problems and derive their
analytical or semi-analytical solutions, which have been validated through numerical experi-
ments. These FSI solutions fill the gap in the analytical solutions within the FSI community
and contribute to the field by benchmarking numerical methods for FSI problems.

We also developed the one-velocity monolithic method to solve a one-dimensional non-430

linear problem (96) and an linear elastic problem in the reference domain (A.2). The one-
velocity monolithic method is tested against the analytical solution, with results showing
good agreement between them.

The results between the analytical and numerical solutions for the rotating disc (Problem
III) do not align well for the pressure, although they match closely for the pressure and435

displacement. We attribute this discrepancy to the pressure discontinuity across the fluid-
solid interface not being accurately captured in the numerical methods. Different numerical
strategies, such as discontinuous finite elements or regularisation methods, may be explored
in the future.
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Figure 10: Comparison of angular displacement (first row), velocity (second row), and pressure (third row) at three time
instances, t = 0.2, t = 0.35, and t = 0.5, from left to right. It is noteworthy that a maximum angular displacement of 0.045
corresponds to a maximum radial displacement of 0.045R1 = 0.135, which represents a 13.5% deformation of the width of the
solid domain, R1 −R0 = 1.

Appendix A. The one-velocity numerical methods for FSI problems440

In this section, we briefly introduce the numerical method used to simulate two-dimensional
problems. We employ the monolithic Eulerian method, as discussed in several references [57–
59], to solve for a single velocity variable across the entire fluid-structure domain Ωf

t ∪ Ωs
t .

Additionally, we utilise the arbitrary Lagrangian Eulerian method to handle the moving
mesh.445

Given the Cauchy stress tensor σ in the current configuration, the general weak form of
this monolithic approach can be expressed as follows [59]:∫

Ω

ρ (∂tu+ (u−w)∇ · u) δu+

∫
Ω

σ : ∇δu =

∫
∂Ω

(σ · n) · δu, (A.1)

where ρ = ρf1Ωf + ρs1Ωs , σ = σf1Ωf + σs1Ωs , w is the prescribed mesh velocity, which
may be simply obtained by solving a static linear elastic equation, n is the outer normal of
domain Ω.450
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The one-velocity method aims to express the displacementdn+1 = dn+∆tun+1 after time
discretisation, solving solely for the velocity un+1 at time tn+1 for the whole FSI problem,
given un and dn at time tn. The primary objective is then to express

∫
Ω
σ : ∇δu =

∫
Ωf

t
σf :

∇δu+
∫
Ωs

t
σs : ∇δu in terms of displacement d, which is discussed in the following.

The fluid integration expressions are the same for Problems I, II, and III: dn+1 = dn +455

∆tun+1 after time discretisation, and only solve for velocity un+1 at time tn+1 for the whole
FSI problem, given un and dn at time tn. Then the main task is to express

∫
Ω
σ : ∇δu =∫

Ωf
t
σf : ∇δu+

∫
Ωs

t
σs : ∇δu in terms of displacement d.

The fluid integration expressions are the same for Problems I, II, and III:∫
Ωf

t

σf : ∇δu =
µf

2

∫
Ωf

t

(∇⊤u+∇u) : (∇⊤δu+∇δu)−
∫
Ωf

t

p∇ · δu, (A.2)

but they differ in the boundary integration expression concerning the Neumann boundary460

condition: σ ·n = p̄(t)n at boundary R2 for Problem I and II, while σ ·n = 0 for Problem III.
They also vary in the solid stress tensor σs as described through the momentum equations
(3) and (4).

For Problems I and II, the first Piola-Kirchhoff stress tensor P = µs
(
∇̂⊤d+ ∇̂d

)
+

λs
(
∇̂ · d

)
I is used in the reference configuration, as seen in (3). To implement the mono-465

lithic Eulerian formulation, we convert P to the Cauchy stress tensor and integrate as
follows:∫

Ωs
t

σs : ∇δu =

∫
Ωs

t

J−1PF⊤ : ∇δu

= µs

∫
Ωs

t

J−1
(
F⊤∇⊤d+∇dF

)
F⊤ : ∇δu+ λs

∫
Ωs

t

J−1trace(∇dF)trace (∇δuF) ,

(A.3)

where F = ∇̂d+ I = ∇dF+ I ⇒ F = (I−∇d)−1 is computed in the current configuration.
As F depends on the unknown variable, a fixed-point iteration is employed to iteratively
compute F.470

For Problem III, the Cauchy stress tensor σs = µs
(
FF⊤ − I

)
− psI is used as seen in

(4), which can be rewritten as [59]:

σs = µs
(
∇⊤d+∇d−∇⊤d∇d

)
− (ps + µs(trace(FF⊤)− 2))I. (A.4)

For the numerical implementation of (A.4), we introduce a new variable qs = ps+µs(trace(FF⊤)−
2). Equation (A.4) is then expressed in terms of the displacement d and the new pressure
qs.475

Appendix B. Additional test cases

In this appendix, we provide a brief report on the results of some additional, yet special,
test cases as supplementary material to the main content of this article. Readers may also
refer to additional supporting animations at https://yongxingwang.github.io/simulation/.
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Appendix B.1. Problem I: compressed plates480

Figure B.11 shows the velocity profile, where the fluid velocity remains zero while there
is a moving wave in the solid. This result is obtained by modifying the parameter set in
Table 1 with ϕ = 3π, in which case nothing happens in the fluid as commented in Remark
4.

Figure B.11: Velocity profile at different times: t = 0.43, t = 0.425, t = 0.475 and t = 0.5 from left to right and top to
bottom.

Appendix B.2. Problem II: compressed discs485

A challenging test case can be created simply by setting R0 = 1 in the parameter set
outlined in Table 2. As pointed out in Remark 7, a compressed wave propagates in the
solid domain, causing the solid mesh to compress and stretch along the radial direction, as
shown in Figure B.12. We set d̄ = 0.15 (5% of the width of the solid domain R1 − R0)
and tested a mesh of 3472 vertices and 7105 triangles, with a time step of 10−3, alongside a490

remeshing technique to preserve mesh quality. Unfortunately, our simulation breaks down
before reaching the maximum displacement at t = 0.05.
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Figure B.12: Velocity magnitude on a 2D mesh (left) and velocity along the radial direction (right) at t = 0.046, when
R0 = 1 for numerical simulations with multiple compressed waves propagating in the solid. The simulation is run on a mesh
of 3472 vertices and 7105 triangles with ∆t = 2.5× 10−4.

Appendix B.3. Problem III: rotating discs

To further explore the pressure, we test a simpler case than the one considered in Section
5.5. We use the same parameters as in Table 3, but prescribe a constant angular velocity495

Ω(t) = 0.1 so that the rotating disc has a steady-state solution. We run the simulation up
to t = 5 to ensure it reaches a steady-state solution. As shown in Figure B.13, we again
observe an inconsistency in the pressure between the 1D and 2D simulations. As the solution
approaches the steady state, this inconsistency is only due to a constant shift of the fluid
pressure, while the solid pressure agrees well.500
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[71] Ç. Uluişik, L. Sevgi, A tutorial on bessel functions and numerical evaluation of bessel integrals, IEEE
Antennas and Propagation Magazine 51 (6) (2009) 222–233.

[72] J. Waldvogel, Towards a general error theory of the trapezoidal rule, Approximation and Computation:680

In Honor of Gradimir V. Milovanović (2011) 267–282.
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