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The advancements in Artificial Intelligence (AI) technology over the past decade have been a breakthrough 
on imaging for life sciences, paving the way for novel methods in image restoration [1], reconstruction [2], 
and segmentation [3]. However, the wide adoption of DL techniques by end-users in bioimage analysis is 
hindered by the complexity of their deployment. These techniques stem from a variety of rapidly evolving 
frameworks (e.g., TensorFlow 1 or 2, Pytorch, etc.) that come with distinct and often conflicting setups, which 
can discourage even proficient developers. Consequently, this has led to integration hassles or even absence 
in mainstream bioimage informatics platforms such as ImageJ, Icy, and Fiji, many of which are primarily 
developed in Java. 

We present JDLL (Java Deep-Learning Library), a Java library that provides a comprehensive toolkit 
and application programming interface (API) for crafting advanced scientific applications and image analysis 
pipelines with DL capabilities. JDLL streamlines the installation, maintenance, and execution of DL models 
across any major DL frameworks. JDLL is based on two main components (Figure 1). The first, the DL engine 
installer, acts as a framework manager. It facilitates the downloading and integration of leading DL 
frameworks such as Tensorflow 1 & 2, PyTorch, and ONNX. It is capable of functioning with both CPU and 
GPU across a vast array of supported versions. Notably, the DL-engine-installer automatically identifies the 
required engine and version from the model specifications, handling downloads or loads seamlessly for the 
end user. The second component, DL-model-runner, offers a Java API for performing inference on models 
built on the aforementioned DL frameworks. Additionally, this component can connect to the Bioimage 
Model Zoo (BMZ) website [4], that shares pretrained models relevant for life sciences, facilitating their 
download or retrieval and running inference effortlessly. It can work around memory (CPU or GPU) 
limitations when processing large images, thanks to its tiling feature. Furthermore, it boasts a user-friendly 
API for model loading or downloading, presenting comprehensible details about its training process and the 
underlying DL framework. 

The flexibility and adaptability of these components are pivotal in facilitating the effortless 
installation and utilization of the full spectrum of DL models prevalent in the life sciences. JDLL is streamlined, 
carrying minimal dependencies, namely ImgLib2 [5] and specific libraries for processing JSON and YAML files, 
commonly used for DL model specifications. It is built to be compatible with existing and potential future DL 
frameworks, leveraging ImgLib2 to create a framework-agnostic tensor implementation. Consequently, 
applications built on JDLL will not require engine-specific code. JDLL offers a universal, singular 
implementation compatible with all engines across their various versions. Its cutting-edge management of 
DL engines empowers it to operate multiple models within a single program, even if they were trained on 



normally incompatible DL engines. For example, JDLL can effortlessly sequence a style-transfer model 
operating on Tensorflow 2 with an instance segmentation model running on Tensorflow 1 within a single 
script. 

The Bioimage Model Zoo (BMZ) [6]  represents a collaborative endeavor aimed at streamlining the 
utilization and sharing of Deep Learning (DL) models in life sciences. It provides specifications for the DL 
models and the engines they require to run, along with pre- and post-processing steps. Several community 
partners in BMZ , such as Icy, ImageJ/Fiji (via deepImageJ), ZeroCostDL4Mic and ImJoy [7–10] already target 
end-user applications. JDLL aspires to serve as the common core component for DL across the Java-based 
platforms in this list, introducing distinctive features to support this integration. The BMZ specifications detail 
both pre- and post-processing steps, and for true reproducibility, it is imperative that these steps yield 
consistent outputs across all platforms. All the existing Java platforms rely on their own custom and 
implementation. However, capitalizing on the universal tensor capabilities provided by JDLL and ImagLib2, 
these processing steps are now addressed generically. As a result, platforms incorporating JDLL can depend 
on a shared codebase for all processes tied to running a DL model. This approach minimizes redundant coding 
efforts and ensures pixel-perfect reproducibility. As a first consumer of the JDLL, Icy stands out as the 
premiere software capable of interfacing with a diverse array of engines/frameworks: Tensorflow 1 and 2, 
PyTorch (starting from v1.4), and ONNX (beginning with v1.3). Fiji has also recently replaced its custom DL 
runner by JDLL via deepImageJ 3.0. 

JDLL serves as a foundational library designed to support a growing community of developers in 
creating scientific tools for end-users (bioimage analysts, biological scientists). Furthermore, its efficient and 
streamlined API reduces the complexities of executing a DL model to just a handful of code lines. This makes 
it compatible for use in analysis scripts (such as those in MATLAB, Fiji, Icy) or through connectors that 
integrate it with visual programming languages (we can foresee KNIME and Icy Protocols). This also positions 
JDLL as an invaluable asset for the biologist community. Thanks to its generality and versatility, JDLL offers 
the means to fuel scientific Java image analysis platforms with Deep Learning capabilities. Given the 
popularity of these platforms within the biologist research community, JDLL stands poised to bolster the 
widespread adoption of Deep Learning in the realm of life sciences.  

Code availability 
The source code, documentation, tutorials and examples implementing JDLL can be found at 
https://github.com/bioimage-io/JDLL. JDLL is made available under the open-source Apache 
software license. 
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Figure 1: The JDLL architecture. JDLL is a Java API that can manage, and load models created with a wide 
range of Deep-Learning frameworks or engines (top). It can also download and deploy the models shared 
on the Bioimage Model Zoo (BMZ) repository following the BMZ conventions. These models are unpacked 
with JDLL, along with the engines required to run inference with the models, in a transparent manner to API 
consumers. JDLL provides to these consumers (such as Icy and deepImageJ, bottom) a simple and unified 
API to run inference on images via a custom ImgLib2 wrapper for their specific image data model. Because 
the API is generic and relies on an ImgLib2 component (see text), JDLL can be used by any Java software 
platform, fostering the reproducibility of Deep-Learning models’ deployment. 
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