
HAL Id: hal-04580174
https://hal.science/hal-04580174

Submitted on 19 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

JDLL: a library to run deep learning models on Java
bioimage informatics platforms

Carlos García López de Haro, Stéphane Dallongeville, Thomas Musset,
Estibaliz Gómez-De-Mariscal, Daniel Sage, Wei Ouyang, Arrate

Muñoz-Barrutia, Jean-Yves Tinevez, Jean-Christophe Olivo-Marin

To cite this version:
Carlos García López de Haro, Stéphane Dallongeville, Thomas Musset, Estibaliz Gómez-De-Mariscal,
Daniel Sage, et al.. JDLL: a library to run deep learning models on Java bioimage informatics
platforms. Nature Methods, 2024, 21 (1), pp.7-8. �10.1038/s41592-023-02129-x�. �hal-04580174�

https://hal.science/hal-04580174
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

JDLL: A library to run Deep Learning models on Java bioimage
informatics platforms
Carlos García López de Haro1, Stéphane Dallongeville1, 2, Thomas Musset1, 2, Estibaliz Gómez de Mariscal3,
Daniel Sage4, Wei Ouyang5, Arrate Muñoz-Barrutia6, Jean-Yves Tinevez7, *, Jean-Christophe Olivo-Marin1, 2, *

1Bioimage Analysis Unit, Institut Pasteur, Université Paris Cité, Paris, France. 2CNRS UMR 3691, Institut
Pasteur, Paris, France. 3Instituto Gulbenkian de Ciência, Lisbon, Portugal. 4Biomedical Imaging Group and
Center for Imaging, Ecole Polytechnique de Lausanne, Lausanne (EPFL), Switzerland. 5Science for Life
Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden. 6Biomedical Sciences and Engineering
Laboratory, Universidad Carlos III de Madrid, Leganés, Spain. 7Image Analysis Hub, Institut Pasteur,
Université Paris Cité, Paris, France. Correspondence: *jean- yves.tinevez@pasteur; jean-christophe.olivo-
marin@pasteur.fr

The advancements in Artificial Intelligence (AI) technology over the past decade have been a breakthrough
on imaging for life sciences, paving the way for novel methods in image restoration [1], reconstruction [2],
and segmentation [3]. However, the wide adoption of DL techniques by end-users in bioimage analysis is
hindered by the complexity of their deployment. These techniques stem from a variety of rapidly evolving
frameworks (e.g., TensorFlow 1 or 2, Pytorch, etc.) that come with distinct and often conflicting setups, which
can discourage even proficient developers. Consequently, this has led to integration hassles or even absence
in mainstream bioimage informatics platforms such as ImageJ, Icy, and Fiji, many of which are primarily
developed in Java.

We present JDLL (Java Deep-Learning Library), a Java library that provides a comprehensive toolkit
and application programming interface (API) for crafting advanced scientific applications and image analysis
pipelines with DL capabilities. JDLL streamlines the installation, maintenance, and execution of DL models
across any major DL frameworks. JDLL is based on two main components (Figure 1). The first, the DL engine
installer, acts as a framework manager. It facilitates the downloading and integration of leading DL
frameworks such as Tensorflow 1 & 2, PyTorch, and ONNX. It is capable of functioning with both CPU and
GPU across a vast array of supported versions. Notably, the DL-engine-installer automatically identifies the
required engine and version from the model specifications, handling downloads or loads seamlessly for the
end user. The second component, DL-model-runner, offers a Java API for performing inference on models
built on the aforementioned DL frameworks. Additionally, this component can connect to the Bioimage
Model Zoo (BMZ) website [4], that shares pretrained models relevant for life sciences, facilitating their
download or retrieval and running inference effortlessly. It can work around memory (CPU or GPU)
limitations when processing large images, thanks to its tiling feature. Furthermore, it boasts a user-friendly
API for model loading or downloading, presenting comprehensible details about its training process and the
underlying DL framework.

The flexibility and adaptability of these components are pivotal in facilitating the effortless
installation and utilization of the full spectrum of DL models prevalent in the life sciences. JDLL is streamlined,
carrying minimal dependencies, namely ImgLib2 [5] and specific libraries for processing JSON and YAML files,
commonly used for DL model specifications. It is built to be compatible with existing and potential future DL
frameworks, leveraging ImgLib2 to create a framework-agnostic tensor implementation. Consequently,
applications built on JDLL will not require engine-specific code. JDLL offers a universal, singular
implementation compatible with all engines across their various versions. Its cutting-edge management of
DL engines empowers it to operate multiple models within a single program, even if they were trained on

normally incompatible DL engines. For example, JDLL can effortlessly sequence a style-transfer model
operating on Tensorflow 2 with an instance segmentation model running on Tensorflow 1 within a single
script.

The Bioimage Model Zoo (BMZ) [6] represents a collaborative endeavor aimed at streamlining the
utilization and sharing of Deep Learning (DL) models in life sciences. It provides specifications for the DL
models and the engines they require to run, along with pre- and post-processing steps. Several community
partners in BMZ , such as Icy, ImageJ/Fiji (via deepImageJ), ZeroCostDL4Mic and ImJoy [7–10] already target
end-user applications. JDLL aspires to serve as the common core component for DL across the Java-based
platforms in this list, introducing distinctive features to support this integration. The BMZ specifications detail
both pre- and post-processing steps, and for true reproducibility, it is imperative that these steps yield
consistent outputs across all platforms. All the existing Java platforms rely on their own custom and
implementation. However, capitalizing on the universal tensor capabilities provided by JDLL and ImagLib2,
these processing steps are now addressed generically. As a result, platforms incorporating JDLL can depend
on a shared codebase for all processes tied to running a DL model. This approach minimizes redundant coding
efforts and ensures pixel-perfect reproducibility. As a first consumer of the JDLL, Icy stands out as the
premiere software capable of interfacing with a diverse array of engines/frameworks: Tensorflow 1 and 2,
PyTorch (starting from v1.4), and ONNX (beginning with v1.3). Fiji has also recently replaced its custom DL
runner by JDLL via deepImageJ 3.0.

JDLL serves as a foundational library designed to support a growing community of developers in
creating scientific tools for end-users (bioimage analysts, biological scientists). Furthermore, its efficient and
streamlined API reduces the complexities of executing a DL model to just a handful of code lines. This makes
it compatible for use in analysis scripts (such as those in MATLAB, Fiji, Icy) or through connectors that
integrate it with visual programming languages (we can foresee KNIME and Icy Protocols). This also positions
JDLL as an invaluable asset for the biologist community. Thanks to its generality and versatility, JDLL offers
the means to fuel scientific Java image analysis platforms with Deep Learning capabilities. Given the
popularity of these platforms within the biologist research community, JDLL stands poised to bolster the
widespread adoption of Deep Learning in the realm of life sciences.

Code availability
The source code, documentation, tutorials and examples implementing JDLL can be found at
https://github.com/bioimage-io/JDLL. JDLL is made available under the open-source Apache
software license.

References
1. Weigert M, Schmidt U, Boothe T, Müller A, Dibrov A, Jain A, et al. Content-aware image restoration:
pushing the limits of fluorescence microscopy. Nat Methods. 2018. https://doi.org/10.1038/s41592-018-
0216-7.
2. Belthangady C, Royer LA. Applications, promises, and pitfalls of deep learning for fluorescence image
reconstruction. Nat Methods. 2019;16:1215–25.
3. Moen E, Bannon D, Kudo T, Graf W, Covert M, Van Valen D. Deep learning for cellular image analysis. Nat
Methods. 2019;16:1233–46.
4. The Bioimage Model Zoo team. BioImage.IO. https://bioimage.io. Accessed 12 Jan 2023.
5. Pietzsch T, Preibisch S, Tomancak P, Saalfeld S. ImgLib2--generic image processing in Java. Bioinformatics.
2013. https://doi.org/10.1093/bioinformatics/bts685.
6. Ouyang W, Beuttenmueller F, Gómez-de-Mariscal E, Pape C, Burke T, Garcia-López-de-Haro C, et al.
BioImage Model Zoo: A Community-Driven Resource for Accessible Deep Learning in BioImage Analysis.
2022;:2022.06.07.495102.
7. De Chaumont F, Dallongeville S, Chenouard N, Hervé N, Pop S, Provoost T, et al. Icy: An open bioimage
informatics platform for extended reproducible research. Nat Methods. 2012.

https://doi.org/10.1038/nmeth.2075.
8. Gómez-de-Mariscal E, García-López-de-Haro C, Ouyang W, Donati L, Lundberg E, Unser M, et al.
DeepImageJ: A user-friendly environment to run deep learning models in ImageJ. Nat Methods.
2021;18:1192–5.
9. von Chamier L, Laine RF, Jukkala J, Spahn C, Krentzel D, Nehme E, et al. Democratising deep learning for
microscopy with ZeroCostDL4Mic. Nat Commun. 2021;12:2276.
10. Ouyang W, Mueller F, Hjelmare M, Lundberg E, Zimmer C. ImJoy: an open-source computational
platform for the deep learning era. Nat Methods. 2019;16:1199–200.

Acknowledgements
This work has been partially supported by the Agence Nationale de la Recherche through the LabEx IBEID
(ANR-10-LABX-62-IBEID), the Institut Carnot Pasteur Microbes & Santé (ANR 16 CARN 0023-01), the programs
PIA INCEPTION (ANR-16-CONV-0005) and France-BioImaging (ANR-10-INBS-04); by DIM ELICIT Région Ile-de-
France; by the EC through the H2020-FET-OPEN-2018–2019-2020-01 Grant No 862840 (“FREE@POC”); and
additional internal funding from the Bioimage Analysis unit and the Institut Pasteur; and by Ministerio de
Ciencia, Innovación y Universidades, Agencia Estatal de Investigación, under Grant PID2019-109820RB-I00,
MCIN / AEI / 10.13039/501100011033/, co-financed by European Regional Development Fund (ERDF), "A
way of making Europe" and the European Commission through the Horizon Europe program (AI4LIFE project,
grant agreement 101057970-AI4LIFE).

Author contributions
Code concept and design were done by C. G. L. H., J.-Y. T., S. D. and J.-C. O.-M. JDLL coding development
and implementation was done by C. G. L. H., J.-Y. T., T. M. and S. D.; manuscript organizing and writing by
C. G. L. H., J.-Y. T., A. M.-B. and J.-C. O.-M. with all authors contributing comments and revisions; funding
and project administration by J.-Y. T. and J.-C. O.-M.

Competing interests
The authors declare no competing interests.

Figure 1: The JDLL architecture. JDLL is a Java API that can manage, and load models created with a wide
range of Deep-Learning frameworks or engines (top). It can also download and deploy the models shared
on the Bioimage Model Zoo (BMZ) repository following the BMZ conventions. These models are unpacked
with JDLL, along with the engines required to run inference with the models, in a transparent manner to API
consumers. JDLL provides to these consumers (such as Icy and deepImageJ, bottom) a simple and unified
API to run inference on images via a custom ImgLib2 wrapper for their specific image data model. Because
the API is generic and relies on an ImgLib2 component (see text), JDLL can be used by any Java software
platform, fostering the reproducibility of Deep-Learning models’ deployment.

Figure 1

