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Abstract9

Malaria poses a significant global health challenge, with millions of cases and fatalities reported
annually, primarily in the WHO African Region and South-East Asia Region. Mixed-species malaria
infections are common but often underestimated, even in regions with low transmission rates. Mathe-12

matical models have been instrumental in studying parasite multiplication within hosts during mixed
malaria infections, yet existing models typically focus on either intra-species or inter-species dynamics
separately. However, both intra- and inter-species diversity are crucial in within-host malaria infection15

dynamics. In this study, we introduce a mathematical model for intra-species and inter-species inter-
actions between P. vivax and P. falciparum, exploring their co-infection dynamics within hosts. We
establish the properties of the model and conduct invasibility analysis in a multi-species and multi-18

genotypes framework. We also perform the uniform persistence of parasites over time within the host
and discuss several typical scenarios that the model can simulate. Our findings shed light on the
complex dynamics of malaria co-infections and their clinical implications.21

Keywords: Malaria; Within-host dynamics; Mixed-species infections; Intra- and inter-species interactions;
Mathematical modelling; Non-linear dynamical system.

1 Introduction24

Malaria continues to pose a major public health challenge, with approximately 247 million cases and 619,000
fatalities reported globally in 2021 [1]. The World Health Organization (WHO) African Region bears the highest
malaria burden, followed by the South-East Asia Region. Human malaria, caused by various Plasmodium species27

like P. falciparum and P. vivax, involves a complex life cycle with stages in both mosquitoes [3] and human or
animal hosts [7, 18]. Mosquito bites transmit sporozoites into the bloodstream, which travel to the liver and infect
hepatocytes [18]. After replication, merozoites are released into the bloodstream to invade red blood cells, leading30

to cycles of replication and rupture [33]. Some parasites become gametocytes [38], which complete the life cycle
when ingested by mosquitoes. Mixed human malaria parasite infections are widespread globally, occurring even
in areas with low transmission rates. A significant proportion of malaria infections within individual hosts involve33

multiple species of Plasmodium simultaneously [30]. Numerous studies have highlighted the prevalence of mixed-
species malaria infections in various locations worldwide, e.g. [2, 20, 24, 30, 39]. Despite this prevalence, mixed
Plasmodium species infections are often overlooked or underestimated [6, 24, 30].36

Mathematical models have played a key role in the study of parasite multiplication within hosts during mixed
malaria infections. Previous studies have developed various models to explore infection dynamics, with some
focusing on multiple genotypes of a single species within a host, e.g. [8, 11, 23, 46], while others investigate mixed-39

species infection dynamics with single genotypes within a host [17]. If inter-species diversity (e.g. P. vivax or P.
falciparum) has been highlighted by a recent modeling approach as a key factor in maintaining intra-host coinfections
due to their distinct ecological trait for RBCs preferences [17], no study combines both this inter-species diversity42

with intra-species diversity (i.e. multiple genotypes of P. vivax and P. falciparum) within an intra-host infection.
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However, inter-species diversity also plays a crucial role in within-host malaria infection and interaction dynamics.
Indeed, intra-species diversity persists due to the numerous antigenic variants, placing substantial pressure on the45

host immune system and potentially facilitating prolonged parasite infections [36, 41]. Furthermore, both intra-
and inter-species are fundamental for our better understanding of P. vivax and P. falciparum co-infections within
the host. In fact, in regions where P. vivax and P. falciparum coexist, it is often observed that infections with P.48

falciparum are followed by P. vivax infections, leading to the hypothesis that P. falciparum infections facilitated
P. vivax infections, e.g. [6] and references therein. The precise nature of the interaction between P. vivax and P.
falciparum in a multi-genotypes setting remains unclear [24, 34]. It is uncertain whether these species compete51

within the host or if one species provides any degree of protection against the other. These interactions among
Plasmodium species, both within and between species, can have significant clinical and public health implications.
Treating and controlling one species’ genotype can affect the clinical epidemiology of the other species, either at54

the intra-species or inter-species level [24, 30, 39].
We first introduce the mathematical model for the intra-species and inter-species interactions between P. vivax

and P. falciparum. Next, we establish some useful properties including the well-posedness of a positive and global57

solution of the system. We explore the presence of nontrivial stationary states within the model, showing that the
dynamics of the system exhibits a range of behaviors from the persistence of a single species to the coexistence of
both species. We precisely determine the conditions for the existence of these nontrivial stationary states, along with60

the intra-species genotype diversity. Furthermore, we establish the global stability of the parasite-free stationary
state. Afterwards, we conduct an invasibility analysis within a multi-species and multi-genotype framework. This
analysis is particularly crucial as it enables us to characterize the conditions under which an invading genotype63

of P. vivax or P. falciparum species can successfully proliferate within a host initially infected by P. vivax or P.
falciparum under different scenarios. We also perform the parasites uniform persistence over time within the host.
Finally, we introduce the model parameterization and discuss several typical simulated scenarios that the model66

can capture, along with their biological implications.

2 The model description
We introduce a within-host interaction dynamics between young RBCs (reticulocytes), denoted as C1, mature69

RBCs, denoted as C2, and two malaria species P. vivax and P. falciparum. At any given time t, the density of
malaria parasites (merozoites) for P. vivax and P. falciparum are represented by m1(t, x) and m2(t, x) respectively
where the variable x ∈ R is designated as the strain label. The density of parasitized red blood cells by P. vivax72

and P. falciparum is denoted by v1(t, a, x) and v2(t, a, x), where the structural variable a stands for the time post
parasitization. The model we considered then reads :

dC1(t)
dt = Λ− µ1,2C1(t)− C1(t)

∫
R
β1(x)m1(t, x)dx− C1(t)

∫
R
β2(x)m2(t, x)dx,

dC2(t)
dt = µ1,2C1(t)− µ2C2(t)− C2(t)

∫
R
β2(x)m2(t, x)dx,

v1(t, a = 0, x) = C1(t)β1(x)m1(t, x),
v2(t, a = 0, x) = (C1(t) + C2(t))β2(x)m2(t, x),
∂vj(t, a, x)

∂t
+ ∂vj(t, a, x)

∂a
= − (µ2 + γj(a, x)) vj(t, a, x),

∂mj(t, x)
∂t

=
∫
R
k(x− y)pj(y)

(∫ ∞
0

γj(a, y)vj(t, a, y)da
)

dy − (µm,j + Ij(x))mj(t, x).

(2.1)

In the system (2.1), the parameters 1/µ1,2 and 1/µ2 respectively represent the duration of the young and mature
stages of RBCs, while Λ denotes the production rate of RBCs from the bone marrow. Contacts between merozoites
and uninfected RBCs occur at rate βj . P. vivax exhibits a preference for targeting young RBC stages, whereas
P. falciparum targets all RBC stages. The parameter µm,j represents the natural death rates for merozoites. The
functions γj(a, x) represent the additional death rate of parasitized RBCs by the j-species of strain x at time a
post parasitization, resulting in rupture. The rupture, at age a, of parasitized RBCs by the j-species of strain y
produce merozoites of strain x at rate k(x−y)pj(y)γj(a, y), where k(x−y) is the probability of mutation from strain
y to strain x. Hence, mutations randomly shift strains in the phenotype space during each infection generation,
following a mutation kernel k. Finally, the effect of the immune system on the j-species of strain x is denoted by
Ij(x). We present a summary of state variables and model parameters in Table 1. System (2.1) is coupled with the
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Table 1: Withing host model variables and parameters
Param Description (unit) Values

State variables
C1(t) density of reticulocytes at time t (Cell/ml)
C2(t) density of mature RBCs at time t (Cell/ml)
vj(t, a, x) density of parasitized RBC –pRBC– by pathogens x of j-species at time t

which are parasitized since time a (Cell/ml)
mj(t, x) density of merozoites x of j-species at time t (Cell/ml)

Parameters
Λ Production rate of RBC (RBC/h/ml) 1.73× 106[5, 31]
1/µ1,2 Duration of the RBC reticulocyte stage (h) 36 [31]
1/µ2 Duration of the RBC mature stage (days) 116.5[31]
µm,j Decay rates of malaria parasites of the j-species (RBC/day) 48[22]
τj Erythrocytic cycle duration of the j-species (h) 48 for P. falciparum [37]

48 for P. vivax [37]
pmax
j Maximal number of merozoites produced per pRBC by the j-species 16 [5, 37]
pj(x) Number of merozoites with value x produced per pRBC by the j-species Defined by (8.2)
γj(a, x) Rupture rate of pRBCs by x of species j since time a Defined by (8.1)
Ij(x) Cross-immune reaction to parasite x of j-species Defined by (8.3)
β1(x) Infection rate of pathogens x of the species 1 (RBC/ml/day) 6.27× 10−7

β2(x) Infection rate of pathogens x of the species 2 (RBC/ml/day) 6.27× 10−8
1
σ2
j

Selectivity level within the j-malaria species 1
0.032

Initial conditions
C1,0 Density of reticulocytes Λ/µ1,2
C2,0 Density of of mature RBCs Λ/µ2
vj,0 Density of pRBCs of the j-species 0

following initial condition:

Cj(0) = Cj,0, vj(0, a, x) = vj,0(a, x), mj(0, x) = mj,0(x).

3 Model’s abstract formulation and overall assumptions75

Let us set

C(t) = (C1(t), C2(t)), m(t, x) = (m1(t, x),m2(t, x)), v(t, a, x) = (v1(t, a, x), v2(t, a, x)).

Then, System (2.1) rewrites as

dC(t)
dt = Λ̄− µC(t)− diag

(∫
R
κmβ(y)m(t, y)dy

)
C(t),

v(t, a = 0, x) = diag(β(x)m(t, x))κTmC(t),

(∂t + ∂a)v(t, a, x) = −(µ2Id + γ(a, x))v(t, a, x),

∂tm(t, x) =
∫
R
k(x− y)p(y)

∫ ∞
0

γ(a, y)v(t, a, y)dady − (ν + I(x))m(t, x)

(3.1)

where Λ̄ = (Λ, 0)T , ν = diag(µm,j)j∈{1,2}, β = diag(βj)j∈{1,2}, I = diag(Ij)j∈{1,2}, γ = diag(γj)j∈{1,2}, p =
diag(pj)j∈{1,2},78

µ =
(
µ1,2 0
−µ1,2 µ2

)
, κm =

(
1 1
0 1

)
.
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Let the Banach space X = R2 × L1(R,R2) × L1(R+ × R,R2) × L1(R,R2), which is endowed with the usual
product norm

‖(C, f, v,m)T ‖X = ‖C‖R2 + ‖f‖L1(R,R2) + ‖v‖L1(R+×R,R2) + ‖m‖L1(R,R2).

Let A : D(A) ⊂ X → X the linear operator defined on the domain D(A) := R2 × {0L1(R,R2)} × Dv × L1(R,R2) by

A


C

0L1(R,R2)
v
m

 =


−µC
−v(0, ·)

−∂av − (µ2Id + γ)v
−(ν + I)m


with

Dv :=
{
v ∈ L1(R+ × R,R2) : v(·, x) ∈W 1,1(R+,R2) a.e x ∈ R and ∂av ∈ L1(R+ × R,R2)

}
.

We then define the set

X0 = D(A) = R2 × {0L1(R,R2)} × L1(R+ × R,R2)× L1(R,R2)

and we introduce the non-linear map F : X0 → X defined by

F


C

0L1(R,R2)
v
m

 =


Λ̄− diag

(∫
R
κmβ(y)m(y)dy

)
C

diag(βm)κTmC,
0L1(R+×R,R2)∫

R
k(· − y)p(y)

∫ ∞
0

γ(a, y)v(a, y)dady

 . (3.2)

Note that D(A) 6= X hence A is a linear operator with a non-dense domain. Therefore, by identifying u(t) as

(C(t), 0L1(R,R2), v(t, ·, ·),m(t, ·))T

and letting u0 ∈ X0 the associated initial condition, System (3.1) writes as the following abstract Cauchy problem:
du(t)

dt = Au(t) + F (u(t)),
u(0) = u0.

(3.3)

Let X0+ = X0 ∩ X+ with X+ the positive cone of X . System (3.3) is considered under the following quite general81

assumption

Assumption 3.1.

1. For each j ∈ {1, 2}, the constants Λ, µ1,2, µ2, and µm,j are positive, while the functions Ij , βj , pj ∈ L∞+ (R)84

and γj ∈ L∞+ (R+ × R).

2. The kernel k is a non-negative function satisfying k ∈ L∞(R) ∩ L1(R) and
∫
R k(x)dx = 1.

While Assumption 3.1 guarantees the global well-posedness of the bounded and dissipative semiflow of (3.3),
achieving compactness of the trajectories generated by such a semiflow necessitates additional assumptions. Indeed,
the compactness of the trajectories is related to the compactness of the linear operator U : L1(R+ × R,R2) →
L1(R,R2)

U [v](x) =
∫
R
k(x− y)p(y)

∫ ∞
0

γ(a, y)v(a, y)da dy.

To ensure the compactness of the linear operator U , we shall assume that :87

Assumption 3.2.

1. The functions pj : R→ R+ are continuous, not identically null and lim|x|→∞ pj(x) = 0, for each j ∈ {1, 2}.

2. For each R > 0 the function x 7−→ sup|y|≤R k(x+ y) belongs to L1(R).90
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Furthermore, stationary states of System (3.3) are strongly related to the spectral properties of the linear
operator Lj ∈ L(L1(R)), defined for each j ∈ {1, 2} by

Ljw(x) =
∫
R
k(x− y)Γj(y)w(y)dy, ∀w ∈ L1(R) (3.4)

wherein93

Γj(y) = pj(y)βj(y)
µm,j + Ij(y) ×

∫ ∞
0

γj(a, y)Πj(0, a, y)da︸ ︷︷ ︸
average parasite’s development period

(3.5)

captures the reproductive value of the parasite of strain y within species j, and where we denote by

Πj(a, b, x) = exp
(
−
∫ b

a

(µ2 + γj(`, x))d`
)

the survival probability of RBCs infected by strain x of species j from time a to b since infection. In general, the
compactness property of the linear operator Lj above holds as soon as Assumption 3.2 is replaced by:

Assumption 3.3.96

1. The reproductive functions Γj : R→ R+ are continuous, not identically null and lim|x|→∞ Γj(x) = 0 for each
j ∈ {1, 2}.

2. For each R > 0 the function x 7−→ sup|y|≤R k(x+ y) belongs to L1(R).99

Under Assumption 3.1, it is noteworthy that Assumption 3.2 automatically entails Assumption 3.3. However,
it is important to note that while Assumption 3.3 holds, it may not necessarily imply Assumption 3.2.

The compactness and irreducibility properties of the linear operator Lj induce the following result that we102

remember (see [14] for the proof).

Proposition 3.4. Let j ∈ {1, 2}. Under Assumptions 3.1 and 3.3, the linear operator Lj defined by (3.4) is
positive, compact and its spectrum σ(Lj) \ {0} is composed of isolated eigenvalues with finite algebraic multiplicity.105

The spectral radius r(Lj) is a positive algebraically simple eigenvalue associated to the normalized eigenfunction
φj ∈ L1(R) with

∫
R φj(x)dx = 1. Moreover, if a nonegative and non identically null function φ ∈ L1(R) satisfies

the equality Lj(φ) = αφ for some α ∈ R, then φ > 0 almost everywhere, φ ∈ span(φj) and α = r(Lj).108

Finally, addressing the concern of uniform persistence of parasites in the proposed model necessitates a technical
assumption outlined as follows

Assumption 3.5. Let j ∈ {1, 2}. For each λ > 0 and for almost every y ∈ R, we have

pj(y)βj(y)
∫ ∞
s

γj(a, y)e−λ(a−s)Πj(s, a, y) da > 0, ∀s ≥ 0.

Essentially, Assumption 3.5 demands that the product pjβj be almost everywhere positive on R. However, if,111

for example, pj(y)βj(y) > 0 holds for nearly every y ∈ Ω, where Ω is a bounded subset of R, the model proposed
here can straightforwardly be applied to the set Ω, and the methods and outcomes presented here remain valid.

4 Global well-posedness, dissipativity and positivity114

In this section, we handle the well-posedness of the system (2.1).

4.1 The main result
By setting X := R2×L1(R+×R,R2)×L1(R,R2), and X+ := R2

+×L1
+(R+×R,R2)×L1

+(R,R2) its positive cone,117

the main result of this section reads:

Theorem 4.1. Let Assumption 3.1 be satisfied. Then,
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1. Problem (2.1) generates a globally defined strongly continuous semiflow on X+, denoted by Φ and defined by120

Φ : R+ ×X+ 3 (t, û0) 7−→ Φt(û0) = (C(t), v(t, ·, ·),m(t, ·)). (4.1)

That is, for each û0 = (C0, v0,m0) ∈ X+, there exists a unique mild solution (C, v,m) ∈ C(R+, X+). Fur-
thermore, the set

S :=

(C0, v0,m0) ∈ X+ :

∣∣∣∣∣∣∣∣
C1,0 ≤ Λ

µ1,2
, C2,0 ≤ Λ

µ2∑2
j=1(Cj,0 + ‖vj,0‖L1(R+×R)) ≤ Λ

µ1,2
+ Λ

µ2

‖mj,0‖L1(R) ≤
‖γj‖∞‖pj‖∞

µm,j

(
Λ
µ1,2

+ Λ
µ2

)
, ∀j ∈ {1, 2}

 (4.2)

is positively invariant with respect to the semi-flow Φ and for each û0 ∈ X+, the solution defined by (4.1)
satisfies 

lim sup
t→+∞

C1(t) ≤ Λ
µ1,2

and lim sup
t→+∞

C2(t) ≤ Λ
µ2

lim sup
t→+∞

2∑
j=1

(Cj(t) + ‖vj(t, ·, ·)‖L1(R+×R)) ≤
Λ
µ1,2

+ Λ
µ2

and for j ∈ {1, 2}

lim sup
t→+∞

‖mj(t, ·)‖L1(R) ≤
‖γj‖∞‖pj‖∞

µm,j

(
Λ
µ1,2

+ Λ
µ2

)
.

2. The semi-flow Φ is point (and bounded) dissipative, i.e. there exists a bounded set K ⊂ X+, that attracts each123

point of X+ (and each bounded set of X+) i.e. dH(Φt(w),K) −→
t→∞

0 for each w ∈ X+ (and dH(Φt(B),K) −→
t→∞

0 for any bounded set B ⊂ X+), where dH is the Hausdorff semi-distance [21] defined by dH (B,K) =
supw∈B infv∈K ‖w − v‖X .126

3. In addition to Assumption 3.1, we also require the fulfilment of Assumption 3.2. Then, the semi-flow Φ is
asymptotically smooth in X+, i.e. for any nonempty, closed, bounded and positively invariant set B ⊂ X+,
there exists a compact set K ⊂ X+ such that limt→∞ dH(Φt(B),K) = 0. It follows that there exists a global129

attractor.

4.2 Proof of Theorem 4.1
To prove Theorem 4.1, we need to set a suitable framework for using integrated semigroups (see e.g. [26] and the132

references therein). We start by giving the following result about the resolvent of A which simply arises from the
definition of the linear operator.

Lemma 4.2 (Resolvent). Suppose that Assumption 3.1 is satisfied. Then for each λ ∈ C such that <(λ) >
−min{µ1,2, µ2, µm,1, µm,2}, the resolvent of A is given by

(λId −A)−1


u1
u2
u3
u4

 =


C

0L1(R,R2)
v
m

 ∈ X0

for every (u1, u2, u3, u4)T ∈ X , with
C = (λId + µ)−1u1

v(a, x) = e
−
∫ a

0
(λId+µ2Id+γ(l,x))dl

u2(x) +
∫ a

0
e
−
∫ a
s

(λId+µ2Id+γ(l,x))dl
u3(s, x)ds

m(x) = (λId + ν + I(x))−1u4(x)

and consequently, A is resolvent positive.135

Let A0 : D(A0) ⊂ X0 → X be the part of A on X0, that is the linear linear operator

A0u := Au, ∀u ∈ D(A0) = {u ∈ D(A) : Au ∈ X0}.

We also have the following lemma.
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Lemma 4.3. Suppose that Assumption 3.1 is satisfied. Then A : D(A) ⊂ X0 → X is a Hille-Yosida linear operator.
Furthermore, s(A0) = s(A) < 0 with s(A) (resp. s(A0)) the spectral bound of A (resp. A0), that is for H ∈ {A,A0}

s(H) := sup{<(λ) : λ is in the spectral set of H}.

Consequently if ωA ∈ (−s(A0), 0) there exists a constant MA ≥ 1 such that

‖TA0(t)‖L(X0) ≤MAe
−ωAt, ∀t ≥ 0.

Proof. Considering the linear operators A1 : D(A)→ X and A2 : X0 → X as follow

A2


C

0L1(R,R2)
v
m

 =


−µC

0L1(R,R2)
0L1(R+×R,R2)

0L1(R,R2)

 , A1 := A−A2

lead to the decomposition A = A1 +A2. With Lemma 4.2 we see that

‖(λId −A1)−1u‖X ≤
1

λ+ ω0
‖u‖X

for each u ∈ X and λ ∈ R with λ ≥ −ω0 and ω0 := min{µ1,2, µ2, µm,1, µm,2}, leading to ‖(λId − A1)−n‖L(X ) ≤
1

(λ+ω0)n for each n ≥ 1 so that A1 is a Hille-Yosida operator. Since A2 is a bounded linear operator, it follows that A
is also a Hille-Yosida linear operator. Consequently, A0, the part of A on X0 generates a C0-semigroup {TA0(t)}t≥0
with growth bound ω(A0) ∈ R. Next, we note that X0 is a AL-space implying that s(A0) = ω(A0) [42, Theorem
3.14]. Recalling that [25, Lemma 2.1] A and A0 have the same spectral set, we conclude that s(A0) = s(A). The
result follows from Lemma 4.2 and the fact that

s(A) = inf{λ ∈ ρ(A) : (λ−A)−1X+ ⊂ X0+}.

4.2.1 Proof of items 1 and 2138

The following proposition is devoted to items 1 and 2 of Theorem 4.1.

Proposition 4.4 (Global well-posedness, Boundedness, Dissipativity). Let Assumption 3.1 be satisfied. Then the
Cauchy problem (3.3) generates a globally defined strongly continuous semiflow on X0+, denoted by U and defined141

by

U : R+ ×X+ 3 (t, u0) 7−→ U(t)u0 = (C1(t), C2(t), 0L1(R,R2), v1(t, ·, ·), v2(t, ·, ·),m1(t, ·),m2(t, ·))T . (4.3)

That is, for each u0 = (C1,0, C2,0, 0L1(R,R2), v1,0, v2,0,m1,0,m2,0)T ∈ X0+, U(·)u0 ∈ C(R+,X0+) is the unique mild
solution to (3.3). Furthermore, the set S introduced by (4.2) is positively invariant with respect to the semiflow U
and for each u0 ∈ X0+, the solution defined by (4.3) satisfies

lim sup
t→+∞

C1(t) ≤ Λ
µ1,2

and lim sup
t→+∞

C2(t) ≤ Λ
µ2

lim sup
t→+∞

2∑
j=1

(Cj(t) + ‖vj(t, ·, ·)‖L1(R+×R)) ≤
Λ
µ1,2

+ Λ
µ2

and for j ∈ {1, 2}

lim sup
t→+∞

‖mj(t, ·)‖L1(R) ≤
‖γj‖∞‖pj‖∞

µm,j

(
Λ
µ1,2

+ Λ
µ2

)
.

Proof. Thanks to Lemma 4.2 and Lemma 4.3, the linear operator A is resolvent positive and a Hille-Yosida operator.
The non-linear map F is clearly continuous and locally Lipschitz due to Assumption 3.1. The local existence then
follows from the classical result (see e.g. [27, Theorem 5.2.7, p. 226]). We now claim that

∀ε > 0, ∃λε : F (u) + λεu ≥ 0, ∀u ∈ X0+ ∩BX (0, ε)
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wherein BX (0, ε) is the open ball in X centred at 0 with radius ε. Indeed, a sufficient condition for this inequality
to hold is to choose λε such that

λε ≥ ε (‖β1‖∞ + ‖β2‖∞)
which proves the claim. It shows that the solution is non-negative due to [26, Proposition 5.3.2, p. 227]. We
now prove the global existence. To this end, let u0 = (C0, 0, v0(·, ·),m0(·))T ∈ X0+ be given. Then there exists
Tmax ∈ (0,∞] such that if we set

U(t)u0 = (C1(t), C2(t), 0L1(R,R2), v1(t, ·, ·), v2(t, ·, ·),m1(t, ·),m2(t, ·)),

then for each t ∈ [0, Tmax) and almost every x ∈ R we have

vj(t, a, x) =


vj,0(a− t, x)Πj(a− t, a, x) if t ≤ a,(∑j

i=1 Ci(t− a)
)
βj(x)mj(t− a, x)Πj(0, a, x) if t > a

(4.4)

and144 

dC1(t)
dt = Λ− µ1,2C1(t)− C1(t)

∫
R
β1(x)m1(t, x)dx− C1(t)

∫
R
β2(x)m2(t, x)dx,

dC2(t)
dt = µ1,2C1(t)− µ2C2(t)− C2(t)

∫
R
β2(x)m2(t, x)dx,

∂mj(t, x)
∂t

=
∫
R
k(x− y)pj(y)

(∫ ∞
0

γj(a, y)vj(t, a, y)da
)

dy − (µm,j + Ij(x))mj(t, x).

(4.5)

Note that using the C1-equation we obtain

dC1(t)
dt ≤ Λ− µ1,2C1(t), ∀t ∈ [0, Tmax)

from which we deduce that

C1(t) ≤ e−µ1,2tC1,0 + Λ
µ1,2

(
1− e−µ1,2t

)
, ∀t ∈ [0, Tmax) (4.6)

so that
C1(t) ≤M0 := max

(
C1,0,

Λ
µ1,2

)
, ∀t ∈ [0, Tmax). (4.7)

Using (4.7), it follows from the C2-equation of (4.5) that147

dC2(t)
dt ≤ µ1,2C1(t)− µ2C2(t) ≤ µ1,2M0 − µ2C2(t), ∀t ∈ [0, Tmax) (4.8)

and by similar arguments we obtain

C2(t) ≤M1 := max
(
C2,0,

µ1,2M0

µ2

)
, ∀t ∈ [0, Tmax). (4.9)

Next, summing the C-equations of (4.5) it follows that

d
dt

2∑
j=1

Cj(t) = Λ + µ2C1(t)− µ2

2∑
j=1

Cj(t)−
2∑
j=1

∫
R
vj(t, 0, x)dx, ∀t ∈ (0, Tmax).

From where we obtain for each t ∈ [0, Tmax)
2∑
j=1

Cj(t) = e−µ2t
2∑
j=1

Cj,0 +
∫ t

0
e−µ2(t−a)(Λ + µ2C1(a)) da−

2∑
j=1

∫ t

0
e−µ2(t−a)

∫
R
vj(a, 0, x)dxda. (4.10)

Next, using (4.4) it follows that for each t ∈ [0, Tmax)150

2∑
j=1

∫
R

∫ ∞
0

vj(t, a, x)dadx =
2∑
j=1

∫
R

∫ t

0
Πj(0, a, x)vj(t− a, 0, x)dadx

+
2∑
j=1

∫
R

∫ ∞
t

vj,0(a− t, x)Πj(a− t, a, x)dadx.
(4.11)
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Recalling that
Πj(a, σ, x) ≤ e−µ2(σ−a), ∀σ ≥ a ≥ 0, x ∈ R, j ∈ {1, 2}

we infer from (4.11) that for each t ∈ [0, Tmax)

2∑
j=1

∫
R

∫ ∞
0

vj(t, a, x)dadx ≤
2∑
j=1

∫
R

∫ t

0
e−µ2(t−a)vj(a, 0, x)dadx+ e−µ2t

2∑
j=1

∫
R

∫ ∞
0

vj,0(a, x)dadx. (4.12)

Therefore, setting

R(t) :=
2∑
j=1

(
Cj(t) +

∫
R

∫ ∞
0

vj(t, a, x)dadx
)
, ∀t ∈ [0, Tmax)

and summing (4.10) and (4.12) we obtain

R(t) ≤ e−µ2tR(0) +
∫ t

0
e−µ2(t−a)(Λ + µ2C1(a)) da, ∀t ∈ [0, Tmax) (4.13)

so that (4.7) combined with (4.13) implies153

R(t) ≤M2 := max
(
R(0), Λ + µ2M0

µ2

)
, ∀t ∈ [0, Tmax). (4.14)

Thanks to (4.14), Assumption 3.1, and the mj-equation in (4.5), we have for each t ∈ [0, Tmax)

d
dt

∫
R
mj(t, x)dx ≤ ‖γj‖∞‖pj‖∞M2 − µm,j

∫
R
mj(t, x)dx, j ∈ {1, 2}

so that ∫
R
mj(t, x)dx ≤ max

(
‖γj‖∞‖pj‖∞M2

µm,j
,

∫
R
mj,0(x)dx

)
, j ∈ {1, 2}, ∀t ∈ [0, Tmax). (4.15)

It is now clear from (4.7), (4.9), and (4.15) that for each u0 ∈ X0+ we have Tmax := Tmax(u0) = +∞. Moreover,
the positive invariance of the set S defined in (4.2) is a direct consequence of the estimates (4.7), (4.9), (4.14) and156

(4.15). Let us now prove the dissipativity of the semiflow generated by (3.3). To do so we first note that (4.6)
implies that

lim sup
t→+∞

C1(t) ≤ Λ
µ1,2

. (4.16)

Next, let ε > 0 be given. Thanks to (4.16) there exists t0 := t0(ε, u0) > 0 such that159

C1(t) ≤ Λ
µ1,2

+ ε, ∀t ≥ t0. (4.17)

Consequently, (4.8) and (4.17) imply that

dC2(t)
dt ≤ µ1,2

(
Λ
µ1,2

+ ε

)
− µ2C2(t), ∀t ≥ t0

that is
C2(t) ≤ e−µ2(t−t0)C2(t0) + µ1,2

µ2

(
Λ
µ1,2

+ ε

)(
1− e−µ2(t−t0)

)
, ∀t ≥ t0. (4.18)

Recalling that t→ C2(t) is bounded on [0,+∞) it follows from (4.18) that

lim sup
t→+∞

C2(t) ≤ µ1,2

µ2

(
Λ
µ1,2

+ ε

)
. (4.19)

Since ε > 0 is arbitrary in the above estimate (4.19) we conclude that

lim sup
t→+∞

C2(t) ≤ Λ
µ2
.
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To obtain the dissipativity concerning the vj-components, we combine (4.7), (4.13), and (4.17) to obtain

R(t) ≤ e−µ2tR(0) +
∫ t0

0
e−µ2(t−a)(Λ + µ2M0)da+

∫ t

t0

e−µ2(t−a)
(

Λ + µ2

(
Λ
µ1,2

+ ε

))
da, ∀t ≥ t0

from where
lim sup
t→+∞

R(t) ≤ Λ
µ2

+ Λ
µ1,2

+ ε.

Since ε > 0 can be chosen arbitrarily small we end up with162

lim sup
t→+∞

R(t) ≤ Λ
µ2

+ Λ
µ1,2

. (4.20)

To complete the proof, we prove that the dissipativity holds along the mj-components. To this end, we note that
(4.20) implies that for each η > 0, there exists t1 := t1(η, u0) > 0 such that R(t) ≤ Λ

µ2
+ Λ

µ1,2
+ η for all t ≥ t1.

Consequently, we obtain from the mj-equation that

d
dt

∫
R
mj(t, x)dx ≤ ‖γj‖∞‖pj‖∞

(
Λ
µ2

+ Λ
µ1,2

+ η

)
− µm,j

∫
R
mj(t, x)dx, j ∈ {1, 2}, ∀t ≥ t1.

Using similar arguments as above, we obtain

lim sup
t→+∞

∫
R
mj(t, x)dx ≤ ‖γj‖∞‖pj‖∞

µm,j

(
Λ
µ2

+ Λ
µ1,2

+ η

)
, ∀η > 0.

The proof of Proposition 4.4 is completed.

4.2.2 Proof of item 3
The next proposition is concerned by the asymptotic smoothness of the semiflow generated by (3.3) (or equivalently165

(2.1)), that is the third item of Theorem 4.1.

Proposition 4.5 (Asymptotic smoothness of the semiflow). Let Assumptions 3.1 and 3.2 be satisfied. Then the
nonlinear semiflow {U(t)}t≥0 generated by (3.3) has the form

U(t) = U1(t) + U2(t), ∀t ≥ 0

with the following properties:

i) For each t > 0, U1(t) : X0+ → X , maps bounded sets of X0+ into relatively compact sets of X ;168

ii) There exists ξ : [0,+∞) × [0,+∞) → [0,+∞) such that for each ε > 0, lim
t→+∞

ξ(t, ε) → 0 and if u0 ∈ X0+

with ‖u0‖X ≤ ε then ‖U2(t)u0‖X ≤ ξ(t, ε) for all t ≥ 0.

Proof. The proof of Proposition 4.5 will be given in a series of lemma. To this end, let us note that the nonlinear
map F defined in (3.2) can be written as F = F1 + F2 where we have set for each (C, 0L1(R,R2), v,m)T ∈ X0+

F1


C

0L1(R,R2)
v
m

 =


Λ̄− diag

(∫
R
κmβ(y)m(y)dy

)
C

0L1(R,R2),
0L1(R+×R,R2)∫

R
k(· − y)p(y)

∫ ∞
0

γ(a, y)v(a, y)dady


and171

F2


C

0L1(R,R2)
v
m

 =


0R2

diag(βm)κTmC
0L1(R+×R,R2)

0L1(R,R2)

 . (4.21)

It is worth noting that if Assumptions 3.1 and 3.3 are satisfied then F1 maps bounded sets of X0+ into a relatively
compact set of X0. Indeed, the first component of F1 belongs to a finite-dimensional space while the last component

10



of F1 is a composition of a linear continuous map with a compact linear map which is a consequence of Assumptions174

3.1 and 3.2 (see [14]). In the following, B ⊆ X0+ is a bounded subset of X0+. Recall that for each u0 ∈ B, the
integrated (mild) solution t ∈ [0,+∞) 7→ U(t)u0 of (3.3) is given by

U(t)u0 = TA0(t)u0 + lim
λ→+∞

∫ t

0
TA0(t− s)λ(λ−A)−1F (U(s)u0)ds, ∀t ≥ 0. (4.22)

Next, we define for each u0 ∈ B, the map t 7→ Û(t)u0 by177

Û(t)u0 := lim
λ→+∞

∫ t

0
TA0(t− s)λ(λ−A)−1F1(U(s)u0)ds, t ≥ 0. (4.23)

We also define the map t 7→ Ǔ(t)u0 as
Ǔ(t)u0 := TA0(t)u0, t ≥ 0 (4.24)

and the map t 7→ Ũ(t)u0 as

Ũ(t)u0 := lim
λ→+∞

∫ t

0
TA0(t− s)λ(λ−A)−1F2(U(s)u0)ds, t ≥ 0. (4.25)

Let us note that the uniqueness of the integrated solution (4.22) together with (4.23), (4.24) and (4.25) imply that180

for each u0 ∈ B we have
U(t)u0 = Û(t)u0 + Ǔ(t)u0 + Ũ(t)u0, ∀t ≥ 0. (4.26)

Note that using similar arguments to the proof of Proposition 4.4, one obtains that there exists K0 := K0(B) > 0
such that183

sup
t≥0,u0∈B

‖U(t)u0‖X ≤ K0. (4.27)

Moreover, due to Lemma 4.3, the equality (4.24) and the boundedness of B, there exists K1 := K1(B) > 0 such
that

sup
u0∈B

‖Ǔ(t)u0‖X ≤ e−ωAtK1, ∀t ≥ 0. (4.28)

We have the following lemma.186

Lemma 4.6. Let Assumptions 3.1 and 3.2 be satisfied. Then, for each T > 0, the set B := {Û(·)u0 ∈ C([0, T ],X0) :
u0 ∈ B} is relatively compact in C([0, T ],X0).

Proof. Let T > 0 be given and define B as in the Lemma. The proof will be done by using the Arzelà-Ascoli
theorem. To do so, we have to prove that for each t ≥ 0, the set B(t) := {Û(t)u0 : u0 ∈ B} is compact in X0 and B
is an equicontinuous family. Let us note that F1(U(s)u0) ∈ X0 for all s ≥ 0, u0 ∈ B so that (4.23) becomes

Û(t)u0 =
∫ t

0
TA0(t− s)F1(U(s)u0)ds, ∀t ≥ 0, ∀u0 ∈ B.

Thanks to (4.27) we can define the bounded set

B0 := {U(t)u0 : t ≥ 0, u0 ∈ B},

The compactness of F1 implies that F1(B0) is relatively compact. Recalling that (s, y) 7→ TA0(s)y is continuous,
we deduce that the set

{TA0(t− s)F1(U(s)u0) : s ∈ [0, t], u0 ∈ B} ⊂ {TA0(t− s)F1(y) : s ∈ [0, t], y ∈ B0}

is relatively compact. By a theorem by Mazur, we conclude that for each t > 0 the set

B(t) =
{∫ t

0
TA0(t− s)F1(U(s)u0)ds : u0 ∈ B

}
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is relatively compact. This proves that for each t ≥ 0, the set B(t) is relatively compact. To complete the proof,
we have to prove that B is equicontinuous. To this end, let 0 ≤ t0 ≤ t ≤ T be given. Then we have

Û(t)u0 − Û(t0)u0 =
∫ t

t0

TA0(t− s)F1(U(s)u0)ds+
∫ t0

0
[TA0(t− s)− TA0(t0 − s)]F1(U(s)u0)ds

=
∫ t

t0

TA0(t− s)F1(U(s)u0)ds+
∫ t0

0
[TA0(t− t0 + s)− TA0(s)]F1(U(t0 − s)u0)ds

proving that189

‖Û(t)u0−Û(t0)u0‖X ≤ sup
y∈B0

‖F1(y)‖X
∫ t

t0

MAe
−ωA(t−s)ds+t0 sup

s∈[0,t0],y∈F1(B0)
‖TA0(t−t0 +s)y−TA0(s)y‖X . (4.29)

The equicontinuity of B follows from (4.29) and the fact that F1(B0) is relatively compact.

Due to (4.26)-(4.27) and Lemma 4.6, our Proposition 4.5 is a consequence of the following lemma.

Lemma 4.7. Let Assumptions 3.1 and 3.2 be satisfied. Then, the nonlinear maps {Ũ(t)}t≥0 defined in (4.25) has
the form

Ũ(t) = Ṽ (t) + Z̃(t), ∀t ≥ 0
with the following properties:192

i) For each t > 0, Ṽ (t) : X0+ → X , maps B into relatively compact sets of X ;

ii) There exists a constant K̃ := K̃(B) > 0 such that ‖Z̃(t)u0‖X ≤ K̃(1 + t)e−ω
+
A
t, for all t ≥ 0 and u0 ∈ B.

The positive constant ω+
A > 0 is defined as ω+

A := min{ωA, µ2} with ωA defined in Lemma 4.3.195

Proof. Let us set for each t ≥ 0, u0 ∈ B

U(t)u0 := (Cu0
1 (t), Cu0

2 (t), 0L1(R,R2), v
u0
1 (t, ·, ·), vu0

2 (t, ·, ·),mu0
1 (t, ·),mu0

2 (t, ·))

and 
Û(t)u0 := (Ĉu0

1 (t), Ĉu0
2 (t), 0L1(R,R2), v̂

u0
1 (t, ·, ·), v̂u0

2 (t, ·, ·), m̂u0
1 (t, ·), m̂u0

2 (t, ·))
Ũ(t)u0 := (C̃u0

1 (t), C̃u0
2 (t), 0L1(R,R2), ṽ

u0
1 (t, ·, ·), ṽu0

2 (t, ·, ·), m̃u0
1 (t, ·), m̃u0

2 (t, ·))
Ǔ(t)u0 := (Ču0

1 (t), Ču0
2 (t), 0L1(R,R2), v̌

u0
1 (t, ·, ·), v̌u0

2 (t, ·, ·), m̌u0
1 (t, ·), m̌u0

2 (t, ·))

so that we get for each t ≥ 0, j ∈ {1, 2} and u0 ∈ B:
Cu0
j (t) = Ĉu0

j (t) + Ču0
j (t) + C̃u0

j (t),
mu0
j (t, ·) = m̂u0

j (t, ·) + m̌u0
j (t, ·) + m̃u0

j (t, ·),
vu0
j (t, ·, ·) = v̂u0

j (t, ·, ·) + v̌u0
j (t, ·, ·) + ṽu0

j (t, ·, ·).
(4.30)

Note that, using (4.28) we have for each j ∈ {1, 2} and t ≥ 0 the following estimates{
supu0∈B |Č

u0
j (t)| ≤ K1e

−ωAt,

supu0∈B ‖m̌
u0
j (t, ·)‖L1(R) ≤ K1e

−ωAt,
(4.31)

while (4.27) gives the following estimates198 {
supu0∈B |C

u0
j (t)| ≤ K0, ∀t ≥ 0

supu0∈B ‖m
u0
j (t, ·)‖L1(R) ≤ K0, ∀t ≥ 0.

(4.32)

Using (4.21) and (4.25) it follows that t 7→ (C̃u0(t), ṽu0(t, ·, ·), m̃u0(t, ·) satisfies, in the mild sense, the following
system 

dC̃u0 (t)
dt = −µC̃u0(t),

ṽu0(t, a = 0, x) = diag(β(x)mu0(t, x))κTmCu0(t),

(∂t + ∂a)ṽu0(t, a, x) = −(µ2Id + γ(a, x))ṽu0(t, a, x),

∂tm̃
u0(t, x) = −(ν + I(x))m̃u0(t, x)
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with initial conditions C̃u0(0) = 0, m̃u0(0, ·) = 0L1(R,R2) and ṽu0(0, ·, ·) = 0L1(R+×R,R2). Consequently, we have

C̃u0(t) = 0, m̃u0(t, ·) = 0L1(R,R2), ∀u0 ∈ B, ∀t ≥ 0 (4.33)

and for each j ∈ {1, 2}, t ≥ 0, a ≥ 0 and u0 ∈ B:

ṽu0
j (t, a, ·) = 1[0,t](a)βj(·)Πj(0, a, ·)

(
j∑
i=1

Cu0
i (t− a)

)
mu0
j (t− a, ·). (4.34)

Hence, we infer from (4.30) and (4.33) that for each j ∈ {1, 2}, t ≥ 0 and u0 ∈ B:201 {
mu0
j (t, ·) = m̂u0

j (t, ·) + m̌u0
j (t, ·),

Cu0
j (t) = Ĉu0

j (t) + Ču0
j (t). (4.35)

Moreover, using (4.35) we obtain from (4.31) and (4.32) that for each j ∈ {1, 2} and t ≥ 0:

sup
u0∈B

|Ĉu0
j (t)| ≤ K0 +K1. (4.36)

Next, note that using (4.34) and (4.35), we have for each t ≥ 0, a ≥ 0, j ∈ {1, 2}, x ∈ R and u0 ∈ B:

ṽu0
j (t, a, x) = 1[0,t](a)βj(x)Πj(0, a, x)

(
mu0
j (t− a, x)

j∑
i=1

Ču0
i (t− a) + m̌u0

j (t− a, x)
j∑
i=1

Ĉu0
i (t− a)

)

+1[0,t](a)βj(x)Πj(0, a, x)
j∑
i=1

Ĉu0
i (t− a)m̂u0

j (t− a, x)

so that for each t ≥ 0 and u0 ∈ B:
ṽu0
j (t, ·, ·) = w̃u0

j (t, ·, ·) + z̃u0
j (t, ·, ·)

where we have set for all t ≥ 0, a ≥ 0 and u0 ∈ B:

w̃u0
j (t, a, x) = 1[0,t](a)βj(x)Πj(0, a, x)

(
mu0
j (t− a, x)

j∑
i=1

Ču0
i (t− a) + m̌u0

j (t− a, x)
j∑
i=1

Ĉu0
i (t− a)

)
z̃u0
j (t, a, x) = 1[0,t](a)βj(x)Πj(0, a, x)

(∑j
i=1 Ĉ

u0
i (t− a)

)
m̂u0
j (t− a, x).

Using (4.31), (4.32) and (4.36) it is easy to prove that there exists a constant K̃1 > 0, depending only on B such
that

‖w̃u0
j (t, ·, ·)‖L1 ≤ K̃1(1 + t)e−min{ωA,µ2}t, ∀t ≥ 0, j ∈ {1, 2}.

We now conclude the proof by proving that for each t > 0, the set {z̃u0
j (t, ·, ·) : u0 ∈ B} is relatively compact in

L1(R+ × R). To do so, let {z̃nj (t, ·, ·) : n ∈ N} be a bounded sequence in {z̃u0
j (t, ·, ·) : u0 ∈ B}. Thanks to Lemma

4.6, the set {m̂n
j : n ∈ N} is compact in C([0, t], L1(R)) and {Ĉnj : n ∈ N} is compact in C([0, t],R). Consequently,

there exists m̂∞j ∈ C([0, t], L1(R)) and Ĉ∞j ∈ C([0, t],R) such that

lim
n→+∞

m̂n
j = m̂∞j in C([0, t], L1(R))

and
lim

n→+∞
Ĉnj = Ĉ∞j in C([0, t],R).

Next, setting for each t ≥ 0, a ≥ 0, x ∈ R:

z̃∞j (t, a, x) = 1[0,t](a)βj(x)Πj(0, a, x)
j∑
i=1

Ĉ∞i (t− a)m̂∞j (t− a, x)

it follows easily that
lim

n→+∞
z̃nj (t, ·, ·) = z̃∞j (t, ·, ·) in L1(R+ × R).

This ends the proof of Proposition 4.5.204

Finally, the simple use of [21, Lemma 3.2.3, p. 37] ends the proof of Theorem 4.1.
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5 Stationary states
We investigate the existence of stationary states that are solutions (C∗1 , C∗2 , v∗1 , v∗2 ,m∗1,m∗2) of the following system207

with j ∈ {1, 2}: 

0 = Λ− µ1,2C
∗
1 − C∗1

∫
R
β1(x)m∗1(x)dx− C∗1

∫
R
β2(x)m∗2(x)dx,

0 = µ1,2C
∗
1 − µ2C

∗
2 − C∗2

∫
R
β2(x)m∗2(x)dx,

v∗j (a = 0, x) =
(∑j

i=1 C
∗
i

)
βj(x)m∗j (x),

∂av
∗
j (a, x) = − (µ2 + γj(a, x)) v∗j (a, x),∫

R
k(x− y)pj(y)

(∫ ∞
0

γj(a, y)v∗j (a, y)da
)

dy = (µm,j + Ij(x))m∗j (x).

(5.1)

The parasite-free equilibrium denoted by E0 always exists and is defined by

E0 =
(
CE0

1 , CE0
2 , 0, 0, 0, 0

)
, with CE0

1 = Λ
µ1,2

, CE0
2 = Λ

µ2
. (5.2)

The endemic stationary states rely on the spectral analysis of the linear operators Lj , defined by (3.4) whose210

properties have been reminded in Proposition 3.4. We define the following thresholds:

R1 = Λ
µ1,2

r(L1), R2 =
(

Λ
µ1,2

+ Λ
µ2

)
r(L2) and R0 = max{R1,R2}. (5.3)

We can state the following result:

Theorem 5.1. Let Assumptions 3.1 and 3.3 be satisfied.213

1. If R1 > 1, then System (2.1) has an equilibrium E1 =
(
CE1

1 , CE1
2 , vE1

1 , 0L1(R+×R),m
E1
1 , 0L1(R)

)
where

CE1
1 = CE0

1
R1

, CE1
2 = CE0

2
R1

, vE1
1 (a, x) = CE1

1 β1(x)mE1
1 (x)Π1(0, a, x),

mE1
1 (x) = µ1,2(R1 − 1)

(∫
R

β1(z)φ1(z)
µm,1 + I1(z)dz

)−1
× φ1(x)
µm,1 + I1(x) . (5.4)

2. If R2 > 1, then System (2.1) has an equilibrium E2 =
(
CE2

1 , CE2
2 , 0L1(R+×R), v

E2
2 , 0L1(R),m

E2
2

)
where

CE2
1 = Λ

µ1,2 +
∫
R
β2(z)mE2

2 (z)dz
, CE2

2 = Λ

µ1,2 +
∫
R
β2(z)mE2

2 (z)dz
× µ1,2

µ2 +
∫
R
β2(z)mE2

2 (z)dz
,

vE2
2 (a, x) = (CE2

1 + CE2
2 )β2(x)mE2

2 (x)Π2(0, a, x), mE2
2 (x) = λ2

µm,2 + I2(z)φ2(x), (5.5)

where λ2 is the unique positive solution of the following equation

1 = µ1,2Λr(L2)

µ1,2 + λ2

∫
R

β2(z)φ2(z)
µm,2 + I2(z)dz

 1
µ1,2

+ 1

µ2 + λ2

∫
R

β2(z)φ2(z)
µm,2 + I2(z)dz

 .

3. If the following assumption holds

1 < R2

R1
< 1 + µ1,2

µ2
and R1 > 1 +

(
1 + µ2

µ1,2

) R2
R1
− 1

1 + µ1,2
µ2
− R2
R1

(5.6)
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then System (2.1) has a unique positive equilibrium E∗ = (CE∗1 , CE
∗

2 , vE
∗

1 , vE
∗

2 ,mE∗

1 ,mE∗

2 ) such that

CE
∗

1 = Λ
µ1,2+

∑2
k=1

∫
R
βk(z)mE∗

k
(z)dz

,

CE
∗

2 = Λµ1,2(
µ1,2+

∑2
k=1

∫
R
βk(z)mE∗

k
(z)dz

)(
µ2+
∫
R
β2(z)mE∗2 (z)dz

) ,
vE
∗

1 (a, x) = CE
∗

1 β1(x)mE∗

1 (x)Π1(0, a, x),
vE
∗

2 (a, x) =
(
CE

∗

1 + CE
∗

2
)
β2(x)mE∗

2 (x)Π2(0, a, x),
mE∗

1 (x) = λ1
µm,1+I1(x)φ1(x),

mE∗

2 (x) = λ2
µm,2+I2(x)φ2(x),

(5.7)

where λ1 and λ2 are positive constants given by

λ1 = µ1,2

R1 −
(

1 + λ2

µ1,2

∫
R

β2(z)φ2(z)
µm,2 + I2(z)dz

)
∫
R

β1(z)φ1(z)
µm,1 + I1(z)dz

, λ2 =
(µ1,2 + µ2)

(
R2
R1
− 1
)

(
1 + µ1,2

µ2
− R2
R1

)∫
R

β2(z)φ2(z)
µm,2 + I2(z)dz

.

We can observe that the stationary state E1 corresponds to the scenario where only P. vivax is present, whereas216

only P. falciparum is present at the stationary state E2. Both species can be found at the positive stationary state
E∗, see Figure 1. Note that the condition (5.6) necessarily implies that R2 > R1 > 1.

Figure 1: Qualitative view of areas for the existence of equilibria according to R1 and R2
R1

. In
zone 1 there is only E0 since R0 < 1. Zone 2 is bounded by R1 > 1 and R2 < 1, whence E0 and E1
are present. Zone 3 is bounded by R1 < 1 and R2 > 1, so that E0 and E2 exist. In zones 4 and 5, the
conditions R1 > 1 and R2 > 1 are satisfied so that E0, E1 and E2 are present in both zones. However,
the condition (5.6) holds in zone 5 but not in zone 4, whence E∗ is only present in zone 5.

Proof.219

1. At the stationary state E1, System (5.1) rewrites

0 = Λ− µ1,2C
E1
1 − CE1

1
∫
R β1(x)mE1

1 (x)dx,
0 = µ1,2C

E1
1 − µ2C

E1
2 ,

vE1
1 (0, x) = CE1

1 β1(x)mE1
1 (x),

∂av
E1
1 (a, x) = − (µ2 + γ1(a, x)) vE1

1 (a, x),
0 =

∫
R k(x− y)p1(y)

(∫∞
0 γ1(a, y)vE1

1 (a, y)da
)

dy − (µm,1 + I1(x))mE1
1 (x).

(5.8)
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The first two equations of (5.8) lead to

CE1
1 = CE0

1
µ1,2

µ1,2 +
∫
R β1(z)mE1

1 (z)dz
, CE1

2 = CE0
2

µ1,2

µ1,2 +
∫
R β1(z)mE1

1 (z)dz

and we have from the v1-equation

vE1
1 (a, x) = CE1

1 β(x)mE1
1 (x)Π1(0, a, x).

Substituting the above expressions of CE1
1 and vE1

1 into the last equation of (5.8), it comes

Λ
µ1,2 +

∫
R

β1(z)
µm,1+I1(z)m̄1(z)dz

L1m̄1(x) = m̄1(x), (5.9)

where we have set m̄1 = (µm,1 + I1)mE1
1 and L1 is the linear operator introduced by (3.4). Then, by222

Proposition 3.4 we find from (5.9) that m̄1 = λ1φ1, where λ1 is a positive constant. Moreover, by (5.9) we
have

1
r(L1) = Λ

µ1,2 + λ1
∫
R
β1(z)φ1(z)
µm,1+I1(z)dz

.

i.e.

λ1 = µ1,2

(
Λ
µ1,2

r(L1)− 1
)(∫

R

β1(z)φ1(z)
µm,1 + I1(z)dz

)−1

from which we obtain the equilibrium E1 defined by (5.4).225

2. Similarly, for the stationary state E2 we have

CE2
1 = Λ

µ1,2 +
∫
R β2(z)mE2

2 (z)dz
,

CE2
2 = Λ

µ1,2 +
∫
R β2(z)mE2

2 (z)dz
· µ1,2

µ2 +
∫
R β2(z)mE2

2 (z)dz
,

vE2
2 (a, x) =

(
CE2

1 + CE2
2

)
β2(x)mE2

2 (x)Π2(0, a, x),

and
Λ

µ1,2 +
∫
R
β2(z)m̄2(z)
µm,2+I2(z)dz

1 + µ1,2

µ2 +
∫
R
β2(z)m̄2(z)
µm,2+I2(z)dz

L2m̄2(x) = m̄2(x) (5.10)

where we have set m̄2 = (µm,2+I2)mE2
2 and L2 is the linear operator defined by (3.4). Again from Proposition228

3.4 we find from (5.10) that m̄2 = λ2φ2, where λ2 is a positive constant. Moreover, by (5.10) we have

1
r(L2) = Λ

µ1,2 + λ2
∫
R
β2(z)φ2(z)
µm,2+I2(z)dz

1 + µ1,2

µ2 + λ2
∫
R
β2(z)φ2(z)
µm,2+I2(z)dz

 . (5.11)

The right-hand side of (5.11) is continuous and strictly decreasing in λ2, so a necessary and sufficient condition
to have a nontrivial endemic equilibrium is 1

r(L2) <
Λ
µ1,2

(
1 + µ1,2

µ2

)
, i.e. R2 > 1. This ends the computation

of the equilibrium E2 defined by (5.5). Note that an explicit expression of λ2 reads

λ2 =
µ2 + µ1,2

(
1− Λr(L2)

µ1,2

)
+
√(

µ2 + µ1,2

(
1− Λr(L2)

µ1,2

))2
+ 4µ1,2µ2(R2 − 1)

2
∫
R

β2(z)φ2(z)
µm,2 + I2(z)dz

.
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3. From System (5.1), the positive equilibrium E∗ is such that

CE
∗

1 = Λ
µ1,2 +

∑2
k=1

∫
R βk(z)mE∗

k (z)dz
,

CE
∗

2 = Λµ1,2

(µ1,2 +
∑2
k=1

∫
R βk(z)mE∗

k (z)dz)(µ2 +
∫
R β2(z)mE∗

2 (z)dz)
,

vE
∗

1 (a, x) = CE
∗

1 β1(x)mE∗

1 (x)Π1(0, a, x), vE
∗

2 (a, x) =
(
CE

∗

1 + CE
∗

2

)
β2(x)mE∗

2 (x)Π2(0, a, x).

Substituting the above estimates into the last equation of (5.1) we obtain the following system:
Λ

µ1,2 +
∑2
j=1

∫
R

βj(z)
µm,j+Ij(z)m̄j(z)dz

L1m̄1(x) = m̄1(x),

Λ
µ1,2 +

∑2
j=1

∫
R

βj(z)
µm,j+Ij(z)m̄j(z)dz

1 + µ1,2

µ2 +
∫
R

β2(z)
µm,2+I2(z)m̄2(z)dz

L2m̄2(x) = m̄2(x)
(5.12)

where we have set m̄j = (µm,j + Ij)mE∗

j . We get m̄j = λjφj with positive constants λj . Furthermore, (5.12)
gives 

1
r(L1) = Λ

µ1,2 +
∑2
j=1 λj

∫
R

βj(z)
µm,j+Ij(z)φj(z)dz

,

1
r(L2) = Λ

µ1,2 +
∑2
j=1 λj

∫
R

βj(z)
µm,j+Ij(z)φj(z)dz

1 + µ1,2

µ2 + λ2
∫
R

β2(z)
µm,2+I2(z)φ2(z)dz


i.e.231 

1 = R1
µ1,2

µ1,2 +
∑2
j=1 λj

∫
R

βj(z)
µm,j+Ij(z)φj(z)dz

,

1 =
R2

(
1
µ1,2

+ 1
µ2

)−1

R1µ1,2

1 + µ1,2

µ2 + λ2
∫
R

β2(z)
µm,2+I2(z)φ2(z)dz

 .

(5.13)

The right-hand side of the second equation of (5.13) is continuous and strictly decreasing in λ2. Thus, the
necessary and sufficient condition for the existence of λ2 > 0 reads:

R2

(
1
µ1,2

+ 1
µ2

)−1

R1µ1,2

(
1 + µ1,2

µ2

)
> 1 and

R2

(
1
µ1,2

+ 1
µ2

)−1

R1µ1,2
< 1

that is equivalent to
1 < R2

R1
< 1 + µ1,2

µ2
.

Still from the second equation of (5.13), we obtain

λ2

∫
R

β2(z)φ2(z)
µm,2 + I2(z)dz =

(µ1,2 + µ2)
(
R2
R1
− 1
)

(
1 + µ1,2

µ2

)
− R2
R1

.

It then remains to find λ1. Note that the right-hand side of the first equation of (5.13) is continuous and
strictly decreasing in λ1. Thus, the necessary and sufficient condition for the existence of λ1 > 0 is

R1µ1,2

µ1,2 + λ2
∫
R
β2(z)φ2(z)
µm,2+I2(z)dz

> 1

i.e.

R1 > 1 +
(

1 + µ2

µ1,2

) R2
R1
− 1

1 + µ1,2
µ2
− R2
R1
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and we have

λ1 = µ1,2

R1 −
(

1 + λ2

µ1,2

∫
R
β2(z)φ2(z)
µm,2+I2(z)dz

)
∫
R
β1(z)φ1(z)
µm,1+I1(z)dz

.

The computation of the positive stationary state E∗, defined by (5.7), concludes here.

6 Basic reproduction numbers and invasion fitness234

The basic reproduction number, commonly represented as R0, is defined within this context as the total number of
new malaria parasites originating from a single parasite introduced into a parasite-free RBCs environment [4, 12]. In
an initially unparasitized RBCs population, this metric can ascertain the potential for a parasite strain to propagate237

within that RBCs environment. Conversely, when the RBCs population is initially colonized by a resident parasite
strain, the invasion fitness is employed to assess whether a new parasite strain can successfully invade this RBCs
environment or not. In this context, the calculation of both the R0 and the invasion fitness relies on the next-240

generation operator approach [12, 43] and the standard adaptive dynamics methodology [13, 19, 32, 35].

6.1 The basic reproduction number
We have the following result.243

Proposition 6.1. Let Assumption 3.1 holds.

1. Let j ∈ {1, 2}. The basic reproduction number of strain x within the j-species, denoted by Rj(x), is such that

Rj(x) =
(

j∑
i=1

CE0
i

)∫
R
k(x− y)Γj(y)dy, (6.1)

where Γj is the reproduction function introduced by (3.5) and the constants CE0
i are defined by (5.2).246

2. For each j ∈ {1, 2} the threshold quantity Rj introduced by (5.3) is the basic reproduction number of the
j-species, while R0 defined by (5.3) is the basic reproduction number of System (2.1).

Proof. Let j ∈ {1, 2}. Let us denote by bj(t, x) the number of parasites, of strain x within the species j, that are
newly produced at time t. From (2.1) we get

bj(t, x) =
∫
R
k(x− y)pj(y)

(∫ ∞
0

γj(a, y)vj(t, a, y)da
)

dy.

Then, linearizing the system (2.1) around the parasite-free stationary state E0, and using Volterra’s formulation,
we obtain

vj(t, a, x) =


vj,0(a− t, x)Πj(a− t, a, x) if t ≤ a,(∑j

i=1 C
E0
i

)
βj(x)mj(t− a, x)Πj(0, a, x) if t > a.

Therefore,

bj(t, x) =
(

j∑
i=1

CE0
i

)∫
R
k(x− y)pj(y)βj(y)

(∫ t

0
γj(a, y)mj(t− a, y)Πj(0, a, y)da

)
dy

+
∫
R
k(x− y)pj(y)

(∫ ∞
t

γk(a, y)vj,0(a− t, x)Πj(a− t, a, y)da
)

dy. (6.2)

Furthermore, we have

mj(t, x) = e−(µm,j+Ij(x))tmj,0(x) +
∫ t

0
e−(µm,j+Ij(x))(t−s)bj(s, x)ds.
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By the above expression, (6.2) rewrites as follows249

bj(t, x) =
(

j∑
i=1

CE0
i

)∫
R
k(x−y)pj(y)βj(y)

∫ t

0
γj(a, y)Πj(0, a, y)

∫ t−a

0
e−(µm,j+Ij(y))(t−a−s)bj(s, y)dsdady+gj(t, x)

(6.3)
where gj(t, x) accounts for the number of parasites produced by the initial condition:

gj(t, x) =
(

j∑
i=1

CE0
i

)∫
R
k(x− y)pj(y)βj(y)

(∫ t

0
e−(µm,j+Ij(y))(t−a)mj,0(y)γj(a, y)Πj(0, a, y)da

)
dy

+
∫
R
k(x− y)pj(y)

(∫ ∞
t

γk(a, y)vj,0(a− t, x)Πj(a− t, a, y)da
)

dy.

Since

pj(y)βj(y)
∫ t

0
γj(a, y)Πj(0, a, y)

∫ t−a

0
e−(µm,j+Ij(y))(t−a−s)bj(s, y)dsda =

∫ t

0
bj(t− a, y)Fj(a, y)da,

wherein
Fj(a, y) = e−(µm,j+Ij(y))apj(y)βj(y)

∫ a

0
γj(s, y)Πj(0, s, y)e(µm,j+Ij(y))sds

then the equality (6.3) becomes

bj(t, x) =
(

j∑
i=1

CE0
i

)∫ t

0

∫
R
k(x− y)Fj(a, y)bj(t− a, y)dyda+ gj(t, x).

Given the formulation above, the basic reproduction number Rj(x) of strain x within the j-species is computed as
the spectral radius r(Gj [x]) of the next-generation operator Gj [x], as defined by:

Gj [x] : L1(R) 3 v 7→
(

j∑
i=1

CE0
i

)∫ ∞
0

∫
R
k(x− y)Fj(a, y)v(y)dyda ∈ R.

Then it comes that

Rj(x) =
(

j∑
i=1

CE0
i

)∫ ∞
0

∫
R
k(x− y)Fj(a, y)dyda =

(
j∑
i=1

CE0
i

)∫
R
k(x− y)Γj(y)dy

where the last equality comes from
∫∞

0 Fj(a, y)da = Γj(y) < ∞, with Γj the reproduction function introduced by
(3.5). We now introduce the linear operator Gj , such that

Gj(v)(x) = Gj [x]v, ∀v ∈ L1(R), ∀x ∈ R.

Observe that Gj =
(∑j

i=1 C
E0
i

)
Lj , where Lj is the linear operator introduced by (3.4). Then, the basic reproduc-

tion number of the j-species is calculated as the spectral radius of the next generation operator Gj , i.e.

r(Gj) =
(

j∑
i=1

CE0
i

)
r(Lj).

Note that the spectral radius of Gj satisfies r(Gj) = Rj , where Rj is the threshold parameter introduced by (5.3),
which proves the first point. In addition, the next generation operator of the overall system is G = diag(G1, G2),
so that the basic reproduction number R0 of System (2.1) is given by

R0 = max{R1,R2}.
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6.2 Invasion in a parasitized RBCs environment
Let us introduce the notation (x1, x2) to represent a parasite population, where x1 denotes the parasite strain of252

the first species (i.e. P. vivax) and x2 represents the parasite strain of the second species (i.e. P. falciparum).
The notation (x1, ∅) indicates the absence of the second species, whereas (∅, x2) signifies the absence of the first
species. We also denote by f(x1,x2)(y1, y2) the invasion fitness of a mutant with phenotype (y1, y2) in the resident255

population set by the equilibrium E(x1,x2) of phenotype (x1, x2). Then f(x1,x2)(y1, y2) =
(
f1

(x1,x2)(y1), f2
(x1,x2)(y2)

)
,

where f j(x1,x2)(yj) is the invasion fitness of a mutant of strain yj within j-species in the resident population set by
the equilibrium E(x1,x2) of strain (x1, x2). Hence, a mutant strain yj within the j-species in the resident population,258

as defined by the equilibrium E(x1,x2), will spread whenever f j(x1,x2)(yj) > 0. We then have the following results of
the invasion fitness:

Proposition 6.2. Let Assumptions 3.1 and 3.3 be satisfied. Let us define the following thresholds:

Rx1
1 = CE0

1 Γ1(x1) and Rx2
2 =

(
CE0

1 + CE0
2

)
Γ2(x2).

1. Scenario 1: both species (i.e. P. vivax and P. falciparum) are the resident. Assume that

1 < R
x2
2
Rx1

1
< 1 + µ1,2

µ2
and Rx1

1 > 1 +
(

1 + µ2

µ1,2

) Rx2
2
Rx1

1
− 1(

1 + µ1,2
µ2

)
− R

x2
2
Rx1

1

 .

The above condition ensures the existence of the resident equilibrium E(x1,x2) and we have

f(x1,x2)(y1, y2) =


C

(x1,x2)
1
C
E0
1

(Ry1
1 −R

x1
1 )∑2

i=1
C

(x1,x2)
i∑2

i=1
C
E0
i

(Ry2
2 −R

x2
2 )


with C

(x1,x2)
1 and C

(x1,x2)
2 respectively the size of young and mature RBCs in the environment set by the261

resident. Hence, we have

sign
(
f1

(x1,x2)(y1)
)

= sign (Ry1
1 −R

x1
1 ) and sign

(
f2

(x1,x2)(y2)
)

= sign (Ry2
2 −R

x2
2 ) . (6.4)

2. Scenario 2: only the first species (i.e. P. vivax) is the resident. Assume that Rx1
1 > 1 which guarantees the

existence of the resident equilibrium E(x1,∅). Then, we have

f(x1,∅)(y1, y2) =

 C
x1
1

C
E0
1

(Ry1
1 −R

x1
1 )

C
x1
1

C
E0
1

(Ry2
2 −R

x1
1 )


with Cx1

1 and Cx1
2 respectively the size of young and mature RBCs in the environment set by the resident.

We obtain

sign(f1
(x1,∅)(y1)) = sign(Ry1

1 −R
x1
1 ), and sign

(
f2

(x1,∅)(y2)
)

= sign (Ry2
2 −R

x1
1 ) .

3. Scenario 3: only the second species (i.e. P. falciparum) is the resident. Assume that Rx2
2 > 1, which

guarantees the existence of the resident equilibrium E(∅,x2). We then have

f(∅,x2)(y1, y2) =


C
x2
1

C
E0
1

Ry1
1 −

(∑2
i=1 C

x2
i

)
/Cx2

1(∑2
i=1 C

E0
i

)
/CE0

1

Rx2
2


(∑2

i=1
C
x2
i

)(∑2
i=1

C
E0
i

) (Ry2
2 −R

x2
2 )
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with Cx2
1 and Cx2

2 respectively the size of young and mature RBCs in the environment set by the resident.
Then:

sign
(
f1

(∅,x2)(y1)
)

= sign

Ry1
1 −

(∑2
i=1 C

x2
i

)
/Cx2

1(∑2
i=1 C

E0
i

)
/CE0

1

Rx2
2

 , (6.5)

sign
(
f2

(∅,x2)(y2)
)

= sign (Ry2
2 −R

x2
2 ) . (6.6)

Proof. Scenario 1: both species are resident. Let E(x1,x2) be the equilibrium set by the resident population of
strain (x1, x2). Such an equilibrium satisfies:

E(x1,x2) = (C(x1,x2)
1 , C

(x1,x2)
2 , v

(x1,x2)
1 (.)δx1(·),m(x1,x2)

1 δx1(·), v(x1,x2)
2 (.)δx2(·),m(x1,x2)

2 δx2(·)).

At the equilibrium E(x1,x2), System (2.1) rewrites

0 = Λ− C(x1,x2)
1

(
µ1,2 + β1(x1)m(x1,x2)

1 + β2(x2)m(x1,x2)
2

)
0 = µ1,2C

(x1,x2)
1 − C(x1,x2)

2

(
µ2 + β2(x2)m(x1,x2)

2

)
,

v
(x1,x2)
j (0) =

(∑j
k=1 C

(x1,x2)
k

)
βj(xj)m(x1,x2)

j ,

dv(x1,x2)
j

da (a) = − (µ2 + γj(a, xj)) v(x1,x2)
j (a),

m
(x1,x2)
j = pj(xj)

µm,j + Ij(xj)
∫∞

0 γj(a, xj)v(x1,x2)
j (a)da

(6.7)

for each j ∈ {1, 2}. From (6.7) we deduce that
C

(x1,x2)
1 = Λ

µ1,2 + β1(x1)m(x1,x2)
1 + β2(x2)m(x1,x2)

2
,

C
(x1,x2)
2 = Λµ1,2

µ1,2 + β1(x1)m(x1,x2)
1 + β2(x2)m(x1,x2)

2
× 1
µ2 + β2(x2)m(x1,x2)

2
,

v
(x1,x2)
j (a) =

(∑j
k=1 C

(x1,x2)
k

)
βj(xj)m(x1,x2)

j Πj(0, a, xj).

Replacing the above expressions into the last equation of (6.7) it comes
1 = Λ

µ1,2+β1(x1)m(x1,x2)
1 +β2(x2)m(x1,x2)

2
Γ1(x1),

1 = Λ
µ1,2+β1(x1)m(x1,x2)

1 +β2(x2)m(x1,x2)
2

(
1 + µ1,2

µ2+β2(x2)m(x1,x2)
2

)
Γ2(x2)

i.e.264 
1 = Λ

µ1,2+β1(x1)m(x1,x2)
1 +β2(x2)m(x1,x2)

2
Γ1(x1),

1 = Γ2(x2)
Γ1(x1)

(
1 + µ1,2

µ2+β2(x2)m(x1,x2)
2

)
.

(6.8)

The right-hand side of the second equation of (6.8) is strictly decreasing in m(x1,x2)
2 . Thus, a necessary and sufficient

condition for a positive solution m(x1,x2)
2 is

Γ2(x2)
Γ1(x1) < 1 and Γ2(x2)

Γ1(x1)

(
1 + µ1,2

µ2

)
> 1. (6.9)

Observe that267

Rx2
2
Rx1

1
= CE0

1 + CE0
2

CE0
1

× Γ2(x2)
Γ1(x1) =

(
1 + µ1,2

µ2

)
Γ2(x2)
Γ1(x1) .

Therefore, conditions (6.9) are equivalent to

1 < R
x2
2
Rx1

1
< 1 + µ1,2

µ2
.
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Still from the system (6.8), the second equation then gives

m
(x1,x2)
2 β2(x2) =

(µ1,2 + µ2)
(
Rx2

2
Rx1

1
− 1
)

(
1 + µ1,2

µ2

)
− R

x2
2
Rx1

1

.

For m(x1,x2)
1 , the right-hand side of the first equation of (6.8) is strictly decreasing in m(x1,x2)

1 with limit 0 when
m

(x1,x2)
1 →∞. So, a necessary and sufficient condition for a positive solution m(x1,x2)

1 is

µ1,2

µ1,2 + β2(x2)m(x1,x2)
2

Rx1
1 > 1⇐⇒ Rx1

1 > 1 +
(

1 + µ2

µ1,2

) Rx2
2
Rx1

1
− 1(

1 + µ1,2
µ2

)
− R

x2
2
Rx1

1

 .

In summary, the resident equilibrium E(x1,x2) exists if and only if the following conditions are satisfied

1 < R
x2
2
Rx1

1
< 1 + µ1,2

µ2
and Rx1

1 > 1 +
(

1 + µ2

µ1,2

) Rx2
2
Rx1

1
− 1(

1 + µ1,2
µ2

)
− R

x2
2
Rx1

1

 .

We now assume that a mutant with phenotype (y1, y2) causes a small perturbation of the system set out by the
resident equilibrium E(x1,x2). Thus, we set

Cj(t) = C
(x1,x2)
j + bj(t),

vj(t, a, x) = v
(x1,x2)
j (a)δxj (x) + gj(t, a)δyj (x),

mj(t, x) = m
(x1,x2)
j δxj (x) + hj(t)δyj (x)

for each j ∈ {1, 2}. We remind that by (2.1)we have
vj(t, 0, x) =

(∑j
k=1 Ck(t)

)
βj(x)mj(t, x),

(∂t + ∂a)vj(t, a, x) = − (µ2 + γj(a, x)) vj(t, a, x),

∂tmj(t, x) =
∫
R k(x− y)pj(y)

∫∞
0 γj(a, y)vj(t, a, y)dady − (µm,j + Ij(x))mj(t, x)

for each j ∈ {1, 2}. Then, the small perturbations for infection g1, g2, h1 and h2, are governed by the following
system of equations around E(x1,x2), with xj 6= yj :

gj(t, 0) =
(∑j

k=1 C
(x1,x2)
k

)
βj(yj)hj(t),

(∂t + ∂a)gj(t, a) = −(µ2 + γj(a, yj))gj(t, a),

h′j(t)δyj (·) = k(· − yj)pj(yj)
∫∞

0 γj(a, yj)gj(t, a)da+ k(· − xj)pj(xj)
∫∞

0 γj(a, xj)v(x1,x2)
j (a)da

−(µm,j + Ij(·))(m(x1,x2)
j δxj (·) + hj(t)δyj (·))

for each j ∈ {1, 2}. By integrating h′j(t)δyj (z) and since
∫
R k(y − z)dz = 1, for any y, it comes

gj(t, 0) =
(∑j

k=1 C
(x1,x2)
k

)
βj(yj)hj(t),

(∂t + ∂a)gj(t, a) = −(µ2 + γj(a, yj)gj(t, a),

h′j(t) = pj(yj)
∫∞

0 γj(a, yj)gj(t, a)da+ pj(xj)
∫∞

0 γj(a, xj)v(x1,x2)
j (a)da

−(µm,j + Ij(xj))m(x1,x2)
j − (µm,j + Ij(yj))hj(t)

for each j ∈ {1, 2}. Note that by definition of the resident equilibrium E(x1,x2), we have

pj(xj)
∫ ∞

0
γj(a, xj)v(x1,x2)

j (a)da− (µm,j + Ij(xj))m(x1,x2)
j = 0, ∀j ∈ {1, 2}. (6.10)
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It follows, for each j ∈ {1, 2}, that:
gj(t, 0) =

(∑j
i=1 C

(x1,x2)
i

)
βj(yj)hj(t),

(∂t + ∂a)gj(t, a) = −(µ2 + γj(a, yj))gj(t, a),

h′j(t) = pj(yj)
∫∞

0 γj(a, yj)gj(t, a)da− (µm,j + Ij(yj))hj(t).

(6.11)

Denoting by M (x1,x2)
j (t, yj) the number of newly produced parasites of species j at time t with phenotype yj in a

resident population (x1, x2), we see that

M
(x1,x2)
j (t, yj) = pj(yj)

∫ ∞
0

γj(a, yj)gj(t, a)da.

Through similar computations employed in deriving the reproductive numbers in the proof of Proposition 6.1, it
follows that

M
(x1,x2)
j (t, yj) =

∫ t

0
F

(x1,x2)
j (a, yj)M (x1,x2)

j (t− a, yj)da+Hj(t, yj),

where Hj accounts for the initial condition of (6.11) and

F
(x1,x2)
j (a, yj) = e−(µm,j+Ij(yj))a

(
j∑
i=1

C
(x1,x2)
i

)
pj(yj)βj(yj)

∫ a

0
γj(s, yj)Πj(0, s, yj)e(µm,j+Ij(yj))sds.

As a result of the above formulation, we find that the basic parasitic reproduction number R(yj , E(x1,x2)) of a
mutant strain yj , in the resident population of strain (x1, x2) is given by

R(yj , E(x1,x2)) =
∫ ∞

0
F

(x1,x2)
j (a, yj)da =

(
j∑
i=1

C
(x1,x2)
i

)
Γj(yj).

Therefore, the invasion fitness f(x1,x2)(y1, y2) of a mutant strain (y1, y2) in the resident population E(x1,x2) writes270

f(x1,x2)(y1, y2) =

R (y1, E
(x1,x2))− 1

R
(
y2, E

(x1,x2))− 1

 =


C

(x1,x2)
1
C
E0
1
Ry1

1 − 1∑2
i=1

C
(x1,x2)
i∑2

i=1
C
E0
i

Ry2
2 − 1

 . (6.12)

By (6.10), we have

C
(x1,x2)
1
C
E0
1
Rx1

1 = 1 and
∑2

i=1
C

(x1,x2)
i∑2

i=1
C
E0
i

Rx2
2 = 1

from where (6.12) rewrites as

f(x1,x2)(y1, y2) =


C

(x1,x2)
1
C
E0
1

(Ry1
1 −R

x1
1 )∑2

i=1
C

(x1,x2)
i∑2

i=1
C
E0
i

(Ry2
2 −R

x2
2 )

 .

Scenario 2: only the first species (i.e. P. vivax) is resident. Using calculations similar to those of Scenario 1,
the equilibrium E(x1,∅) = (Cx1

1 , Cx1
2 , vx1

1 (a)δx1(·),mx1
1 δx1(·), vx1

2 = 0,mx1
2 = 0) set by the resident (x1, 0) exists if

and only if Rx1
1 > 1 and then we have

Cx1
1 = CE0

1
µ1,2

µ1,2 + β1(x1)mx1
1
,

Cx1
2 = CE0

2
µ1,2

µ1,2 + β1(x1)mx1
1
,

vx1
1 (a) = Cx1

1 β1(x1)mx1
1 Π1(0, a, x1),

mx1
1 = µ1,2

β1(x1) (Rx1
1 − 1).
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Furthermore, the reproduction number R(yj , E(x1,∅)
1 ) of a mutant with phenotype yj , in the resident population set

by E(x1,0)
1 is given by

R
(
yj , E

(x1,∅)
1

)
=
∫ ∞

0
F x1
j (a, yj)da =

(
j∑
i=1

Cx1
i

)
Γj(yj).

Hence the invasion fitness f(x1, ∅)(y1, y2) writes

f(x1,∅)(y1, y2) =


C
x1
1

C
E0
1

(Ry1
1 −R

x1
1 )

Cx1
1

CE0
1

(Ry2
2 −R

x1
1 )

 .

Scenario 3: only the second species (i.e. P. falciparum) is resident. As for the previous scenarios, we find that
the resident equilibrium E(∅,x1) = (Cx2

1 , Cx2
2 , vx2

1 = 0,mx2
1 = 0, vx2

2 (a)δx2(·),mx2
2 δx2(·)) is such that

Cx2
1 = CE0

1
µ1,2

µ1,2 + β2(x2)mx2
2
,

Cx2
2 = CE0

2
µ1,2µ2

(µ1,2 + β2(x2)mx2
2 )(µ2 + β2(x2)mx2

2 ) ,

vx2
1 (a) = (Cx2

1 + Cx2
2 )β2(x2)mx2

2 Π2(0, a, x2),

where mx2
2 is the unique positive solution to the following equation (provided that Rx2

2 > 1):

µ1,2

µ1,2 + β2(x2)mx2
2

(
CE0

1 + CE0
2

µ2

µ2 + β2(x2)mx2
2

)
Γ2(x2) = 1.

Applying the same methodology as in the previous section, we find that the reproduction number R
(
yj , E

(∅,x2)) of
a mutant strain yj , in the resident population E(∅,x2)

1 is given by

R
(
yj , E

(∅,x2)
2

)
=
(

j∑
i=1

Cx2
i

)
Γj(yj).

Thus the invasion fitness writes

f(∅,x2)(y1, y2) =


Cx2

1

CE0
1

Ry1
1 −

(∑2
i=1 C

x2
i

)
/Cx2

1(∑2
i=1 C

E0
2

)
/CE0

1

Rx2
2


(∑2

i=1 C
x2
i

)
(∑2

i=1 C
E0
i

) (Ry2
2 −R

x2
2 )


.

Finally, note that

(Cx2
1 + Cx2

2 )/Cx2
1 =1 + CE0

2

CE0
1

µ2

(µ2 + β2(x2)mx2
2 ) ,

whence
(Cx2

1 + Cx2
2 )/Cx2

1

(CE0
1 + CE0

2 )/CE0
1

=
(

1 + CE0
2

CE0
1

µ2

µ2 + β2(x2)mx2
2

)(
1 + CE0

2

CE0
1

)−1

< 1.

7 Parasite’s extinction and uniform persistence273

In this section, we analyze parasite extinction and persistence in relation to the thresholds Rj introduced by
(5.3). These thresholds are vital in understanding how parasite populations behave over time within the host. We
investigate the conditions for complete parasite elimination or persistence.276
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7.1 Technical materials
We explore the properties of a perturbed linear system around the equilibrium E0 defined in (5.2). We consider
ε ∈ R to be sufficiently small such that

CE0
i + ε > 0, ∀i ∈ {1, 2}.

For j ∈ {1, 2}, we examine the linear problem given by

vεj(t, a = 0, x) = βj(x)mε
j(t, x)

(
j∑
i=1

(CE0
i + ε)

)
,

∂vεj(t, a, x)
∂t

+
∂vεj(t, a, x)

∂a
= − (µ2 + γj(a, x)) vεj(t, a, x),

∂mε
j(t, x)
∂t

=
∫
R
k(x− y)pj(y)

(∫ ∞
0

γj(a, y)vεj(t, a, y) da
)

dy − (µm,j + Ij(x))mε
j(t, x)

(7.1)
with initial conditions vεj(0, ·, ·) = vj,0 ∈ L1(R+×R,R) and mε

j(0, ·) = mj,0 ∈ L1(R,R). It is noteworthy that these279

systems are independent of each other as j varies from 1 to 2. For the rest of this section, j is fixed in {1, 2}. We
can express the j-system as the following abstract formulation:{ d`j(t)

dt =
(
Fεj + Vj

)
`j(t),

`j(0) = `j,0 ∈ Y0
(7.2)

where Y = L1(R,R)× L1(R+ × R,R)× L1(R,R) and Y0 = {0L1} × L1(R+ × R,R)× L1(R,R). The Banach space282

Y is endowed with the usual product norm. The bounded linear operator Fεj : Y0 → Y is defined as

Fεj

0L1

vj
mj

 =

 βjmj

∑j
i=1(CE0

i + ε)
0L1(R+×R,R)∫

R k(· − y)pj(y)
∫∞

0 γj(a, y)vj(a, y) da dy

 , ∀

0L1

vj
mj

 ∈ Y0. (7.3)

Meanwhile, Vj : D(Vj) ⊂ Y0 → Y is given by

Vj

0L1

vj
mj

 =

 −vj(0, ·)
−∂avj − (µ2 + γj)vj
−µm,jmj − Ijmj

 , ∀

0L1

vj
mj

 ∈ D(Vj)

with D(Vj) = {0L1} × Dj,v × L1(R,R) and

Dj,v :=
{
v ∈ L1(R+ × R,R) : v(·, x) ∈W 1,1(R+,R) a.e x ∈ R and ∂av ∈ L1(R+ × R,R)

}
.

By employing arguments similar to those in Lemma 4.3, it can be shown that the spectral bound s(Vj) of Vj satisfies
s(Vj) < 0. Furthermore, the linear operator Vj is resolvent positive, and for each λ > s(Vj), we have

(λId − Vj)−1

u1
u2
u3

 =

0L1

vj
mj

 ∈ Y0

for every (u1, u2, u3)T ∈ Y, with
vj(a, x) = e−λaΠj(0, a, x)u1(x) +

∫ a

0
e−λ(a−s)Πj(s, a, x)u2(s, x) ds, a ≥ 0, x ∈ R,

mj(x) = 1
λ+ µm,j + Ij(x)u3(x), x ∈ R.

(7.4)

Therefore, setting285

T εj,λ := r(Fεj (λId − Vj)−1), ∀λ > s(Vj), (7.5)

it follows from [42, Theorem 3.4] that the following sign equality holds true

sgn(T εj,λ − 1) = sgn(−λ+ s(Fεj + Vj)), ∀λ > s(Vj).
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Since Fεj + Vj and (Fεj + Vj)0, the part of Fεj + Vj in Y0 have the same spectral set [25, Lemma 2.1], we also have
the following equality

sgn(T εj,λ − 1) = sgn(−λ+ s(Fεj + Vj)) = sgn(−λ+ s((Fεj + Vj)0)), ∀λ > s(Vj). (7.6)

Denote by Y1 the Banach space
Y1 = L1(R,R)× {0L1} × L1(R,R).

In the following, we provide a more explicit characterization of T εj,λ given by (7.5). To do so, let us first note that288

using [16, Lemma 2.2] one knows that Fεj (λId − Vj)−1 has the same spectral radius as its restriction on Y1. Next,
observe that for each λ > s(Vj) and (u1, 0L1 , u3)T ∈ Y1, we have from (7.3) and (7.4)

Fεj (λId − Vj)−1

 u1
0L1

u3

 =

Gλj,ε(u3)
0L1

Hλj (u1)

 , (7.7)

where we have set for each u1, u3 ∈ L1(R,R)

Gλj,ε(u3)(x) :=
j∑
i=1

(CE0
i + ε) βj(x)

λ+ µm,j + Ij(x)u3(x), ∀x ∈ R

and
Hλj (u1)(x) :=

∫
R
k(x− y)pj(y)

∫ ∞
0

γj(a, y)e−λaΠj(0, a, y)dau1(y)dy, ∀x ∈ R.

From (7.7), it follows that for each (u1, 0L1 , u3)T ∈ Y1,291

(Fεj (λId − Vj)−1)2

 u1
0L1

u3

 =

Gλj,ε ◦ Hλj (u1)
0L1

Hλj ◦ Gλj,ε(u3)

 , (7.8)

and since r(Hλj ◦ Gλj,ε) = r(Gλj,ε ◦ Hλj ) and r
(
(Fεj (λId − Vj)−1)2) = r

(
Fεj (λId − Vj)−1)2, it follows from (7.5) and

(7.8) that
T εj,λ =

√
r
(
(Fεj (λId − Vj)−1)2

)
=
√

r(Hλj ◦ Gλj,ε), ∀λ > s(Vj).

Moreover, the linear operator Hλj ◦ Gλj,ε : L1(R,R)→ L1(R,R) is explicitly given, for λ > s(Vj), by

(Hλj ◦ Gλj,ε)w(x) =
j∑
i=1

(CE0
i + ε)

∫
R
k(x− y)Γλj (y)w(y) dy, ∀w ∈ L1(R)

with
Γλj (y) := pj(y)βj(y)

λ+ µm,j + Ij(y)

∫ ∞
0

γj(a, y)e−λaΠj(0, a, y) da.

From the above discussion, we have the following results.

Proposition 7.1. Let Assumptions 3.1 and 3.3 be satisfied. Then s(Vj) < 0 and we have the following properties:

i) sgn(T εj,λ − 1) = sgn(−λ+ s(Fεj + Vj)) = sgn(−λ+ s((Fεj + Vj)0)), for all λ > s(Vj).294

ii) For each λ > s(Vj), the linear operator (Fεj (λId − Vj)−1)2 : Y1 → Y1 is compact and positive.

iii) For each λ > s(Vj), the spectral radius T εj,λ of Fεj (λId − Vj)−1 satisfies T εj,λ =
√

r(Hλj ◦ Gλj,ε).

Next, we establish a key result essential for proving the global asymptotic stability of the equilibrium E0 and
the uniform persistence of the parasites. Prior to proceeding, we note that when λ = 0 and ε = 0, the following
equality holds:

T 0
j,0 =

√
Rj

where the thresholds Rj are defined in (5.3).297
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Lemma 7.2. Let Assumptions 3.1 and 3.3 be satisfied. Then we have the following properties:

1. If Rj < 1 then there exists ε0 > 0 such that for each ε ∈ [0, ε0) we have s((Fεj + Vj)0) = ω((Fεj + Vj)0) < 0
with ω((Fεj + Vj)0) the growth bound of the semigroup generated by (Fεj + Vj)0 (the part of Fεj + Vj on Y0).300

2. If Rj > 1 then there exists ε0 > 0 such that for each ε ∈ (−ε0, 0] and i ∈ {1, 2} we have CE0
i + ε > 0 and

T εj,0 > 1. Moreover, if Assumptions 3.2 is satisfied then λεj := s((Fεj + Vj)0) = ω((Fεj + Vj)0) > 0 is an
eigenvalue of Fεj + Vj with eigenvector ūjε ∈ Y0+ ∩D(Vj).303

Proof. Before presenting the proofs of Items 1 and 2, we begin with some remarks. Let λ > s(Vj) be given. Recall
from the preceding discussions that for all λ > s(Vj), the linear operator Fεj (λId − Vj)−1 has the same spectral
radius as its restriction Fεj (λId − Vj)−1 : Y1 → Y1. Let us set

Nj,ε(λ) := Fεj (λId − Vj)−1
|Y1

: Y1 → Y1, ∀λ > s(Vj)

so that
r(Nj,ε(0)) = r(Fεj (−Vj)−1) =⇒ T εj,0 = r(Nj,ε(0)) =

√
r(Nj,ε(0)2).

Moreover, owing to the fact that Y is an AL-space, we have the following equality [42, Theorem 3.14]:

s((Fεj + Vj)0) = ω((Fεj + Vj)0).

With these observations in place, we proceed to complete the proof.

1. Assuming Rj < 1, then T 0
j,0 =

√
r(Nj,0(0)2) < 1, we observe that Nj,ε(0)2 given by (7.8) for λ = 0 is compact

for each ε ≥ 0, and the mapping ε ∈ [0,+∞) 7→ Nj,ε(0)2 ∈ L(Y1) is continuous. Hence, according to [10,306

Theorem 2.1], the function ε ∈ [0,+∞) 7→ r
(
N j, ε(0)2) is also continuous. Consequently, there exists ε0 > 0

such that T εj,0 < 1 for all ε ∈ [0, ε0). Using the equality (7.6), we deduce that s((Fεj + Vj)0) < 0 for all
ε ∈ [0, ε0).309

2. Assume that Rj > 1, then T 0
j,0 =

√
r(Nj,0(0)2) > 1. Let ε1 > 0 be small enough such that CE0

i + ε > 0 for
each i ∈ {1, 2} and ε ∈ (−ε1, 0]. Using similar arguments as for the first item, it follows that there exists
ε0 ∈ [0, ε1) such that

T εj,0 =
√

r(Nj,ε(0)2) > 1, ∀ε ∈ (−ε0, 0].

If Assumption 3.2 is also satisfied then using similar arguments than in Proposition 4.5 we can prove that

T(Fε
j
+Vj)0(t) = U1(t) + U2(t), t ≥ 0

where Ui(t) : Y0 → Y0, i ∈ {1, 2} are bounded linear operators. Moreover, U1(t) is compact for each t > 0
and U2(t) satisfies the estimate

‖U2(t)‖L(Y0) ≤ K0(1 + t)e−ω1t, ∀t ≥ 0

for some constants K0 > 0 and ω1 > 0. Consequently, using the same arguments in [45, Proposition 2.4] we
have

ω0,ess((Fεj + Vj)0) ≤ lim sup
t→+∞

ln(‖U2(t)‖L(Y0))
t

≤ −ω1

and since λεj = ω((Fεj + Vj)0) > 0 (by using (7.6)) it follows that ω0,ess((Fεj + Vj)0) < ω((Fεj + Vj)0) = λεj =
s((Fεj + Vj)0). The result follows from [45, Proposition 2.5] or [26, Proposition 4.6.5].

312

The above Lemma 7.2 has the following consequence.

Corollary 7.3. Let Assumptions 3.1 and 3.3 be satisfied. Let ε0 > 0 be small enough such that the conclusions
of Lemma 7.2 hold. If Rj < 1 then for each ε ∈ [0, ε0), the zero solution of (7.2) (or equivalently (7.1)) is
globally exponentially stable in Y0. Consequently, for each initial conditions vεj(0, ·, ·) = vj,0 ∈ L1

+(R+ × R,R) and
mε
j(0, ·) = mj,0 ∈ L1

+(R,R) we have

lim
t→+∞

(∫
R
mε
j(t, x)dx+

∫
R

∫ ∞
0

vεj(t, a, x)dadx
)

= 0.
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We end this section by proving the asynchronous exponential growth properties of the semigroup generated by
(Fεj + Vj)0.315

Proposition 7.4. Let Assumptions 3.1, 3.2, and 3.5 be satisfied. Let ε0 > 0 be small enough such that the
conclusions of Lemma 7.2 hold. If Rj > 1 then for each ε ∈ (−ε0, 0] there exists a rank one projector Pεj : Y0 → Y0
such that

PεjT(Fε
j
+Vj)0(t) = T(Fε

j
+Vj)0(t)Pεj = eλ

ε
jtPεj , ∀t ≥ 0, with λεj = s((Fεj + Vj)0) > 0

and for each `j,0 ∈ Y0+ \{0Y0} we have ‖Pεj `j,0‖Y > 0. Moreover, we have e−λ
ε
jtT(Fε

j
+Vj)0(t)→ Pεj , when t→ +∞,

in the operator norm topology.

Proof. The proof relies on the Asynchronous Exponential Growth (AEG) property established by [45, Proposition318

2.5], [44, Theorem 3.3] or [9, Theorem 9.10, Theorem 9.11]. Assume that Rj > 1. Thanks to Lemma 7.2 we have
the equality λεj = s((Fεj +Vj)0) = ω((Fεj +Vj)0) > 0 for all ε ∈ (−ε0, 0]. Moreover, by using the same arguments in
the proof of Lemma 7.2 we have the strict inequality ω0,ess((Fεj + Vj)0) < ω((Fεj + Vj)0) with ω0,ess((Fεj + Vj)0) is321

the essential growth bound of (Fεj +Vj)0. Therefore, to obtain the AEG property, we will prove that the semigroup
generated by (Fεj +Vj)0 is positive irreducible. To do so, let us note that for each λ in the resolvent set of (Fεj +Vj)0
we have from [25, Lemma 2.1]324

(λId − (Fεj + Vj)0)−1 = (λId − (Fεj + Vj))−1
|Y0

(7.9)

and the semigroup generated by (Fεj +Vj)0 is positive irreducible if there exists λ0 ∈ R such that (λId−(Fεj +Vj)0)−1

is irreducible for each λ > λ0 (see [9, Proposition 7.6]). Next, note that using (7.9) it follows that there exists λ0 > 0
large enough such that for each λ ≥ λ0 and `0 ∈ Y0 we have327

(λId − (Fεj + Vj)0)−1`0 = (λId − Vj)−1
∞∑
n=0

(Fεj (λId − Vj)−1)n`0. (7.10)

Next let `0 ∈ Y0+ with `0 = (0L1 , u2, u3)T be given. Let us set `2 = (0L1 , u2, 0L1)T , `3 = (0L1 , 0L1 , u3)T and

̂̀3 := Fεj (λId − Vj)−1`2.

Note that from the resolvent formula (7.3) and (7.4) we have ̂̀3 = (0L1 , 0L1 , û3)T with

û3(x) :=
∫
R
k(x− y)pj(y)

∫ ∞
0

γj(a, y)
(∫ a

0
e−λ(a−s)Πj(s, a, y)u2(s, y) ds

)
dady

that is by the Fubini’s theorem

û3(x) :=
∫
R
k(x− y)pj(y)

∫ ∞
0

(∫ ∞
s

γj(a, y)e−λ(a−s)Πj(s, a, y) da
)
u2(s, y)dsdy. (7.11)

Next, using (7.10) we have

(λId − (Fεj + Vj)0)−1`0 ≥ (λId − Vj)−1

( 3∑
n=0

(Fεj (λId − Vj)−1)n`3 +
3∑

n=0
(Fεj (λId − Vj)−1)n ̂̀3)

Moreover using (7.7) and (7.8) we obtain

3∑
n=0

(Fεj (λId − Vj)−1)n`3 =

Gλj,ε(u3) + Gλj,ε ◦ Hλj ◦ Gλj,ε(u3)
0L1

u3 +Hλj ◦ Gλj,ε(u3)


and

3∑
n=0

(Fεj (λId − Vj)−1)n ̂̀3 =

Gλj,ε(û3) + Gλj,ε ◦ Hλj ◦ Gλj,ε(û3)
0L1

û3 +Hλj ◦ Gλj,ε(û3)


from which:

(λId − (Fεj + Vj)0)−1`0 ≥ (λId − Vj)−1

Gλj,ε ◦ Hλj ◦ Gλj,ε(û3) + Gλj,ε ◦ Hλj ◦ Gλj,ε(u3)
0L1

Hλj ◦ Gλj,ε(û3) +Hλj ◦ Gλj,ε(u3)

 . (7.12)
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To conclude the proof, we note that Assumptions 3.1, 3.3, and 3.5 (see [14]) imply that the linear operator Hλj ◦Gλj,ε330

is positive irreducible. Moreover, (7.11) also provides that û3 = 0L1 if and only if u2 = 0L1 . Consequently if either
u2 6= 0L1 (i.e û3 6= 0L1) or u3 6= 0L1 then we have for almost every x ∈ R{

Gλj,ε ◦ Hλj ◦ Gλj,ε(û3)(x) + Gλj,ε ◦ Hλj ◦ Gλj,ε(u3)(x) > 0
Hλj ◦ Gλj,ε(û3)(x) +Hλj ◦ Gλj,ε(u3)(x) > 0

(7.13)

Thus, we infer from the resolvent formula of Vj , (7.12) and (7.13) that the resolvent of (Fεj + Vj)0 is positive333

irreducible for all λ ≥ λ0.

7.2 Parasite’s extinction
In this section, we prove that if Rj < 1, then the j-species goes to extinction as times goes to infinity. Consequently,336

if R0 = max{R1,R2} < 1, then all species extinct as times goes to infinity. Moreover, we also show that if R0 > 1
then the parasite-free equilibrium state is unstable.

Proposition 7.5. Let Assumptions 3.1 and 3.3 be satisfied. Let j ∈ {1, 2} be given. If Rj < 1 then for each initial
condition û0 = (C0, v0,m0)T ∈ X+, the j-species goes to extinction, that is

lim
t→+∞

(∫
R
mj(t, x)dx+

∫
R

∫ ∞
0

vj(t, a, x)dadx
)

= 0.

Proof. Assume that Rj < 1. Let ε0 > 0 be fixed small enough such that Corollary 7.3 is satisfied for all ε ∈ [0, ε0).
Let us fix ε ∈ [0, ε0). Let û0 = (C0, v0,m0) ∈ X+ be any initial condition. Thanks to Proposition 4.4 there exists
t0 := t0(û0, ε) > 0 such that

Ci(t) ≤ CE0
i + ε, ∀t ≥ t0, i = 1, 2.

Consequently, we have, in a mild sense, for each t ≥ t0
vj(t, a = 0, x) ≤ βj(x)mε

j(t, x)
(

j∑
i=1

(CE0
i + ε)

)
,

∂vj(t, a, x)
∂t

+ ∂vj(t, a, x)
∂a

= − (µ2 + γj(a, x)) vj(t, a, x)

and
∂mj(t, x)

∂t
=
∫
R
k(x− y)pj(y)

(∫ ∞
0

γj(a, y)vj(t, a, y) da
)

dy − (µm,j + Ij(x))mj(t, x).

Therefore, using the comparison theorem in [28] we obtain for all t ≥ 0339 {
0L1 ≤ vj(t+ t0, ·, ·) ≤ vεj(t, ·, ·)
0L1 ≤ mj(t+ t0, ·) ≤ mε

j(t, ·)
(7.14)

where t 7→ (vεj(t, ·, ·),mε
j(t, ·))T is the mild solution to (7.1) with initial condition (vj(t0, ·, ·),mj(t0, ·))T at time

t = 0. The result follows from (7.14) and Corollary 7.3.

Proposition 7.6. Let Assumptions 3.1 and 3.3 be satisfied. The parasite-free equilibrium state is globally asymp-342

totically stable in X+ if R0 = max{R1,R2} < 1. More precisely, if R0 < 1 then for each initial condition
û0 = (C0, v0,m0) ∈ X+, we have

lim
t→+∞

(∫
R
mj(t, x)dx+

∫
R

∫ ∞
0

vj(t, a, x)dadx
)

= 0, j ∈ {1, 2} (7.15)

and
lim

t→+∞
Ci(t) = CE0

i , i ∈ {1, 2}.

If in addition Assumption 3.2 is satisfied, then the parasite-free equilibrium is unstable whenever R0 > 1.345
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Proof. If R0 = max{R1,R2} < 1 then (7.15) clearly follows from Proposition 7.5. To prove the convergence of the
Ci-components, we note that the boundedness of t 7→ Ci(t), i ∈ {1, 2} on [0,+∞) implies that (see [40, Proposition
A.14]) there exist sequences (tin) and (sin) with tin → +∞ and sin → +∞ such that348 Ci(t

i
n)→ C∞i = lim sup

t→+∞
Ci(t)

C ′i(tin)→ 0
and

{
Ci(sin)→ Ci,∞ = lim inf

t→+∞
Ci(t)

C ′i(sn)→ 0.
(7.16)

Therefore, using (7.16) and the C1-equation in (7.1) it comes

0 = Λ− µ1,2C
∞
1 and 0 = Λ− µ1,2C1,∞ =⇒ C∞1 = C1,∞ = Λ

µ1,2

that is
lim

t→+∞
C1(t) = Λ

µ1,2
. (7.17)

Next, using the C2-equation in (7.1) combined with (7.16) and (7.17) it follows that

0 = µ1,2
Λ
µ1,2

− µ2C
∞
2 and 0 = µ1,2

Λ
µ1,2

− µ2C2,∞.

Therefore C2,∞ = C∞2 = Λ
µ2

providing that C2(t)→ Λ
µ2

when t goes to +∞. The local stability of the parasite-free
equilibrium simply follows from the first item of Lemma 7.2 since the linearization of (3.3) around E0 is (7.2) (up351

to the Ci-components) with ε = 0. Finally, the fact that the parasite-free equilibrium is unstable whenever R0 > 1
follows from the second item of Lemma 7.2.

7.3 Uniform persistence of parasites354

In this section, we always assume that R0 > 1. To obtain the uniform persistence of the parasites, we introduce
the maps ξ : X+ → R+ defined for each (C0, v0,m0)T ∈ X+ by

ξ(C0, v0,m0) :=
2∑
j=1

(∫
R
mj,0(x)dx+

∫
R

∫ ∞
0

vj,0(a, x)dadx
)
.

It is clear that ξ is nonnegative and continuous on X+. Next, we define the sets

M0 :=
{

(C0, v0,m0)T ∈ X+ : ξ(C0, v0,m0) > 0
}

and
∂M0 :=

{
(C0, v0,m0)T ∈ X+ : ξ(C0, v0,m0) = 0

}
so that X+ = M0 ∪ ∂M0. We first prove the following lemma which states that if (C0, v0,m0)T ∈ ∂M0 then,
independently of R0, the parasites-free equilibrium is always globally asymptotically stable on ∂M0.

Lemma 7.7. Let Assumptions 3.1 and 3.3 be satisfied. Then for each initial condition û0 = (C0, v0,m0)T ∈ ∂M0,357

we have
ξ(Φt(û0)) = 0, ∀t ≥ 0 and lim

t→+∞
Ci(t) = CE0

i , i = 1, 2, (7.18)

with Φt(û0) = (C(t), v(t, ·, ·),m(t, ·)) for all t ≥ 0.

Proof. The first equality of (7.18) follows from the uniqueness of the solutions of (7.1). The convergence of Ci(t)360

to CE0
i , for i = 1, 2 can then be proven by similar arguments in Proposition 7.6.

The main result of this section is the following.

Theorem 7.8. Let Assumptions 3.1, 3.2, and 3.5 be satisfied. Assume in addition that 1 < min(R1,R2) ≤ R0.
Then, the semiflow {Φt}t≥0 is ξ-strongly uniformly persistent on M0. More precisely, there exists η > 0 such that
for each initial condition û0 = (C0, v0,m0)T ∈M0 we have

lim inf
t→+∞

ξ(Φt(û0)) ≥ η

with Φt(û0) = (C(t), v(t, ·, ·),m(t, ·)) for all t ≥ 0.363
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Proof. Assume that 1 < min(R1,R2) ≤ R0. Let ε0 > 0 be small enough such the conclusions of Proposition 7.4
hold true for each ε ∈ (−ε0, 0] and j ∈ {1, 2}. In the following, ε is fixed in ε ∈ (−ε0, 0). Since {Φt}t≥0 has a
compact global attractor, our result is obtained once we prove that the semiflow {Φt}t≥0 is ξ-weakly uniformly366

persistent on M0 [29, 40] that is there exists η0 > 0 such that for each initial condition û0 = (C0, v0,m0)T ∈M0 we
have

lim sup
t→+∞

ξ(Φt(û0)) ≥ η0. (7.19)

To prove (7.19), we argue by contradiction. Before proceeding, let us first note that for each initial condition369

û0 = (C0, v0,m0)T ∈M0 that is ξ(û0) > 0, we can prove by standard arguments that

ξ(Φt(û0)) =
2∑
j=1

(∫
R
mj(t, x)dx+

∫
R

∫ ∞
0

vj(t, a, x)dadx
)
> 0, ∀t ≥ 0. (7.20)

Let η0 > 0 be small enough such that{
Λ

µ1,2+2η0
≥ CE0

1 + ε = Λ
µ1,2

+ ε
µ1,2Λ

(µ1,2+2η0)(µ2+2η0) ≥ C
E0
2 + ε = Λ

µ2
+ ε.

(7.21)

Let û0 ∈M0 such that372

lim sup
t→+∞

ξ(Φt(û0)) = lim sup
t→+∞

(∫
R
mj(t, x)dx+

∫
R

∫ ∞
0

vj(t, a, x)dadx
)
< η0. (7.22)

Then there exists t0 := t0(û0) > 0 such that(∫
R
mj(t, x)dx+

∫
R

∫ ∞
0

vj(t, a, x)dadx
)
≤ η0, ∀t ≥ t0. (7.23)

From (7.23) and the Ci-equations of (7.1) we obtain{
C ′1(t) ≥ Λ− (µ1,2 + η0)C1(t), t ≥ t0
C ′2(t) ≥ µ1,2C1(t)− (µ2 + η0)C2(t), t ≥ t0.

(7.24)

Since t → C1(t) is bounded on [0,+∞), there exists a sequence (tn) with tn → +∞ such that C1(tn) → C1,∞ =375

lim inft→+∞ C1(t) and C ′1(tn) → 0 (see [40, proposition A.14]). Therefore, using the first equation of (7.24) we
obtain

lim inf
t→+∞

C1(t) = C1,∞ ≥
Λ

µ1,2 + η0
. (7.25)

Since Λ
µ1,2+η0

> Λ
µ1,2+2η0

, the inequality (7.25) implies that there exists t1 := t1(û0) > t0 such that378

C1(t) ≥ Λ
µ1,2 + 2η0

, ∀t ≥ t1. (7.26)

Consequently, we have from the second equation of (7.24) that

C ′2(t) ≥ µ1,2
Λ

µ1,2 + 2η0
− (µ2 + η0)C2(t), t ≥ t1.

Using similar arguments as for the C1-equation, we obtain

C2,∞ := lim inf
t→+∞

C2(t) ≥ µ1,2Λ
(µ1,2 + 2η0)(µ2 + η0) . (7.27)

Since µ1,2Λ
(µ1,2+2η0)(µ2+η0) >

µ1,2Λ
(µ1,2+2η0)(µ2+2η0) we infer from (7.27) that there exists t2 := t2(û0) > t1 such that

C2(t) ≥ µ1,2Λ
(µ1,2 + 2η0)(µ2 + 2η0) , ∀t ≥ t2. (7.28)
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Thanks to (7.21)-(7.26)-(7.28) we have381

Ci(t) ≥ CE0
i + ε, ∀t ≥ t2, i = 1, 2. (7.29)

The latter inequality (7.29) implies that the mj and vj components of (2.1), with j ∈ {1, 2}, satisfy for each t ≥ t2
vj(t, a = 0, x) ≥

∑j
i=1(CE0

i + ε)βj(x)mj(t, x),
∂vj(t, a, x)

∂t
+ ∂vj(t, a, x)

∂a
= − (µ2 + γj(a, x)) vj(t, a, x),

∂mj(t, x)
∂t

=
∫
R
k(x− y)pj(y)

(∫ ∞
0

γj(a, y)vj(t, a, y)da
)

dy − (µm,j + Ij(x))mj(t, x).

Thus we obtain by comparison principles in [28] that

0 ≤ vεj(t, ·, ·) ≤ vj(t+ t2, ·, ·), j ∈ {1, 2} and 0 ≤ mε
j(t, ·) ≤ mj(t+ t2, ·), j ∈ {1, 2}

for all t ≥ 0 where t 7→ (vεj(t, ·, ·),mε
j(t, ·)) is the mild solution to (7.1) with initial condition vεj(0, ·, ·) = vj(t2, ·, ·)

and mε
j(0, ·) = mj(t2, ·). Setting for each t ≥ 0 and j ∈ {1, 2}, `εj(t) := (0L1 , vεj(t, ·, ·),mε

j(t, ·)) and `εj,0 :=
(0L1 , vεj(t0, ·, ·),mε

j(t0, ·)) it comes

`εj(t) = T(Fε
j
+Vj)0(t)`εj,0, ∀t ≥ 0, j ∈ {1, 2}.

Since Rj > 1 for j ∈ {1, 2}, we infer from Proposition 7.4 that λεj > 0 for j ∈ {1, 2} and

lim
t→+∞

e−λ
ε
jt‖T(Fε

j
+Vj)0(t)`εj,0‖ = ‖Pεj `εj,0‖. (7.30)

Since
‖`εj,0‖ =

∫
R
mj(t0, x)dx+

∫
R

∫ ∞
0

vj(t0, a, x)dadx, j ∈ {1, 2}

it follows from (7.20) and Proposition 7.4 that ‖Pε1`ε1,0‖ + ‖Pε2`ε2,0‖ > 0. Without loss of generality, assume that
‖Pε1`ε1,0‖ > 0. Then (7.30) implies that

‖T(Fε1+V1)0(t)`ε1,0‖ =
∫
R
m1(t, x)dx+

∫
R

∫ ∞
0

v1(t, a, x)dadx →
t→+∞

+∞

which is a contradiction to (7.22). The proof is completed.

8 Parameterization of the model and its typical simulation dynamics384

For the numerical simulations, the ruptured functions γj are taken as

γj(a, x) =
{

0 if a < τj ,

αj if a ≥ τj ,
(8.1)

where τj is the erythrocytic cycle duration of the j-species (see Table 1 for given values). We fix αj = 10 for
all species such that the average parasite’s development period:

∫∞
0 exp

(
−
∫ a

0 γj(σ, x)dσ
)
da = τj + 1/αj ≈ τj .

We assume the mutation kernel is described by a Gaussian distribution k(x) = kε(x) = (2πε2)− 1
2 e−

1
2 ( xε )2

for
the mutation kernel, where ε > 0 represents the standard deviation of the Gaussian mutation kernel within the
phenotypic space. Malaria parasites infection efficiencies βj are assumed independent of the phenotypic values x,
such that βj(x) = βj for all x. For each simulated scenario, we assume that both the production rate pj and the
immune response Ij depend on the phenotypic trait x. More precisely, we define

pj(x) = pmax
j ×N (x∗j , σj)(x), (8.2)

Ij(x) = Imax
j ×N (x∗j , sj)(x), (8.3)

where x∗j is the dominant parasite phenotype within the j-malaria species. The constants pmax
j and Imax

j are
respectively the maximal production rates and the maximal effect of the immune system on the dominant phenotype.387
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The parameter σj allows quantifying the selectivity level ( 1
σ2
j
) within the j-malaria species, while sj accounts for

the cross immunity effect. Finally, N (x∗j , sj) is set for the normal probability density distribution with mean x∗j
and standard deviation sj .390

Model (2.1) can then be used to illustrate various dynamics depending on the specific scenario of interest. Here
we illustrate the typical dynamics simulated with the model for two scenarios.

The first scenario is when the immune system is inefficient on both malaria species (P. vivax for species 1, and P.393

falciparum for species 2). Clearly, in the absence of the immune system effect, the dominant parasite phenotype, x∗1,
within P. vivax can grow because R1(x∗1)| I1 ≡ 0 > 1 (Figure 2A). This is also the case for the dominant parasite
phenotype, x∗2, within P. falciparum (Figure 2B). However, although reducing the basic reproduction numbers396

of both species, the immune system is not sufficiently efficient to keep the dominant parasite phenotypes below
the growth threshold and we still have Rj(x∗j ) > 1 with the effect of the immune system (Figure 2C). The model
depicts the evolutionary dynamics of interactions between P. vivax and P. falciparum in the presence of the immune399

system (Figures 2D,E,F). Malaria parasites of both species entirely evade control by the immune system. Figure 2D
depicts the dynamics of malaria parasites and RBCs, while Figures 2E and F illustrate the evolutionary dynamics
of malaria parasites for P. vivax and P. falciparum, respectively. In this scenario, although both species coexist402

in equilibrium in the long term, with P. falciparum dominating (Figure 3), the short-term dynamics, crucial for
promptly addressing infected hosts, present a contrasting configuration. Indeed, when the initial presence of both
species is nearly equal, there ensues a phase where P. vivax predominates almost exclusively for a some duration405

(Figure 2D). This short-term dynamic aligns closely with the period it takes to treat a case of malaria from the
onset of infection to the manifestation of symptoms.

In the second scenario, the immune system is inefficient on P. falciparum, species 2, and efficient on P. vivax,408

species 1. As a result, at the end, only P. vivax is under control because R1(x∗1) < 1, while P. falciparum remains
uncontrolled because R2(x∗2) > 1 (Figures 4 and 5).

9 Conclusion and discussion411

Human malaria is caused by various species of Plasmodium, such as P. falciparum and P. vivax. Mixed infections
with multiple Plasmodium species are common globally but often go unrecognized or underestimated [24, 30].
Mathematical models have been developed to study parasite multiplication within hosts during mixed malaria414

infections [8, 11, 17, 23, 46]. However, these models typically address infection dynamics separately, focusing on
either multiple genotypes of a single species within a host [8, 11, 23, 46], or mixed-species infection dynamics with
single genotype within a host [17]. Both the within-species and inter-species diversity play crucial roles in the417

dynamics of malaria infection within the host. Indeed, different Plasmodium species have varying preferences for
RBCs, and such ecological characteristics is fundamental to capture species diversity within the same host [17].
Furthermore, the within-species diversity is sustained by a large number of antigenic variants, exerting significant420

pressure on the host’s immune system and which can facilitate the establishment of prolonged infections by the
parasite [36, 41].

Here, we present a within-host malaria infection model incorporating the dynamics of RBCs production. We423

account for uninfected RBCs, including reticulocytes and mature RBCs, as well as an age-structured dynamics for
parasitized RBCs. This age structure represents the time since the RBC was parasitized, allowing for a continuous
description of the parasitized RBC population. The model, formulated using partial differential equations (PDEs),426

enables tracking of the development and maturation of parasitized RBCs, as well as a detailed depiction of the
rupture of parasitized RBCs and the release of merozoites [15]. The proposed model accounts for the influence of
the immune system trough the parameter function Ij , considering both the selectivity within malaria species and429

the cross-immunity effect. However, the model formulation explicitly allows for the introduction of the effects of
interventions targeting either P. falciparum or P. vivax for treatment interventions.

We prove that the basic reproduction numberRj(x) for strain x within the j-species can be explicitly determined
using (6.1). However, deriving an explicit formula for the basic reproduction number Rj at the species level for the
j-species is more challenging. The estimate of Rj given by (5.3) is essentially determined by the principal eigenvalue
of the linear operator Lj defined by (3.4) for any probability kernel k satisfying Assumption 3.3. Though, a more
explicit estimation of Rj can be accurately given when the mutation kernel k depends on a small positive parameter
(say ε� 1) with the scaling form:

kε(x) = ε−1k
(
ε−1x

)
.

The parameter ε > 0 can be interpreted as the variance of mutations in the phenotypic space. More precisely, let
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Figure 2: Typical evolutionary dynamics considering the inefficiency of immune system on
both malaria species (Figure 1, zone 5). (A-B) The immune system Ij(x) and the basic reproduction
numbers Rj(x) without the effect of immune system for P. vivax, species 1, and P. falciparum, species
2. (C) The basic reproduction numbers with the effect of immune system. (D) Time evolution of young
RBCs C1 and mature RBCs C2. (E-F) Distribution of the malaria parasites m1(t, x) and m2(t, x) with
respect to time t and the phenotypic trait x. Here, parameter values are (Imax

1 , Imax
2 ) = (10, 50), (s1, s2) =

(0.09, 0.09), m1(0, x) = 105N (0.1, 0.1)(x), m2(0, x) = 105N (−0.1, 0.1)(x), or default as shown in Table 1.

Figure 3: The long-term dynamics depicted in Figure 2 reveal a stable coexistence of both
species, with P. falciparum exhibiting dominance of parasites.

us introduce the set
Sj = {x ∈ R : Γj(x) = ‖Γj‖∞} .

This set is commonly known as the set of Evolutionary Attractors (or dominant phenotypic values) as described in
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Figure 4: Typical evolutionary dynamics considering the inefficiency of immune system on
P. falciparum and its efficiency on P. vivax (Figure 1, zone 2). Panels A-F are same as to those
presented in Figure 2. Here, parameter values are (Imax

1 , Imax
2 ) = (50, 50), (s1, s2) = (0.1, 0.09), m1(0, x) =

105N (0.1, 0.1)(x), m2(0, x) = 105N (−0.1, 0.1)(x), or default as shown in Table 1.

Figure 5: The long-term dynamics depicted in Figure 4 reveal a stable persistence of only P.
falciparum.

classical adaptive dynamics theory (e.g. [19, 32]). Indeed, when ε > 0 is small and the reproductive function Γj
is at least of class C1 with a finite number of maxima, it has been demonstrated in [14, Theorem 2.2] that these
dominant phenotypic values coincide with the set Sj . Moreover, let us denote by Lεj the operator Lj , see (3.4), with
the kernel k replaced by kε, results in [14, Theorem 2.2] indicate that the spectral radius r

(
Lεj
)
of Lεj satisfies, for

sufficiently small ε,
r
(
Lεj
)

= Γj(x∗) +O(ε), for all x∗ ∈ Sj .
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Based on the aforementioned estimation, we have

Rj =
(

j∑
i=1

CE0
i

)
Γj(x∗) +O(ε),

for all x∗ ∈ Sj . Moreover, if ε� 1, the profile of the endemic equilibrium Ej , with respect to x ∈ R, can be more432

precisely determined. Indeed, if Sj = {x∗j} and
(∑j

i=1 C
E0
i

)
Γj(x∗j ) > 1, then the unique positive stationary state

Ej ≡ Eεj is concentrated around the evolutionary attractor x∗j in the phenotypic space R. For further details on
this concentration phenomenon, we refer to [14, Theorem 2.3].435

Through our analysis, we have determined the condition (5.6) under which P. vivax (species 1) and P. falciparum
(species 2) can coexist. Note that the estimate (5.6) highlights a significant advantage of P. vivax when coexisting
with P. falciparum, as the coexistence condition always implies R1 < R2. We further determine the invasion fitness438

of a mutant in a resident population. Such invasibility analysis allows us to determine the invasibility capability
for various scenarios at both the within- and between-species scales. According to Proposition 6.2, we observe
that an optimization principle based on the reproduction numbers Rj is applicable either when both P. vivax441

and P. falciparum are the resident, or when only P. vivax is the resident, see (6.4). Indeed, in such a scenarios,
the coexistence of multiple strains of the same species, whether P. vivax or P. falciparum, is not possible, and
an intraspecies competitive exclusion principle prevails. However, the situation becomes more intricate when only444

P. falciparum serves as the resident. In the scenario where only P. falciparum is the resident, the coexistence of
multiple strains of P. falciparum becomes unattainable, see (6.6). In such a configuration, the emergence of an
initially rare mutant strain y1 within the P. vivax species takes place when the reproductive capability Ry1

1 of the447

mutant strain on young RBCs and the reproductive capability Rx2
2 of the resident strain on young RBCs satisfy

the condition Ry1
1 >

(Cx2
1 +Cx2

2 )/Cx2
1

(CE0
1 +CE0

2 )/CE0
1
Rx2

2 , see (6.5). In this latter inequality, it is worth noting that the quantity
(Cx2

1 +Cx2
2 )/Cx2

1
(CE0

1 +CE0
2 )/CE0

1
is always less than unity. It means that the proportion of young RBCs in a parasite-free environment450

is smaller than the proportion of young red blood cells in the environment set by the resident strain.
As an example of the invasibility analysis in a multi-species and multi-genotypes setting, one may consider the

scenario where P. falciparum has established an equilibrium, resulting in a resident parasite population primarily453

dominated by the phenotypic value x2, whereRx2
2 > 1 (Figure 6A). Now, suppose an initially rare mutant population

of P. vivax is introduced, characterized by a dominant phenotype y1 (Figure 6A). The ability of this mutant
population to invade is determined by the sign of the invasion fitness f1

(∅,x2)(y1) as defined in (6.5). More precisely,456

in the first invasibility scenario, the mutant population induced by the dominant phenotype y1 satisfies Ry1
1 <

(Cx2
1 +Cx2

2 )/Cx2
1

(CE0
1 +CE0

2 )/CE0
1
Rx2

2 (Figure 6A). Consequently, since f1
(∅,x2)(y1) < 0, this mutant population fails to invade the

initial resident population (Figure 6B). Conversely, in the second invasibility scenario, the mutant population459

satisfies Ry1
1 >

(Cx2
1 +Cx2

2 )/Cx2
1

(CE0
1 +CE0

2 )/CE0
1
Rx2

2 (Figure 6C). As a result, since f1
(∅,x2)(y1) > 0, this mutant population succeeds

in invading the initial resident population (Figure 6D). It is noteworthy that the threshold (Cx2
1 +Cx2

2 )/Cx2
1

(CE0
1 +CE0

2 )/CE0
1
Rx2

2 ,
above which the mutant population with the dominant strain y1 can proliferate in the environment established by462

the resident population, is consistently greater than unity. Therefore, merely having a mutant with Ry1
1 > 1 is

insufficient to ensure invasibility (Figures 6 A,B). A similar invasibility analysis can be designed for the case where
P. vivax is the resident population. Such invasibility analysis particularly highlights the importance of interactions465

between P. falciparum, P. vivax and the acquisition of immunity in the context of malaria within-host infections
[6].
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Figure 6: Invasibility of a P. vivax population in a feedback environment set by a P. falciparum
population. A-B: (Imax

1 , Imax
2 ) = (29, 100) and the mutant fails in invading. C-D: (Imax

1 , Imax
2 ) =

(26, 100) and the mutant succeed in invading. Other parameter values are (s1, s2) = (0.09, 0.05), or
default as shown in Table 1. For the initial condition, we undertake a two-step process. In Step 1, we
initially simulate the model considering only species 2 (P. falciparum), setting the initial conditions as
follows: m1(0, x) = 0, m2(0, x) = 105N (−0.1, 0.1)(x). In Step 2, with species 2 already at equilibrium
as established in Step 1, we introduce a mutant of species 1 (P. vivax) with initial conditions given by
m1(0, x) = N (y1, 0.1)(x), where y1 is maximising R1.
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