
HAL Id: hal-04580005
https://hal.science/hal-04580005

Submitted on 18 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Digitalization and the work against its rebound effects –
sustainability as quality characteristic in the product

and service life-cycle
Alexander Poth, Olsi Rrjolli, Andreas Riel

To cite this version:
Alexander Poth, Olsi Rrjolli, Andreas Riel. Digitalization and the work against its rebound effects
– sustainability as quality characteristic in the product and service life-cycle. Procedia CIRP, 2024,
122, pp.861-866. �10.1016/j.procir.2024.02.029�. �hal-04580005�

https://hal.science/hal-04580005
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


ScienceDirect

Available online at www.sciencedirect.com

Procedia CIRP 122 (2024) 861–866

2212-8271 © 2024 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 31st CIRP Conference on Life Cycle Engineering (LCE 2024)
10.1016/j.procir.2024.02.029

© 2024 The Authors. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 31st CIRP Conference on Life Cycle Engineering (LCE 2024)

31st CIRP Conference on Life Cycle Engineering (LCE 2024)

Keywords: sustainable Information Technology; life-cycle management; rebound efffect

1. Introduction and motivation

The digitalization is a chance to build new processes and re-
think existing ones. Thereby, integrating sustainability has 
become a must. Sustainability of processes can be defined in 
different ways. In the context of digitalization, we focus on the 
contributions to the UN SDGs [17], especially the goal 12 
(responsible production and consumption) and 13 (climate 
action). In the context of a company’s digitalization initiative, 
one of the sustainability levers is the energy footprint of digital 
products and services, in particular in the context of Product-
Service-Systems [2]. The energy footprint of an Information
Technology (IT) system respectively product or service has to 
be assessed over the entire life-cycle (LC). For this, it is 
important to identify the key sustainability levers that exist in 
each LC phase, and their actual impact in the life cycle 
management (LCM). However, similarly to a mechanical 
assembly, the LC of an IT product or service largely depends 

on the different individual life cycles of the IT products and 
services that are integrated in the IT stack, i.e., all the IT 
systems that are involved in the provision of an IT product or 
service. In this context, this work seeks to identify the core LCs
of IT products and services. It presents typical sustainability 
levers in the LC of software releases. Starting with the 
requirements of the demand to the operating to measure the 
impact of actions. The overall perspective is that sustainability 
in the context of digitalization should be regarded as a kind of 
quality characteristic which has to be developed explicitly, such 
as any other software quality characteristic of the ISO 
25010:2023 [16] e.g. as a refinement of (resource unit 
utilization) efficiency or (adequate resource unit) scaling. This
standard is typically applied to (IT) products which can be 
considered as a system. Furthermore, this work gives examples 
from the Volkswagen Group IT product T-Rex, a testing-as-a-
service (TaaS) offer, to present the impact of sustainability
actions associated to the LC phases. 

Digitalization and the work against its rebound effects – sustainability as
quality characteristic in the product and service life-cycle.

Alexander Potha, Olsi Rrjollia, Andreas Rielb,*

aVolkswagen AG, Berliner Ring 2, D-38436 Wolfsburg, Germany
bUniv. Grenoble Alpes, CNRS, Grenoble INP, G-SCOP, 46 Avenue Félix Viallet, 38000 Grenoble, France

* Corresponding author. Tel.: +33 476825156; E-mail address: andreas.riel@grenoble-inp.fr

Abstract

The environmental footprint of Information Technology has become an increasingly investigated subject with in the digitalization era. 
Furthermore, the ever increasing power and ubiquity of computing devices and infrastructures often lead to more convenience and better 
experience for users, which threatens the effectivity of any sustainability measures through a rebound effect. It is crucial to consider these aspects 
early in the product and service life cycle to handle them adequately. This article proposes a set of aspects and relevant parameters that can be 
used as levers contributing to the optimization of the environmental footprint of Information Technology with a long-term perspective on the 
entire product and service life-cycle. Issued from action research in a large company setting, it distinguishes releases, (software) technology, 
electronic hardware and product/service life-cycles. In order to facilitate the management of these aspects and their effects, it proposes a set of 
actionable indicators that have been applied on an experimental basis in the company environment.



862 Alexander Poth  et al. / Procedia CIRP 122 (2024) 861–866

The remainder of this article is structured as follows: Section 
2 elaborates on the background of this work, and cites related 
work. Section 3 provides the fundamentals required to 
understand the methodology applied, and explains the latter in 
detail. Section 4 presents results obtained from the application 
of the proposed methodology to an industrial case study related 
with product/service development. Section 5 critically 
discusses the results obtained in the case study, while section 6 
concludes and provides an outlook on further research. 

Nomenclature

IT Information Technology
LC Life Cycle
LCM Life Cycle Management
LoC Line of Code
MVP Minimum Viable Product
TaaS Testing-as-a-Service
UI User Interface

2. Background

Aligned with [5], the “rebound” or “take-back” effect can by 
defined as the effect that lower service costs, due to increased 
providing efficiency, leads to an increase in services 
consumption.  In the IT context, the rebound effect can be 
considered as an increased consumption of IT resources due to 
the ease and experience of use, e.g. []. An example to think 
about IT rebound effects is Wikipedia.org, which democratizes 
knowledge. Has the IT providing Wikipedia services a smaller 
CO2e footprint than the expensive and therefore limited sold 
books?  

Decreasing costs of IT (Moore’s Law [14]) respectively its 
services and more ease to use them motivates to think on how 
this service-consuming demand mechanism can be slowed 
down or interrupted. The Kano model is established in 
requirements engineering for the classification of requirements 
in terms of their real need [15]. From a quality characteristic 
perspective, this model is considered relevant in the context of 
digitalization and its potential rebound effects. In short, the 
Kano model distinguishes three types of requirements related to 
customer satisfaction [7]: must-have requirements, one-
dimensional requirements, and attractive requirements [1]. 
One-dimensional requirements have a linear effect related to 
the satisfaction. Attractive requirements have an exponential 
effect. In [20], the model is extended to address customer needs 
more systematically by adding the type indifferent. Indifferent 
is an aspect which does not contribute to customer satisfaction 
nor dissatisfaction. An important further aspect is, that over 
time, an attractive requirement can become a one-dimensional 
requirement, and later on, a must-have requirement. This 
expectation movement over time is a socio-economic aspect. 
Who wants to vote to switch off Wikipedia.org as the de-facto 
standard library today (whatever the CO2e footprint relation to 
books is)? 

However, the Kano model does only partly facilitate the 

definition of “sufficiency” [3]. To obtain a clearer view what 
sufficiency has to include or to exclude, we chose the approach 
to merge other useful concepts. This understanding can be used 
to take a look at the quality need form a Robin Hood index [8]
point of view: from a social innovation perspective, one can 
distinguish between unserved, underserved, and overserved
customers, markets, or people [4]. Back to the Wikipedia.org 
example, the cheap serving of high-quality information has 
become (over one decade) a must-have and can be considered 
as a basic need (sufficiency) for the people. In order to transfer 
this people’s needs serving model to IT products and services,
one has to identify what the three model groups represent in the 
specific IT context. The unserved customer group is happy with 
everything which improves their situation. The underserved 
customer group will start behaving as described in the Kano 
model: some things are expected as a “basic standard”.
Overserved customers are the interesting area from the 
sustainability perspective: what can be reduced without 
significant impact from the user perspective to build a more 
sustainable offer? In order to quantify the potentials of these 
optimizations, the entire LC has to be analyzed based on 
assumptions about the future usage and options of the product 
LC, respectively service LC.

3. Methodology

The methodology applied in this work merges the Kano 
model, the serving model, with a sustainability model to 
identify the relevant requirements for a sufficiency 
implementation in a software release within the LC from a 
sustainability view. The sustainability model used in this 
context distinguishes necessity, convenience, and luxury. To 
bring the models together, they have been mapped and merged 
iteratively. Furthermore, the model has to be able to handle the 
expectation change of users over the LC.

Figure 1 relates the Kano model with the Robin Hood view 
serving model by overlapping areas. The figure shows that 
Underserved contains many of the Must-have requirements, a 
few One-dimensional requirements and mostly non-Attractive
requirements. Overserved means that the Must-have 
requirements, most of the One-dimensional requirements and a 
lot of the Attractive requirements are fulfilled. Unserved is per 
definition without any mapping (it can be mapped with the 
Kano model extension indifferently).

Fig. 1: Kano's model and Robin Hood's model combined (own figure)



Alexander Poth  et al. / Procedia CIRP 122 (2024) 861–866 863

Figure 2 relates the Kano model with necessity, convenience 
and luxury. Where luxury is defined as “things you have that I
think you should not have” [18]. In the technology domain, a 
movement from luxury to necessity can happen in a short term, 
e.g. as described in [6]. Distinguishing respectively separating
them into three groups with convenience is useful to define the 
group of “facilitating features respectively functionality”. This 
helps to find a spot between over- and under-served. This 
resulting spot is the area to focus the requirements engineering 
to identify the sufficiency.

Figure 3 shows the result of merging Figure 1 and Figure 2. 
The area between convenience and underserved is the relevant 
area to define sufficiency in the next step.

Figure 4 presents the sufficiency area. Sufficiency contains 
all must-have requirements, some of the one-dimensional 
requirements and a few attractive requirements. Furthermore, it 
covers the complete necessity and underserved area. An open 
issue is that sufficiency does by definition not “migrate” the 
group of unserved into at least underserved. To do this, the 
question about why they are unserved has to be addressed 
within the demand definition respectively its requirements 
engineering. The presented approach only “reduces” demand 
requests to sufficiency and does not “expand” the demands in 
the direction of unserved. It also hides the dynamic of the Kano 
model. A feature which is an attractive requirement in the 
luxury area today can “move” into the sufficiency area over 
time. This implies that the assessment result of a feature request 
depends on the time in the LC. This makes it useful to evaluate 
the feature backlog e.g. cyclically. A not implemented feature 
request from the luxury area can become a necessity by the 
change of the usage context or the environment. An example 
could be the avoidance of a new fancy UI framework that 
consumes more processing resources. However, it can happen 
that in the future all state-of-the-art frameworks include this 
behavior as the new standard.

Based on Figure 4, we propose the following definition: 
Sufficiency, within the context of digitalization, has to address 
the necessities of user requirements. It also includes the must-
haves, all requirements to avoid underserving of users and some 
select requirements for a basic convenience of the one-
dimensional and attractive requirements. The Figure 5
transforms Figure 4 to a check-list, which can be applied during
an assessment of feature requests for IT products or services. It 
helps to handle business demands from a sustainability 

perspective. A positive sustainability case is a “joker” (question 
1). Every time the digitalization can contribute to the 
improvement of the physical world’s sustainability, e.g. 
through a reduction of the carbon footprint, the respective 
action is a candidate for implementation. Questions 3 and 4 are 
interesting from the rebound-effect perspective. However, only 
demands of question 4 are “options” which can be postponed as 
long as possible to reduce pre-visible rebound effects.
Rebound-effects caused by the actions implemented based on a 
positive response on Question 3, contribute to a better life, and 
have to be accepted in most cases. It is recommended to initiate 
for all “acceptable” features/functions related with question 4 a 
rebound-estimation as a legitimation to postpone them as long 
as possible.

Fig. 3: Figure 4 transformed to a checklist

After focusing the feature/function demand to a sufficiency
set of features, the product respectively service LC has to be 
evaluated. Each phase of the LC can contribute to footprint 
reduction. A smaller footprint of user value units makes 
rebound-effects smaller. Figure 6 integrates short-running LC’s 
with long-running LC’s, based on [12]. In this visualization the 
LCs from outer to inner are accelerating. One product/service 
LC (decades) is realized with hardware LCs (years). The team’s
LC is typically initiated more often by e.g. hiring new team 
members (months), while the software release LC is repeated 
every few weeks or days. This shows that the focus on the 
product/service LC is to stay lean and aim at maximizing 
sufficiency. All embedded LCs have to contribute to the overall 
objective. The software release LC with the high iteration 
frequency is the vehicle to optimize the sustainability 
continuously. However, software releases typically include 
small, incremental changes ultimately leading to bigger 
changes on a long-term view. So, over time the unchanged part 
becomes legacy and is a kind of constraint for future releases 
which can only be changed with significant refactoring efforts.
The art is to avoid unnecessary features which are convenience

Fig. 2: a) Kano's model for convenience, luxury, necessity (own figure), b) Fig 1 and a) combined, c) Sufficiency in the combined Kano model (own figure)



864 Alexander Poth  et al. / Procedia CIRP 122 (2024) 861–866

or, worse, luxury. This makes the footprint of the software 
bigger, with negative impact to the goal of breaking with
Wirth’s law that says that software grows faster than hardware 
performance [19]. A risk is that the software grows too fast and 
the hardware becomes slow respectively obsolete before its 
planned usage time ends. To have a chance to overcome Wirth’s 
law, all relevant phases of a software release LC have to be 
addressed. First, the demand has to be shaped, e.g. with the
check-list. Then, the architecture and design have to consider 
footprint changes respectively impacts of different realization 
options. The designers have to implement “green” code. The 
operating has to scale the deployment and infrastructure units
to address the workload demand. Furthermore, the operating 
has to measure the current footprint to identify environmental 
impact improvement potentials which can be integrated in 
future releases.

Fig. 4: Short running LCs integrated in long-running LCs

The impact of decisions about energy footprint depends on 
“early” decision points. Figure 7 presents the impact of the 
release LC phases. It indicates that an avoided feature 
implementation in the demand phase has the “best” footprint 
contribution. Also, an architecture which is able to keep the 
business value units isolated (scale them on demand) and small 
is a big deal. Then, the design with smart algorithms can still 
have significant impact through selecting the best fitting
complexity handling with e.g. the application of the big-O, big-
Omega, respectively big-Theta notation [9]. The notations 
define complexity boundaries of algorithms to estimate their 
computing and run-time demand. During implementation, the 
selection of an efficient language can have an impact through 
the reduction of code. Reduction of code mostly is realized by 
a careful selection of libraries. Furthermore, green coding
patterns can also safe bytes and CPU cycles and some of them 
be checked automatically by tools during development and 
build procedures. During operation, a focus can be set on 
scaling the workload demands by keeping the utilization of the 
commissioned resources high. Additionally, the measurement 
about the resource footprint and the utilization allows closing 
the feedback loop to validate the impact of the optimization 
actions during software release development.

The feedback from operating can be used to initiate footprint 
improvements in future releases. Most impact comes from the 
selection and shaping of the demands. However, the LC actions 

require continuous iterative work to improve the 
product/service energy footprint. Systematic quality 
engineering shall be integrated in this endeavor as a 
contribution to the ISO 25010 quality characteristic (energy) 
efficiency.

Fig. 5: The shift-left impact on future resource usage of sustainability decisions

Figure 8 shows an example of demand management with 
over-shaped and forgotten features. The left side of figure 8
shows the positive effects in comparison to a non-shaped 
demand on the right side. The demand block is the initial scope. 
The second block is the sufficiency scope which is delivered in 
the first release. As is it less effort, it is also delivered earlier. 
In the second release, the over-shaped and forgotten features 
are delivered. The initial demand typically forgets features 
which are recognized with the first release. In the long-run,
more and more ideas become new necessity features. All further 
releases run in the same way in both approaches, as shown in 
the right block. Thereby, demand shaping reduces the software 
size and complexity in the long-term. The left and right upper 
boxes are shipped with the 4th release, however the feature 
amount is lower after shaping.

The approach proposed in Figure 8 to improving the 
sustainability fits well with agile approaches. The sufficiency 
demand is the scope of a Minimum Viable Product (MVP). The 
next increments respectively their releases integrate the “over-
shaped”, forgotten and new features. This approach does not 
delay features as it can be realized without changing the amount 
of releases. However, as the initial release contains less 
features, it can also be delivered earlier. This, in turn, reduces 
time-to-market, which is an increasingly important economic 
argument. 

Fig. 6: Benefits of demand shaping



Alexander Poth  et al. / Procedia CIRP 122 (2024) 861–866 865

4. Results

The proposed methodology is meant to be applied in IT 
product/service development. The case study presented here is 
the Volkswagen AG Group IT cloud-native testing service T-
Rex [13]. It shows the application of the proposed sufficiency 
approach to different releases of a test engine provided as a 
service (TaaS) to development teams at the Volkswagen AG.

Demand: The decision to integrate the new test engine was 
accepted after a positive sustainability case. A test engine is the 
tooling executing a specific test-job, e.g., for load and 
performance tests or one for user workflows tests. Individual 
fixed test engine deployments naturally have a higher footprint 
than an on-demand service. Therefore, T-Rex fulfills the check-
list’s criterium 1. In addition, the demand was shaped to a 
sufficiency set of features to keep the footprint of the T-Rex 
implementation small (criterium 3). Knowing that there is a risk 
of over-shaping, the initial scope was reduced to core functions 
and configurations. User behavior and feedback should form 
the scope of the next release with the over-shaped and forgotten 
features. This is motivated by the potential rebound-effect, 
because the new service approach offers the value units (i.e., 
executed test jobs) on demand, and it scales easily. This can 
lead to more testing in total, especially for the case that the 
current testing facilities or services “underserved” the testing 
demands. This can be addressed by scaling options and shows
that sufficiency lowers potential rebound-effects.

Architecture: The core architectural pattern of the T-Rex 
architecture is to provide the demanded specific configuration 
for each test-job (i.e., value unit for the user) individually per 
user. This is realized by providing the dedicated infrastructure 
units to handle the specific test-job workload to avoid over-
provisioning of resources. After test-job execution, the 
deployed resources are decommissioned. Relevant data 
including in particular test results are stored for the user.
Therefore, value-unit resource allocation efficiency lowers 
potential rebound-effects.

Design: The engine-specific requirements were identified 
and analyzed with a footprint perspective. It is important to 
define the infrastructure units with the best fit to the workload 
type. This is the base for a high utilization and fine-grained
elasticity. An example is the OpenAPI microservice release A
to release B in table 2. The container base image was reduced 
from 638 MB to 527 MB. Furthermore, the data for 
configuration and results were analyzed for reduction and 
retention options to keep the long-term storage footprint and the 
related computation effort per test-job small. The usage options 
of the engine were analyzed to define environmental footprint-
optimized default values. Moreover, the design ensures that for 
each test-job, the allocated resource units are associated. This 
is used to give feedback to the user about the service 
consumption footprint, and is the base to identify improvement 
potentials for future releases.

Implementation: To ensure a small footprint of the engine 
service, the micro-service was implemented with an optimized 
micro-service framework which also offers native compilation 
to platforms such as x86 or ARM. This offers provisioning of 

energy efficient Virtual Machines (VM) for the test-jobs.
Operating: The dynamic resource allocation is realized in the 

operating phase. Furthermore, the monitoring about utilization 
is performed during service provision in form of the test-jobs. 
This information is used to manage the commission and 
decommission of resource units and for improvement in future 
releases. These activities show that value-unit resource 
allocation efficiency lowers potential rebound-effects.

Table 1: Selenium and openAPI-test-generating microservice

Indicator/
Feature

Release A
Selenium

Release B
Chaos 
Mesh

Release C
Large 

Results

Release D
Browser-

Conf.
LoC 
changed

Baseline 
LoC

474 2003 5833

Container 
size

378 MB 378 MB 380 MB 378MB

Container 
Runtime 
Resources

Mem: 
512MB -
1GB
CPU: 250-
500

Mem: 
512MB -
1GB
CPU: 250-
500

Mem: 512MB 
- 1GB
CPU: 250-
500

Men: 256Mb-
768MB
CPU: 250-
500

Indicator/
Feature

Release A
OpenAPI-

Gen

Release B
AI-Gen 
(EvoM)

Release C
AI-

Refactoring

Release D
AI-Gen 

workflow
LoC 
changed

Baseline 
LoC

2389 193 1375

Container 
size

638 MB 527 MB 527 MB 586 MB

Container 
Runtime 
Resources

Mem: 
256MB -
1GB
CPU: 250-
500

Mem: 
256MB -
1GB
CPU: 250-
500

Mem: 256MB 
- 1GB
CPU: 250-
500

Mem: 256MB 
- 1GB
CPU: 250-
500

Table 1 presents selected indicators such as Lines of Code 
(LoC) changes of the engine specific micro-services. Release A 
is the reference release as baseline. The container size of the 
scalable deployment units to handle the test-job workload.
Container resources show selected runtime resource unit 
allocations. The Selenium microservice (table 1a) is a 
deployment unit that has been optimized over years. Here, the 
release A is not equal to v1.0. The OpenAPI microservice (table 
1b) is new and shows the shaping and optimizations in release 
B and C. Release C contains forgotten configurations of 
Release B. The Release D delivers more features and 
performance improvements – especially the improvements also 
include “footprint”-enhancements for the RAM allocation
during runtime. The case study shows that eco-efficiency is still 
improved if no additional resources units are commissioned to 
deliver more functionality. The best-case is to reduce the 
resource unit footprint by shipping more and new functionality,
however this becomes a difficult task in IT systems optimized 
for energy footprint over years [11]. The presented approach 
helps to make the right decisions to keep the resource unit 
footprint as small and their utilization high as possible by 
allowing evolvement and adaptation to the expectations of users 
evolving over time. But, it shows also that each new feature 
comes with a footprint and over time a feature which was 
implemented with a positive sustainability case and running 
with an optimized footprint can become a rebound-effect 
candidate in the future if the usage behavior is changing.



866 Alexander Poth  et al. / Procedia CIRP 122 (2024) 861–866

5. Discussion

The sufficiency set of the features and functions definition is 
still fuzzy and not rigorously defined by the proposed 
methodical approach. It is difficult to handle long-term socio-
economic behavior up-front during IT product and service 
design. Especially, sufficiency depends on cultural and local 
aspects, and there is no global standard. This makes it difficult 
to identify and handle user and customer groups adequately. 
Furthermore, any user segmentation can lead to ethical issues. 
An idea related to the Wikipedia.org example could be to 
activate geo-fencing to segment people, for whom information 
access is more “standard” than for others. This could serve 
billions of requests and CO2e tonnage, but from an ethical 
viewpoint, this is not acceptable. This example shows that the 
proposed approach has to be applied with responsibility. Future 
research to evolve the proposed approach to be ethically correct 
by design is needed. Other options such as working with a 
price-tag for a specific functionality can be considered to handle 
the “moving target” from luxury (high price offer) to necessity 
(free-tier offer) to manage consumption and potential rebound 
effects. Most requirements engineering approaches [10] are not 
rigorous with respect to the priority of requirements for 
sufficiency, neither. Instead, they require an evaluation and 
trade-off decisions about what must-have requirements are.

Another open point is how different (enterprise) cultures will 
handle the proposed approach. As some terms are not 
rigorously defined, the organizational culture can impact the 
classification of features and decisions about the sufficiency 
set. This aspect needs further investigation in the future.

Additionally, it is not known if the parameters observed in 
the case study cover all those needed for showing that the 
approach works. However, it reveals a lot of positive effects of 
the T-Rex service in terms of reducing the use of IT resources 
through a consequent focus on sufficiency.

6. Summary and outlook

The proposed approach considers sustainability with a focus 
on energy footprint within the product/service LC. It sets the 
focus on the software release LC to leverage a systematic 
footprint optimization. It shows that the demand management 
is a key to manage potential rebound-effects by keeping the 
feature scope in the right balance by classification in terms of 
necessity, convenience and luxury to identify sufficiency. The 
early phases within a (release) LC have the biggest levers to 
impact the footprint. Sustainability becomes a quality 
characteristic which requires systematic quality engineering.

In practical implementation, it demonstrates sufficiency 
scoping facilitation with a methodical approach and check-list, 
as well as a high compatibility with agile approaches for easy 
integration into established procedures. This leads to time-to-
market improvement facilitated by sustainability-oriented 
demand-shaping decisions.

Among the numerous questions that remain open for future 
work are the following: Is it possible to classify the sufficiency 
functionality respectively feature set more precisely? Is it 

possible to find generic arguments to avoid implementing 
potential rebound-effect driving features?

7. Author Contributions

Conceptualization, A. Poth; methodology, A. Poth, A. Riel; 
software, O. Rrjolli; validation, A. Poth, A. Riel; formal 
analysis, A. Poth; investigation, A. Poth; resources, O. Rrjolli; 
data curation, O. Rrjolli; writing—original draft preparation, A.
Poth; writing—review and editing, O. Rrjolli, A. Riel; 
visualization, A. Poth; supervision, A. Poth, A. Riel.; project 
administration, A. Poth, O. Rrjolli.

References

[1] C. Berger, Kano’s methods for understanding customer-defined quality, 
Center for Quality Management Journal 2 (1993) 3–36.

[2] D. Brissaud, T. Sakao, A. Riel, J.A. Erkoyuncu, Designing value-driven 
solutions: The evolution of industrial product-service systems, CIRP 
Annals 71 (2022) 553–575.

[3] D. Chen, D. Zhang, A. Liu, Intelligent Kano classification of product 
features based on customer reviews, CIRP Annals 68 (2019) 149–152.

[4] C.M. Christensen, H. Baumann, R. Ruggles, T.M. Sadtler, Disruptive 
innovation for social change, Harv Bus Rev 84 (2006) 94.

[5] L.A. Greening, D.L. Greene, C. Difiglio, Energy efficiency and 
consumption—the rebound effect—a survey, Energy Policy 28 (2000) 
389–401.

[6] M.Z. Iqbal, A.G. Campbell, From luxury to necessity: Progress of 
touchless interaction technology, Technol Soc 67 (2021) 101796.

[7] N. Kano, Attractive quality and must-be quality, Journal of the Japanese 
Society for Quality Control 31 (1984) 147–156.

[8] B.P. Kennedy, I. Kawachi, D. Prothrow-Stith, Income distribution and 
mortality: cross sectional ecological study of the Robin Hood index in the 
United States, Bmj 312 (1996) 1004–1007.

[9] A.A. Nasar, The history of algorithmic complexity, The Mathematics 
Enthusiast 13 (2016) 217–242.

[10]C. Pacheco, I. García, M. Reyes, Requirements elicitation techniques: a 
systematic literature review based on the maturity of the techniques, IET 
Software 12 (2018) 365–378.

[11]A. Poth, E. Nunweiler, Develop Sustainable Software with a Lean ISO 
14001 Setup Facilitated by the efiS® Framework, in: A. Przybyłek, A. 
Jarzębowicz, I. Luković, Y.Y. Ng (Eds.), Lean and Agile Software 
Development, Springer International Publishing, Cham, 2022: pp. 96–
115.

[12]A. Poth, O. Rrjolli, Sustainable IT Products and Services Facilitated by 
“Whole Team Sustainability”–A Post-mortem Analysis, in: European 
Conference on Software Process Improvement, Springer, 2023: pp. 151–
165.

[13]A. Poth, O. Rrjolli, A. Riel, Integration-and System-Testing Aligned with 
Cloud-Native Approaches for DevOps, in: 2022 IEEE 22nd International 
Conference on Software Quality, Reliability, and Security Companion 
(QRS-C), IEEE, 2022: pp. 201–208.

[14]R.R. Schaller, Moore’s law: past, present and future, IEEE Spectr 34 
(1997) 52–59.

[15]S. Bühne, M. Glinz, H. von Loenhoud, S. Staal, Certified Professional for 
Requirements Engineering Syllabus, 2022.

[16]The International Standardization Organization, ISO 25010:2023, 
Systems and Software Engineering., 2023.

[17]The United Nations, The 17 Goals - Sustainable Development, (n.d.).
[18]J.B. Twitchell, Living it up: Our love affair with luxury, Columbia 

University Press, 2002.
[19]N. Wirth, A plea for lean software, Computer (Long Beach Calif) 28 

(1995) 64–68.
[20]Q. Xu, R.J. Jiao, X. Yang, M. Helander, H.M. Khalid, A. Opperud, An 

analytical Kano model for customer need analysis, Des Stud 30 (2009) 
87–110.


