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Delayed Sliding Mode Control of Chaotic Systems
B. Hamidouche, K. Guesmi, N. Essounbouli

This paper presents a comprehensive investigation of delayed sliding-mode control and syn-
chronization of chaotic systems. The findings of this paper offer valuable insights into chaos
control and synchronization and provide promising prospects for practical applications in vari-
ous domains where the control of complex dynamical systems is a critical question. In this paper,
we propose three approaches of control to regulate chaotic behavior and induce synchronization
between the system’s state and its delayed value, by one period, of the unstable periodic orbits
(UPOs). The stabilization ability of each controller is demonstrated analytically based on Lya-
punov theory. Furthermore, we provide a bridge between classical stability and structural one
through the use of the synchronization error, as an argument of the controller, instead of the
classical tracking error.

Through three sets of simulations, we demonstrate the effectiveness of the proposed ap-
proaches in driving the chaotic system toward stable, simple, and predictable periodic behavior.
The results confirm the rapid achievement of stabilization, even with changes in the sliding
surface and control activation time point showing, hence, the approaches’ adaptability and relia-
bility. Furthermore, the controlled system exhibits remarkable insensitivity to changes in initial
conditions, thus showing the robustness of the proposed control strategies.
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1. Introduction

Chaos theory is a significant subdivision within the broader framework of nonlinear systems
theory. Chaos refers to the unpredictable, nonrepetitive, and aperiodic behavior observed in
deterministic systems. One key characteristic of chaotic systems is their high sensitivity to
initial conditions, characterized by a positive Lyapunov exponent. This sensitivity leads to the
so-called “butterfly effect”, where small changes in initial conditions can lead to vastly different
long-term trajectories [1]. Indeed, chaotic systems display an exceptional degree of sensitivity
not solely to their initial conditions, but also to alterations in their system parameters. Even
infinitesimal shifts in initial conditions can induce significant qualitative shifts in the system’s
behavior, complicating, thus, the task of mastering a such kind of systems. Given this critical
and complex context, a variety of control strategies have been driven to address the encountered
challenges. The literature review, in this area, shows many approaches of control such as the
delayed feedback control [2], the generalized predictive control [3], the fuzzy control [4], the
proportional-integral technique [5], the impulsive approach [6], the adaptive control technique [7],
and the sliding mode control (SMC) [8–10].

The sliding mode control is widely recognized as one of the most powerful control techniques.
It has been extensively investigated for stabilizing and controlling chaotic systems. This method
offers robustness against uncertainties and disturbances, rendering it particularly suitable for
addressing the inherent complexity and unpredictability of chaotic dynamics. At the core of
sliding mode control (SMC) is its ability to efficiently stabilize and regulate chaotic systems. This
achievement is accomplished through the formulation of a sliding surface and the implementation
of a control law which ensures that the system’s trajectory converges to and remains on this
surface.

The selection of the sliding surface holds immense importance, as it directly shapes the
behavior of the system and dictates its reaction to the control signal. A well-designed sliding
surface ensures the way for efficient control and stabilization of the system, enabling successful
management even in the face of complex and challenging dynamics.

In the context of classical stability analysis, the error is commonly recognized as the disparity
between the current state of a system and the target equilibrium point. However, in our case,
we deal instead with structural stability. Consequently, the conventional tracking error will be
replaced with what we called the synchronization error. This last is defined as the difference
between the present state of the system and its value, delayed by exactly one period along the
trajectory of the unstable periodic orbits (UPOs). This shift in focus allows us to explore the
system’s robustness and adaptability in synchronizing its behavior with a desired structurally
stable trajectory.

Our mission is to integrate the sliding mode control technique with the delayed synchro-
nization approach to ensure the system’s structural stability. This integration uses the delayed
state of the system as the reference trajectory, thereby establishing the basis for defining the
sliding surface. After successfully identifying the delayed state values of the system, we make
a deliberate choice to adopt one of the period values from the unstable periodic orbits (UPOs) as
the designated sliding surface. Consequently, the proposed approaches introduce three distinct
sliding surfaces, each one dealing with the synchronization principle.

Additionally, in order to ascertain the UPO’s value, we employ the widely recognized
Poincaré section technique [11]. This method involves constructing a Poincaré section through
the strategic intersection of the UPO with a carefully selected plane within the phase space.
The period of the UPO is determined through the measurement of the time interval between
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consecutive intersections of the UPO with the Poincaré section. To substantiate the stability
of the closed-loop system, the Lyapunov theory will be used. This theoretical framework will
provide the necessary justification for affirming the system’s stability under the proposed control
laws.

The organization of this paper is as follows: In Section 2, a brief overview of the Rössler
system is provided, highlighting its significance as a benchmark for chaos control. Section 3
introduces the proposed three delayed sliding-mode control approaches and presents their key
concepts. Additionally, the problem formulation is detailed, outlining the objectives of synchro-
nization and stabilization. In Section 4, the simulation results are presented and thoroughly
analyzed to validate the proposed approaches and to evaluate their performance.

2. Chaotic benchmark

For validation purposes and without loss of generality we have selected, in this paper, the
Rössler system as the benchmark system. The Rössler system is a well-known chaotic system
widely used in the literature to assess the efficiency of various control techniques. It was in-
troduced by Otto E. Rössler in 1976 [12] and has since become a popular choice for validation
purposes of the control and synchronization techniques in chaos theory.

The dynamics of the Rössler system can be described by the following set of ordinary
differential equations:

⎧
⎪⎨

⎪⎩

ẋ(t) = −y(t)− z(t),
ẏ(t) = x(t) + ay(t),

ż(t) = b+ z(t)(x(t)− c),
(2.1)

where x, y and z are the state variables and a, b and c are the system parameters. When they are
chosen as a = 0.2, b = 0.2, c = 5.7, the attractor of the system is illustrated in Fig. 1. The blue
and red curves on the attractor, depicted in Fig. 1, correspond to the system’s trajectories starting
from the initial conditions [0.1, 0.1, 0.1] and [0.2, 0.2, 0.2], respectively. The time evolution of
the system states is shown in Fig. 2.

From Figs. 1 and 2 it is evident that the Rössler system exhibits chaotic behavior. Con-
sequently, the system is highly sensitive to even slight changes in the initial conditions or the
system parameters. This sensitivity causes the system’s behavior to undergo substantial and
unpredictable variations over time. In order to confirm this remark, we use Wolf’s algorithm [13]
to obtain the following Lyapunov exponent:

λ1 = 0.0706, λ2 = 0.000 and λ3 = −5.4005.

It is obvious to say that the Rössler system with these parameters is chaotic due to the positive
Lyapunov exponent λ1. Thus, the development of a control method becomes crucial to achieve
structural stability and compel it to exhibit a more straightforward and predictable behavior.
With this goal in mind, we will present three approaches utilizing delayed sliding-mode control
techniques to achieve synchronization between the current state of the system and its delayed
state by one period. The primary objective of these approaches is to structurally stabilize the
system’s first unstable periodic orbit (UPO).
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Fig. 1. Behavior of the Rössler system without control

Fig. 2. Time behavior of x(t), y(t) and z(t) states without control

3. Delayed sliding mode control

This section aims to formulate the problem of chaos control and stabilization using the
delayed sliding mode control (DSMC) technique. To begin, let us consider the general form of
dynamical chaotic systems given by

Ẋ(t) = F (X(t), t) + U(t), (3.1)
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where X ∈ Rn is the state variable, F : Rn −→ Rn is a nonlinear function describing the system
dynamics, and n is the system dimension. U ∈ Ri denotes the control term that will be designed
to stabilize the chaotic system with i the number of inputs, and i � n.

The fundamental concept of sliding mode control is to drive the system to track a desired
or predefined trajectory by constraining its dynamics to slide along a predefined surface called
the sliding surface. The latter can be formulated as a function of the state of the system and the
desired trajectory.

In our study, we select the delayed state of the system as the desired trajectory. As defined
in [17], the general form of the sliding surface in the state space Rn can be defined by the scalar
equation Si(x, t) = 0 with

Si(x, t) =

(
d

dt
+ λi

)n−1

ei, (3.2)

where ei is the tracking error and λ is a strictly positive constant. The use of delayed states
as the desired trajectory in sliding mode control allows us to achieve synchronization between
the current value of the system’s state and its delayed value. This synchronization is essential
for stabilizing structurally the system’s first unstable periodic orbit (UPO) and regulating its
chaotic behavior effectively using the synchronization error instead of the conventional tracking
error. To do so, let us define the synchronization error as

ei = xi(t)− xi(t− τ) (3.3)

with τ the delayed time.
In the remaining subsections, we deal with the implementation and analysis of the proposed

approaches. Hence, if the system’s order is n = 2, Eq. (3.2) becomes:

Si(t) = ėi + λiei (3.4)

with the control objective to obtain [15, 18, 19]:

lim
t→∞Si(t) = 0 and lim

t→∞ Ṡi(t) = 0.

This means that, once the system is in the sliding phase, it remains on the sliding surface and
satisfies the previous conditions.

The main objective of this study is to formulate control laws that drive the error between the
system’s current state and the desired trajectory (delayed state) to zero. Based on the Lyapunov
theorem, the necessary and sufficient condition for the system (3.1) to satisfy the reachability
condition is expressed as follows:

1

2

d

dt

(
S2
)
� 0

=⇒ ST Ṡ � 0

(3.5)

with S =
[
S1 S2 · · · Sn

]T
.

It is ensured by condition (3.5) that the system state trajectory always reaches the sliding
surface. The following is a stricter reachability requirement known as the “δ-condition” [20]:

ST Ṡ � −δ|S|
=⇒ Ṡ � −δi sgn(Si),

(3.6)

where sgn is the signum function and δi (i = 1, 2, . . . , n) are strictly positive constants.
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We calculate the time derivative of S and substitute it into Eq. (3.6) to get

ëi + λiėi � −δi sgn(Si). (3.7)

In order to ensure the stability of the closed-loop system and to handle the uncertainties
and disturbances of the system, the sliding mode control laws usi (i = 1, 2, . . . , n) are created
to guide the dynamics of the system towards sliding surfaces (S(t) = 0). Thus, the sliding mode
control laws are:

usi = −Si − δi sign(Si). (3.8)

3.1. Control with one sliding surface

In this section, the main problem to be addressed is how to utilize a single sliding mode
surface to achieve synchronization between the present state and the delayed one of the Rössler
system with a delay of one period of time.

To achieve the desired synchronization, the master and slave Rössler systems are described
by the differential Eqs. (3.9) and (3.10), respectively.

The master system is

⎧
⎪⎨

⎪⎩

ẋ(t− τ) = −y(t− τ)− z(t− τ),
ẏ(t− τ) = x(t− τ) + ay(t− τ),
ż(t− τ) = b+ z(t− τ)(x(t− τ)− c),

(3.9)

and the slave system is
⎧
⎪⎨

⎪⎩

ẋ(t) = −y(t)− z(t),
ẏ(t) = x(t) + ay(t),

ż(t) = b+ z(t)(x(t) − c) + u(t),

(3.10)

where (x(t−τ), y(t−τ), z(t−τ)), (x(t), y(t), z(t)) are the states of the systems (3.9) and (3.10),
respectively, τ is the time delay equal to the period of the target UPO, and u(t) is the control
action.

The synchronization error between the master (3.9) and the slave (3.10) can be expressed as

⎧
⎪⎨

⎪⎩

e1(t) = x(t)− x(t− τ),
e2(t) = y(t)− y(t− τ),
e3(t) = z(t)− z(t− τ).

(3.11)

Its time derivative is
⎧
⎪⎨

⎪⎩

ė1(t) = ẋ(t)− ẋ(t− τ),
ė2(t) = ẏ(t)− ẏ(t− τ),
ė3(t) = ż(t)− ż(t− τ)

(3.12)

=⇒

⎧
⎪⎨

⎪⎩

ė1(t) = −e2(t)− e3(t),
ė2(t) = e1(t) + ae2(t),

ė3(t) = e1(t)e3(t) + z(t− τ)e1(t) + x(t− τ)e3(t)− ce3(t) + u(t).

(3.13)
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Now, the controller u(t) can be defined as follows:

u(t) = ueq(t) + usw(t). (3.14)

According to [20], we can redefine the sliding surface as

s =
n∑

i=0

λiei(t). (3.15)

Then:
s = λ1e1(t) + λ2e2(t) + λ3e3(t), (3.16)

where λ1, λ2, and λ3 are constant parameters.
The equivalent control ueq(t) is determined by the condition that the derivative of the sliding

surface (ṡ) is zero. This control action helps to drive the system towards the sliding surface.
The control input (usw) is designed for the error dynamics in a way that satisfies the reaching
condition s(t)ṡ(t) < 0, which ensures the sliding motion on the sliding surface (s(t) = 0).

When the system operates in sliding mode, it satisfies the following conditions [15, 18]:
{
s(t) = 0,

ṡ(t) = 0.
(3.17)

By deriving Eq. (3.16) with respect to time and replacing the ė1, ė2 and ė3 values from Eq. (3.13),
we get

ṡ(t) = λ1ė1(t) + λ2ė2(t) + λ3ė3(t) = λ1(−e2(t)− e3(t)) + λ2(e1(t) + ae2(t))+

+ λ3(e1(t)e3(t) + z(t− τ)e1(t) + x(t− τ)e3(t)− ce3(t) + ueq(t)). (3.18)

Consequently, when the system operates in the sliding manifold and the derivative of the sliding
surface (ṡ(t)) is equal to zero, the equivalent control (ueq), in the sliding mode, is given by

ueq(t) =
1

λ3
[−λ1(−e2(t)− e3(t))− λ2(e1(t)+

+ ae2(t))− λ3(e1(t)e3(t) + z(t− τ)e1(t) + x(t− τ)e3(t)− ce3(t)]. (3.19)

Next, the control action (usw) is designed as follows:

usw(t) = −δ · sign(s), (3.20)

where δ is a positive constant and sign(·) is the signum function.

Theorem 1. Using the control actions (ueq) and (usw) detailed in Eqs. (3.19) and (3.20),
respectively, in addition to the proposed surface given by Eq. (3.16), the controller u(t) that
ensures the closed-loop system asymptotic stability can be expressed as follows :

u(t) = ueq(t) + usw(t) =
1

λ3
[−λ1(−e2(t)− e3(t))− λ2(e1(t) + ae2(t))−

− λ3(e1(t)e3(t) + z(t− τ)e1(t) + x(t− τ)e3(t)− ce3(t)]− δ · sign(s). (3.21)

RUSSIAN JOURNAL OF NONLINEAR DYNAMICS, 2024, 20(2), 277–293
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Proof. By selecting an appropriate Lyapunov function, we can analyze the stability prop-
erties of the proposed control and ensure that the system’s trajectories converge towards the
desired sliding surface. To this end, we introduce the Lyapunov function defined as follows:

V =
1

2
s2. (3.22)

By evaluating its time derivative along the trajectory described by (3.16), we obtain

V̇ = sṡ = s[λ1ė1(t) + λ2ė2(t) + λ3ė3(t)] = s[λ1(−e2(t)− e3(t)) + λ2(e1(t) + ae2(t))+

+ λ3(e1(t)e3(t) + z(t− τ)e1(t) + x(t− τ)e3(t)− ce3(t) + u(t))] =

= s

{

λ1[−e2(t)− e3(t)] + λ2[e1(t) + ae2(t)]+

+ λ3

[

e1(t)e3(t) + z(t− τ)e1(t) + x(t− τ)e3(t)− ce3(t)+

+

(
1

λ3
[−λ1(−e2(t)− e3(t))− λ2(e1(t) + ae2(t))(t)e3(t)−

−λ3(e1(t)e3(t) + z(t− τ)e1(t) + x(t− τ)e3(t)− ce3(t))] − δ · sign(s)
)]}

=

= s[−δ · sign(s)] = −δ · |s|. (3.23)

As δ > 0, we have V̇ < 0, and based on Lyapunov stability theory [16], it can be concluded
that the error dynamics system (3.11) under the controller u(t) given by (3.21) is asymptotically
stable. �

3.2. Control with three sliding surfaces

In this section, we address the problem of synchronizing the Rössler system’s present state
with its delayed state by one period using three-sliding surfaces. The Rössler system (2.1) can
be written as follows:

⎧
⎪⎨

⎪⎩

ẋ(t) = −y(t)− z(t) + u1(t),

ẏ(t) = x(t) + ay(t) + u2(t),

ż(t) = b+ z(t)(x(t)− c) + u3(t).

(3.24)

The derivative of the synchronization errors vector between the present state and the delayed
one can be expressed as

⎧
⎪⎨

⎪⎩

ė1(t) = −e2(t)− e3(t) + u1(t),

ė2(t) = e1(t) + ae2(t) + u2(t),

ė3(t) = e1(t)e3(t) + z(t− τ)e1(t) + x(t− τ)e3(t)− ce3(t) + u3(t).

(3.25)

We insert ei and ėi into Eq. (3.4) to define the sliding surfaces as follows:
⎧
⎪⎨

⎪⎩

s1(t) = ė1(t) + λ1e1(t),

s2(t) = ė2(t) + λ2e2(t),

s3(t) = ė3(t) + λ3e3(t),

(3.26)

where λ1, λ2 and λ3 are positive real numbers.
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Theorem 2. Based on the principles established by Eq. (3.7) and taking into consideration
the sliding surfaces characterized in Eq. (3.26), the closed-loop system asymptotic stability can be
effectively ensured by the following control law :

⎧
⎪⎨

⎪⎩

u1(t) = −λ1e1 + e2 + e3 − δ sign(s1),
u2(t) = −λ2e2 − e1 − ae2 − δ sign(s2),
u3(t) = −λ3e3 − e1e3 − z(t− τ)e1 − x(t− τ)e3 + ce3 − δ sign(s3).

(3.27)

Proof. The Lyapunov function serves as a crucial tool for substantiating the stability and
showing the eventual convergence of the synchronization errors to zero. Thus, we introduce the
Lyapunov function:

V (t) =
1

2

(
e1(t)

2 + e2(t)
2 + e3(t)

2
)
. (3.28)

The time derivative of the above equation is

V̇ (t) = ė1e1 + ė2e2 + ė3e3. (3.29)

By substituting the proposed control (3.27) into Eq. (3.25) and ė1, ė2 and ė3 into Eq. (3.29),
the resulting expression is

V̇ (t) = −λ1e21 − λ2e22 − λ3e23 − δ[|s1|+ |s2|+ |s3|]. (3.30)

With the positive integer values assigned to λ1, λ2, λ3 and δ, the Lyapunov function condition,
as indicated by V̇ < 0, is satisfied [16]. This adherence to the principles of Lyapunov stability
theory allows us to confidently assert both the system’s asymptotic stability and the convergence
of the synchronization errors to zero. �

3.3. Control with three integral sliding surfaces

As described in the previous section (Section 3.2), the control law is constructed using three
surfaces, and for the definition of a sliding surface, we utilize suitable proportional-integral (PI)
sliding surfaces.

The PI sliding surface is a type of sliding surface that incorporates both proportional and
integral components. It is designed in the framework of regulating the synchronization error
between the current state and the desired delayed state of the Rössler system. The proportional
component helps to respond to the instantaneous error between the two states, while the integral
component deals with the accumulated error over time. Hence, the proportional-integral (PI)
sliding surface is

si(t) = ei(t) + λi

t∫

0

ei(α) dα, (3.31)

RUSSIAN JOURNAL OF NONLINEAR DYNAMICS, 2024, 20(2), 277–293
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where λi are positive real numbers and α is the integral variable. In the same context, we can
express the switching surfaces in the following manner:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s1(t) = e1(t) + λ1

t∫

0

e1(α) dα,

s2(t) = e2(t) + λ2

t∫

0

e2(α) dα,

s3(t) = e3(t) + λ3

t∫

0

e3(α) dα.

(3.32)

The time derivatives of the sliding surfaces are given by
⎧
⎪⎨

⎪⎩

ṡ1(t) = ė1(t) + λ1e1(t),

ṡ2(t) = ė2(t) + λ2e2(t),

ṡ3(t) = ė3(t) + λ3e3(t).

(3.33)

While the system operates in sliding mode, it conforms to the specified conditions (ṡi(t) = 0).
This signifies:

=⇒

⎧
⎪⎨

⎪⎩

ė1(t) = −λ1e1(t),
ė2(t) = −λ2e2(t),
ė3(t) = −λ3e3(t).

(3.34)

We notice that the first derivative of the error ėi(t) divided by the error ei(t) is less than zero
because λi > 0, which means that the function of the error is decreasing.

Theorem 3. By implementing the controller defined in Eq. (3.35) and incorporating the
proposed proportional integral sliding surfaces from Eq. (3.32), the asymptotic stability of the
closed-loop system is guaranteed. Furthermore, the synchronization errors converge asymptoti-
cally to zero:

⎧
⎪⎨

⎪⎩

u1(t) = −λ1e1 + e2 + e3 − δ sign(s1),
u2(t) = −λ2e2 − e1 − ae2 − δ sign(s2),
u3(t) = −λ3e3 − e1e3 − z(t− τ)e1 − x(t− τ)e3 + ce3 − δ sign(s3),

(3.35)

where λ1, λ2, λ3 and δ must be positive and correctly selected and sign(·) is the signum function.

Proof. To confirm the convergence of the synchronization errors to zero, we conducted an
analysis of the Lyapunov stability conditions.

We choose the Lyapunov function as follows:

V (t) =
1

2

(
e1(t)

2 + e2(t)
2 + e3(t)

2
)
. (3.36)

Using the time derivative of the above equation, we obtain

V̇ (t) = ė1e1 + ė2e2 + ė3e3. (3.37)
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Substituting ė1, ė2 and ė3 from Eq. (3.34) into Eq. (3.37), we get

˙V (t) = −λ1e21 − λ2e22 − λ3e23. (3.38)

According to the Lyapunov stability theory [16], the values of λ1, λ2, and λ3 in (3.38) must be
chosen in such a manner that V̇ (t) < 0 in order to guarantee the asymptotic stability of the
sliding manifold. As a result, we may state that λ1, λ2, and λ3 must all have positive integer
values for the asymptotic stability requirement. �

4. Simulation results

We maintain the Rössler system (2.1) with the initial conditions chosen arbitrarily
as [0.2, 0.2, 0.2], and the parameter values [a, b, c] = [0.2, 0.2, 5.7]. The value of the time
delay τ that matches the first period of UPO is τ = T1 = 5.88105.

4.1. Simulation with the first controller

The controller u(t) (3.21) is activated at time t = 150 s with parameter values λ1, λ2, λ3,
and δ equal to 2, 2, 0.04 and 0.2, respectively.

The resulting time evolution of the system is depicted in Fig. 3, the time response x(t), y(t)
and z(t) is shown in Fig. 4 and the controller action u(t) is represented in Fig. 5.

Fig. 3. Behavior of the Rössler system under the 1st controller

Figure 3 shows that the behavior of the system follows a single and periodic pattern, which
is the simplest and the most predictable behavior exhibited by a dynamical system. To provide
a more comprehensive understanding, Fig. 4 illustrates the time behavior of the system. This
figure presents a visual representation of how the system evolves and behaves over time.

Once the stabilization process is guaranteed, as depicted in Fig. 5, it can be observed that
the control signal converges to zero, indicating a successful structural stabilization of the Rössler
system.
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Fig. 4. Time response x(t), y(t) and z(t) under the 1st controller

Fig. 5. 1st controller action

4.2. Simulation with the second controller

We activate the proposed controller (3.27) at t = 150 s with the values of λ1, λ2, λ3 and δ
equal to 60, 40, 400 and 0.05, respectively.

The resulting time evolution of the system is depicted in Fig. 6 and the time evolution
of x(t), y(t) and z(t) is illustrated in Fig. 7, while the controller signals u1, u2 and u3 are given
in Fig. 8.
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Fig. 6. Behavior of the Rössler system under the 2nd controller with τ = T1 = 5.88

Fig. 7. Evolution of the states x(t), y(t) and z(t) under the 2nd controller

The results presented in Fig. 6 indicate that the system behavior is periodic and exhibits
a single-period response. To provide a clearer illustration of the system’s behavior, Fig. 7 depicts
the time behavior of the system before and after activating the proposed controller (3.27). When
the controller is activated at t = 150 s, the system is rapidly stabilized during the first period,
and the Rössler system’s general behavior becomes periodic. As can be seen from Fig. 8, when
the stabilization process is completed, the control signal becomes zero.
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Fig. 8. Control actions u1, u2 and u3 of the 2nd controller

4.3. Simulation with the third controller

Similarly to the previous simulation, we activate the proposed controller (3.38) at t = 150 s
with the values of parameters λ1, λ2, λ3 and δ satisfying the stability condition (3.37) and equal
to 50, 10, 10 and 0.05, respectively.

The resulting time evolution of the system, time response x(t), y(t) and z(t) and the con-
troller signals u1, u2 and u3 are represented in Figs. 9, 10, and 11, respectively.

Fig. 9. Behavior of the Rössler system under the 3rd controller
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Fig. 10. Evolution of the states x(t), y(t) and z(t) under the 3rd controller

Fig. 11. Control actions u1, u2 and u3 under the 3rd controller

It is remarkable that the results presented in Figs. 9, 10, and 11 are consistent and iden-
tical, respectively, to Figs. 6, 7 and 8 shown in the previous part. This indicates that the
delayed sliding-mode control approach consistently demonstrates its effectiveness in stabilizing
the considered benchmark system and achieving synchronization, even with changes in the sliding
surface.

For a straightforward comparison between the three simulations, it is obvious that the
performance of control utilizing the three control laws surpasses that of employing a single
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controller. On a different note, when evaluating the execution times of the three proposed
approaches, we find values of t1 = 3.5 s, t2 = 1260 s, and t3 = 173 s, respectively. This indicates
that the execution time for the three sliding surfaces is longer than that of the three integral
sliding surfaces and the single sliding surface. Consequently, based on these observations, we
conclude that employing three integral sliding surfaces not only enhances control performance,
but also accelerates the computation speed.

Overall and based on the outcomes of the three simulations conducted in this study, it is
evident that the proposed delayed sliding-mode control methods exhibit a high level of effective-
ness in mastering the behavior of the chaotic system towards a simple periodic behavior. The
efficiency of the control approach remains consistent regardless of the chosen control activation
point, as it remains flexible enough to be engaged at any time. This adaptability underscores
the robustness and versatility of the approach in achieving its intended outcomes, regardless of
the control activation instant. The proposed approaches are characterized by their rapid and
effective stabilization aspect over a period of time during any unstable periodic orbit (UPOs).
These results provide strong support for the effectiveness of the proposed delayed sliding-mode
control approaches in stabilizing chaotic systems and achieving synchronization between the cur-
rent state and the desired delayed one. The ability to achieve rapid stabilization and subsequent
periodic behavior shows the profound ability of the proposed control approaches to effectively
regulate and control the unpredictable and erratic behaviors of complex chaotic systems.

5. Conclusion

This paper presents a comprehensive investigation of delayed sliding-mode-based approaches
for chaos control or elimination in complex and chaotic systems. The closed-loop stability of
the system is proven based on Lyapunov theory, and the bridge between classical stability and
structural stability is built through the transformation of the tracking error into a synchronization
error.

Through the simulation results, we have validated and shown the effectiveness of the pro-
posed control approaches in driving the chaotic system toward stable and simple periodic behav-
ior. The results have confirmed that the proposed delayed sliding-mode control method is capable
of rapidly achieving stabilization, even with changes in the sliding surface and/or the activation
time point. This fact endorsed the adaptability and reliability of the proposed approaches. The
controlled system exhibited remarkable insensitivity to changes in initial conditions, which shows
the robustness of the proposed approaches. They consistently stabilized the chaotic system and
ensured the simplest and most predictable behavior of the system.
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