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Abstract: We study conformal prediction in the one-shot federated learning set-
ting. The main goal is to compute marginally and training-conditionally valid pre-
diction sets, at the server-level, in only one round of communication between the
agents and the server. Using the quantile-of-quantiles family of estimators and
split conformal prediction, we introduce a collection of computationally-efficient and
distribution-free algorithms that satisfy the aforementioned requirements. Our ap-
proaches come from theoretical results related to order statistics and the analysis
of the Beta-Beta distribution. We also prove upper bounds on the coverage of all
proposed algorithms when the nonconformity scores are almost surely distinct. For
algorithms with training-conditional guarantees, these bounds are of the same or-
der of magnitude as those of the centralized case. Remarkably, this implies that the
one-shot federated learning setting entails no significant loss compared to the cen-
tralized case. Our experiments confirm that our algorithms return prediction sets
with coverage and length similar to those obtained in a centralized setting.

Keywords and phrases: conformal prediction, one-shot federated learning, pre-
diction set, tolerance region, uncertainty quantification.

1. Introduction

1.1. Problem statement and motivation

We consider the one-shot federated learning (FL) set-prediction problem, where a set of
agents connected to a central server try to compute a valid prediction set in only one
round of communication, and without sharing their raw data [25].

Formally, assume that a data set D is distributed over m ∈ N∗ agents connected
to a central server. In addition, suppose that the server has an independent test point
(X,Y ) ∈ X ×Y following the same distribution as the elements (Xi,j , Yi,j) of D —which
are assumed to be identically distributed— but whose outcome Y is unobserved. The goal
of the server is to compute a distribution-free valid prediction set for Y . One can aim at
marginal validity, that is, for a given miscoverage level α ∈ (0, 1), constructing from D a

set Ĉ(X) such that

P
(
Y ∈ Ĉ(X)

)
⩾ 1− α , (1)

whatever the data distribution. In addition, the set Ĉ(·) must be computed in a single
round of communication between the agents and the server to satisfy the one-shot con-
straint —a condition motivated by the fact that the number of communication rounds
is often the main bottleneck in FL [27]. Note also that we want the set to be small
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(for instance, with respect to the counting or the Lebesgue measure), a property called
efficiency.

The probability in (1) is taken with respect to (X,Y ) and the data set D. However, in
practice, we only have access to one particular data set. Another quantity of interest is
therefore the training-conditional miscoverage rate defined by

α(D) := P
(
Y /∈ Ĉ(X)

∣∣D) , (2)

where the probability is now only taken with respect to the test point (X,Y ). Notice
that α(D) is a σ(D)-measurable random variable and that the marginal guarantee (1)
corresponds to a bound on the miscoverage rate (2) on average over all possible datasets.
In other words, Eq. (1) is equivalent to a control on the expectation of the training-

conditional miscoverage rate: P
(
Y /∈ Ĉ(X)

)
= E[α(D)] ⩽ α. However, the random variable

α(D) can have high variance, and it is important to also control its deviation from the
desired upper-bound α with high probability. For any α, β ∈ (0, 1), we are therefore also
interested in constructing prediction sets with training-conditional coverage guarantees,
that is, of the form

P
(
1− α(D) ⩾ 1− α

)
⩾ 1− β . (3)

Prediction sets satisfying (3) are also known in the statistical literature as (α, β)-tolerance
regions or “Probably Approximately Correct” (PAC) predictive sets. This type of guar-
antee dates back to [63] and an overview can be found in [32]. More recent works on this
subject include [8, 29, 47, 48, 61].

1.2. Related works

Our contribution takes place in the FL framework, a rather recent paradigm that allows
training from decentralized data sets stored locally by multiple agents [27]. In this frame-
work, the learning is made without exchanging raw data, making FL advantageous when
data are highly sensitive and cannot be centralized for privacy or security reasons. So
far, the design of FL algorithms has mainly focused on the learning step of statistical
machine learning, the goal being to fit a (pointwise) predictor to decentralized data sets
while minimizing the amount of communication [see e.g. 28, 37, 43]. However, quantifying
the uncertainty in the prediction of these FL algorithms has not been widely studied yet.

Conformal prediction (CP) methods have become the state-of-the-art to construct
marginally and conditionally valid distribution-free prediction sets [46, 54, 61, 62]. Un-
fortunately, one of the key steps of CP methods is the ordering of some computed scores,
which is not possible in FL settings without sharing the full local data sets or perform-
ing many agent-server communication rounds. These methods are thus not well-suited to
the constraints of FL in which agents process their data locally and only interact with
a central server by sharing some aggregate statistics. Constructing a valid prediction set
is even more difficult in the one-shot FL setting [14, 20, 36, 55, 65, 66] considered in
this work, where only one round of communication between the agents and the server is
allowed.

To our knowledge, [38] is the first paper considering the one-shot federated set-prediction
problem with conformal prediction. Its idea is to locally calculate some quantiles of com-
puted scores for each agent and to average them in the central server. Unfortunately,
[38] does not prove that the corresponding prediction sets are valid and its method is
non-robust, especially when the size of local data sets is small (see Appendix I.2 for more
details). To address these issues, [25] has recently proposed a family of estimators called
quantile-of-quantiles. The idea is that each agent sends to the server a local empirical
quantile of its scores and the server aggregates them by computing a quantile of these
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quantiles. Interestingly, these estimators can therefore be seen as a clever way of aggregat-
ing several quantiles calculated locally by m agents, who each locally use the (centralized)
split CP method (see Section 2.1 for details). Last but not least, when m = 1 this ap-
proach exactly recovers split CP, emphasizing that methods based on quantile-of-quantiles
estimators generalize centralized split CP to the FL setting. However, an important lim-
itation of [25] is that in order to determine which order of quantile to select for marginal
validity (1), the proposed methodology can be computationally intensive at the server
level. Moreover, the training-conditional guarantee (3) given by [25] is obtained with a
conservative procedure, leading to large prediction sets in practice. The present paper
shows how to solve these two issues.

Outside the one-shot FL setting considered here, we can also mention [39] and [50],
which focus on data-heterogeneous settings but require many communication rounds be-
tween the agents and the server. Finally, we can also mention recent works on federated
evaluation of classifiers [12], federated quantile computation [3, 49], and on uncertainty
quantification with Bayesian FL [15, 31] which, although related to our work, do not
study CP and do not obtain formal coverage guarantees.

1.3. Contributions

In this work, we consider the quantile-of-quantiles family of estimators proposed in [25]
and introduce several algorithms to find the appropriate order of quantiles so that the
marginal condition (1) or the training-conditional condition (3) are satisfied. Each of these
algorithms is computationally-efficient, distribution-free (depending only on the number
of agents and the size of their local data sets) and specially tailored to satisfy the afore-
mentioned conditions. Importantly, they come from novel theoretical results, which take
their roots in the theory of order statistics. For clarity and simplicity of reading, all the
contributions are first presented in the case where agents have the same number of data
points n ⩾ 1 (Assumption 1 in Section 2.2).

For distribution-free marginal guarantees (1), in Section 3.1:

• We prove that when Ĉ is obtained using our method, its probability of coverage
E[1 − α(D)] = P(Y ∈ Ĉ(X)) is lower bounded by the expectation of a random
variable following a particular Beta-Beta distribution [11, 40] (when the scores are
almost surely distinct, these two quantities are equal). We also derive a closed-form
expression for this expectation (Theorem 5), improving the one obtained in [25] and
leading to Algorithm 1.

• This closed-form expression remains difficult to compute for large values of n and
m, leading to a quite computationally demanding algorithm. To tackle this prob-
lem, we show that the expectation of this Beta-Beta distribution is lower and upper
bounded by the quantile function of a standard Beta distribution evaluated at par-
ticular values (Proposition 8). These bounds are tight and fast to compute, which
makes them interesting for practical use: they lead to Algorithm 2, which is more
computationally efficient.

In Section 3.2, we build the first (to the best of our knowledge) one-shot FL algorithms
with distribution-free training-conditional guarantees (3). More precisely:

• We prove that 1 − α(D) is stochastically larger (equal when the scores are a.s.
distinct) than a Beta-Beta random variable (Theorem 10). We also show that the
quantiles of the Beta-Beta are fast to compute, leading to an efficient algorithm that
constructs training-conditionally valid prediction sets in one-shot FL (Algorithm 3).
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• In order to obtain an even faster algorithm, we provide a tight bound on the cu-
mulative distribution function (cdf) of the Beta-Beta distribution (Proposition 13)
which allows the automatic selection of the empirical-quantiles order that the agents
should send to the server (Algorithm 4).

Importantly, our results allow to trade-off the tightness of the bounds for computational
efficiency. More generally, our contributions go beyond the setting of FL, in the sense
that they investigate the open question of how several split CP estimators obtained over
independent data sets should be aggregated to obtain valid prediction sets.

In Section 4, we give several upper-bounds on the probability of coverage of our predic-
tion sets. We first derive an upper-bound of order 1−α+O(m−1n−1/2) for the marginal
coverage of our methods from Section 3.1 (Algorithms 1–2). This result shows that our
coverage is not too much above 1− α and strictly improves upon the work of [25], which
did not provide such type of results. In the same vein, we also prove high-probability
upper bounds on the training-conditional miscoverage rate obtained by the methods of
Section 3.2 (Algorithms 3–4). Remarkably, these bounds are of order 1−α+O((mn)−1/2),
the same order of magnitude as those of the centralized case. Hence, up to constant fac-
tors, the one-shot federated learning setting does not incur any loss.

In Section 5, we extend our theoretical results and associated methods to the more
complicated setting where the agents can have different data set sizes (Theorems 19–20
and Algorithms 5–6), improving again upon the results presented in [25].

Finally, in Section 6, we empirically evaluate the performance of our algorithms on
standard CP benchmarks, validating that they produce prediction sets that are compu-
tationally efficient and close to those obtained when data are centralized.

2. Preliminaries

2.1. Split Conformal Prediction

Conformal Prediction (CP) is a framework to construct prediction sets satisfying (1)
without relying on any distributional assumption on the data [62]. In a centralized setting,
one of the most popular methods to perform CP is the split conformal method (split CP)
[46]. Since the quantile-of-quantiles procedure studied in this paper generalizes split CP,
let us detail here how it is defined and recall some of the key results of previous literature.
Simple and full proofs of these results are provided in Appendix I.1.

Assume that we have access to a centralized dataset D, that we split into a learning
set Dlrn and a calibration set Dcal = (Xi, Yi)1⩽i⩽nc

, where nc ⩾ 1 and the calibration
data (Xi, Yi), 1 ⩽ i ⩽ nc, are i.i.d. and follow the same distribution as the independent
test point (X,Y ).

First, a predictor f̂ is built from Dlrn only, and it is used to define a nonconformity
score function s = sf̂ : X × Y → R, such that for every (x, y) ∈ X × Y, sf̂ (x, y)

measures how far the prediction f̂(x) is from the true output y. Whether we are in the
regression or classification setting, many different score functions exist in the literature
(see e.g. [4]). In regression, for instance, a common choice is the fitted absolute residual

sf̂ : (x, y) 7→ |y − f̂(x)|. In the sequel, we often write s instead of sf̂ for simplicity.
Furthermore, note that split CP does not assume a particular choice of score function, so
throughout the paper, we keep the function s abstract.

Second, we calculate the values of sf̂ taken on the calibration set Dcal, called the

nonconformity scores Si := sf̂ (Xi, Yi), i = 1, . . . , nc.
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Third, we compute the r-th smallest nonconformity score S(r) := Q̂(r)(Scal
nc

) for some

r ∈ JncK := {1, . . . , nc}, where Scal
nc

:= (S1, . . . , Snc) and Q̂(·) is the sample quantile
function defined by

∀r,N ⩾ 1 , ∀S ′ ∈ RN , Q̂(r)(S ′) :=

{
S ′
(r) if r ⩽ N

+∞ otherwise ,
(4)

with S ′
(1) ⩽ . . . ⩽ S ′

(N) the ordered values of S ′ = (S ′
1, . . . ,S ′

N ). Finally, the split CP
prediction set is defined, for any x ∈ X , by

Ĉr(x) :=
{
y ∈ Y : sf̂ (x, y) ⩽ S(r)

}
. (5)

Following Eq. (2) in Section 1, we define the training-conditional miscoverage rate of

Ĉr by
αr(D) := P

(
Y /∈ Ĉr(X)

∣∣D) ,
where (X,Y ) is a test point, independent of D and with the same distribution as the
(Xi, Yi). We then have

1− αr(D) = P
(
sf̂ (X,Y ) ⩽ S(r)

)
= FS(S(r))

where FS is the common cdf of the scores Si. It is well known that for every r ∈ JncK,

P
(
Y ∈ Ĉr(X)

)
= E

[
1− αr(D)

]
⩾

r

nc + 1
,

with equality if the scores Si are almost surely distinct [35, 62]. As a consequence, for
any α ∈ (0, 1), if (1 − α)(nc + 1) ⩽ nc, taking r = ⌈(1 − α)(nc + 1)⌉ in Eq. (5) yields
a prediction set satisfying Eq. (1), and if the Si are almost surely distinct, its expected
miscoverage rate is

E
[
1− α⌈(1−α)(nc+1)⌉(D)

]
=

⌈(1− α)(nc + 1)⌉
nc + 1

⩽ 1− α+
1

nc + 1
. (6)

Regarding training-conditional guarantees, a straightforward consequence of [61, Propo-
sition 2b] is that

∀r ⩾ 1 , ∀β ∈ (0, 1) , P
(
1− αr(D) ⩾ F−1

U(r:nc)
(β)
)
⩾ 1− β , (7)

where F−1
U(r:nc)

denotes the quantile function of the Beta(r, nc − r + 1) distribution. In

other words, 1 − αr(D) is stochastically larger than the Beta(r, nc − r + 1) distribution.
Furthermore, Eq. (7) becomes an equality if the scores Si are almost surely distinct —
that is, in such a case, αr(D) exactly follows a Beta(r, nc − r + 1) distribution. Finally,
taking r ∈ JncK such that F−1

U(r:nc)
(β) ⩾ 1−α, Eq. (7) implies that the split CP prediction

set Ĉr satisfies Eq. (3), that is, Ĉr is a (α, β)-tolerance region —see also Eq. (99) in
Appendix I.1.2.

Remark 1. When nc tends to infinity, the optimal asymptotically training-conditionally
valid r —given by Eq. (102) in Appendix I.1.2— yields a prediction set Ĉr with coverage
between 1−α and 1−α+O(1/

√
nc) with high probability —see Eq. (103) in Appendix I.1.2

for a precise statement.
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The problem of split CP in a federated setting is that computing the quantile S(r)

requires in general several (and often many) communications between the central server
and the agents, hence it cannot be used in one-shot FL. Therefore, we consider in this
paper another family of procedures (quantile-of-quantiles estimators), that we define in
the next section.

Note that, although the first CP methods were the split and the related full meth-
ods [46, 62], many extensions based upon them and with similar guarantees have been
proposed in the literature. Their principal novelty lies in a clever choice of the non-
conformity score function s. In regression, [35] presents a method called locally weighted
CP and provides theoretical insights for conformal inference. More recently, [54] has de-
veloped a variant of the split CP called Conformal Quantile Regression (CQR). Other
recent alternatives have been proposed [19, 21, 22, 29, 45, 56]. We refer to [62], [4], and
[17] for in-depth presentations of CP and to [41] for a curated list of papers related to
CP.

2.2. Federated conformal prediction with the quantile-of-quantiles

We now present the quantile-of-quantiles family of estimators, first introduced in [25],
and how it can be used to obtain valid prediction sets in a one-shot FL setting, that is,
in a setting where only one round of communication between the agents and the server
is allowed [20, 66] and where only aggregated statistics computed locally by the agents
can be sent to the server. From now on, we assume that the decentralized data set D
is divided into a learning set Dlrn and a calibration set Dcal = (Xi,j , Yi,j)1⩽j⩽m,1⩽i⩽nj

where nj ⩾ 1 for every j ∈ JmK. Among calibration data, agent j ∈ JmK has only access to
(Xi,j , Yi,j)1⩽i⩽nj

. We assume that Dlrn is independent from Dcal, and that the calibration
data (Xi,j , Yi,j), j ∈ JmK, i ∈ JnjK are i.i.d. with the same distribution as the test point
(X,Y ) (which is independent from D).

We assume that a (pointwise) predictor f̂ is learned on Dlrn only, using for instance

standard FL algorithms such as FedAvg [43]. Therefore, f̂ is independent from Dcal. As

in the centralized setting, f̂ is used to define a nonconformity score function s = sf̂ :

X × Y → R such that for every (x, y) ∈ X × Y, sf̂ (x, y) measures how far the prediction

f̂(x) is from the true output y. In the sequel, we only focus on the calibration of the
prediction set and not on the learning part.

Remark 2. Note that f̂ does not have to be a point-wise predictor, that is, a function
X → Y. For instance, like in CQR [54], we can rely on the use of a score function s

depending on f̂ = (f̂−, f̂+) a pair of quantile functions X → Y.

Remark 3. In the following, all probabilistic statements are valid conditionally to Dlrn.
This amounts to acting as if f̂ were deterministic, since Dlrn appears only through f̂ and
Dcal is independent from Dlrn.

For simplicity, from now on and until the end of Section 4, we also make the following
assumption.

Assumption 1. Each agent j ∈ JmK has exactly nj = n ⩾ 1 calibration data points.

Under Assumption 1, the calibration data set size is equal to nm. We refer to Section 5
for the more general case where agents have data sets of calibration of different sizes
(nj)1⩽j⩽m.

For calibration, the first step is to ask each agent j ∈ JmK to compute its n i.i.d. local
calibration scores Sj := (S1,j , . . . , Sn,j), where Si,j = sf̂ (Xi,j , Yi,j) is the score associated
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to the i-th calibration data point of agent j. Then, the server and the agents jointly
compute the quantile-of-quantiles (QQ) estimator, defined as follows.

Definition 4. (Quantile-of-quantiles [25]) For any (ℓ, k) ∈ JnK× JmK, the QQ estimator
of order (ℓ, k) calculated on the sets of scores (Sj)1⩽j⩽m is

S(ℓ,k) := Q̂(k)

(
Q̂(ℓ)(S1), . . . , Q̂(ℓ)(Sm)

)
, (8)

where Q̂(·)(·) is the sample quantile function defined in Eq. (4).

In other words, each agent sends to the server its ℓ-th smallest local score, denoted by
Q̂(ℓ)(Sj), and the server then computes the k-th smallest value of these scores, denoted by
S(ℓ,k). This strategy requires a single round of communication and thus fits the constraints
of one-shot FL. Finally, for any x ∈ X , we define the prediction set

Ĉℓ,k(x) =
{
y ∈ Y : s(x, y) ⩽ S(ℓ,k)

}
, (9)

similarly to the centralized split CP method —see Eq. (5)—, but with S(r) replaced by
S(ℓ,k).

The decentralized QQ prediction set can be seen as a generalization of (centralized)
split CP since they coincide when m = 1. The crucial remaining component is a compu-
tationally efficient approach to identify a pair (ℓ, k) so that Ĉℓ,k defined in Eq. (9) satisfies
the marginal condition (1) or the training-conditional condition (3) while being as small
as possible. We investigate these points in the next sections.

2.3. Prediction set performance measure

A natural way to evaluate the performance of a valid prediction set x 7→ Ĉ(x) is to measure

its size µ(Ĉ(x)), where µ is some measure on Y, for instance, the counting measure when
Y is finite, or the Lebesgue measure when Y ⊂ Rp for some p ⩾ 1. This size should be
minimized, either at a given x ∈ X or on average over x = X. For a prediction set of
the form Ĉℓ,k, as defined by Eq. (9), its size depends on µ, on the score function s, on

the predictor f̂ , and on the pair (ℓ, k). In order to build general-purpose algorithms for

choosing (ℓ, k), a natural strategy is thus to select, among all the pairs such that Ĉℓ,k is

marginally or conditionally valid, the one which also minimizes the size µ(Ĉℓ,k(x)). By
Eq. (9), this size is a nondecreasing function of S(ℓ,k). Furthermore, we know that

S(ℓ,k)
a.s.
= F−1

S ◦ FS(S(ℓ,k)) = F−1
S

(
1− αℓ,k(D)

)
, (10)

where 1− αℓ,k(D) := P
(
Y ∈ Ĉℓ,k(X) | D

)
= FS(S(ℓ,k))

is the coverage of Ĉℓ,k, FS is the cdf of the scores Si,j , and F−1
S its generalized inverse

—see Eq. (35) in Appendix B.1. Hence, the size of Ĉℓ,k(x) is also a nondecreasing function
of the coverage.

Therefore, the quantiles or the expectation of the coverage are good ways to measure
the performance of prediction sets of the form Ĉℓ,k. In the following, we will use these

quantities as criteria (to be minimized) for choosing among pairs (ℓ, k) such that Ĉℓ,k is
(marginally or training-conditionally) valid. More detailed arguments about this strategy
can be found in Appendix A.
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3. Choice of the quantiles for coverage guarantees

We now present theoretical results together with one-shot FL algorithms which return
prediction sets with marginal (Section 3.1) or training-conditional (Section 3.2) guaran-
tees.

3.1. Marginal guarantees

In this section, we present two strategies for choosing a pair (ℓ, k) ensuring that Ĉℓ,k(x),
defined by Eq. (9), is a marginally valid prediction set, that is, satisfies (1) for a given
α ∈ (0, 1). Following Section 2.3, in order to get the best possible prediction set, our
strategy is to take (ℓ, k) such that the marginal coverage

P
(
Y ∈ Ĉℓ,k(X)

)
= P

(
sf̂ (X,Y ) ⩽ S(ℓ,k)

)
is above 1− α while being as small as possible.

Our first algorithm is based on the following theorem, which simplifies the formula
given in [25, Theorem 3.2].

Theorem 5. In the setting of Section 2.2, with Assumption 1, for any (ℓ, k) ∈ JnK×JmK,
the set Ĉℓ,k defined by Eq. (9) satisfies

P
(
Y ∈ Ĉℓ,k(X)

)
⩾ Mℓ,k (11)

where

Mℓ,k :=

k

(
m

k

) n∑
i1=ℓ

. . .

n∑
ik−1=ℓ

n∑
ik+1=0

. . .

n∑
im=0

(
n
i1

)
· · ·
(

n
ik−1

)(
n

ik+1

)
· · ·
(
n
im

)(
mn

i1+···+ik−1+ℓ+ik+1+...+im

)
(mn+ 1)B(ℓ, n− ℓ+ 1)

and

B : (a, b) ∈ (0,+∞)2 7→
∫ 1

0

ta−1(1− t)b−1dt

denotes the Beta function [59]. Moreover, when the associated scores (Si,j)1⩽j⩽m,1⩽i⩽n

and S := s(X,Y ) are almost surely distinct, Eq. (11) is an equality.

Theorem 5 is proved in Appendix C.1. It shows that we can lower bound the probability
of coverage of the quantile-of-quantiles prediction set by a distribution-free quantity Mℓ,k,
which depends only on m, n, ℓ and k. Furthermore, the lower bound is sharp as it becomes
an equality when the scores have a continuous cdf. This is for instance the case with the
fitted absolute residual if the noise distribution given X is almost surely atomless.

Theorem 5 suggests the following algorithm for the selection of ℓ and k, which we call
QQM (QQ stands for Quantile-of-Quantiles and M for Marginal).1

Algorithm 1 (QQM). Given α ∈ (0, 1),

compute (ℓ∗, k∗) = argmin
(ℓ,k)∈JnK×JmK

{Mℓ,k : Mℓ,k ⩾ 1− α} ,

and output Ĉℓ∗,k∗(x) =
{
y ∈ Y : s(x, y) ⩽ S(ℓ∗,k∗)

}
.

1QQM is a slight modification of the algorithm FedCP-QQ proposed in [25]. More specifically, Eq. (11)
is simpler and easier to compute than the corresponding formula for Mℓ,k in [25].
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Remark 6. By convention, when the argmin defining (ℓ∗, k∗) in Algorithm 1 is empty,

we define Ĉℓ∗,k∗(x) = Y. A similar convention is used in all of our algorithms.

The minimization step of Algorithm 1 comes from the fact that all pairs (ℓ, k) such
that Mℓ,k ⩾ 1−α ensure the marginal coverage, by Theorem 5, but we need to select one
specific pair. For the prediction set to be as small as possible, following Section 2.3, we
should minimize the coverage. In Algorithm 1, we minimize Mℓ,k since it is equal to the
expected coverage when the scores cdf is continuous.

By Theorem 5, the set Ĉℓ∗,k∗ is marginally valid. It is also nontrivial when mn is large
enough, according to the following lemma.

Lemma 7. The argmin defining (ℓ∗, k∗) in Algorithm 1 is non-empty —hence Ĉℓ∗,k∗ is
nontrivial— if and only if mn ⩾ α−1 − 1.

This lemma is proved in Appendix C.2. Remarkably, the necessary and sufficient con-
dition in Lemma 7 depends on the calibration samples sizes only through the total num-
ber mn of calibration data points, hence it is the same for the centralized case (with one
agent holding mn calibration data points) and for the one-shot FL case (with m ⩾ 2
agents, each having access to n calibration data points).

A critical limitation of QQM is that computing (ℓ∗, k∗), and even a single Mℓ,k, is
costly when m × n is large, preventing the approach to scale to a large number of data
points or agents. For example, based on techniques from [34], [25] describes an algorithm
that can be used to compute a single Mℓ,k with a worst-case complexity of O(m4n log(n)).
Although this complexity could be slightly improved using more advanced ideas from [34],
the overall complexity of Algorithm 1 would still remain too high for very large data sets
(e.g., when the number of agents m is large). Our second strategy enables us to find a
valid pair (ℓ, k) much faster. It is based on sharp upper and lower bounds over Mℓ,k that
can be computed efficiently.

Proposition 8. Let n,m ⩾ 1 be two integers, (ℓ, k) ∈ JnK × JmK, and Mℓ,k be defined in
Theorem 5. Then,

F−1
U(ℓ:n)

(
k − 1/2

m+ 1/2

)
< Mℓ,k < F−1

U(ℓ:n)

(
k

m+ 1/2

)
, (12)

where F−1
U(ℓ:n)

is the quantile function of the Beta(ℓ, n− ℓ+ 1) distribution [59].

Proposition 8 is proved in Appendix C.3. By combining Proposition 8 and Theorem 5,
if a pair (ℓ, k) is such that the left-hand side of Eq. (12) is greater or equal to 1−α, then

the associated prediction set Ĉℓ,k is marginally valid. As a consequence, for any ℓ ∈ JnK
and α ∈ (0, 1), if we set

k = k̃m,n(ℓ, α) :=
⌈
(m+ 1/2) · FU(ℓ:n)

(1− α) + 1/2
⌉
, (13)

then 1− α ⩽ F−1
U(ℓ:n)

(
k̃m,n(ℓ, α)− 1/2

m+ 1/2

)
⩽ Mℓ,k̃m,n(ℓ,α)

⩽ P
(
Y ∈ Ĉℓ,k̃m,n(ℓ,α)

(X)
)
,

provided that k̃m,n(ℓ, α) ∈ JmK. Therefore, choosing the associated pair (ℓ, k̃m,n(ℓ, α))
leads to a marginally-valid prediction set. Following our idea to minimize Mℓ,k among
marginally-valid pairs (ℓ, k) in Algorithm 1, it is here natural to choose ℓ by minimizing

the upper-bound F−1
U(ℓ:n)

(
k̃m,n(ℓ,α)
m+1/2

)
provided by Proposition 8, which leads to Algorithm 2

below.
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Algorithm 2 (QQM-Fast). Given α ∈ (0, 1),

compute ℓ̃ = argmin
ℓ∈JnK s.t. k̃m,n(ℓ,α)∈JmK

{
F−1
U(ℓ:n)

(
k̃m,n(ℓ, α)

m+ 1/2

)}
and k̃m,n(ℓ̃, α) ,

where k̃m,n(ℓ, α) is defined by Eq. (13) ,

and output Ĉℓ̃,k̃m,n(ℓ̃,α)
(x) =

{
y ∈ Y : s(x, y) ⩽ S(ℓ̃,k̃m,n(ℓ̃,α))

}
.

By construction, following the arguments detailed after Proposition 8, the set Ĉℓ̃,k̃m,n(ℓ̃,α)

is marginally valid. It is also nontrivial when mn is large enough, according to the next
lemma.

Lemma 9. The argmin defining ℓ̃ in Algorithm 2 is non-empty —hence Ĉℓ̃,k̃m,n(ℓ̃,α)
is

nontrivial— if and only if

(1− α)n ⩽
m− 1/2

m+ 1/2
. (14)

In particular, condition (14) holds true if n(m− 1/2) ⩾ α−1 − 1.

Lemma 9 is proved in Appendix C.4. In addition, QQM-Fast is computationally effi-
cient. Indeed, the functions FU(ℓ:n)

and F−1
U(ℓ:n)

are fast to evaluate even when n is large (it

takes a few milliseconds for n = 106). Furthermore, the minimization step in Algorithm 2
requires at most n evaluations, and the complexity of Algorithm 2 is almost not impacted
by the value of m. For example, on a standard personal machine (Intel i5 with 4 CPU
at 2.50GHz), with m = n = 106, QQM-Fast takes a few seconds to return the valid pair
(ℓ̃, k̃m,n(ℓ̃, α)) using the SciPy implementation [60] of the cdf FU(ℓ:n)

and the quantile

function F−1
U(ℓ:n)

of the Beta distribution, whereas QQM can take several hours.

While the two methods presented above ensure that the marginal coverage at level
1− α is satisfied whatever the data distribution, one may wonder how much above 1− α
it can be. This question is answered in detail in Section 4.1.

3.2. Training-conditional guarantees

In this section, we present two algorithms for choosing (ℓ, k) such that the quantile-of-

quantiles prediction set Ĉℓ,k(x) defined by Eq. (9) is a distribution-free training-conditionally
valid prediction set, that is, satisfies Eq. (3). In other words, the goal is to select ℓ and k
such that the miscoverage random variable

αℓ,k(D) = P
(
Y /∈ Ĉℓ,k(X)

∣∣D) (15)

is smaller than α ∈ (0, 1) with probability at least 1− β ∈ (0, 1), that is,

P
(
P
(
Y ∈ Ĉℓ,k(X)

∣∣D) ⩾ 1− α
)
= P

(
1− αℓ,k(D) ⩾ 1− α

)
⩾ 1− β . (16)

Our first algorithm is based on the following theorem.

Theorem 10. In the setting of Section 2.2, with Assumption 1, for any (ℓ, k) ∈ JnK×JmK
and any β ∈ (0, 1), the miscoverage random variable αℓ,k(D) defined by Eq. (15) satisfies

P
(
1− αℓ,k(D) ⩾ F−1

U(ℓ:n,k:m)
(β)
)
⩾ 1− β , (17)

where F−1
U(ℓ:n,k:m)

:= F−1
U(ℓ:n)

◦ F−1
U(k:m)

and for every 1 ⩽ r ⩽ N , F−1
U(r:N)

is the quantile

function of the Beta(r,N − r + 1) distribution.
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Moreover, when the associated scores (Si,j)1⩽i⩽n,1⩽j⩽m and S := s(X,Y ) are almost
surely distinct, Eq. (17) is an equality and, for any β′ ∈ (0, 1) such that β ⩽ 1− β′,

P
(
F−1
U(ℓ:n,k:m)

(β) ⩽ 1− αℓ,k(D) ⩽ F−1
U(ℓ:n,k:m)

(1− β′)
)
= 1− β − β′ . (18)

The interval [F−1
U(ℓ:n,k:m)

(β), F−1
U(ℓ:n,k:m)

(1− β′)] is thus a two-sided fluctuation interval for

the coverage random variable 1− αℓ,k(D).

Theorem 10 is proved in Appendix D.1. Eq. (17) is sharp since it becomes an equality
when the scores are a.s. distinct. It can be seen as a generalization of Eq. (7) to the case of
the quantile-of-quantiles estimator. Theorem 10 is based on the fact that if U(ℓ:n,k:m) is a
random variable with cdf FU(ℓ:n,k:m)

, then 1−αℓ,k(D) stochastically dominates U(ℓ:n,k:m) in
general, and they have the same distribution when the scores are a.s. distinct by Lemma 27
in Appendix B.2 (which also implies that Theorem 5 holds true withMℓ,k = E[U(ℓ:n,k:m)]).

Remark 11. The distribution associated to FU(ℓ:n,k:m)
is a particular case of the Beta-

Beta distribution [11, 40]. It can also be seen as the cdf of the k-th order statistics of a
sample of m independent Beta(ℓ, n− ℓ+ 1) random variables [9, 26].

Theorem 10 suggests the following algorithm to select ℓ and k for training-conditional
validity, which we call QQC (QQ stands for Quantile-of-Quantiles and C for Conditional).

Algorithm 3 (QQC). Given α ∈ (0, 1) and β ∈ (0, 1),

compute (ℓ∗c , k
∗
c ) = argmin

(ℓ,k)∈JnK×JmK

{
F−1
U(ℓ:n,k:m)

(1− β) : F−1
U(ℓ:n,k:m)

(β) ⩾ 1− α
}

(19)

and output Ĉℓ∗c ,k∗
c
(x) =

{
y ∈ Y : s(x, y) ⩽ S(ℓ∗c ,k

∗
c )

}
.

By construction and Theorem 10, the set Ĉℓ∗c ,k∗
c
satisfies the training-conditional con-

dition (16). It is also nontrivial when mn is large enough, according to the following
lemma.

Lemma 12. The argmin defining (ℓ∗c , k
∗
c ) in Algorithm 3 is non-empty —hence Ĉℓ∗c ,k∗

c
is

nontrivial— if and only if

mn ⩾
log(β)

log(1− α)
. (20)

Lemma 12 is proved in Appendix D.2. Furthermore, as long as m and n are not too
large, Algorithm 3 is computationally efficient since F−1

U(ℓ:n)
and F−1

U(k:m)
can be computed

quickly (see the comments below Algorithm 2 in Section 3.1).
Note that any pair (ℓ, k) satisfying the condition F−1

U(ℓ:n,k:m)
(β) ⩾ 1− α leads to a con-

ditionally valid prediction set. As a selection criterion among these pairs (ℓ, k), following
Section 2.3, we minimize F−1

U(ℓ:n,k:m)
(1 − β) which, according to Eq. (18) in Theorem 10,

is equal to the (1− β)-quantile of the distribution of 1−αℓ,k(D) when the scores are a.s.
distinct.

QQC may require to evaluate F−1
U(ℓ:n,k:m)

for many pairs (ℓ, k) ∈ JnK×JmK, which can be

too costly when n and m are large. In the sequel, we propose a simpler sufficient condition
for Eq. (16) to be satisfied, leading to a faster algorithm. It is based on the following lower
bound on the quantile function F−1

U(ℓ:n,k:m)
.

Proposition 13. Let n,m ⩾ 1 be two integers, k ∈ JmK, ℓ ∈ JnK, and F−1
U(ℓ:n,k:m)

be

defined as in Theorem 10. For any β ∈ (0, 1), we have

F−1
U(ℓ:n,k:m)

(β) ⩾ F−1
U(ℓ:n)

(
k

m+ 1
−

√
log(1/β)

2(m+ 2)

)
. (21)
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Proposition 13 is proved in Appendix D.3. From this result, we see that for any ℓ ∈ JnK,
taking (if possible)

k = k̃condm,n (ℓ, α, β) :=

⌈
(m+ 1)

(
FU(ℓ:n)

(1− α) +

√
log(1/β)

2(m+ 2)

)⌉
(22)

implies that F−1
U

(ℓ:n,k̃cond
m,n (ℓ,α,β):m)

(β) ⩾ 1 − α and by Theorem 10, Ĉℓ,k̃cond
m,n (ℓ,α,β) satisfies

the training-conditional condition (16). Choosing ℓ similarly to Algorithm 3 leads to the
following algorithm.

Algorithm 4 (QQC-Fast). Given α ∈ (0, 1) and β ∈ (0, 1),

compute ℓ̃cond = argmin
ℓ∈JnK s.t. k̃cond

m,n(ℓ,α,β)⩽m

{
F−1
U

(ℓ:n,k̃cond
m,n(ℓ,α,β):m)

(1− β)

}
and k̃condm,n (ℓ̃cond, α, β) , where k̃condm,n (ℓ, α, β) is defined by Eq. (22) .

Output Ĉℓ̃cond,k̃cond
m,n(ℓ̃

cond,α,β)(x) =
{
y ∈ Y : s(x, y) ⩽ S(ℓ̃cond,k̃cond

m,n(ℓ̃
cond,α,β))

}
.

By construction, following the arguments detailed after Proposition 13, the set
Ĉℓ̃cond,k̃cond

m,n (ℓ̃cond,α,β) satisfies the training-conditional condition (16). It is also nontrivial

when mn is large enough, as shown by the following lemma.

Lemma 14. The argmin defining ℓ̃cond in Algorithm 4 is non-empty —hence the set
Ĉℓ̃cond,k̃cond

m,n(ℓ̃
cond,α,β) is nontrivial— if and only if

m

m+ 1
−

√
log(1/β)

2(m+ 2)
⩾ (1− α)n . (23)

For instance, it holds true when

n ⩾
log(1/3)

log(1− α)
and m ⩾ max

{
2 ,

9

2
log(1/β)− 2

}
. (24)

Lemma 14 is proved in Appendix D.4. In addition, Algorithm 4 is computationally
efficient. Indeed, F−1

U(ℓ:n,k:m)
:= F−1

U(ℓ:n)
◦F−1

U(k:m)
by Theorem 10, so Algorithm 4 requires at

most n evaluations of the functions FU(ℓ:n)
, F−1

U(ℓ:n)
and F−1

U(k:m)
, which are fast to evaluate

even when n,m are large as explained below Algorithm 2.

Remark 15. Note that the computational complexities of all proposed algorithms have two
parts: (i) the choice of a valid pair (ℓ, k), and (ii) the computation of S(ℓ,k) given the data

and (ℓ, k). The second part is not an issue since f̂ is supposed to be given and the score
functions usually can be computed fastly. So, all the complexities discussed throughout
Section 3 are about the first part, which can be reused across multiple data sets, score
functions, or predictors f̂ , as long as m (the number of agents) and n (the size of local
data sets) remain fixed.

4. Upper bounds on the coverage

In the previous section, we focused on the problem of choosing ℓ and k such that 1−αℓ,k(D)
is above 1−α, either in expectation (Section 3.1), or with high probability (Section 3.2).
In the present section, we raise the natural and important question of upper -bounding
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1 − αℓ,k(D) in expectation or with high-probability, as a function of k, ℓ,m, and n. In
particular, when the coverage is guaranteed to be larger than 1 − α, it is interesting to
evaluate how far from 1−α it can be, in order to quantify the quality of the corresponding
algorithms.

4.1. Marginal coverage upper bounds

In this section, we provide an upper bound on the expectation of the coverage E[1 −
αℓ,k(D)] obtained by Algorithms 1–2 of Section 3.1. Recall that, by Theorem 5, when the

scores are a.s. distinct, E[1− αℓ,k(D)] = P(Y ∈ Ĉℓ,k(X)) = Mℓ,k. Hence, in that case it is
sufficient to upper-bound Mℓ,k, as done by the following result.

Theorem 16. Given α ∈ (0, 1), let (ℓ∗, k∗) and (ℓ̃, k̃m,n(ℓ̃, α)) be the pairs respectively

returned by Algorithms 1 and 2 of Section 3.1, where k̃m,n(ℓ, α) is defined by Eq. (13).
Then, some n0(α),m0 ⩾ 1 exist such that, if n ⩾ n0(α) and m ⩾ m0, we have

1− α ⩽ Mℓ∗,k∗ ⩽ Mℓ̃,k̃m,n(ℓ̃,α)
⩽ 1− α+

C

(2m+ 1)
√
n+ 2

, (25)

where C denotes a numerical constant (for instance, the result holds true with m0 = 18
and C = 27).

Theorem 16 is proved in Appendix E.1. Combined with Theorem 5, it shows that,
if the scores are a.s. distinct, and when m,n are sufficiently large, Algorithms 1 and 2
return prediction sets with marginal coverage between 1− α and 1− α+O(n−1/2m−1).
In particular, their marginal coverages tend to 1−α when either n or m tends to infinity,
a result that was not obtained previously for any one-shot FL marginally-valid prediction
set [25].

Note that we do not exactly recover the upper bound 1 − α + 1/(mn) obtained in
the centralized case when there are mn calibration points —Eq. (6) in Section 2.1. For
Algorithm 1, following [25] we conjecture the stronger result Mℓ∗,k∗ ⩽ 1− α+O(1/mn).
While our experiments in Section 6.1 corroborate this, proving it would require a different
analysis that we leave for future work. For Algorithm 2, the results of Section 6.1.1 suggest
that Eq. (25) is tight (up to the value of C).

4.2. Training-conditional coverage upper bounds

We now provide high-probability upper bounds on the coverage 1− αℓ,k(D) obtained by
Algorithms 3–4 of Section 3.2.

Theorem 17. Let α ∈ (0, 1) and β ∈ (0, 1) be given. Recall that the pairs (ℓ∗c , k
∗
c ) and

(ℓ̃cond, k̃condm,n (ℓ̃cond, α, β)) respectively denote the pairs (ℓ, k) chosen by Algorithms 3 and 4.
In the setting of Section 2.2, with Assumption 1, assuming in addition that the scores
Si,j , S are a.s. distinct, some n′

0(α),m
′
0(β) ⩾ 1 exist such that, for any n ⩾ n′

0(α) and
m ⩾ m′

0(β),

P

(
1− αℓ∗c ,k

∗
c
(D) ⩽ 1− α+

∆(β)√
(m+ 2)(n+ 2)

)
⩾ 1− β (26)

and P

(
1− αℓ̃cond,k̃cond

m,n(ℓ̃
cond,α,β)(D) ⩽ 1− α+

∆(β)√
(m+ 2)(n+ 2)

)
⩾ 1− β , (27)

with ∆(β) = 12max{2
√

log(1/β), 1}.
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Theorem 17 is proved in Appendix E.2. Remarkably, the bounds are of the form 1−α+
O(1/

√
mn), exactly as for split CP in the centralized case (see Remark 1 in Section 2.1).

Therefore, up to constants, using one-shot FL training-conditionally valid prediction sets
—also known as (α, β)-tolerance regions— such as Algorithms 3 and 4 incurs no loss
compared to a centralized algorithm such as split CP [61].

A consequence of Theorem 17 is that, under the same assumptions, for any n ⩾ n′
0(α)

and m ⩾ m′
0(β),

P

(
1− α ⩽ 1− αℓ∗c ,k

∗
c
(D) ⩽ 1− α+

∆(β)√
(m+ 2)(n+ 2)

)
⩾ 1− 2β (28)

(by Theorem 10 and the union bound), and a similar results holds true for the output
of Algorithm 4. This shows that the deviations of the coverage are (at most) of order
(mn)−1/2, as for split CP in the centralized case [61, Proposition 2a]. The proof of this
theorem, and by extension Eq. (28), rely on the fact that

[
F−1
U(ℓ:n,k:m)

(β) , F−1
U(ℓ:n,k:m)

(1− β)
]
⊆

[
1− α , 1− α+

∆(β)√
(m+ 2)(n+ 2)

]

when the pair (ℓ, k) is chosen by our algorithms. Then, thanks to Eq. (18) in Theorem 10,
we know that, with probability 1− 2β, the coverage random variable 1−αℓ,k(D) belongs
to the first interval, which concludes the proof. This means that, when (ℓ, k) is the pair
chosen by either Algorithm 3 or Algorithm 4, we have that [F−1

U(ℓ:n,k:m)
(β), F−1

U(ℓ:n,k:m)
(1−β)]

contains 1−αℓ,k(D) with probability 1−2β, and that both F−1
U(ℓ:n,k:m)

(β) and F−1
U(ℓ:n,k:m)

(1−
β) tend to 1−α at a rate of at least (mn)−1/2. According to the numerical experiments of
Section 6.1, this rate (mn)−1/2 seems exact (that is, not improvable in worst-case) when
(ℓ, k) is chosen by Algorithm 4.

Remark 18. The proof of Theorem 17 also shows that

P

(
1− αℓn,k̃cond

m,n(ℓn,α,β)
(D) ⩽ 1− α+

∆(β)√
(m+ 2)(n+ 2)

)
⩾ 1− β

for ℓn = ⌈n(1− α)⌉. This inequality could be used to build prediction sets with a smaller
computational complexity than Algorithm 4, at the price of being slightly more conserva-
tive. By Theorem 31 in Appendix G.2, the proof can also be generalized to any sequence
(ℓn)n⩾1 such that ℓn ∈ JnK for every n and ℓn = n(1− α) + o(

√
n) as n → +∞.

5. Generalization to different nj

In the previous sections, for simplicity, we assume that all agents have the same number
n of (calibration) data points. Let us now consider the general case, that is, the setting
described in Section 2.2 without Assumption 1. Since the m agents have data sets of
possibly different sizes n1, . . . , nm, one needs to adapt the order of the local quantile to
each agent. Given (ℓ1, . . . , ℓm) ∈ Jn1K × · · · × JnmK, the QQ estimator (Definition 4) is
now defined by

S(ℓ1,...,ℓm,k) := Q̂(k:m)

(
Q̂(ℓ1:n1)(S1), . . . , Q̂(ℓm:nm)(Sm)

)
, (29)

where Sj = (Si,j)1⩽i⩽nj denotes the set of local scores computed by the j-th agent. In
words, each agent j ∈ JmK now sends to the server its ℓj-th smallest score and the server
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computes the k-th smallest value of these values. The associated prediction set is, for any
x ∈ X ,

Ĉℓ1,...,ℓm,k(x) :=
{
y ∈ Y : s(x, y) ⩽ S(ℓ1,...,ℓm,k)

}
, (30)

and its miscoverage rate is denoted by

αℓ1,...,ℓm,k(D) := P
(
Y /∈ Ĉℓ1,...,ℓm,k(X)

∣∣D) . (31)

When the nj are different, the difficulty is that the random variables (Q̂(ℓj :nj)(Sj))1⩽j⩽m

in the right-hand side of Eq. (29) are not identically distributed as they are computed
on data sets of different sizes. Hence, in this setting, the counterpart of Theorem 5 of
Section 3.1 (marginal guarantee) is as follows.

Theorem 19. In the setting of Section 2.2, without Assumption 1, for any (ℓ1, . . . , ℓm, k) ∈
Jn1K × · · · × JnmK × JmK, the set Ĉℓ1,...,ℓm,k defined by Eq. (30) satisfies

P
(
Y ∈ Ĉℓ1,...,ℓm,k(X)

)
⩾ Mℓ1,...,ℓm,k (32)

with

Mℓ1,...,ℓm,k = 1− 1

1 +
∑m

j=1 nj

m∑
j=k

∑
a∈Pj

na1∑
i1=ℓa1

· · ·
naj∑

ij=ℓaj

ℓaj+1
−1∑

ij+1=0

· · ·
ℓam−1∑
im=0

(na1
i1

)
· · ·
(
nam
im

)(
n1+···+nm

i1+···+im

) ,

where Pj denotes the set of permutations a = (a1, . . . , am) of {1, . . . ,m} such that a1 <
a2 < . . . < aj and aj+1 < aj+2 < . . . < am. Moreover, when the associated scores
(Si,j)1⩽j⩽m,1⩽i⩽nj and S := s(X,Y ) are almost surely distinct, Eq. (32) is an equality.

Theorem 19 is proved in Appendix F.1. Furthermore, the miscoverage rate defined by
Eq. (31) can be controlled with high probability thanks to the following result, which
generalizes Theorem 10 in Section 3.2.

Theorem 20. In the setting of Section 2.2, without Assumption 1, for any (ℓ1, . . . , ℓm, k) ∈
Jn1K×· · ·×JnmK×JmK, and any α ∈ (0, 1), the miscoverage random variable αℓ1,...,ℓm,k(D)
defined by Eq. (31) satisfies

P
(
1− αℓ1,...,ℓm,k(D) ⩾ 1− α

)
⩾ PB

(
k − 1;

(
FU(ℓj :nj)

(1− α)
)
1⩽j⩽m

)
, (33)

where FU(ℓj :nj)
denotes the cdf of the Beta(ℓj , nj − ℓj +1) distribution and for every t ∈ R

and u ∈ [0, 1]m, PB(·;u) denotes the cdf of a Poisson-Binomial (PB) random variable with
parameter u2. Moreover, when the associated scores (Si,j)1⩽j⩽m,1⩽i⩽nj

and S := s(X,Y )
are almost surely distinct, Eq. (33) is an equality.

Theorem 20 is proved in Appendix F.2. Theorem 19 and Theorem 20 imply that
(i) if Mℓ1,...,ℓm,k ⩾ 1 − α, then Ĉℓ1,...,ℓm,k is a marginally valid prediction set, and (ii)

given β ∈ (0, 1) if PB
(
k − 1; (FU(ℓj :nj)

(1− α))1⩽j⩽m

)
⩾ 1 − β, then Ĉℓ1,...,ℓm,k is an

(α, β)-tolerance region, that is, a training-conditionally valid prediction set. It remains to
select (ℓ1, . . . , ℓm, k), among those satisfying the desired condition. Applying directly the
strategy of Algorithms 1 or 3, although theoretically possible, can be computationally
untractable since the ℓj can be different, hence a parameter set of cardinality m · nm.

2Recall that the PB distribution with parameter u ∈ [0, 1]m is the distribution of Z1 + · · · + Zm

where the random variables Zj are independent and respectively follow the Bernoulli(uj) distribution.
It therefore generalizes the Binomial(m, p) distribution, which corresponds to the case where u1 = · · · =
um = p. More details can be found in [58].
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Therefore, we propose to fix ℓj = ⌈(1 − α)(nj + 1)⌉ for all j ∈ JmK, similarly to the
classical (centralized) split CP methodology. Then, we only need to select k ∈ JmK, thereby
reducing significantly the computational complexity.3 Following the principles described
in Section 2.3 for choosing k, Theorems 19–20 lead to the two following algorithms.

Algorithm 5 (QQM-nj [25]). Given α ∈ (0, 1),

compute ℓ∗j = ⌈(1− α)(nj + 1)⌉ for every j ∈ JmK

and k∗(ℓ∗1...m) = arg min
k∈JmK

{
Mℓ∗1 ,...,ℓ

∗
m,k : Mℓ∗1 ,...,ℓ

∗
m,k ⩾ 1− α

}
.

Output Ĉℓ∗1 ,...,ℓ∗m,k∗(ℓ∗1...m)(x) =
{
y ∈ Y : s(x, y) ⩽ S(ℓ∗1 ,...,ℓ

∗
m,k∗(ℓ∗1...m))

}
.

Algorithm 6 (QQC-nj). Given α ∈ (0, 1) and β ∈ (0, 1),

compute ℓ∗j = ⌈(1− α)(nj + 1)⌉ for every j ∈ JmK

and k∗c (ℓ
∗
1...m) = argmin

k∈K

{
PB
(
k − 1; (FU(ℓ∗

j
:nj)

(1− α))1⩽j⩽m

)}
,

where K :=
{
k ∈ JmK : PB

(
k − 1; (FU(ℓ∗

j
:nj)

(1− α))1⩽j⩽m

)
⩾ 1− β

}
.

Output Ĉℓ∗1 ,...,ℓ∗m,k∗
c (ℓ

∗
1...m)(x) =

{
y ∈ Y : s(x, y) ⩽ S(ℓ∗1 ,...,ℓ

∗
m,k∗

c (ℓ
∗
1...m))

}
.

For reasons detailed below Theorem 20, Algorithm 5 yields a distribution-free margi-
nally valid prediction set, and Algorithm 6 yields a distribution-free training-conditionally
valid prediction set. The exact computation of Mℓ1,...,ℓm,k can be done in the same way as
that of Mℓ,k (see details in [25, Appendix A.2.]). Furthermore, because Mℓ1,...,ℓm,k = E[Z]
where Z has cdf PB(k− 1;

(
FU(ℓj :nj)

(1−α)
)
1⩽j⩽m

), another possibility is to numerically

integrate this Poisson-Binomial cdf to approximate the expectation. There exist many
algorithms to compute the Poisson-Binomial cdf of Eq. (33) efficiently, see for instance
[23]. Moreover, precise approximations of it can be obtained when m is large. We refer to
the recent review of [58] on the Poisson-Binomial distribution for more details.

Remark 21 (Other variants of Algorithms 5–6). Following the comments below Theo-
rem 20, Algorithm 5 (resp. Algorithm 6) remains marginally (resp. training-conditionally)
valid with any other choice for the ℓ∗j , leading to many possible variants. Let us detail
three of them. First, in Algorithm 6, one can replace ℓ∗j by the value of rc defined by

Eq. (34) when |Dcal| = nj, which corresponds to training-conditionally valid splitCP ap-
plied to the data of agent j alone. Second, when the argmin defining k∗ or k∗c is empty,
it is possible to increase the ℓ∗j (for instance, by adding 1 to each of them) until the
argmin becomes nonempty (which happens for large enough ℓ∗j if and only if Eq. (20)
in Lemma 12) holds true. Third, when m is small, one can consider small sets L∗

j of
candidate values for ℓ∗j , and replace the argmin in Algorithms 5–6 by an argmin over
(k, ℓ∗1, . . . , ℓ

∗
m) ∈ K × L∗

1 × · · · × L∗
m, which yields a tractable algorithm provided this set

remains small. While our Theorems 19–20 prove coverage lower bounds for each of these
variants, we leave their detailed study for future work.

Remark 22. If we set n1 = · · · = nm = n and ℓ1 = · · · = ℓm = ℓ ∈ JnK in
Eq. (32), respectively in Eq. (33), we exactly recover the results obtained in Theorem 5
of Section 3.1 (marginal guarantee), resp. in Theorem 10 of Section 3.2 (conditional

3This strategy can also be used when nj = n (Section 3) at the cost of being less accurate than
searching for all values of ℓ and k. See also Section 6.1.2 and Remark 18 in Appendix E.2.
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guarantee). Indeed, the summation over permutations a ∈ Pj in Theorem 19 then be-
comes the

(
m
k

)
of Theorem 5, after rearranging the terms. For Theorem 20, the param-

eters of the Poisson-Binomal (FU(ℓj :nj)
(1 − α))1⩽j⩽m are then equal, hence we get the

Binomial(m;FU(ℓ:n)
(1−α)) distribution. This leads to Theorem 10 with β = FU(ℓ:n,k:m)

(1−
α)) = FU(k:m)

◦FU(ℓ:n)
(1−α)) since FBinomial(m,p)(k− 1) = 1−FU(k:m)

(p), here used with
p = FU(ℓ:n)

(1− α).

6. Numerical experiments

In this section, we first study the behavior of our algorithms in a generic setting and then
evaluate them on real datasets. The code of our experiments is publicly available.4 In the
experiments, we compare the performance of the following conformal-based prediction-set
algorithms:

• Algorithms 1–4, respectively called QQM, QQM-Fast, QQC and QQC-Fast (when
the nj are equal);

• Algorithms 5–6, respectively called QQM-nj and QQC-nj (when the nj may be
different);

• CentralM: split conformal prediction Ĉr (as defined in Section 2.1) on the full (cen-
tralized) calibration data set Dcal, with r = ⌈(1 − α)(|Dcal| + 1)⌉ so that it is
marginally valid; in other words, CentralM is the centralized version of QQM and
they coincide when m = 1;

• CentralC: split conformal prediction Ĉr on the full (centralized) calibration data set
Dcal with

r = rc := min
{
r̃ ∈ J|Dcal|K : F−1

U
(r̃:|Dcal|)

(β) ⩾ 1− α
}
, (34)

so that it is conditionally valid, by Eq. (7) in Section 2.1; in other words, CentralC is
the centralized version of QQC and they coincide when m = 1;

• FedCP-Avg: federated approach proposed by [38], which averages the m quantiles
of order ⌈(nj + 1)(1− α)⌉ sent by the agents, hence the prediction set

ĈFedCP-Avg(x) :=

{
y ∈ Y : s(x, y) ⩽

1

m

m∑
j=1

Q̂(⌈(nj+1)(1−α)⌉)(Sj)

}
.

All our experiments are done with α = 0.1 and β = 0.2.
As explained in Section 2.3, we compare the performance of these methods either

through the length of the prediction sets they produce (in Section 6.2, where these are
intervals) or their coverage, which should both be as small as possible while keeping the
associated set valid. Note that it is fair to compare split CP (CentralM and CentralC),
FedCP-Avg and our quantile-of-quantiles prediction sets (Algorithms 1–6) through their
coverages since they all are of the form {y ∈ Y : s(x, y) ⩽ S} for some random variable
S.

6.1. Generic comparison.

In this section, we compare numerically the performance (measured by their coverages)
of our algorithms and their centralized counterparts (CentralM and CentralC). This com-
parison is made under the mild assumption that FS is continuous, which implies that
the cdf of the training-conditional coverage distribution of each algorithm is known and,

4https://github.com/pierreHmbt/One-shot-FCP

https://github.com/pierreHmbt/One-shot-FCP


/Marginal and training-conditional validity in one-shot FCP 18

more importantly, universal – see Eq. (7) and the discussion below for centralized algo-
rithms, Theorem 10 for federated algorithms with equal nj and Theorem 20 for federated
algorithms with general nj . We also have closed-form formulas for the expected coverage
when FS is continuous, by Eq. (6) for centralized algorithms, and by Theorems 5 and 19
for our federated algorithms. Under this generic setting, we thus consider simultaneously
all learning problems, data distributions, predictors f̂ and score functions s such that the
scores cdf FS is continuous.

Throughout this subsection, for each algorithm considered, denoting by 1 − α(D) its
(random) coverage, we are interested in F1−α(D) the coverage cdf, ∆E := E[1− α(D)]−
(1 − α) the difference between the expected coverage and the nominal coverage (1 − α),
and, for several values of ζ ∈ (0, 1), ∆qζ := F−1

1−α(D)(ζ) − (1 − α) the difference between

the ζ-quantile of the coverage and the nominal coverage.

6.1.1. Equal nj

We first compare QQM, QQM-Fast, QQC, QQC-Fast, CentralM and CentralC under
Assumption 1, that is, when each agent j ∈ JmK has the same number nj = n of cali-
bration data points. In Section 4, we prove that ∆E = O(m−1n−1/2) for our marginally
valid federated prediction sets (Theorem 16) and that ∆q1−β = O(m−1/2n−1/2) for our
training-conditionally valid federated prediction sets (Theorem 17). But these only are
upper bounds, and we would like to know whether they match the true order of magni-
tude of their coverages —at least in worst case, since one can for instance get ∆E = 0 for
QQM by choosing α = 1−Mℓ,k for some (ℓ, k) ∈ JnK× JmK, or for CentralM by choosing
α ∈ { r

nc+1 : r ∈ Jnc + 1K}. Furthermore, knowing the true (worst-case) order of magni-
tude of the coverage of each algorithm is crucial to determine when one of the federated
prediction sets we propose should be preferred to another, and for knowing precisely what
may be lost by considering the one-shot FL setting instead of the centralized setting.

Methods. In order to answer these questions, for each algorithm considered, we eval-
uate below the rates of convergence towards zero of ∆E, ∆qβ and ∆q1−β as m and n
increase. The choice of the quantile orders β and (1 − β) comes from the fact that (i)
the conditional validity is equivalent to ∆qβ ⩾ 0, so for prediction sets satisfying this
condition, knowing how tight is this inequality in worst case is meaningful, and (ii) since
β = 0.2, the β and (1−β)-quantiles of the coverage are the bounds of an interval contain-
ing “typical values” of the coverage. In particular, by definition, the coverage 1−α(D) is
below (1− α) + ∆q1−β with probability 1− β = 80%.

We consider values of (m,n) in the grid {⌊10i/3⌋ : i ∈ J9K}2. For each pair (m,n)
and each algorithm, we compute ∆E, ∆qβ and ∆q1−β . Then, for each algorithm, using
empirical risk minimization with the Huber loss [24], we robustly fit the log-linear re-
gression model log y = log(c) − γ log(m) − δ log(n) + ε, where ε is some residual term,
c > 0 and γ, δ ∈ R are the model parameters, and y is either ∆E, ∆qβ or ∆q1−β . Note
that by construction, ∆E ⩾ 0 for marginally-valid algorithms, and ∆q1−β ⩾ ∆qβ ⩾ 0 for
conditionally-valid algorithms. The estimated values of c, γ, δ for each algorithm and each
quantity of interest are reported in Table 1. Plots showing the values of ∆E, ∆qβ , ∆q1−β

(together with their log-linear model approximation) are provided in Figures 1 and 3, and
in Appendix J.1.

In order to compare the performance of the algorithms more closely, we also plot in
Figures 2 and 4 the full cdfs of the coverage distribution for two specific pairs (m,n),
(200, 20) and (20, 200), and report the corresponding expectations, standard-deviations
(computed by numerically integrating the cdfs), and ζ-quantiles for ζ ∈ {β, 1 − β} in
Table 2.
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∆E ≈ c1m−γ1n−δ1 ∆qβ ≈ c2m−γ2n−δ2 ∆q1−β ≈ c3m−γ3n−δ3

Method c1 γ1 δ1 c2 γ2 δ2 c3 γ3 δ3

CentralM 0.502 0.999 0.999 0.235 0.498 0.498 0.269 0.501 0.501
QQM 0.924 1.026 1.019 0.463 0.492 0.487 0.522 0.501 0.495
QQM-Fast 0.336 1.001 0.582 0.227 0.483 0.499 0.400 0.512 0.504

CentralC 0.257 0.501 0.501 0.590 1.014 1.014 0.504 0.499 0.499
QQC 0.341 0.507 0.502 0.508 0.910 0.847 0.637 0.502 0.497
QQC-Fast 0.676 0.498 0.501 0.400 0.503 0.509 0.958 0.496 0.498

Table 1
Estimated parameters of the log-linear model log y = log(ci)− γi log(m)− δi log(n) where y is either

∆E, ∆qβ or ∆q1−β , for the six algorithms compared in Section 6.1.1; see text for details.
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Fig 1. Marginally-valid algorithms: log-log plot of ∆E as a function of m (left) or n (right). Lines show
the approximation log∆E ≈ log(c1) − γ1 log(m) − δ1 log(n) with c1, γ1, δ1 given by Table 1. Plain lines
and dots correspond to n = 10 (left) or m = 10 (right). Dashed lines and diamonds correspond to
n = 104 (left) or m = 104 (right).

Marginally-valid algorithms. For QQM and CentralM, according to Table 1, ∆E
decrease to zero at the same rate, close to m−1n−1, with only a multiplicative constant
≈ 2 in favour of CentralM. Overall, the difference between expected coverages of QQM
and CentralM is small, as shown by Figure 1. In comparison, QQM-Fast shows a worse
performance with ∆E decreasing to zero at a rate close to m−1n−1/2 (Table 1). This
leads to a significant gap between the performances of QQM-Fast and the two other ones
as shown by Figure 1. For (m,n) ∈ {(200, 20), (20, 200)}, the coverage cdfs of the three
algorithms have similar shapes (Figure 2) apart from a shift corresponding to already
mentioned differences between expectations, and a slightly larger standard-deviation for
federated algorithms compared to CentralM (see also Table 2). The (1 − β)-quantile of
the coverage is also slightly larger for the federated algorithms compared to CentralM,
even if they all are of the same order of magnitude (1−α)+O(m−1/2n−1/2) at first order
(see Tables 1 and 2).

Note also that Table 1 suggests that our theoretical expected coverage upper bound
(Theorem 16) (1−α)+O(m−1n−1/2) provides the correct worst-case order of magnitude
for QQM-Fast (even if the estimated exponent for n is δ1 = 0.58 instead of exactly 1/2),
and supports our conjecture that it could be improved to (1−α)+O(m−1n−1) for QQM.

Overall, these numerical results show that among one-shot FL prediction sets, QQM
should be preferred to QQM-Fast as long as its computational complexity remains tractable
(keeping in mind Remark 15 about the computational complexity of our federated algo-
rithms). Then, using QQM yields a mild loss compared to CentralM, with a one-shot
FL algorithm. Note however that the expected coverage of QQM-Fast also converges to
1 − α when mn tends to infinity, as proved by Theorem 16 and illustrated in this sec-
tion, so when m or n is too large so that one must use QQM-Fast, the loss in terms of
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Fig 2. Marginally-valid algorithms: cdf of the coverage 1 − α(D). The mean of each distribution is
shown by a dot and the quantiles of order β and 1 − β by crosses. Left : (m,n) = (200, 20). Right :
(m,n) = (20, 200). See Table 2 for additional information.

(m,n) = (200, 20) (m,n) = (20, 200)
Method E[·] Std qβ q1−β E[·] Std qβ q1−β

CentralM 0.90002 0.00474 0.89605 0.90403 0.90002 0.00474 0.89605 0.90403
QQM 0.90004 0.00604 0.89500 0.90515 0.90012 0.00603 0.89510 0.90522
QQM-Fast 0.90084 0.00577 0.89601 0.90572 0.90070 0.00585 0.89580 0.90563

CentralC 0.90402 0.00466 0.90013 0.90796 0.90402 0.00466 0.90013 0.90796
QQC 0.90524 0.00569 0.90048 0.91004 0.90526 0.00589 0.90036 0.91025
QQC-Fast 0.91084 0.00558 0.90618 0.91556 0.91046 0.00560 0.90579 0.91519

Table 2
Expectation, standard-deviation, β-quantile and (1− β)-quantile of the coverage 1− α(D) of the

algorithms compared in Section 6.1.1 (equal nj).

expected coverage remain very small; for instance, when m = 200, the expected coverage
of QQM-Fast is 0.90084 while the one of QQM is 0.90004 (Table 2).

Conditionally-valid algorithms. The (1− β)-quantiles of the coverages of the three
conditionally-valid algorithms are of the same order of magnitude 1−α+O(m−1/2n−1/2),
with constants within a factor 2 in front of the remainder term (Table 1, where the
estimated γ3, δ3 all are very close to 1/2; see also Figure 19 in Appendix J.1). This matches
our theoretical upper bound (Theorem 10), suggesting its tightness. Bigger differences
appear when considering the β-quantiles of the coverage, which seem to be of order
1−α+O(m−1n−1) for CentralC and QQC (with γ2, δ2 slightly smaller than 1 for QQC),
while it is clearly larger, of order 1 − α + O(m−1/2n−1/2), for QQC-Fast, according to
Table 1 and Figure 3. A good summary of what happens here may be found in Figure 4:
CentralC and QQC tightly adjust the β-quantile of the coverage (which is the one that
must be above 1− α), better than QQC-Fast.

Overall, as expected, the computationally more efficient method QQC-Fast is also a
bit more conservative than the other two methods, which would suggest to use QQC (in
a one-shot FL context) if one has enough computational power, leading to only a small
loss compared to the centralized case. Note finally that all three training-conditionally
valid algorithms also are marginally valid in the settings considered by Figure 4, since the
expectations of their coverages are larger than their β-quantiles (which is not surprising
since β = 0.2 < 1/2 and the medians here are close to the expectations).
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Fig 3. Conditionally-valid algorithms: log-log plot of ∆qβ as a function of m (left) or n (right). Lines
show the approximation log∆qβ ≈ log(c2)− γ2 log(m)− δ2 log(n) with c2, γ2, δ2 given by Table 1. Plain
lines and dots correspond to n = 10 (left) or m = 10 (right). Dashed lines and diamonds correspond to
n = 104 (left) or m = 104 (right).
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Fig 4. Conditionally-valid algorithms: cdf of the coverage 1 − α(D). The mean of each distribution is
shown by a dot and the quantiles of order β and 1 − β by crosses. Left : (m,n) = (200, 20). Right :
(m,n) = (20, 200). See Table 2 for additional information.

6.1.2. Different nj

We now study the case where the nj are different, so that only QQM-nj and QQC-nj are
available in the one-shot FL case.

Methods. We consider several settings with a total of N = 4000 calibration points
distributed acrossm agents, wherem dividesN . For each value ofm considered, the values
of (n1, . . . , nm) are chosen (once for all) randomly, according to a multinomial distribution
with parameters N and (1/m, . . . , 1/m); in other words, each of the N calibration points
is uniformly assigned among the m agents, independently. Figure 20 in Appendix J.2.1
provides the exact values of the nj for m = 4 and m = 25.

In addition to QQM-nj and QQC-nj , which are the only ones able to deal with agents
having different number of data points in a one shot FL setting, we also consider several
other algorithms for comparison:

• Centralized algorithms (CentralM and CentralC);
• Algorithms 5–6 with data split equally into m agents (hence having each nj = N/m
points), that we call QQM-(N/m) and QQC-(N/m), respectively;

• QQM and QQC, with data split equally into m agents, as in Section 6.1.1.

For each of these algorithms, we report the values of the expectation, standard-deviation
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and ζ-quantile for ζ ∈ {β, 1− β} of their coverages when m ∈ {4, 25} in Table 3, and we
plot the cdfs of their coverages when m = 25 in Figure 5. Since specific values of m can be
misleading (as explained at the beginning of Section 6.1.1), we report ∆E (respectively,
∆qβ) as a function of m for marginally-valid (respectively, conditionally-valid) algorithms
in Figure 6; for completeness, the values of ∆q1−β for conditionally-valid algorithms are
plotted in Figure 21 of Appendix J.2.1. Note that the values m ∈ {4, 25} in Table 3
and m = 25 in Figure 5 have been chosen because they are typical of the worst-case
performance of most algorithms, according to Figure 6.

(m,N) = (4, 4000) (m,N) = (25, 4000)
Method E[·] Std qβ q1−β E[·] Std qβ q1−β

CentralM 0.90002 0.00474 0.89605 0.90403 0.90002 0.00474 0.89605 0.90403
QQM 0.90009 0.005659 0.89535 0.90485 0.90017 0.00706 0.89435 0.90617
QQM-(N/m) 0.90305 0.00558 0.89838 0.90775 0.90217 0.00581 0.89731 0.90709
QQM-nj 0.90335 0.00558 0.89869 0.90804 0.90238 0.00583 0.89755 0.90733

CentralC 0.90402 0.00465 0.90012 0.90796 0.90402 0.00465 0.90012 0.90796
QQC 0.90503 0.00553 0.90040 0.90968 0.90549 0.00581 0.90062 0.91039
QQC-(N/m) 0.90969 0.00622 0.90444 0.91487 0.90679 0.00569 0.90203 0.91160
QQC-nj 0.90997 0.00620 0.90474 0.91512 0.90698 0.00567 0.90222 0.91177

Table 3
Different nj : Expectation, standard-deviation, β-quantile and (1− β)-quantile of the coverage 1− α(D)

of the eight algorithms listed at the beginning of Section 6.1.2.
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Fig 5. Different nj : cdf of the coverage 1 − α(D) of the algorithms considered in Section 6.1.2 with
N =

∑m
j=1 nj = 4000 data points distributed among m = 25 agents. The mean of each distribution is

shown by a dot and the quantiles of order β and 1−β by crosses. See Table 3 for additional information.
Left : marginally-valid algorithms: CentralM, QQM with nj = N/m for all j, QQM-(N/m) (that is,
Algorithm 5 with nj = N/m for all j) and QQM-nj . Right : conditionally-valid algorithms: CentralC,
QQC with nj = N/m for all j, QQC-(N/m) (that is, Algorithm 6 with nj = N/m for all j) and QQC-nj .
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Fig 6. Different nj : log-log plot of the performance (left : ∆E; right : ∆qβ) of the algorithms considered
in Section 6.1.2 (left : marginally-valid algorithms; right : conditionally-valid algorithms) as a function
of the number of agents m. The total number of data points N =

∑m
j=1 nj = 4000 is fixed and m varies

within the set of divisors of N . The values when m = 1, 2 for QQC-(N/m) and QQC-nj are missing
because there is no k such that the resulting sets are conditionally valid.

Comparison to centralized algorithms and to federated algorithms with nj = n.
Let us start with marginally-valid algorithms, that is, the ones appearing in the top half
of Table 3 and on the left of Figures 5–6. The typical ordering of their performance (for
instance measured by their expected coverages) is not surprising: first CentralM, then
QQM (with a small loss compared to CentralM, as already studied in Section 6.1.1),
and finally QQM-(N/m) and QQM-nj , with similar performances (and a larger loss com-
pared to CentralM). In addition to the increase of expected coverage, the quantiles also
increases slightly, with the same ordering. Nevertheless, QQM-nj has a reasonably good
performance, with an expected coverage below 1− α+ 0.005.

One possible reason explaining the fact that QQM-nj is more conservative than the
federated algorithms we propose for the case of equal nj (with the same overall sample
size) can be the suboptimality of the choice ℓ∗j = ⌈(1−α)(nj+1)⌉ made for computational
reasons. Indeed, we see on Table 3 and Figures 5–6 that QQM-(N/m) and QQM-nj have
similar performances and are not as good as QQM or CentralM.

Similar comments can be made about conditionally-valid algorithms, that is, the ones
appearing in the bottom half of Table 3 and on the right of Figures 5–6, whose performance
should primarily be measured by the β and (1− β)-quantiles of their coverages.

Impact of the number of agents m. Let us now consider when the number of
agents m vary while the total number of samples N is fixed. Once again, let us start
with marginally-valid algorithms. First, notice that when m = 1 and m = N , the four
algorithms considered choose the same pair (ℓ, k) by definition, hence they have the same
performance. Then, putting aside the value m = 1, Figure 6 shows that the performance
of both QQM-(N/m) and QQM-nj generally improve when m increases, while the one of
QQM is approximately constant. The fact that distributing the data across more agents
can yield a better performance may seem surprising, but it can easily be explained.
Indeed, as shown by Table 4 and Figure 22 in Appendix J.2.2, for QQM-(N/m), when
both m and n := N/m vary, ∆E is approximately proportional to m−1(N/m)−1/2 =
m−1/2N−1/2. So, in the experiment of Figure 6, where N is fixed, ∆E is approximately
proportional to m−1/2, hence it decreases when m increases. In addition, we propose
the following intuition for explaining the behaviors of both QQM-nj and QQM-(N/m):
when m increases, the algorithm has more options for k ∈ JmK (while each ℓj remains
fixed equal to ℓ∗j ), allowing to adjust more precisely the coverage (in worst case), hence a
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better performance. The fact that QQM behaves differently (with ∆E roughly constant
when m varies) should not be surprising, since the number of candidate values for (ℓ, k)
is equal to N = nm (hence it remains constant), and Table 1 shows that for QQM, ∆E
is approximately proportional to (mn)−1 = N−1.

For conditionally-valid algorithms, Figure 6 shows a similar behavior for ∆qβ (de-
creasing function of m for QQC-nj and QQC-(N/m), roughly constant for QQC), for
which we propose the same intuitive explanation (see also Table 4 and Figure 23 in Ap-
pendix J.2.2). Note however that QQC-nj and QQC-(N/m) do not coincide with QQC
and CentralC when m = 1 because of the choice made for ℓj in Algorithm 6, which
prevents to find a value of k satisfying the training-conditional guarantee. Other choices
would be possible (see Remark 21 in Section 5).

Conclusion. Our one-shot FL algorithms dealing with non-equal nj provide prediction
sets only slightly more conservative than their centralized counterparts, while being com-
putationally tractable, hence they seem effective for performing CP in one-shot FL with
different nj . Note that the values of m for which QQM-nj and QQC-nj are the most
conservative are the small values m ⩾ 2, which precisely are the ones for which QQM-nj

and QQC-nj could be improved (while remaining tractable) by choosing among a few
values of ℓj for every j ∈ JmK (see Remark 21).

6.2. Real data

In this section, we evaluate the performance of each algorithm (in terms of coverage and
length of the returned prediction sets) on five public-domain regression data sets also con-
sidered in [54] and [56]: physicochemical properties of protein tertiary structure (bio) [51],
bike sharing (bike) [16], communities and crimes (community) [52], Tennessee’s student
teacher achievement ratio (star) [1], and concrete compressive strength (concrete) [64].

6.2.1. Setup

For each experiment, we split the full data set into three parts: a learning set (40%),
a calibration set (40%), and a test set (20%). To simulate a FL scenario, we also split
the calibration set in m disjoint subsets of equal size n. We consider scenarios where
either m > n or m < n, with max{m/n, n/m} ∈ {4, 8} depending on the data set; the
exact values of (m,n) for each data set are given in Appendix J.3. All features are then
standardized to have zero mean and unit variance. For each algorithm, we compute the
empirical coverage obtained on the test set and the average length of the prediction set
over the test set. These two metrics are collected over 50 different learning-calibration-test
random splits.

Prediction sets are constructed using the Conformalized Quantile Regression method
(CQR) [54], a popular variant of split CP directly compatible with our approach, following

Remark 2 in Section 2.2. In CQR, f̂ is (f̂α/2, f̂1−α/2) where f̂δ is a quantile regressor

of order δ [30] and s(x, y) = max(f̂α/2(x) − y, y − f̂1−α/2(x)), so that the prediction set

{y ∈ R : s(x, y) ⩽ q̂} = [f̂α/2(x)−q̂, f̂1−α/2(x)+q̂] has a size adaptive to heteroscedasticity.

In the following experiments f̂α/2 and f̂1−α/2 are quantile regression forests [44] built from
the learning set only. The number of trees in the forest is set to 1000, the two parameters
controlling the coverage rate on the learning data are tuned using cross-validation (within
the learning set), and the remaining hyperparameters are set as done in [54].
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Fig 7. Empirical coverages of prediction intervals (α = 0.1) constructed by various methods, aggregated
across all data sets. Our methods are shown in bold font. See the beginning of Section 6.2.2 for details.
Left: m > n. Right: m < n.
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Fig 8. Coverage (left) and average length (right) of prediction intervals for 50 random learning-
calibration-test splits of the bike data set. The miscoverage is α = 0.1, β = 0.2, and the calibration
set is split into m = 40 disjoint subsets of equal size n = 10. See the beginning of Section 6.2.2 for
details.

6.2.2. Results

Figure 7 displays the boxes of the empirical coverages obtained by each method over
all the data sets and all the 50 different data splits (one point represents the empirical
coverage obtained on one random split of one data set). Figures 8 and 9 show the empirical
coverages as well as the lengths of the intervals obtained on the bike data set. All the
results on other individual data sets are provided in Appendix J.3. For each box, the white
circle indicates the mean, the left-end of the box corresponds to the empirical quantile of
order β = 0.2 and the right-end to the empirical quantile of order 1− β = 0.8.

Marginally-valid algorithms. First, on average, CentralM, QQM and QQM-Fast all
return intervals with coverage greater than 1− α = 0.9 (the nominal coverage), without
being too far from it. Importantly, our two one-shot FL methods return prediction sets
with coverage and length close to those returned by split CP (CentralM). So, there is only
a small loss when using our one-shot FL algorithms (whose coverage/length are slightly
larger in terms of both expectation and dispersion). It is interesting to note that the
results obtained with our two FL methods are quite similar, with slightly better results
for QQM notably when m > n (left panel of Figure 7). As QQM-Fast is much faster, it
is a good alternative to QQM and can be preferred in real applications. Note finally that
for marginal algorithms, the results for m > n and m < n are comparable.
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Fig 9. Coverage (left) and average length (right) of prediction intervals for 50 random learning-
calibration-test splits of the bike data set. The miscoverage is α = 0.1, β = 0.2, and the calibration
set is split into m = 10 disjoint subsets of equal size n = 40. See the beginning of Section 6.2.2 for
details.

Conditionally-valid algorithms. The comparison between the three training condi-
tionally valid algorithms on Figures 7–9 is similar to the comparison made above between
the three marginally-valid algorithms. The main difference is the loss of using our fast
one-shot FL algorithm QQC-Fast instead of QQC is larger than for our marginally-valid
one-shot FL algorithms. Therefore, our advice here is to use QQC as long as it is compu-
tationally tractable, that is, when the total number mn of calibration data points is not
huge —since its complexity might be proportional to mn.

Note that on Figures 7–9, the empirical β-quantile of the coverage of some training-
conditionally-valid algorithms is slightly smaller than 1− α. This apparent contradiction
with the theoretical guarantees about these algorithms is due to the fact that the coverages
reported in these experiments are only estimations obtained from finite test sets (200
points for the bike dataset, for instance).

Finally, as in Section 6.1, we can notice that the (empirical) marginal coverages of
training-conditional algorithms are higher than those of the marginal algorithms.

FedCP-Avg. First, in our experiments, FedCP-Avg appears to be marginally valid for
each data set, and training-conditionally valid at a confidence level β for all data sets
except bike, community and star (each time when m < n). So, even without general
theoretical guarantees (and even some counterexamples, see Appendix I.2), it here turns
out to be valid in most cases (but not all, which is an issue). Second, FedCP-Avg is much
more conservative than all competing algorithms in most data sets, and the few cases
where it is less conservative than training-conditional algorithms precisely are the cases
where FedCP-Avg is not training-conditionally valid. Therefore, FedCP-Avg appears to
be clearly worse than our one-shot FL algorithms in all our experiments, a fact which is
also supported by the few theoretical results presented in Appendix I.2.

Conclusion. Overall, these experiments support the fact that our one-shot FL methods
are well-suited for building prediction sets in a federated setting, with only a mild loss
compared to the centralized case.
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7. Discussion

All prediction sets proposed in this paper are of the form Ĉℓ̄,k̄ —as defined by Eq. (9)—
with

(ℓ̄, k̄) ∈ argmin
(ℓ,k)∈E

{
crit(ℓ, k)

}
,

where E ⊂ JnK × JmK is a set of marginally (resp. training-conditionally) valid pairs,
and crit(ℓ, k) is an upper bound on the expectation (resp. some quantile) of the coverage
1 − αℓ,k(D) when the scores cdf is continuous. Note that we adopt here Assumption 1
to maintain notation simplicity, but the comments made in this paragraph also apply to
Algorithms 5–6 in Section 5. The selection criteria (crit) used in Algorithms 1–6 come
from arguments presented in Section 2.3 (and Appendix A), and they are validated by
the theoretical and numerical results obtained in Sections 4 and 6. Yet, other choices are
possible, leading to numerous variants of our algorithms. For instance, one could modify
Algorithms 3–4 by taking

crit(ℓ, k) = F−1
U(ℓ:n,k:m)

(1− β′)

with any β′ ∈ (0, 1) —instead of fixing β′ = β—, leading to the algorithms respec-
tively defined by Eq. (57) and (58) in Appendix E.2. Remarkably, theoretical coverage
upper bounds similar to Theorem 17 can also be obtained for these variants, as proved
by Eq. (59) and (60) in Appendix E.2. One could also use this criterion for selecting
among marginally-valid pairs (ℓ, k), or use crit(ℓ, k) = Mℓ,k for selecting among training-
conditionally-valid pairs (ℓ, k). The function crit can also be chosen by the user —for
instance, with a specific application in mind—, together with a set E chosen among those
used by our Algorithms 1–6, and the resulting prediction set would satisfy the correspond-
ing distribution-free coverage lower bounds proved in this paper.

This work brings many possible future research directions. It would be interesting to
investigate how our quantile-of-quantiles estimators can be adapted to the heterogeneous
case, that is, when agents have data following different distributions. This could poten-
tially extend the approaches of [39] and [50] to the one-shot setting. Another interesting
line of research would be to propose and study differentially private versions of our algo-
rithms. On a more theoretical aspect, it would be interesting to control the deviations of
the coverage of marginal prediction sets built in Section 3.1, and conversely to control the
expected coverage of the training-conditional prediction sets of Section 3.2. Finally, our
paper focuses on the calibration step, making it particularly suited for split-based confor-
mal methods. It would be interesting to study how our FL approach could be extended
to full conformal prediction, and to the more general framework of nested conformal
prediction [21].
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Appendix A: Prediction set performance measure: complements

Recall that we prove in Section 2.3 that for every (ℓ, k), the size of Ĉℓ,k(x) is a nonde-
creasing function of the coverage 1− αℓ,k(D).

As a consequence, for any β ∈ (0, 1), minimizing the (1 − β)-quantile of the coverage

1−αℓ,k(D) yields a minimizer of the (1−β)-quantile of the size of Ĉℓ,k(x), simultaneously
for all x ∈ X . We therefore use this strategy for building the two training-conditionally-
valid algorithms described in Section 3.2.

The problem is a bit more difficult when one measures the performance of a predictor
set by its size on average over D (even at a single x ∈ X ). As an illustration, let us
consider regression with the fitted absolute residual score function. Then,

∀x ∈ X , Ĉℓ,k(x) =
[
f̂(x)− S(ℓ,k) , f̂(x) + S(ℓ,k)

]
is a prediction interval of length

2S(ℓ,k) = 2F−1
S

(
1− αℓ,k(D)

)
almost surely. In this example, the size of Ĉℓ,k(x) (its length) is a nondecreasing function
of the coverage 1 − αℓ,k(D), but the relationship between size and coverage is highly

non-linear in general, hence the expected size E[Ĉℓ,k(x)] cannot easily be linked to the
expected coverage E[1 − αℓ,k(D)]. Nevertheless, following what is usually done for split
CP (see Section 2.1), choosing (ℓ, k) by minimizing E[1− αℓ,k(D)] —or at least its value
when FS is continuous, see Sections 3.1 and 2.1— is a natural choice, which is efficient
according to numerical experiments.

The latter argument might seem questionable, especially when FS is not guaranteed to
be continuous. Yet, the strategy we propose is reasonable for the following reasons. S(ℓ,k)

is a nondecreasing function of (ℓ, k) (for the lexicographic order on JnK × JmK), hence
both the expected size and the expected coverage are nondecreasing functions of (ℓ, k).
Therefore, minimizing the value Mℓ,k of the expected coverage E[1 − αℓ,k(D)] when FS

is continuous (see Section 3.1) over the set of (marginally or conditionally) valid pairs
(ℓ, k) yields some (ℓ, k) minimal for the lexicographic order in the set of valid pairs. So,
even if this does not choose the optimal valid pair (ℓ, k), it yields a performance close to
its optimal value —at least numerically. We therefore follow this strategy when building
marginally-valid algorithms in Section 3.1.

Appendix B: Key preliminary results on order statistics

In this section, we provide some known and new important results about order statistics
that play a key role in our proofs. We refer to Appendix G for proofs and additional
results, and to [13] for an in-depth presentation on this topic.

B.1. Order statistics

Let us first introduce some notation. Given a real-valued random variable Z with arbi-
trary cumulative distribution function (cdf) FZ , its quantile function is defined as the
generalized inverse of FZ :

∀p ∈ (0, 1) , F−1
Z (p) := inf{x ∈ R : FZ(x) ⩾ p} . (35)

A key property of the generalized inverse —straightforward from Eq. (35)— is that

∀p ∈ [0, 1] , FZ ◦ F−1
Z (p) ⩾ p with equality if p ∈ Im(FZ) . (36)
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In particular, when FZ is continuous, Eq. (36) is an equality for every p ∈ [0, 1] = Im(FZ).
Given a sample Z1, . . . , ZN , we denote by Z(1:N) ⩽ · · · ⩽ Z(N :N) the corresponding

order statistics, so that Z(i:N) = Q̂(i)(Z1, . . . , ZN ) for every i ∈ JNK, using the notation
defined by Eq. (4) in Section 2.1. When the sample size is clear from context, we note
Z(i) := Z(i:N).

We first recall the well-known following link between general order statistics and uni-
form order statistics (see e.g. [13]).

Lemma 23. For any N ⩾ 1, let U1, . . . UN be independent random variables with uniform
distribution over [0, 1], and Z1, . . . , ZN be independent and identically distributed real-
valued random variables with common cdf FZ . For any r ∈ JNK, let U(r) = U(r:N) and
Z(r) = Z(r:N) respectively denote the corresponding r-th order statistics. Then, we have

FZ(Z(r))
d
= FZ ◦ F−1

Z (U(r)) ⩾ U(r) , hence FZ(Z(r)) ⪰ U(r) , (37)

that is, FZ(Z(r)) stochastically dominates U(r). In particular, Eq. (37) implies that

∀a ∈ R , P
(
a ⩽ FZ(Z(r))

)
⩾ P

(
a ⩽ U(r)

)
and E

[
FZ(Z(r))

]
⩾ E[U(r)] . (38)

Furthermore, when FZ is continuous,

FZ(Z(r))
d
= U(r) (39)

both follow the Beta(r,N − r + 1) distribution, and they have the same expectation and
cdf.

Lemma 23 is proved in Appendix H.1 for completeness. It shows that concentra-
tion/deviation inequalities for order statistics can be obtained in general from results
on uniform order statistics. Therefore, any result about the Beta distribution can be
used to bound FZ(Z(r)) —hence the bounds on the coverage of (centralized) split CP in
Section 2.1, for instance.

We now present non-asymptotic bounds on the quantile function of uniform order
statistics, which rely on a concentration result for the Beta distribution [42, Theorem 1].

Proposition 24. For any integer N ⩾ 1 and r ∈ JNK, the quantile function F−1
U(r:N)

of

the r-th order statistics of a sample of N independent standard uniform variables satisfies
the following inequalities, for any δ > 0:

F−1
U(r:N)

(δ) ⩾
r

N + 1
−

√
log(1/δ)

2(N + 2)
(40)

and F−1
U(r:N)

(1− δ) ⩽
r

N + 1
+

√
log(1/δ)

2(N + 2)
. (41)

Proposition 24 is proved in Appendix H.2.
Finally, our coverage upper bounds (Theorems 16 and 17) rely on the following non-

asymptotic upper bound on the increments of the quantile function F−1
U(ℓ:n)

of the Beta(ℓ, n−
ℓ+ 1) distribution, showing that it is locally O(n−1/2)-Lipschitz.

Theorem 25. For any n ⩾ 1, ℓ ∈ JnK, ε ∈ (0, 1), and x ∈ (0, 1− ε), we have

0 ⩽ F−1
U(ℓ:n)

(x+ ε)− F−1
U(ℓ:n)

(x) ⩽
ε√

n+ 2

√
2

g(min{x, 1− x− ε})
, (42)
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where ∀t ∈
(
0 ,

1

2

]
, g(t) := sup

δ∈(0,min{t , 1−t})

t− δ√
log(1/δ)

⩾
t

2
√
log(2/t)

and ∀t ∈ [1/3, 1/2] ,

√
2

g(t)
⩽ 9 .

Theorem 25 is proved in Appendix H.4. To the best of our knowledge, such an upper
bound has never been proved previously. It is a key result of the paper, used in the proof
of our coverage upper bounds.

Remark 26. The upper bound in Eq. (42) is always well defined since g is defined on
(0, 1/2] and min{x, 1− x− ε} ⩽ 1/2 for every ε ∈ (0, 1) and x ∈ (0, 1− ε).

B.2. Order statistics of order statistics

The federated learning methods of Section 3 are all based on the quantile-of-quantiles
family of estimators (Definition 4 in Section 2.2), which are order statistics of order
statistics, so we focus on them in this subsection.

Given a collection (Zi,j)1⩽i⩽n,1⩽j⩽m of m samples of size n, for every j ∈ JmK, we
denote the order statistics of the j-th sample (Zi,j)1⩽i⩽n by

Z(1:n),j ⩽ Z(2:n),j ⩽ · · · ⩽ Z(n:n),j .

Then, for every ℓ ∈ JnK, we denote the order statistics of the sample of the ℓ-th order
statistics (Z(ℓ:n),j)1⩽j⩽m by

Z(ℓ:n),(1:m) ⩽ Z(ℓ:n),(2:m) ⩽ · · · ⩽ Z(ℓ:n),(m:m) .

For every ℓ ∈ JnK and k ∈ JmK, Z(ℓ:n),(k:m) =: Z(ℓ:n,k:m) is the (ℓ, k)-th order statistics
of order statistics of (Zi,j)1⩽i⩽n,1⩽j⩽m, which can also be written as follows with the
notation defined by Eq. (4) in Section 2.1:

Z(ℓ:n,k:m) = Q̂(k)

((
Q̂(ℓ)(Zj)

)
j∈JmK

)
where ∀j ∈ JmK , Zj := (Zi,j)i∈JnK so that Z(ℓ:n),j = Q̂(ℓ)(Zj) .

In the following, we write Z(ℓ),j (resp. Z(ℓ,k)) instead of Z(ℓ:n),j (resp. Z(ℓ:n,k:m)) when
the sample sizes n and m are clear from context.

Our first key result is a link with order statistics of uniform order statistics, similar to
Lemma 23.

Lemma 27. For any n,m ⩾ 1, let (Ui,j)1⩽i⩽n,1⩽j⩽m be independent random variables
with uniform distribution over [0, 1], and (Zi,j)1⩽i⩽n,1⩽j⩽m be independent and identically
distributed real-valued random variables with common cdf FZ . For every ℓ ∈ JnK and
k ∈ JmK, let U(ℓ,k) and Z(ℓ,k) respectively denote the corresponding (ℓ, k)-th order statistics
of order statistics, as defined at the beginning of Appendix B.2. Then, we have

FZ(Z(ℓ,k))
d
= FZ ◦ F−1

Z (U(ℓ,k)) ⩾ U(ℓ,k) , hence FZ(Z(ℓ,k)) ⪰ U(ℓ,k) , (43)

that is, FZ(Z(ℓ,k)) stochastically dominates U(ℓ,k). In particular, Eq. (43) implies that

∀a ∈ R , P
(
a ⩽ FZ(Z(ℓ,k))

)
⩾ P(a ⩽ U(ℓ,k)) and E

[
FZ(Z(ℓ,k))

]
⩾ E[U(ℓ,k)] . (44)

Furthermore, when FZ is continuous,

FZ(Z(ℓ,k))
d
= U(ℓ,k) (45)

hence they have the same expectation and cdf.
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Lemma 27 is proved in Appendix H.5. It shows that concentration/deviation inequal-
ities for order statistics of order statistics can be obtained in general from results on
order statistics of uniform order statistics. Therefore, we now focus on the distribution of
U(ℓ:n,k:m).

By definition, U(ℓ:n,k:m) is the k-th order statistics of a sample of m independent and
identically distributed random variables following a Beta(ℓ, n − ℓ + 1) distribution. This
is called a Beta order statistics, and it follows a Beta-Beta distribution [2, 10, 26, 40].
The Beta-Beta distribution is difficult to analyze directly [9, 11] —as one can see from
the formula of its expectation Mℓ,k provided by Theorem 5 in Section 3.1—, so it is more
convenient to first relate it to the well-known Beta distribution, as done by the next
result.

Lemma 28. Let n,m ⩾ 1 be two integers, k ∈ JmK, ℓ ∈ JnK. Let U(ℓ:n) and U(k:m) be
defined as in Lemma 23, and U(ℓ:n,k:m) = U(ℓ,k) as in Lemma 27. Then, their cdfs satisfy

FU(ℓ:n,k:m)
= FU(k:m)

◦ FU(ℓ:n)
. (46)

Lemma 28 is proved in Appendix H.6. Since the cdfs of U(ℓ:n) and U(k:m) are known
(see Lemma 23), it shows that the cdf of U(ℓ:n,k:m) is the composition of the cdf of a
Beta(k,m− k + 1) with the cdf of a Beta(ℓ, n− ℓ+ 1).

Appendix C: Proofs of Section 3.1 (marginal guarantees)

C.1. Proof of Theorem 5

Throughout the proof, we reason conditionally toDlrn. Since (Xi,j , Yi,j)1⩽i⩽n,1⩽j⩽m, (X,Y )
are i.i.d., the associated scores (Si,j)1⩽i⩽n,1⩽j⩽m, S are i.i.d. Let us denote by FS their
cdf (given Dlrn).

By definition of Ĉℓ,k(X), we have P(Y ∈ Ĉℓ,k(X)) = P
(
S ⩽ S(ℓ,k)

)
= E[FS(S(ℓ,k))].

Furthermore, by Eq. (44) in Lemma 27 with Zi,j = Si,j (hence FZ = FS), we have

E
[
FS(S(ℓ,k))

]
⩾ E[U(ℓ,k)] =: Mℓ,k (47)

in general, with equality when FS is continuous —or equivalently when the scores are a.s.
distinct— by Eq. (45) in Lemma 27. It remains to prove the formula for Mℓ,k announced
in Theorem 5.

Recall that by definition, U(ℓ,k) = U(ℓ:n,k:m) is the k-th order statistics of a sample
(U(ℓ:n),j)1⩽j⩽m of m independent random variables with common distribution Beta(ℓ, n−
ℓ + 1). Therefore, its pdf is given by Eq. (64) in Appendix G.1 with r = k, N = m,
fZ = fU(ℓ:n)

and FZ = FU(ℓ:n)
. Using Eq. (65) with r = ℓ and N = n, we get that for

every t ∈ R,

fU(ℓ,k)
(t) =

m!

(k − 1)!(m− k)!
FU(ℓ)

(t)k−1
[
1− FU(ℓ)

(t)
]m−k

fU(ℓ)
(t)

= k

(
m

k

)
FU(ℓ)

(t)k−1
[
1− FU(ℓ)

(t)
]m−k

fU(ℓ)
(t)

= k

(
m

k

)[ n∑
i=ℓ

(
n

i

)
ti(1− t)n−i

]k−1 [
1−

n∑
i=ℓ

(
n

i

)
ti(1− t)n−i

]m−k

fU(ℓ)
(t)

= k

(
m

k

)[ n∑
i=ℓ

(
n

i

)
ti(1− t)n−i

]k−1 [ℓ−1∑
i=0

(
n

i

)
ti(1− t)n−i

]m−k

fU(ℓ)
(t)
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since 1 =

n∑
i=0

(
n

i

)
ti(1− t)n−i =

ℓ−1∑
i=0

(
n

i

)
ti(1− t)n−i +

n∑
i=ℓ

(
n

i

)
ti(1− t)n−i .

Then, by developing the powers over the summations, we get that for every t ∈ [0, 1],

fU(ℓ,k)
(t)

= k

(
m

k

) n∑
i1=ℓ

. . .

n∑
ik−1=ℓ

ℓ−1∑
ik+1=0

. . .

ℓ−1∑
im=0

(
n

i1

)
· · ·
(

n

ik−1

)(
n

ik+1

)
· · ·
(
n

im

)
× ti1+···+ik−1+ik+1+···+im(1− t)n(m−1)−(i1+···+ik−1+ik+1+···+im)fU(ℓ)

(t)

=

k

(
m

k

)
B(ℓ, n− ℓ+ 1)

·
n∑

i1=ℓ

. . .

n∑
ik−1=ℓ

ℓ−1∑
ik+1=0

. . .

ℓ−1∑
im=0

(
n

i1

)
· · ·
(

n

ik−1

)(
n

ik+1

)
· · ·
(
n

im

)
× ti1+···+ik−1+ik+1+···+im+ℓ−1(1− t)n(m−1)−(i1+···+ik−1+ik+1+···+im)+n−ℓ ,

where in the last equality we used the definition of fU(ℓ)
. We now note that∫ 1

0

t · ti1+···+ik−1+ik+1+···+im+ℓ−1(1− t)n(m−1)−(i1+···+ik−1+ik+1+···+im)+n−ℓdt

=

∫ 1

0

ti1+···+ik−1+ℓ+ik+1+···+im(1− t)mn−(i1+···+ik−1+ℓ+ik+1+···+im)dt

= B(i1 + · · ·+ ik−1 + ℓ+ ik+1 + · · ·+ im + 1,mn− (i1 + · · ·+ ik−1 + ℓ+ ik+1 + · · ·+ im) + 1)

=

[
(mn+ 1)

(
mn

i1 + · · ·+ ik−1 + ℓ+ ik+1 + . . . im

)]−1

,

since B(b + 1, a − b + 1) = [(a + 1)
(
a
b

)
]−1 for every a, b ∈ N such that a ⩾ b, here used

with a = mn and b = (i1 + · · ·+ ik−1 + ℓ+ ik+1 + · · ·+ im). We end the proof using the
definition of the expectation (and the fact that U(ℓ,k) is supported by [0, 1]):

E[U(ℓ,k)] =

∫ 1

0

t · fU(ℓ,k)
(t)dt

=

k

(
m

k

) n∑
i1=ℓ

. . .

n∑
ik−1=ℓ

n∑
ik+1=0

. . .

n∑
im=0

(
n
i1

)
· · ·
(

n
ik−1

)(
n

ik+1

)
· · ·
(
n
im

)(
mn

i1+···+ik−1+ℓ+ik+1+...+im

)
(mn+ 1)B(ℓ, n− ℓ+ 1)

.

Remark 29. The first part of the proof of Theorem 5 —proving Eq. (11) in general, and
showing that it is an equality when FS is continuous— is identical to the first part of the
proof of [25, Theorem 3.2]. The second part of the proof is new : we here compute E[U(ℓ,k)]
from its pdf —contrary to [25, Theorem 3.2] which uses its cdf—, which leads to a slightly
simpler formula for Mℓ,k.

C.2. Proof of Lemma 7

The argmin defining (ℓ∗, k∗) in Algorithm 1 is non-empty if and only if

max
(ℓ,k)∈JnK×JmK

Mℓ,k ⩾ 1− α .
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SinceMℓ,k = E[U(ℓ:n,k:m)] —see Eq. (47) in Appendix C.1—, it is a nondecreasing function
of (ℓ, k) (for the lexicographic order), hence

max
(ℓ,k)∈JnK×JmK

Mℓ,k = Mn,m = E[U(n:n,m:m)] = E
[

max
(i,j)∈JnK×JmK

Ui,j

]
where the (Ui,j)(i,j)∈JnK×JmK are independent standard uniform random variables, hence

Mn,m = E[U(mn:mn)] =
mn

mn+ 1

by Eq. (69) with r = N = mn. Finally, we have proved that the argmin defining (ℓ∗, k∗)
in Algorithm 1 is non-empty if and only if

mn

mn+ 1
= 1− 1

mn+ 1
⩾ 1− α ,

which is equivalent to mn+ 1 ⩾ α−1.

C.3. Proof of Proposition 8

Recall that by Eq. (47) in Appendix C.1, Mℓ,k = E[U(ℓ:n,k:m)] where U(ℓ:n,k:m) is the
k-th order statistics of a sample (U(ℓ:n),j)1⩽j⩽m of m independent random variables with
common distribution Beta(ℓ, n− ℓ+1) and cdf FU(ℓ:n)

. Since ℓ ⩾ 1 and n− ℓ+1 ⩾ 1, the
function 1− FU(ℓ:n)

is log-concave [5, Section 6.3 and Theorem 3] and thus [13, Equation
(4.5.7)] shows that

FU(ℓ:n)

(
E[U(ℓ:n,k:m)]

)
= FU(ℓ;n)

(
E
[
Q̂(k)(U(ℓ:n),1, . . . , U(ℓ:n),m)

])
⩽ 1− exp

(
−

k−1∑
i=0

1

m− i

)
<

k

m+ 1/2
, (48)

hence the upper bound of Eq. (12).
For the lower bound, we first remark that E[U(ℓ,k)] = 1 − E[U(n−ℓ+1,m−k+1)]. Indeed,

defining Ũi,j = 1− Ui,j for every i, j ∈ JnK × JmK, on the one hand, we have Ũ(ℓ,k) = 1−
U(n−ℓ+1,m−k+1), and on the other hand, the fact that (Ũi,j)i,j∈JnK×JmK

d
= (Ui,j)i,j∈JnK×JmK

implies that U(ℓ,k)
d
= Ũ(ℓ,k). So, we have proved that

U(ℓ:n,k:m)
d
= 1− U((n−ℓ+1):n,(m−k+1):m)

hence the result by taking the expectation. Therefore, using the upper bound of Eq. (12),
we get that

Mℓ,k = 1−Mn−ℓ+1,m−k+1 > 1− F−1
U(n−ℓ+1:n)

(
m− k + 1

m+ 1/2

)
= F−1

U(ℓ:n)

(
k − 1/2

m+ 1/2

)
since F−1

U(n−ℓ+1:n)
(x) = 1 − F−1

U(ℓ:n)
(1 − x), again by a symmetry argument (U(ℓ:n)

d
= 1 −

U(n−ℓ+1:n)) [see also 59, about this property of the incomplete Beta function].
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C.4. Proof of Lemma 9

The argmin defining ℓ̃ in Algorithm 2 is non-empty if and only if

min
ℓ∈JnK

k̃m,n(ℓ, α) ⩽ m.

Since FU(ℓ:n)
(1 − α) = P(U(ℓ:n) ⩽ 1 − α), it is a nonincreasing function of ℓ, hence, by

Eq. (13),

min
ℓ∈JnK

k̃m,n(ℓ, α) = k̃m,n(n, α) =
⌈
(m+ 1/2) · FU(n:n)

(1− α) + 1/2
⌉

= ⌈(m+ 1/2)(1− α)n + 1/2⌉ ,

using Eq. (65) in Appendix G.1. This directly leads to the necessary and sufficient con-
dition (14).

Note that Eq. (14) can be rewritten(
1 +

1

m− 1/2

)1/n

⩽
1

1− α
.

The function x ∈ [0,+∞) 7→ (1 + x)1/n being concave, it is below its first-order approxi-
mation at x = 0, so that (

1 +
1

m− 1/2

)1/n

⩽ 1 +
1

n(m− 1/2)

and, if n(m− 1/2) ⩾ α−1 − 1, this upper bound is smaller than

1 +
1

α−1 − 1
=

α−1

α−1 − 1
=

1

1− α
.

Appendix D: Proofs of Section 3.2 (training-conditional guarantees)

D.1. Proof of Theorem 10

As previously, we make this proof conditionally to Dlrn without writing it explicitly
in the following. Since (Xi,j , Yi,j)1⩽i⩽n,1⩽j⩽m, (X,Y ) are i.i.d., the associated scores
(Si,j)1⩽i⩽n,1⩽j⩽m, S are i.i.d. We denote by FS their cdf (given Dlrn). Now, notice that

1− αℓ,k(D) := P
(
Y ∈ Ĉℓ,k(X)

∣∣D) = P
(
S ⩽ S(ℓ,k)

∣∣ (Si,j)1⩽i⩽n,1⩽j⩽m

)
= FS(S(ℓ,k)) .

Therefore, applying Lemma 27 with FZ = FS , Eq. (44) with a = F−1
U(ℓ,k)

(β) shows that

P
(
1− αℓ,k(D) ⩾ F−1

U(ℓ,k)
(β)
)
= P

(
FS(S(ℓ,k)) ⩾ F−1

U(ℓ,k)
(β)
)

⩾ P
(
U(ℓ,k) ⩾ F−1

U(ℓ,k)
(β)
)
= 1− β , (49)

that is, Eq. (17) holds true. The formula for F−1
U(ℓ,k)

follows from Lemma 28. When the

scores are a.s. distinct —or equivalently when FS is continuous—, Eq. (45) in Lemma 27

shows that 1−αℓ,k(D)
d
= U(ℓ,k) hence Eq. (49) is an equality and Eq. (18) holds true.
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D.2. Proof of Lemma 12

The argmin defining (ℓ∗c , k
∗
c ) in Algorithm 3 is non-empty if and only if

max
(ℓ,k)∈JnK×JmK

F−1
U(ℓ:n,k:m)

(β) ⩾ 1− α .

Since U(ℓ:n,k:m) is almost surely a nondecreasing function of (ℓ, k) for the lexicographic

order, F−1
U(ℓ:n,k:m)

(β) is a nondecreasing function of (ℓ, k), hence

max
(ℓ,k)∈JnK×JmK

F−1
U(ℓ:n,k:m)

(β) = F−1
U(n:n,m:m)

(β) = F−1
U(nm:nm)

(β) = β1/(mn)

by Eq. (66) in Appendix G.1. So, (ℓ∗c , k
∗
c ) is well defined if and only if β1/(mn) ⩾ 1 − α.

The conclusion follows.

D.3. Proof of Proposition 13

By Eq. (46) in Lemma 28, F−1
U(ℓ:n,k:m)

(β) = F−1
U(ℓ:n)

◦ F−1
U(k:m)

(β). Furthermore, Eq. (40) in

Proposition 24 with N = m, r = k and δ = β shows that

F−1
U(k:m)

(β) ⩾
k

m+ 1
−

√
log(1/β)

2(m+ 2)
.

This proves Eq. (21) since F−1
U(ℓ:n)

is nondecreasing.

D.4. Proof of Lemma 14

The argmin defining ℓ̃cond in Algorithm 4 is non-empty if and only if

min
ℓ∈JnK

k̃condm,n (ℓ, α, β) ⩽ m.

Since FU(ℓ:n)
(1−α) is a nonincreasing function of ℓ, using also Eq. (66) in Appendix G.1,

we have

min
ℓ∈JnK

k̃condm,n (ℓ, α, β) = k̃condm,n (n, α, β) =

⌈
(m+ 1)

(
(1− α)n +

√
log(1/β)

2(m+ 2)

)⌉
hence the argmin defining ℓ̃cond in Algorithm 4 is non-empty if and only if

(m+ 1)

(
(1− α)n +

√
log(1/β)

2(m+ 2)

)
⩽ m,

which is equivalent to Eq. (23).
For the sufficient condition, remark that when m ⩾ 2 we have

m

m+ 1
⩾

2

3
.

If in addition

m ⩾
9

2
log(1/β)− 2 ,

then √
log(1/β)

2(m+ 2)
⩽

1

3
, hence

m

m+ 1
−

√
log(1/β)

2(m+ 2)
⩾

1

3
.

Finally, if we also have n ⩾ log(1/3)
log(1−α) , then (1− α)n ⩽ 1/3 and we get that Eq. (23) holds

true, which proves Eq. (24).



/Marginal and training-conditional validity in one-shot FCP 40

Appendix E: Proofs of Section 4 (upper bounds)

E.1. Proof of Theorem 16

Let α ∈ (0, 1) be fixed. Let (ℓ1, k1) := (ℓ∗, k∗) as defined by Algorithm 1, and (ℓ2, k2) :=
(ℓ̃, k̃m,n(ℓ̃, α)) as defined by Algorithm 2. First, by definition of Algorithms 1–2 and by
Proposition 8, we have

1− α ⩽ Mℓ1,k1
:= min

(ℓ,k)
{Mℓ,k : Mℓ,k ⩾ 1− α} ⩽ Mℓ2,k2

⩽ F−1
U(ℓ2:n)

(
k̃m,n(ℓ2, α)

m+ 1/2

)
. (50)

Second, by definition of Algorithm 2, for every ℓ ∈ JnK such that k̃m,n(ℓ, α) ⩽ m, we have

F−1
U(ℓ2:n)

(
k̃m,n(ℓ2, α)

m+ 1/2

)
⩽ F−1

U(ℓ:n)

(
k̃m,n(ℓ, α)

m+ 1/2

)

= F−1
U(ℓ:n)

(⌈
(m+ 1/2) · FU(ℓ:n)

(1− α) + 1/2
⌉

m+ 1/2

)

⩽ F−1
U(ℓ:n)

(
FU(ℓ:n)

(1− α) +
3

2m+ 1

)
. (51)

By Theorem 25 with x = FU(ℓ:n)
(1− α), hence F−1

U(ℓ:n)
(x) = 1− α, and ε = 3

2m+1 , we get

that if 0 < FU(ℓ:n)
(1− α) < 1− 3

2m+1 , then

F−1
U(ℓ:n)

(
FU(ℓ:n)

(1− α) +
3

2m+ 1

)
⩽ 1− α+

3

(2m+ 1)
√
n+ 2

√
2

g(min{FU(ℓ:n)
(1− α), 1− FU(ℓ:n)

(1− α)− 3
2m+1})

. (52)

Third, note that for every α ∈ (0, 1), by Eq. (71) in Appendix G.2 with p = 1− α,

√
n
(
U(⌈(1−α)n⌉) − (1− α)

) L−−−−−→
n→+∞

N
(
0, α(1− α)

)
hence FU(⌈(1−α)n⌉:n)

(1− α) −−−−−→
n→+∞

1

2
. (53)

As a consequence, some n0(α) exists such that, for every n ⩾ n0(α), we have 1/3 ⩽
FU(⌈(1−α)n⌉:n)

(1− α) ⩽ 7/12. Therefore, for every n ⩾ n0(α) and m ⩾ 18,

min

{
FU(⌈(1−α)n⌉:n)

(1− α) , 1− FU(⌈(1−α)n⌉:n)
(1− α)− 3

2m+ 1

}
⩾

1

3

and by Eq. (50)– (52), we get that

1− α ⩽ Mℓ1,k1
⩽ Mℓ2,k2

⩽ 1− α+
27

(2m+ 1)
√
n+ 2

.

Note that the choice of the constants 1/3 and 7/12 in the proof is arbitrary. Other choices
would lead to the same result with other values for C, m0 and n0(α). For instance, C
can be made as close to 3

√
2/g(1/2) ⩽ 16.1 as desired, at the price of enlarging m0 and

n0(α).
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E.2. Proof of Theorem 17

The proof relies on the following lemma.

Lemma 30. Let n,m ⩾ 1, ℓ ∈ JnK, α, β, β′ ∈ (0, 1) and let k̃condm,n (ℓ, α, β) be defined
by Eq. (22). Then, some n′

0(α),m
′
0(β, β

′) ⩾ 1 exist such that, if n ⩾ n′
0(α) and m ⩾

m′
0(β, β

′), we have ⌈n(1− α)⌉ ∈ JnK, k̃condm,n (⌈n(1− α)⌉, α, β) ∈ JmK and

F−1
U

(⌈n(1−α)⌉:n,k̃cond
m,n(⌈n(1−α)⌉,α,β):m)

(1− β′) ⩽ 1− α+
12max{

√
log(1/β) +

√
log(1/β′), 1}√

(m+ 2)(n+ 2)
.

(54)

Proof. The first condition holds true when n ⩾ 1/α, hence it suffices to take n′
0(α) ⩾

n′
0,a(α) = 1/α. For the second condition, which can be rewritten

k̃condm,n

(
⌈n(1− α)⌉, α, β

)
=

⌈
(m+ 1)

(
FU(⌈n(1−α)⌉:n)

(1− α) +

√
log(1/β)

2(m+ 2)

)⌉
⩽ m,

we first notice that by Eq. (53), some n′
0,b(α) exists such that, for every n ⩾ n′

0,b(α),

1

3
⩽ FU(⌈(1−α)n⌉:n)

(1− α) ⩽
2

3
. (55)

Therefore, some m′
0,a(β) exists such that, if m ⩾ m′

0,a(β) and n ⩾ n′
0,b(α),

k̃condm,n

(
⌈n(1− α)⌉, α, β

)
⩽

⌈
(m+ 1)

(
2

3
+

√
log(1/β)

2(m+ 2)

)⌉
⩽ m,

hence the second condition holds true if m′
0(β, β

′) ⩾ m′
0,a(β).

It remains to prove Eq. (54). For every ℓ ∈ JnK, if k̃condm,n (ℓ, α, β) ∈ JmK, we have

F−1
U

(ℓ:n,k̃cond
m,n (ℓ,α,β):m)

(1− β′)

= F−1
U(ℓ:n)

◦ F−1
U

(k̃cond
m,n (ℓ,α,β):m)

(1− β′) by Eq. (46) in Lemma 28

⩽ F−1
U(ℓ:n)

(
k̃condm,n (ℓ, α, β)

m+ 1
+

√
log(1/β′)

2(m+ 2)

)
by Eq. (41) in Proposition 24

⩽ F−1
U(ℓ:n)

(
FU(ℓ:n)

(1− α) +

√
log(1/β) +

√
log(1/β′)√

2(m+ 2)
+

1

m+ 1

)
by Eq. (22)

⩽ 1− α+
εm√
n+ 2

√
2

g(min{xn, 1− xn − εm})
(56)

by Theorem 25 with

x = xn := FU(ℓ:n)
(1− α) and ε = εm :=

√
log(1/β) +

√
log(1/β′)√

2(m+ 2)
+

1

m+ 1
,

assuming also that xn + εm < 1. Now, taking ℓ = ⌈(1 − α)n⌉ in Eq. (56), when m ⩾
m′

0,a(β) and n ⩾ max{n′
0,a(α), n

′
0,b(α)}, we have ℓ ∈ JnK, k̃condm,n (⌈(1 − α)n⌉, α, β) ∈ JmK

and xn ∈ [1/3, 2/3] by Eq. (55). Since some m′
0,b(β, β

′) exists such that εm ⩽ 1/12
as soon as m ⩾ m′

0,b(β, β
′), we get that for m ⩾ max{m′

0,a(β),m
′
0,b(β, β

′)} and n ⩾
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max{n′
0,a(α), n

′
0,b(α)}, we have xn + εm < 1 and min{xn, 1 − xn − εm} ⩾ 1/4, hence

Eq. (56) leads to

F−1
U

(⌈(1−α)n⌉:n,k̃cond
m,n (⌈(1−α)n⌉,α,β):m)

(1− β′)

⩽ 1− α+

(√
log(1/β) +

√
log(1/β′)√

2(m+ 2)
+

1

m+ 1

)
1√
n+ 2

√
2

g(1/4)

(if m ⩾ 12)

⩽ 1− α+
12max{

√
log(1/β) +

√
log(1/β′), 1}√

(m+ 2)(n+ 2)
,

where we assume at the last line that m ⩾ 12, hence
√
m+ 2/(m+1) ⩽ 0.9949267−1/

√
2,

and we use that g(1/4) ⩾ G(1/4, 0.0316) ⩾ 0.1175 hence 0.9949267×
√
2

g(1/4) ⩽ 11.9749 ⩽
12. This ends the proof, by taking m′

0(β, β
′) = max{m′

0,a(β),m
′
0,b(β, β

′), 12} and n′
0(α) =

max{n′
0,a(α), n

′
0,b(α)}.

We can now prove Theorem 17. We actually prove a more general result, about the
following generalizations of Algorithms 3 and 4, respectively, where β′ ∈ (0, 1) is given:

(ℓA, kA) := argmin
(ℓ,k)∈JnK×JmK

{
F−1
U(ℓ:n,k:m)

(1− β′) : F−1
U(ℓ:n,k:m)

(β) ⩾ 1− α
}

(57)

ℓB := argmin
ℓ∈JnK s.t. k̃cond

m,n (ℓ,α,β)⩽m

{
F−1
U

(ℓ:n,k̃cond
m,n (ℓ,α,β):m)

(1− β′)

}
and kB := k̃condm,n (ℓB , α, β) .

(58)

Algorithm 3 – Proof of Eq. (26) Let us first consider the generalization of Al-
gorithm 3 defined by Eq. (57). Let ℓn := ⌈n(1 − α)⌉ and kn := k̃condm,n (ℓn, α, β). By
Lemma 30, when n ⩾ n′

0(α) and m ⩾ m′
0(β, β

′), we have ℓn ∈ JnK and kn ∈ JmK,
hence, F−1

U(ℓn:n,kn:m)
(β) ⩾ 1 − α by Proposition 13 and Eq. (22). Therefore, by definition

(57) of (ℓA, kA),

F−1
U(ℓA:n,kA:m)

(1− β′) ⩽ F−1
U(ℓn:n,kn:m)

(1− β′)

⩽ 1− α+
12max

{√
log(1/β) +

√
log(1/β′), 1

}√
(m+ 2)(n+ 2)

by Eq. (54) in Lemma 30. Finally, using Eq. (18) in Theorem 10 —with β = 0 and
(ℓ, k) = (ℓA, kA)—, we get that if the scores Si,j , S are a.s. distinct, when n ⩾ n′

0(α) and
m ⩾ m′

0(β, β
′), the following inequality holds true with probability 1− β′:

1− αℓA,kA
(D) ⩽ 1− α+

12max
{√

log(1/β) +
√
log(1/β′), 1

}√
(m+ 2)(n+ 2)

. (59)

Eq. (26) follows by taking β′ = β and defining m′
0(β) := m′

0(β, β).

Algorithm 4 – Proof of Eq. (27) Similarly, for the generalization of Algorithm 4
defined by Eq. (58), we get that when n ⩾ n′

0(α) and m ⩾ m′
0(β, β

′), the following
inequality holds true with probability 1− β′:

1− αℓB ,kB
(D) ⩽ 1− α+

12max
{√

log(1/β) +
√
log(1/β′), 1

}√
(m+ 2)(n+ 2)

. (60)

Eq. (27) follows by taking β′ = β, since Eq. (55) still holds true for such a sequence ℓn
by [13, Section 10.2].
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Appendix F: Proofs of Section 5 (different nj)

Before proving Theorems 19–20, notice that the proof of Lemma 27 straightforwardly
generalizes to the case of the QQ estimator S(ℓ1,...,ℓm,k) defined by Eq. (29). So, if
(Ui,j)i∈JℓjK,j∈JmK denote independent standard uniform variables, we have

FS(S(ℓ1,...,ℓm,k))
d
= FS ◦ F−1

S (U(ℓ1,...,ℓm,k)) ⩾ U(ℓ1,...,ℓm,k) , (61)

with equality when FS is continuous.

F.1. Proof of Theorem 19

First, by Eq. (61), we have

P
(
Y ∈ Ĉℓ1,...,ℓm,k(X)

)
= P

(
S ⩽ S(ℓ1,...,ℓm,k)

)
= E

[
FS(S(ℓ1,...,ℓm,k))

]
⩾ E

[
U(ℓ1,...,ℓm,k)

]
=: Mℓ1,...,ℓm,k .

It remains to prove the formula for Mℓ1,...,ℓm,k. The difference with the proof of Theorem 5

is that the variables (Q̂(ℓj :nj)(Sj))1⩽j⩽m are not identically distributed, so U(ℓ1,...,ℓm,k)

is the k-th order statistics of a set of independent but not identically distributed (inid)
random variables. Its cdf can still be computed as follows. By [7, Equation (16)], we have,
for every t ∈ [0, 1],

FU(ℓ1,...,ℓm,k)
(t)

=

m∑
j=k

∑
a∈Pj

FU(ℓa1
:n1)

(t) · · ·FU(ℓaj
:nj)

(t) ·
[
1− FU(ℓaj+1

:nj+1)
(t)
]
· · ·
[
1− FU(ℓam :nm)

(t)
]
,

where Pj denotes the set of permutations (a1, . . . , am) of {1, . . . ,m} for which a1 < a2 <
. . . < aj and aj+1 < aj+2 < . . . < am. Then, using Eq. (65) and (67) in Appendix G.1
and rearranging the terms, we get that for every t ∈ [0, 1],

FU(ℓ1,...,ℓm,k)
(t)

=

m∑
j=k

∑
Pj

na1∑
i1=ℓa1

· · ·
naj∑

ij=ℓaj

ℓaj+1
−1∑

ij+1=0

· · ·
ℓam−1∑
im=0

(
na1

i1

)
· · ·
(
nam

im

)
ti1+···+im(1− t)n1+···+nm−(i1+···+im) .

We finally obtain the result using that

Mℓ1,...,ℓm,k = E[U(ℓ1,...,ℓm,k)] =

∫ 1

0

[
1− FU(ℓ1,...,ℓm,k)

(t)
]
dt

and

∫ 1

0

ti1+···+im(1− t)n1+···+nm−(i1+···+im)dt

= B(i1 + · · ·+ im + 1, n1 + · · ·+ nm − (i1 + · · ·+ im) + 1)

= (n1 + · · ·+ nm + 1)−1

(
n1 + · · ·+ nm

i1 + · · ·+ im

)−1

,

using a property of the Beta function already used in Appendix C.1.
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F.2. Proof of Theorem 20

By the definition (30) of Ĉℓ1,...,ℓm,k and Eq. (61), we have

P
(
1− αℓ1,...,ℓm,k(D) ⩾ 1− α

)
= P

(
FS(S(ℓ1,...,ℓm,k)) ⩾ 1− α

)
⩾ P

(
U(ℓ1,...,ℓm,k) ⩾ 1− α

)
, (62)

with equality when FS is continuous. By definition of U(ℓ1,...,ℓm,k) = Q̂(ℓj :nj)((U(ℓj :nj))1⩽j⩽m),
we have

P
(
U(ℓ1,...,ℓm,k) ⩾ 1− α

)
= P

 m∑
j=1

1{U(ℓj :nj)
⩽1−α} ⩽ k − 1

 .

Furthermore,

m∑
j=1

1{U(ℓj :nj)
⩽1−α} is a sum of m independent Bernoulli variables with re-

spective parameters pj = P(U(ℓj :nj) ⩽ 1 − α) = FU(ℓj :nj)
(1 − α). Therefore, it follows

a Poisson-Binomial distribution of parameters (p1, . . . , pm). Using Eq. (62), we obtain
Eq. (33).

Appendix G: Classical results about order statistics distribution

We recall in this section some useful well-known results about order statistics [13]. Through-
out this section, U1, . . . , UN , . . . denote a sequence of independent standard uniform vari-
ables, and Z1, . . . , ZN , . . . a sequence of i.i.d. random variables with common cdf FZ . For
any integers 1 ⩽ r ⩽ N , U(r:N) = Q̂(r)(U1, . . . , UN ) and Z(r:N) = Q̂(r)(Z1, . . . , ZN ) denote
the corresponding r-th order statistics.

G.1. Exact distribution

For every r ∈ JNK, the cdf of Z(r:N) is given by

∀t ∈ R , FZ(r:N)
(t) =

N∑
i=r

(
N

i

)
FZ(t)

i
[
1− FZ(t)

]N−i
. (63)

If we further assume that FZ is continuous with corresponding probability density function
(pdf) fZ = F ′

Z , then, for every r ∈ JNK, the pdf of Z(r:N) is given by

∀t ∈ R , fZ(r:N)
(t) =

N !

(r − 1)!(N − r)!
FZ(t)

r−1
[
1− FZ(t)

]N−r
fZ(t) . (64)

In the case of uniform order statistics, U(r:N) follows a Beta(r,N − r+ 1) distribution
and its cdf FU(r:N)

and pdf fU(r:N)
are respectively given by

∀t ∈ [0, 1] , FU(r:N)
(t) =

N∑
i=r

(
N

i

)
ti(1− t)N−i and fU(r:N)

(t) =
tr−1(1− t)N−r

B(r,N − r + 1)
(65)

where B : (a, b) ∈ (0,+∞)2 7→
∫ 1

0

ta−1(1− t)b−1dt
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denotes the Beta function [59]. In particular, for every N ⩾ 1, we have

∀t ∈ [0, 1] , FU(N:N)
(t) = tN and F−1

U(N:N)
(t) = t1/N . (66)

Since
∑N

i=0

(
N
i

)
ti(1− t)N−i = 1, Eq. (65) also implies that

∀t ∈ [0, 1] , 1− FU(r:N)
(t) =

r−1∑
i=0

(
N

i

)
ti(1− t)N−i , (67)

hence FU(1:N)
(t) = 1− (1− t)N . (68)

In addition, closed-form formulas are available for the expectation and variance of
uniform order statistics:

E
[
U(r:N)

]
=

r

N + 1
and Var

(
U(r:N)

)
=

r(N − r + 1)

(N + 1)2(N + 2)
. (69)

G.2. Asymptotics

Central order statistics are known to be asymptotically normal. More precisely, following
[18, 33], we have the following result.

Theorem 31 (Asymptotic normality of central uniform order statistics [18, 33]). Let
p ∈ (0, 1), γ ∈ R and (ℓN )N⩾1 be a sequence such that ℓN ∈ JNK for every N ⩾ 1 and

ℓN = pN + γ
√
N + o(

√
N) when N → +∞. Then, we have

√
N
(
U(ℓN :N) − p

) L−−−−−→
N→+∞

N
(
γ, p(1− p)

)
. (70)

In particular, Theorem 31 implies that

√
N
(
U(⌈pN⌉:N) − p

) L−−−−−→
N→+∞

N
(
0, p(1− p)

)
. (71)

By Lemma 23, Eq. (70)–(71) imply that when FZ is continuous, under the assumptions
of Theorem 31,

√
N
(
FZ(Z(ℓN :N))− p

) L−−−−−→
N→+∞

N
(
γ, p(1− p)

)
(72)

and
√
N
(
FZ(Z(⌈pN⌉:N))− p

) L−−−−−→
N→+∞

N
(
0, p(1− p)

)
. (73)

Appendix H: Proofs of Appendix B

H.1. Proof of Lemma 23

First, for every i ∈ JNK, let us define Z̃i := F−1
Z (Ui), so that Z̃1, . . . , Z̃N are independent

and identically distributed, with cdf FZ . Therefore, (Z1, . . . , ZN )
d
= (Z̃1, . . . , Z̃N ), hence

Z(r)
d
= Z̃(r) . (74)

Second, remark that for any integers 1 ⩽ r ⩽ N , any S ∈ RN and any nondecreasing
function h : R → R, we have

h
(
Q̂(r)(S)

)
= Q̂(r)

(
h(S)

)
where h(S) :=

(
h(Si))i∈JNK

)
(75)
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and Q̂(r) is defined by Eq. (4) in Section 2.1.
Indeed, let σ ∈ be some permutation of JNK such that Sσ(1) ⩽ · · · ⩽ Sσ(N), hence

Q̂(r)(S) = Sσ(r). Then, h(Sσ(1)) ⩽ · · · ⩽ h(Sσ(N)) since h is nondecreasing, and we get
that

Q̂(r)

(
h(S)

)
= h(Sσ(r)) = h

(
Q̂(r)(S)

)
.

From Eq. (74) and (75), since F−1
Z is nondecreasing, we obtain that

FZ(Z(r))
d
= FZ(Z̃(r)) = FZ

(
Q̂(r)

(
F−1
Z (U1, . . . , UN )

))
= FZ ◦ F−1

Z

(
Q̂(r)(U1, . . . , UN )

)
= FZ ◦ F−1

Z (U(r)) .

Using Eq. (36), this proves Eq. (37) in the general case —Eq. (38) follows directly—, and
Eq. (39) when FZ is continuous. The distribution of the uniform order statistic U(r) is
well known, see for instance [13] or Appendix G.1.

Remark 32. In the case of a general cdf FZ , another consequence of Lemma 23 is that,
for every a, b ∈ R such that a ⩽ b,

P
(
U(r) ⩽ b

)
⩽ P

(
FZ(Z(r)) ⩽ FZ ◦ F−1

Z (b)
)

(76)

and P
(
a ⩽ U(r) ⩽ b

)
⩽ P

(
a ⩽ FZ(Z(r)) ⩽ FZ ◦ F−1

Z (b)
)
. (77)

Proof. Since FZ ◦ F−1
Z is nondecreasing,

U(r) ⩽ b implies that FZ ◦ F−1
Z (U(r)) ⩽ FZ ◦ F−1

Z (b) , (78)

hence Eq. (76) thanks to Eq. (37). Since FZ ◦F−1
Z (U(r)) ⩾ U(r) by Eq. (36), Eq. (78) also

shows that

a ⩽ U(r) ⩽ b implies that a ⩽ FZ ◦ F−1
Z (U(r)) ⩽ FZ ◦ F−1

Z (b) ,

hence Eq. (77) thanks to Eq. (37).

H.2. Proof of Proposition 24

We start by recalling some concentration result about the Beta distribution [42, Theo-
rem 1].

Theorem 33 (taken from [42]). For any a, b > 0, the Beta distribution Beta(a, b) is
ω-sub-Gaussian, with ω = 1

4(a+b+1) . This implies that, if Z ∼ Beta(a, b), for any ε > 0,

max

{
P
(
Z ⩾

a

a+ b
+ ε

)
, P
(
Z ⩽

a

a+ b
− ε

)}
⩽ e−2(a+b+1)ε2 .

Note that Theorem 33 does not provide the “best” concentration inequality for the Beta
distribution. Indeed, although the bound is sharp for the symmetric case a = b, when
the Beta distribution is skewed, Theorem 33 has been improved with the Bernstein-type
bound of [57]. Nevertheless, it is sufficient for our needs and yields simpler formulas.

We can now prove Proposition 24. Since U(r:N) follows a Beta(r,N−r+1) distribution,

Theorem 33 with a = r, b = N − r + 1 and ε =
√

log(1/δ)
2(N+2) shows that

FU(r:N)

(
r

N + 1
−

√
log(1/δ)

2(N + 2)

)
= P

(
U(r:N) ⩽

r

N + 1
−

√
log(1/δ)

2(N + 2)

)
⩽ δ , (79)
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hence Eq. (40). Similarly,

FU(r:N)

(
r

N + 1
+

√
log(1/δ)

2(N + 2)

)
= 1−P

(
U(r:N) ⩾

r

N + 1
+

√
log(1/δ)

2(N + 2)

)
⩾ 1− δ (80)

by Theorem 33, hence Eq. (41).

H.3. Deviation inequalities for general order statistics

The combination of Theorem 33 with Lemma 23 yields the following deviation inequalities,
which are not directly useful in our study of one-shot FL CP algorithms, but can be of
interest in other contexts such as the non-asymptotic analysis of (centralized) split CP
—see Appendix I.1.

Corollary 34. For any N ⩾ 1, let Z1, . . . , ZN be independent and identically distributed
real-valued random variables with common cdf FZ . Then, for any δ > 0 and r ∈ JNK, the
following inequality holds true:

P

(
FZ(Z(r)) ⩾

r

N + 1
−

√
log(1/δ)

2(N + 2)

)
⩾ 1− δ . (81)

Moreover, if FZ is continuous, we also have

P

(
FZ(Z(r)) ⩽

r

N + 1
+

√
log(1/δ)

2(N + 2)

)
⩾ 1− δ (82)

and P

(∣∣∣∣FZ(Z(r))−
r

N + 1

∣∣∣∣ ⩽
√

log(2/δ)

2(N + 2)

)
⩾ 1− δ . (83)

Proof. By Eq. (38) in Lemma 23 with a = r
N+1 −

√
log(1/δ)
2(N+2) (and using its notation), we

have

P

(
FZ(Z(r)) ⩾

r

N + 1
−

√
log(1/δ)

2(N + 2)

)

⩾ P

(
U(r:N) ⩾

r

N + 1
−

√
log(1/δ)

2(N + 2)

)
⩾ 1− δ

(84)

by Eq. (79) in the proof of Proposition 24, hence Eq. (81). If we also assume that FZ is
continuous, combining Eq. (39) in Lemma 23 and Eq. (80) in the proof of Proposition 24
shows that

P

(
FZ(Z(r:N)) ⩽

r

N + 1
+

√
log(1/δ)

2(N + 2)

)
= P

(
U(r:N) ⩽

r

N + 1
+

√
log(1/δ)

2(N + 2)

)

= FU(r:N)

(
r

N + 1
+

√
log(1/δ)

2(N + 2)

)
⩾ 1− δ ,

hence Eq. (82). Finally, replacing δ by δ/2 in Eq. (81)–(82) implies Eq. (83) by the union
bound.
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Remark 35. For a general cdf FZ , instead of Eq. (82), we have

P

(
FZ(Z(r)) ⩽ FZ ◦ F−1

Z

(
r

N + 1
+

√
log(1/δ)

2(N + 2)

))
⩾ 1− δ . (85)

Proof. Combine Eq. (76) with b = r
N+1 +

√
log(1/δ)
2(N+2) and Eq. (80).

Remark 36. Eq. (73) in Section G.2 shows that for any p ∈ (0, 1), FZ(Z(⌈pN⌉)) converges

towards p at the rate
√
N . Therefore, the order of magnitude 1/

√
N of the deviations in

Corollary 34 is optimal (at least, asymptotically).

H.4. Proof of Theorem 25

We proceed in four steps.

Step 1: mean value theorem. Since F−1
U(ℓ:n)

is continuous on [x, x+ε] and differentiable

on (x, x+ ε) —it is even C∞ on (0, 1)—, by the mean-value theorem, some c ∈ (x, x+ ε)
exists such that

F−1
U(ℓ:n)

(x+ ε)− F−1
U(ℓ:n)

(x) =
(
F−1
U(ℓ:n)

)′
(c)× ε =

ε

fU(ℓ:n)

(
F−1
U(ℓ:n)

(c)
)

⩽
ε

inf[
F−1

U(ℓ:n)
(x) , F−1

U(ℓ:n)
(x+ε)

] fU(ℓ:n)

. (86)

Therefore, it remains to get a uniform lower bound on the density fU(ℓ:n)
.

Step 2: density lower bound with the inverse cdf F−1
U(ℓ:n)

. Since fU(ℓ:n)
is uni-

modal [6], a straightforward proof by exhaustion (depending on the relative position of
argmax fU(ℓ:n)

and [F−1
U(ℓ:n)

(x) , F−1
U(ℓ:n)

(x+ ε)]) shows that

inf[
F−1

U(ℓ:n)
(x) , F−1

U(ℓ:n)
(x+ε)

] fU(ℓ:n)
⩾ min

{
sup[

0 , F−1
U(ℓ:n)

(x)
] fU(ℓ:n)

, sup[
F−1

U(ℓ:n)
(x+ε) , 1

] fU(ℓ:n)

}
. (87)

Let us consider separately the two terms of the right-hand side of Eq. (87). On the one
hand, for every δ ∈ (0, x),

sup[
0 , F−1

U(ℓ:n)
(x)
] fU(ℓ:n)

⩾
1

F−1
U(ℓ:n)

(x)− F−1
U(ℓ:n)

(δ)

∫ F−1
U(ℓ:n)

(x)

F−1
U(ℓ:n)

(δ)

fU(ℓ:n)
(t)dt

=
FU(ℓ:n)

◦ F−1
U(ℓ:n)

(x)− FU(ℓ:n)
◦ F−1

U(ℓ:n)
(δ)

F−1
U(ℓ:n)

(x)− F−1
U(ℓ:n)

(δ)

=
x− δ

F−1
U(ℓ:n)

(x)− F−1
U(ℓ:n)

(δ)
. (88)

On the other hand, similarly, for every δ′ ∈ (0, 1− x− ε),

sup[
F−1

U(ℓ:n)
(x+ε) , 1

] fU(ℓ:n)
⩾

1

F−1
U(ℓ:n)

(1− δ′)− F−1
U(ℓ:n)

(x+ ε)

∫ F−1
U(ℓ:n)

(1−δ′)

F−1
U(ℓ:n)

(x+ε)

fU(ℓ:n)
(t)dt

=
(1− δ′)− (x+ ε)

F−1
U(ℓ:n)

(1− δ′)− F−1
U(ℓ:n)

(x+ ε)
. (89)
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Step 3: use of concentration results. Given Eq. (88) and (89), it remains to show
upper bounds on F−1

U(ℓ:n)
(x) − F−1

U(ℓ:n)
(δ) and F−1

U(ℓ:n)
(1 − δ′) − F−1

U(ℓ:n)
(x + ε). On the one

hand, by Eq. (40)–(41) in Proposition 24 with r = ℓ and N = n,

∀δ ∈ (0, 1− x) , F−1
U(ℓ:n)

(x)− F−1
U(ℓ:n)

(δ) ⩽ F−1
U(ℓ:n)

(1− δ)− F−1
U(ℓ:n)

(δ) ⩽

√
2 log(1/δ)

n+ 2
.

Therefore, using Eq. (88), we obtain that

sup
[0 , F−1

U(ℓ:n)
(x)]

fU(ℓ:n)
⩾ sup

δ∈(0,min{x , 1−x})

{
x− δ

F−1
U(ℓ:n)

(x)− F−1
U(ℓ:n)

(δ)

}
⩾ g(x)

√
n+ 2

2
(90)

with g(x) := sup
δ∈(0,min{x , 1−x})

{
x− δ√
log(1/δ)

}
.

On the other hand, similarly, for every δ′ ∈ (0, x+ ε),

F−1
U(ℓ:n)

(1− δ′)− F−1
U(ℓ:n)

(x+ ε) ⩽ F−1
U(ℓ:n)

(1− δ′)− F−1
U(ℓ:n)

(δ′) ⩽

√
2 log(1/δ′)

n+ 2
.

Therefore, using Eq. (89), we obtain that

sup
[F−1

U(ℓ:n)
(x+ε) , 1]

fU(ℓ:n)
⩾ sup

δ′∈(0,min{x+ε , 1−(x+ε)})

{
(1− δ′)− (x+ ε)

F−1
U(ℓ:n)

(1− δ′)− F−1
U(ℓ:n)

(x+ ε)

}

⩾ sup
δ′∈(0,min{x+ε , 1−(x+ε)})

{
1− (x+ ε)− δ′)√

log(1/δ′)

}
×
√

n+ 2

2
(91)

= g(1− x− ε)

√
n+ 2

2
. (92)

Step 4: conclusion. Combining Eq. (86), (87), (90) and (92), we obtain that

F−1
U(ℓ:n)

(x+ ε)− F−1
U(ℓ:n)

(x) ⩽

√
2√

n+ 2

ε

min{g(x) , g(1− x− ε)}
. (93)

Now, let us rewrite the definition of g as

∀t ∈ (0, 1) , g(t) := sup
δ∈(0,min{t , 1−t})

G(t, δ) where ∀δ > 0 , G(t, δ) :=
t− δ√
log(1/δ)

.

Note that t 7→ G(t, δ) is increasing whatever δ > 0, so that g is nondecreasing on (0, 1/2].
In addition, for every t ∈ (0, 1/2], using that t ⩽ 1 − t, we have G(t, δ) ⩽ G(1 − t, δ) for
every δ > 0, hence g(t) ⩽ g(1− t). This proves that

∀t ∈ (0, 1) , g
(
min{t, 1− t}

)
= min

{
g(t), g(1− t)

}
,

hence

min
{
g(x) , g(1− x− ε)

}
⩾ min

{
g(x) , g(1− x) , g(x+ ε) , g(1− x− ε)

}
= min

{
g
(
min{x, 1− x}

)
, g
(
min{x+ ε, 1− x− ε}

)}
= g
(
min{x, 1− x, x+ ε, 1− x− ε}

)
since g is nondecreasing on (0, 1/2]
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= g
(
min{x, 1− x− ε}

)
,

By Eq. (93), we obtain that Eq. (42) holds true.
Let us finally prove the inequalities stated about the function g. First, for every t ∈

(0, 1/2], we have t/2 ⩽ min{t, 1− t}, hence

g(t) ⩾ G(t, t/2) =
t

2
√
log(2/t)

.

Second, since g is nondecreasing over (0, 1/2], for every t ∈ [1/3, 1/2],

g(t) ⩾ g

(
1

3

)
⩾ G

(
1

3
, 0.047

)
⩾ 0.163 ⩾

√
2

9
.

H.5. Proof of Lemma 27

We proceed similarly to the proof of Lemma 23. First, let us define Z̃i,j = F−1
Z (Ui,j)

for every i ∈ JnK and j ∈ JmK, so that (Z̃i,j)1⩽i⩽n,1⩽j⩽m has the same distribution as
(Zi,j)1⩽i⩽n,1⩽j⩽m. Therefore, the corresponding order statistics of order statistics have
the same distributions:

Z(ℓ,k)
d
= Z̃(ℓ,k) . (94)

Second, using twice Eq. (75) in the proof of Lemma 23, since F−1
Z is nondecreasing, we

have

Z̃(ℓ,k) = Q̂(k)

((
Q̂(ℓ)

(
F−1
Z (U1,j), . . . , F

−1
Z (Un,j)

))
j∈JmK

)
= Q̂(k)

(
F−1
Z

(
Q̂(ℓ)(U1,j , . . . , Un,j)

)
j∈JmK

)
= F−1

Z

(
Q̂(k)

((
Q̂(ℓ)(U1,j , . . . , Un,j)

)
j∈JmK

))
= F−1

Z (U(ℓ,k)) ,

hence Eq. (94) implies that

FZ(Z(ℓ,k))
d
= FZ(Z̃(ℓ,k)) = FZ ◦ F−1

Z (U(ℓ,k)) .

Using Eq. (36), this proves Eq. (43) in the general case, and Eq. (45) when FZ is contin-
uous.

Remark 37. In the case of a general cdf FZ , another consequence of Lemma 27 is that,
for every a, b ∈ R such that a ⩽ b,

P
(
U(ℓ,k) ⩽ b

)
⩽ P

(
FZ(Z(ℓ,k)) ⩽ FZ ◦ F−1

Z (b)
)

(95)

and P
(
a ⩽ U(ℓ,k) ⩽ b

)
⩽ P

(
a ⩽ FZ(Z(ℓ,k)) ⩽ FZ ◦ F−1

Z (b)
)
. (96)

Proof. Since FZ ◦ F−1
Z is nondecreasing,

U(ℓ,k) ⩽ b implies that FZ ◦ F−1
Z (U(ℓ,k)) ⩽ FZ ◦ F−1

Z (b) , (97)

hence Eq. (95) thanks to Eq. (43). Since FZ ◦ F−1
Z (U(ℓ,k)) ⩾ U(ℓ,k) by Eq. (36), Eq. (97)

also shows that

a ⩽ U(ℓ,k) ⩽ b implies that a ⩽ FZ ◦ F−1
Z (U(ℓ,k)) ⩽ FZ ◦ F−1

Z (b) ,

hence Eq. (96) thanks to Eq. (43).



/Marginal and training-conditional validity in one-shot FCP 51

H.6. Proof of Lemma 28

By Eq. (39) in Lemma 23 with FZ = FU(ℓ:n)
(which is continuous), r = k and N = m, we

have
FU(ℓ:n)

(Z(k:m))
d
= U(k:m)

where Z(k:m) is the k-th order statistics of an i.i.d. sample of m random variables dis-

tributed as U(ℓ:n). In other words, with the notation of Lemma 27, we have Z(k:m)
d
=

U(ℓ:n,k:m), hence

FU(ℓ:n)
(U(ℓ:n,k:m))

d
= U(k:m)

d
= F−1

U(k:m)
(U)

since FU(k:m)
is continuous (where U follows the uniform distribution over [0, 1]). So,

U(ℓ:n,k:m)
d
= F−1

U(ℓ:n)
◦ F−1

U(k:m)
(U) = (FU(k:m)

◦ FU(ℓ:n)
)−1(U)

has cdf FU(k:m)
◦ FU(ℓ:n)

.

Appendix I: Previous and additional results on related works

I.1. Proofs of Section 2.1 (theoretical analysis of split CP)

In this section, we prove the results stated about split conformal prediction (split CP) in
Section 2.1. Although these results are mostly classical, we think useful to prove them here
for completeness, since these proofs are particularly simple with the notation introduced
in this paper and the results of Appendix B.1.

I.1.1. Marginal guarantees

By Lemma 23, the expected coverage of Ĉr is

P
(
Y ∈ Ĉr(X)

)
= E

[
1− αr(D)

]
= E

[
FS(S(r))

]
⩾ E[U(r:nc)]

with equality when FS is continuous —or, equivalently, when the scores are almost surely
distinct. Using Eq. (69) in Appendix G.1, we get that

P
(
Y ∈ Ĉr(X)

)
⩾

r

nc + 1

with equality when FS is continuous. This proves that Ĉr is marginally valid when r =
⌈(1− α)(nc + 1)⌉, and Eq. (6) when FS is continuous.

I.1.2. Training-conditional guarantees

By Lemma 23,

P
(
Y ∈ Ĉr(X)

∣∣D) = 1− αr(D) = FS(S(r)) ⪰ U(r:nc) (98)

which follows the Beta(r, nc − r + 1) distribution, hence

P
(
1− αr(D) ⩾ F−1

U(r:nc)
(β)
)
⩾ P

(
U(r:nc) ⩾ F−1

U(r:nc)
(β)
)
= 1− FU(r:nc)

◦ F−1
U(r:nc)

(β) = 1− β ,
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which proves Eq. (7). Note that Eq. (7) is similar to [61, Proposition 2b], even if its
statement and proof are quite different. Lemma 23 also proves that Eq. (7) is an equality

when FS is continuous, that is, 1− αr(D)
d
= Beta(r, nc − r + 1).

Similarly to Algorithm 3 and its generalization given by Eq. (57) in Appendix E.2, in

order to have the best possible training-conditionally valid prediction set Ĉr with split
CP, Eq. (7) suggests the choice

r∗c := argmin
r∈JncK

{
F−1
U(r:nc)

(1− β′) : F−1
U(r:nc)

(β) ⩾ 1− α
}

= min
{
r ∈ JncK : F−1

U(r:nc)
(β) ⩾ 1− α

}
. (99)

Equality (99) above comes from the fact that F−1
U(r:nc)

(1−β′) is an increasing function of r ∈
JncK for every β′ ∈ (0, 1), hence minimizing F−1

U(r:nc)
(1− β′) is equivalent to minimizing r,

whatever β′ ∈ (0, 1).
By Theorem 31 in Appendix G.2, for any γ ∈ R, when r = rnc = (1− α)nc + γ

√
nc +

o(nc) as nc → +∞, we have

P
(
1− αrnc

(D) ⩾ 1− α
)
⩾ P(U(r:nc) ⩾ 1− α) by Eq. (98) (100)

= P
(√

nc

[
U(r:nc) − (1− α)

]
⩾ 0
)

−−−−−→
nc→+∞

Φ

(
γ√

α(1− α)

)
(101)

where Φ denotes the standard normal cdf. Taking γ = Φ−1(1− β)
√
α(1− α), this proves

that any

r = rnc
= (1− α)nc +Φ−1(1− β)

√
α(1− α)

√
nc + o(

√
nc) ∈ JncK (102)

is (asymptotically) training-conditionally valid, that is, satisfies Eq. (3). Furthermore,
the choice (102) is not improvable in general since Eq. (100) is an equality when FS is
continuous. Then, for any r satisfying Eq. (102) and any β′ ∈ (0, 1), when FS is continuous,
by Theorem 31, the (1 − β′)-quantile of the distribution Beta(rnc , nc − rnc + 1) of the

coverage 1− αrnc
(D) of Ĉrnc

satisfies

F−1
U(rnc :nc)

(1− β′) = 1− α+

√
α(1− α)

[
Φ−1(1− β′) + Φ−1(1− β)

]
√
nc

+ o

(
1

√
nc

)
. (103)

In addition, combining Lemma 23 and Eq. (81) shows that

r =

⌈
(nc + 1)

(
1− α+

√
log(1/β)

2(nc + 2)

)⌉
(104)

yields a training-conditionally valid prediction set Ĉr whatever nc ⩾ 1, provided r ∈ JncK.
For instance, when nc ⩾ max{2(α−1 − 1), (8/3)α−2 log(1/β)}, we have (nc + 1)(1 −
α) ⩽ (1 − α/2)nc and nc

√
nc + 2/(nc + 1) ⩾

√
nc

√
3/4 ⩾

√
2 log(1/β)/α, hence (nc +

1)
√

log(1/β)
2(nc+2) ⩽ ncα/2, so that r ∈ JncK. Note that the choice (104) is similar to what can

be deduced from [61, Proposition 2a], up to minor differences, and completely different
notation and proof; see also [8, Theorem 1] for a rewriting of this result with notation
closer to ours. If r satisfies Eq. (104), when FS is continuous, Eq. (39) and (41) show
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that for every β′ ∈ (0, 1), with probability at least 1− β′, the coverage 1−αr(D) of Ĉr is
smaller than

F−1
U(r:nc)

(1− β′) ⩽ 1− α+

√
log(1/β) +

√
log(1/β′)√

2(nc + 2)
+

1

nc + 1
. (105)

Notice that this upper bound is of order 1 − α + O(1/
√
nc) as Eq. (103), with only a

slightly worse dependence on α and β, β′.

I.2. Additional results: average of quantiles

In the one-shot FL setting, an alternative approach to quantile-of-quantiles is to use
an average of quantiles, as proposed by [38]. The idea is that each agent returns its
⌈(nj + 1)(1 − α)⌉-th smallest score, and then the central server averages these scores.
Using the notation of Section 2.2, the associated prediction set is

ĈAvg
ℓ1,...,ℓm

(x) :=

{
y ∈ Y : s(x, y) ⩽

1

m

m∑
j=1

Q̂(ℓj)(Sj)

}
(106)

with ℓj = ⌈(nj + 1)(1− α)⌉ for every j ∈ JmK. To the best of our knowledge, no coverage

guarantee has ever been proved for ĈAvg
ℓ1,...,ℓm

. We study this prediction set in this section,
showing that its marginal coverage strongly depends on the scores distribution, so that
one cannot always find some ℓj ∈ JnK such that the marginal coverage is larger than a
given 1− α.

I.2.1. First remark

A first simple remark is that when each agent j ∈ JmK has nj = 1 calibration point, then

one must take ℓj = 1 and the marginal coverage of ĈAvg cannot be close to 1 in general
since it is equal to

E

FS

 1

m

m∑
j=1

Q̂(1)(Sj)

 = E

FS

 1

m

m∑
j=1

S1,j

 ≈ FS

(
E[S]

)
(at least when m is large) by the law of large numbers. Therefore, ĈAvg cannot be margi-
nally valid for all distributions without assuming that nj ⩾ n0(α) for some large enough
n0(α), at least for a large part of the agents j ∈ JmK. The next result shows that such an
assumption is not sufficient.

I.2.2. Negative result for Bernoulli scores

We now prove that when nj = n for every j ∈ JmK, for every α ∈ (0, 1), some distribution

of the scores exists such that the marginal coverage of ĈAvg
ℓ1,...,ℓm

is smaller than 1 − α
whatever ℓj ∈ JmK, for arbitrary large m and n. Therefore, contrary to our quantile-
of-quantiles prediction sets of Section 3, the ℓj cannot be chosen in such a way that

ĈAvg
ℓ1,...,ℓm

is a marginally-valid distribution-free prediction set, even when the data set is
large enough.
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Proposition 38. In the setting of Section 2.2, with Assumption 1, for any ℓ1, . . . , ℓm ∈
JmK, the prediction set ĈAvg

ℓ1,...,ℓm
defined by Eq. (106) satisfies

P
(
Y ∈ ĈAvg

ℓ1,...,ℓm
(X)

)
⩽ P

(
Y ∈ ĈAvg

n,...,n(X)
)
. (107)

Assuming in addition that the scores Si,j , S are i.i.d. Bernoulli(p) random variables for
some p ∈ [0, 1], for every ℓ ∈ JnK, we have

P
(
Y ∈ ĈAvg

ℓ,...,ℓ(X)
)
= (1− p) + p · FU(n−ℓ+1:n)

(p)m (108)

where FU(n−ℓ+1:n)
is the cdf of the Beta(n − ℓ + 1, ℓ) distribution. Therefore, for every

c ∈ (0, 1), if m = mn and p = pn = 1− [log(1/c)/mn]
1/n are such that log(mn)/n → +∞

as n → +∞, we have

P
(
Y ∈ ĈAvg

n,...,n(X)
)
= (1− pn) + pn

[
1− (1− pn)

n
]mn −−−−−→

n→+∞
c . (109)

Eq. (107)–(109) show that for any α ∈ (0, 1), when the scores follow a Bernoulli(pn)
distribution with

pn = 1−
[
log[2/(1− α)]

mn

]1/n
and log(mn) ≫ n → +∞

—for instance, when mn ⩾ nn—, the marginal coverage of ĈAvg
ℓ1,...,ℓm

is strictly smaller

than 1−α when n is large enough, whatever the ℓj , j ∈ JmK. So, ĈAvg cannot be used as
a distribution-free marginally-valid prediction set.

Note that the counterexample provided by Proposition 38 relies on the non-robustness
of the empirical mean of the Q̂(ℓj)(Sj) defining ĈAvg

ℓ1,...,ℓm
: when the scores follow a Bernoulli

distribution, it suffices to have one Q̂(ℓj)(Sj) ̸= 1 to make the expected coverage strictly
smaller than 1 − p, and such an “outlier” event occurs with a large probability if m
is large enough, even when p is close to 1. This phenomenon enlightens the interest of
our quantile-of-quantiles approach, which does not have such a drawback thanks to the
robustness of the k-th empirical quantile.

Proof of Proposition 38. First, for every j ∈ JmK, Q̂(ℓj)(Sj) is a nondecreasing function

of ℓj , hence ĈAvg
ℓ1,...,ℓm

(X) is a nondecreasing function of ℓj , which implies Eq. (107).
Second, when the scores are i.i.d. and follow a Bernoulli(p) distribution, for any i ∈ JmK,

S(ℓ:n),i follows a Bernoulli distribution with parameter

P(S(ℓ:n),i = 1) =

n∑
k=n−ℓ+1

pk(1− p)n−k

(
n

k

)
= FU(n−ℓ+1:n)

(p)

by Eq. (65). Therefore, we have

P
(
Y ∈ ĈAvg

ℓ,...,ℓ(X)
)
= P

S ⩽
1

m

m∑
j=1

S(ℓ:n),j


= P(S = 0) + P(S = 1 and S(ℓ:n),j = 1 for every j ∈ JmK)
= (1− p) + p · P(S(ℓ:n),1 = 1)m = (1− p) + p · FU(n−ℓ+1:n)

(p)m ,

which proves Eq. (108).
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Third, when m = mn is such that log(mn)/n → +∞ as n → +∞, we have pn =
1 − [log(1/c)/mn]

1/n ∈ (0, 1) for n large enough, and pn → 1 and mn → +∞ when
n → +∞. So, Eq. (108) together with Eq. (68) shows that

P
(
Y ∈ ĈAvg

n,...,n(X)
)
= (1− pn) + pn

[
1− (1− pn)

n
]mn

= o(1) +
[
1 + o(1)

](
1− log(1/c)

mn

)mn

−−−−−→
n→+∞

exp
(
− log(1/c)

)
= c .

I.2.3. Uniform scores

We now study the case of scores following a uniform distribution.

Proposition 39. Suppose that Assumption 1 holds true. When the scores Si,j , S are
independent with a uniform distribution over [a, b] for some a < b, for any ℓ ∈ JnK, we
have

P
(
Y ∈ ĈAvg

ℓ,...,ℓ(X)
)
=

ℓ

n+ 1
. (110)

Proposition 39 shows that when the scores are uniform (and using this knowledge),

ĈAvg
ℓ,...,ℓ is marginally valid as soon as ℓ ⩾ (n + 1)(1 − α), which suggests to take ℓ =

⌈(n + 1)(1 − α)⌉. Nevertheless, the difference between the expected coverage and the
nominal coverage is then equal to

⌈(n+ 1)(1− α)⌉
n+ 1

− (1− α) ∈
[
0,

1

n+ 1

)
,

so its worst-case value 1/(n+1) is independent from m, which is not a desirable property.

Proof. By definition of ĈAvg, we have

P
(
Y ∈ ĈAvg

ℓ,...,ℓ(X)
)
= P

S ⩽
1

m

m∑
j=1

S(ℓ:n),j

 = E

FS

 1

m

m∑
j=1

S(ℓ:n),j


= E

 1

m

m∑
j=1

FS(S(ℓ:n),j)


since FS(t) = (t− a)/(b− a) for every t ∈ [a, b]. Therefore, we get that

P
(
Y ∈ ĈAvg

ℓ,...,ℓ(X)
)
= E

[
FS(S(ℓ:n),1)

]
= E[U(ℓ:n)] =

ℓ

n+ 1

by Eq. (39) in Appendix B.1 and Eq. (69) in Appendix G.1.

I.2.4. Exponential scores

We now study the case of scores following an exponential distribution.
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Proposition 40. Suppose that Assumption 1 holds true. When the scores Si,j , S are
independent with an exponential distribution with parameter λ > 0, for any ℓ ∈ JnK, we
have

P
(
Y ∈ ĈAvg

ℓ,...,ℓ(X)
)
= 1−

ℓ∏
j=1

(
1 +

1

m(n− j + 1)

)−m

. (111)

Proposition 40 shows that when the scores are exponential (and using this knowledge),

it is possible to choose ℓ such that the expected coverage of ĈAvg
ℓ,...,ℓ is larger than 1 − α,

provided that m and n are large enough. Indeed, by Eq. (111),

max
ℓ∈JnK

P
(
Y ∈ ĈAvg

ℓ,...,ℓ(X)
)

= P
(
Y ∈ ĈAvg

n,...,n(X)
)

= 1−
n∏

j=1

(
1 +

1

m(n− j + 1)

)−m

−−−−−→
m→+∞

1− exp

−
n∑

j=1

1

j

 −−−−−→
n→+∞

1 ,

where the first limit is taken for any fixed n ⩾ 1.

Proof of Proposition 40. A classical result about the order statistics of a sample of expo-
nential random variables [53] shows that for any i ∈ JmK,

S(ℓ:n),i
d
=

1

λ

ℓ∑
j=1

Ej,i

n− j + 1

where the (Ej,i)1⩽j⩽n are independent standard exponential variables. Therefore, we have

P
(
Y ∈ ĈAvg

ℓ,...,ℓ(X)
)
= E

FS

 1

m

m∑
j=1

S(ℓ:n),j


= 1− E

[
exp

(
− λ

m

m∑
i=1

S(ℓ:n),i

)]

= 1− E

exp
− 1

m

m∑
i=1

ℓ∑
j=1

Ej,i

n− j + 1


= 1− E

exp
−

ℓ∑
j=1

m∑
i=1

Ej,i

m(n− j + 1)


= 1−

ℓ∏
j=1

E

[
exp

(
−

m∑
i=1

Ej,i

m(n− j + 1)

)]
= 1−

ℓ∏
j=1

(
1 +

1

m(n− j + 1)

)−m

.

For the last equality, since 1/(m(n − j + 1)) is positive, Ej,i/[m(n − j + 1)] follows an

exponential distribution with parameter m(n−j+1). Therefore,
∑m

i=1
Ej,i

m(n−j+1) follows a

Gamma distribution with parameter (m,m(n− j+1)) and the value at −1 of its moment
generating function is equal to (1 + 1

m(n−j+1) )
−m since −1 < m(n− j + 1).

Appendix J: Additional experimental results

J.1. Generic comparison, equal nj

In this section, we provide additional results in the generic setting of Section 6.1.
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Fig 10. CentralM: log-log plot of ∆E as a function of m (left) or n (right). Lines show the approximation
log∆E ≈ log(c1)− γ1 log(m)− δ1 log(n) with c1, γ1, δ1 given by Table 1.
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Fig 11. QQM: log-log plot of ∆E as a function of m (left) or n (right). Lines show the approximation
log∆E ≈ log(c1)− γ1 log(m)− δ1 log(n) with c1, γ1, δ1 given by Table 1.
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Fig 12. QQM-Fast: log-log plot of ∆E as a function of m (left) or n (right). Lines show the approximation
log∆E ≈ log(c1)− γ1 log(m)− δ1 log(n) with c1, γ1, δ1 given by Table 1.
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Fig 13. CentralC: log-log plot of ∆qβ as a function of m (left) or n (right). Lines show the approximation
log∆qβ ≈ log(c2)− γ2 log(m)− δ2 log(n) with c2, γ2, δ2 given by Table 1.
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Fig 14. QQC: log-log plot of ∆qβ as a function of m (left) or n (right). Lines show the approximation
log∆qβ ≈ log(c2)− γ2 log(m)− δ2 log(n) with c2, γ2, δ2 given by Table 1.
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Fig 15. QQC-Fast: log-log plot of ∆qβ as a function of m (left) or n (right). Lines show the approxi-
mation log∆qβ ≈ log(c2)− γ2 log(m)− δ2 log(n) with c2, γ2, δ2 given by Table 1.
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Fig 16. CentralC: log-log plot of ∆q1−β as a function of m (left) or n (right). Lines show the approxi-
mation log∆q1−β ≈ log(c3)− γ3 log(m)− δ3 log(n) with c3, γ3, δ3 given by Table 1.
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Fig 17. QQC: log-log plot of ∆q1−β as a function of m (left) or n (right). Lines show the approximation
log∆q1−β ≈ log(c3)− γ3 log(m)− δ3 log(n) with c3, γ3, δ3 given by Table 1.
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Fig 18. QQC-Fast: log-log plot of ∆q1−β as a function of m (left) or n (right). Lines show the approx-
imation log∆qβ ≈ log(c3)− γ3 log(m)− δ3 log(n) with c3, γ3, δ3 given by Table 1.
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Fig 19. Conditionally-valid algorithms: log-log plot of ∆q1−β as a function of m (left) or n (right). Lines
show the approximation log∆q1−β ≈ log(c3)−γ3 log(m)−δ3 log(n) with c3, γ3, δ3 given by Table 1. Plain
lines and dots correspond to n = 10 (left) or m = 10 (right). Dashed lines and diamonds correspond to
n = 104 (left) or m = 104 (right).

J.2. Generic comparison, different nj

This subsection provides experimental results that complement the ones of Section 6.1.2.

J.2.1. With random nj

We start with experiments using nj (random) that are not equal. Figure 20 gives the
values of the nj for m ∈ {4, 25} in the experiments of Section 6.1.2. Figure 21 provides an
equivalent of Figure 6 right (performance of conditionally-valid algorithms as a function
of m) with ∆q1−β instead of ∆qβ .
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Fig 20. Experiment of Section 6.1.2: values of (nj)j∈JmK in increasing order. Left : m = 4. Right : m = 25.
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Fig 21. Different nj : log-log plot of the performance (∆q1−β) of the conditionally-valid algorithms con-
sidered in Section 6.1.2 as a function of the number of agents m. The total number of data points
N =

∑m
j=1 nj = 4000 is fixed and m describes the set of divisors of N . The values when m = 1, 2 for

QQC-(N/m) and QQC-nj are missing because there is no k such that the resulting sets are conditionally
valid.

J.2.2. Algorithms 5 and 6 with nj = N/m

As in Section 6.1.2, we now consider Algorithms 5 and 6 with nj = N/m for every h ∈ JmK,
that we call QQM-(N/m) and QQC-(N/m). Table 4 gives the values of the coefficients
of the robust log-linear regression obtained for QQM-(N/m) and QQC-(N/m) (following
the exact same procedure as for QQM, QQM-Fast, QQC, and QQC-Fast, as described
in Section 6.1.1). In Figure 22, we compare the performances (measured by ∆E) of the
marginally-valid algorithms QQM, QQM-Fast, and QQM-(N/m), as a function of either
m or n := N/m. In Figure 23, we compare the performances (measured by ∆qβ) of the
conditionally valid algorithms QQC, QQC-Fast, and QQC-(N/m), as a function of either
m or n = N/m.

∆E ≈ c1m−γ1n−δ1 ∆qβ ≈ c2m−γ2n−δ2 ∆q1−β ≈ c3m−γ3n−δ3

Method c1 γ1 δ1 c2 γ2 δ2 c3 γ3 δ3

QQM-(N/m) 0.248 0.952 0.521 0.259 0.467 0.509 0.417 0.520 0.511
QQC-(N/m) 0.408 0.521 0.507 0.462 0.992 0.552 0.713 0.507 0.505

Table 4
Estimated parameters of the log-linear model log y = log(ci)− γi log(m)− δi log(n) where y is either
∆E, ∆qβ or ∆q1−β , for QQM-(N/m) and QQC-(N/m), introduced in Section 6.1.2; See also text of

Section 6.1.1 for details.
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Fig 22. Marginally-valid algorithms: log-log plot of ∆E as a function of m (left) or n (right). Lines show
the approximation log∆E ≈ log(c)−γ log(m)− δ log(n). Plain lines and dots correspond to n = 10 (left)
or m = 10 (right). Dashed lines and diamonds correspond to n = 104 (left) or m = 104 (right).
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Fig 23. Conditionally-valid algorithms: log-log plot of ∆qβ as a function of m (left) or n (right). Lines
show the approximation log∆qβ ≈ log(c)−γ log(m)−δ log(n). Plain lines and dots correspond to n = 10
(left) or m = 10 (right). Dashed lines and diamonds correspond to n = 104 (left) or m = 104 (right).

J.3. Real data: additional results on individual data sets

In this section, we present in Figures 24 to 31 the results of the experiments of Section 6.2
on individual data sets.
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Fig 24. Coverage (left) and average length (right) of prediction intervals for 50 random learning-
calibration-test splits. The miscoverage is α = 0.1, β = 0.2, and the calibration set is split into m = 80
disjoint subsets of equal size n = 10. The white circle represents the mean and the name of the data set
is located at the top of each plot.
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Fig 25. Coverage (left) and average length (right) of prediction intervals for 50 random learning-
calibration-test splits. The miscoverage is α = 0.1, β = 0.2, and the calibration set is split into m = 10
disjoint subsets of equal size n = 80. The white circle represents the mean and the name of the data set
is located at the top of each plot.
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Fig 26. Same as Figure 24 (see its caption) with m = 80 and n = 10.
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Fig 27. Same as Figure 25 (see its caption) with m = 10 and n = 80.
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Fig 28. Same as Figure 24 (see its caption) with m = 80 and n = 10.
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Fig 29. Same as Figure 25 (see its caption) with m = 10 and n = 80.
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Fig 30. Same as Figure 24 (see its caption) with m = 40 and n = 10.
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Fig 31. Same as Figure 25 (see its caption) with m = 10 and n = 40.
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