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ABSTRACT
Physical models of musical instruments offer an interesting tradeoff between computational
efficiency and perceptual fidelity. Yet, they depend on a multidimensional space of user-defined
parameters whose exploration by trial and error is impractical. Our article addresses this issue
by combining two ideas: query by example and gestural control. On one hand, we train a deep
neural network to identify the resonator parameters of a percussion synthesizer from a single audio
example via an original method named perceptual—neural—physical sound matching (PNP). On
the other hand, we map these parameters to knobs in a digital controller and configure a musical
touchpad with MIDI polyphonic expression. Hence, we propose a multisensory interface between
human and machine: it integrates haptic and sonic information and produces new sounds in
real time as well as visual feedback on the percussive touchpad. We demonstrate the interest of
this new kind of multisensory control via a musical game in which participants collaborate with
the machine in order to imitate the sound of an unknown percussive instrument as quickly as
possible. Our findings show the challenge and promise of future research in musical "Human–AI
parternships".

1. INTRODUCTION

Can a musical instrument respond to multiple senses at once? Over the past four decades,
the development of machine listening technologies have shown the value of integrating auditory
interactions into cyber-human musicianship [1]. For example, machine listening in Antescofo
allows a soloist to control the pace of computer-generated accompaniment in real time, simply by
playing through a microphone [2]. Another example is found in Orchidea, a software framework
for target-based automatic orchestration [3]. More recently, the advent of neural audio models has
paved the way towards end-to-end generation of polyphonic music from a live audio input [4].
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Meanwhile, the research community on new interfaces for musical expression (NIME) has
built custom controllers for sound generation [5]. Pressure-sensing surfaces offer a successful
example of such controllers: indeed, their layouts are reminiscent of drum membranes, making
them intuitive to percussionists [6]. Compared to the conventional setup of mouse and keyboard,
touch surfaces have numerous advantages for live musical performance: finer control of stroke
position and velocity, offering a more embodied sense of rhythm and easier visual coordination
with other musicians [7].

Yet, compared to the extensive prior work on unisensory control—i.e., either auditory or
tactile—the important question of multisensory control—both auditory and tactile—remains
insufficiently explored. This gap in knowledge is partly attributable to a disconnect between music
information retrieval (MIR) and contemporary musicianship [8]. In addition, the collection of
human judgments for interaction design is costly and time-consuming: thus, supervised machine
listening models must be trained on synthetic data or surrogate tasks. Lastly, general-purpose
“foundation models” for audio (e.g., MERT [9]) are certainly effective for MIR tasks but remain
difficult to interpret for humans. This raises the long-standing issue of coming up with an intuitive
mapping for timbre as a musical control structure [10].

In this paper, we propose a coherent framework for multisensory control of musical sounds,
integrating auditory, haptic, and visual sources of information. For this purpose, we build upon
well-established knowledge on physical modeling synthesis. Compared to waveform-based neural
audio synthesizers, physical models have the advantage of being directly interpretable in terms
of sound production. This interpretation allows interaction design with enhanced iconicity; i.e.,
the cognitive analogy between human gesture and machine response. However, the exploration of
musical timbre should not be solely be guided by physics but also by auditory perception, as Risset
famously advocated [11]. Hence, we supplement the physical synthesis model by a state-of-the-art
machine listening model which is trained to recover synthesizer controls from audio according to
a perceptually plausible learning objective. In practice, the machine listening prediction is judged
to be imperfect. Yet, since it is interoperable with the synthesizer, it may serve as a preset which is
learned on the fly and fine-tuned by humans.

Loosely speaking, human and machine “listen together” to a given sound and “search
together” for a matching synthetic sample. More precisely, they build a kind of human–computer
partnership [12]. An important prior publication on this topic is [13], who developed acoustical
and behavioral search heuristics for interactive sound design of electric vehicles. In comparison,
the originalities of our work are: physical modeling synthesis; gestural mapping with iconicity;
perceptual–neural–physical sound matching (PNP); and the collection of real-time behavioral
data beyond mere judgments of pleasantness.

2. METHODS

2.1. Physical Model

The vertical displacement x of a rectangular drum membrane in the Cartesian coordinate
system u = {u1,u2} can be described by a fourth-order partial differential wave equation in
dimension two. Namely, for t ≥ 0:(

∂2x

∂t 2
(t ,u)− c2∇2x(t ,u)

)
+S4(∇4x(t ,u)

)+ ∂

∂t

(
d1x(t ,u)+d3∇2x(t ,u)

)
= 0

S, c, d1, d3 are respectively material stiffness, traveling sound speed through the membrane,
frequency-independent and frequency-dependent damping coefficients. The membrane has a
length of l and width of lα, α ∈ (0,1]. It is bounded at zero at all time and set to vibrate when
releasing at an initial vertical displacement of h at a given location u0.

We adopt the well-established Functional transformation method (FTM) [14] to solve the
above PDE. FTM transforms the PDE into subsequently Laplace and Sturm-Liouville domains to



Proceedings of INTER-NOISE 2024

Figure 1: Left: screenshot of the synthesizer plugin. Right: Experimental setup of the sound
matching game.

derive an algebraic solution of SLT ◦L (x)(s,µ) in the functional spaces. Then, it applies inverse
Laplace transform and inverse Sturm-Liouville transform to obtain a solution in space–time. The
solution follows a modal synthesis form

x(t ,u) = ∑
m∈N2

Km(u, t )exp(σm t )sin(ωm t ), (1)

with modal frequencies ωm, modal amplitudes Km and modal exponential decay rates σm . The
modal coefficients are

ω2
m =

(
S4 − d 2

3

4

)
Γ2

m +
(
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2

)
Γm − d 2

1

4
(2)

σm = d3
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Km(u, t ) = ym
u δ(t )sin

(πm1u1

l

)
sin

(πm2u2

lα

)
(4)

where Γm = π2m2
1/l 2 +π2m2

2/(lα)2, and ym
u is the mth coefficient associated to the eigenfunction

sin(πmu/l ) that decomposes yu(u).
To offer more intuitive control, we reparametrize the PDE parameters {S,c,d1,d3,α} into

{ω1,τ1, p,D,α}, which better informs the perceptual quality of the sounds. This conversion
is detailed in [15], where {ω1,τ1, p,D,α} correspond to respectively fundamental frequency,
duration, inhomogeneous damping, inharmonic dispersion and aspect ratio of the membrane.

We implement the above physical modeling synthesis algorithm in a C++ plugin using
JUCE library. The compiled format is compatible with standard digital audio workstations. The
plugin, as shown in Figure 1 (left), maps the received MIDI values of the 5 knobs labeled "Pitch",
"Sustain", "Damp", "Inharmonicity", and "Squareness", to the control parameters {ω1,τ1, p,D,α},
respectively. When a MIDI note is triggered, its velocity is mapped to the initial displacement h.
An additional visualization panel is provided to see the shape of and the excitation position on
the membrane. Polyphonic percussive sound is rendered in real time, given the input parameters
and excitation positions (X ,Y ). The plugin is open source and available on Github 1.

2.2. Machine listening

Sound matching involves distinguishing spectrotemporal characteristics and identifying
the controls instrumental to narrowing the perceived difference. Such a task may be significantly
eased with machine listening. In [16], several EfficientNet-B0 type convolutional neural networks
are trained with various loss functions to predict the synthesis input to the FTM drum synthesizer
of a given target sound. The dataset comprises 100k synthesized sounds in total, with a

1FTM Synth Github repository: https://github.com/Synthesis/FTMSynth
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train/test/validation split of 8 : 1 : 1. Fundamental frequency ω1 ranges between 40 Hz and 1 kHz;
duration τ1, between 400 ms and 3 s; inhomogeneous damping rate p, between 10−5 and 0.2;
frequential dispersion D , between 10−5 and 0.3; and aspect ratio α, between 10−5 and 1.

Using two perceptually relevant spectral representations as evaluation metrics: the L2

distance of Joint time–frequency scattering coefficients and multiscale spectrogram loss, the
best accuracy was achieved via pretraining with parameter loss and finetuning with perceptual–
neural–physical (PNP) loss. To incorporate machine listening into the sound matching pipeline,
we select two model checkpoints: the best-performing PNP model and the previous state-of-
the-art model trained with parameter loss. For a given target sound, we extract its constant-Q
transform (CQT) coefficients as done in [16] and apply one forward pass through the loaded
checkpoint models. The sound matching output predicted by the above two models will be used
to initialize the probing synthesizer in the subsequent sound matching experiments.

2.3. Pressure-sensitive controller

The Erae Touch, manufactured by Embodme, is a rectangular pressure-sensitive controller
for MIDI Polyphonic Expression (MPE)2. Its 18-inch silicone touch surface allows for detecting
expressive gestural control at precise x/y locations. An LED matrix under the pressure-sensitive
surface serves as a display for visual feedback, and the device’s layout can be fully customized
using the Erae Lab software.

For the needs of this experiment, we are using a single drum pad covering the entire surface
of the device. The location of the user’s input on the drum pad is sent to the plugin via MIDI, and
mapped to the excitation position (X ,Y ) in our physical model.

2.4. Sound Matching Experiments

Our corpus comprises five synthetic percussive sounds generated by the physical model at
position (0.4l ,0.4lα). They are selected at random to have varied spectral compositions evoking
different materials. Our goal is to observe how human subjects match these given target sounds
with and without the aid of a machine listening model.

We recruit 16 participants of all genders, aged 23–59, with varied amounts of musical
experience. The experimental setup consists of two Erae Touch drum pads and a MIDI controller
(Behringer X-Touch Mini) in Fig. 1 (right).

The target sound is programmed onto the right-hand Erae Touch and is unalterable. The
participant is asked to adjust five knobs on the MIDI controller controlling the left-hand Erae
Touch, such that its sound approaches as close as possible to the target. We present the five sounds
in the same order to all participants. We initialize the left-hand Erae Touch to a drum either at
random, or at the predicted output of a neural network trained with PNP loss or parameter loss.
Note that despite being a single sound, each target implies a unique physical drum capable of
eliciting a far bigger variety of sounds on the full touch surface.

At each session, the participant is introduced to their task and explained the functionalities
of each control knob. They have a few minutes of "practice time" to freely explore the synthesizer
before starting the game. For each sound, the participants are given 4 minutes as the maximum
time limit, during which they are free to explore the entire drum surface and find the optimal
matching parameter set. The participants are also allowed to stop early if they do not think any
improvement can be made.

We record the matching trajectories of each participants, including the MIDI notes (note
on/note off) and CC (Control Change) events triggered over the course of four minutes.

2Official website: https://www.embodme.com/erae-touch

https://www.embodme.com/erae-touch
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(a) Random initialization (b) PNP-predicted initialization

Figure 2: Example trajectories of a participant matching the target sound from a given
initialization. The two vertical dashed lines in bright red and black are the global minima of
multiscale spectral loss (MSS) and parameter loss (P-loss), respectively. The purple and green
vertical lines are the target and probe Erae Touch hits by the participants. PNP stands for
perceptual–neural–physical sound matching.

3. RESULTS AND DISCUSSIONS

3.1. Hypothesis

Given the high accuracy of sound matching pre-trained models in Section 2.2, we
hypothesize that machine listening-aided sound matching reaches higher accuracy than
matching from random.

3.2. Evaluation

We use individual parameter loss, mean squared error of parameters’ losses (P-loss), and
multiscale spectrogram loss (MSS) [17] as evaluation metrics of the sound matching accuracy.
Multi-scale spectrogram loss is the added logarithmic and linear L1 distance of spectrograms
computed with various window sizes. We adopt the implementation in [18] and its default settings.
While P-loss evaluates the precise parametric error, MSS implies perceived perceptual difference.
The two metrics are correlated in general but may differ in certain parameter regions. For example,
two sounds with overlapping partials but different fundamental frequencies may have a much
more significant P-loss than MSS loss. As indicated in the upper subplots of Fig. 2, the minimum
accuracy achieved by P-loss and MSS loss do not always coincide at the same time stamp.

We choose to use the matched sound with minimal error to compare performance across
trials and participants. In general, it is difficult to measure one’s performance when no clear
indication of the "finalized satisfactory answer" is provided by the participant. Extracting the last
matched sound in time overlooks the fact that a more similar sound may have been attempted
before. Taking into account only the sound with minimal error however, risks concealing
the diverging trajectory afterwards. Considering the difficulty of our task and the frequent
occurrences of participants diverging from the initialized sound given by machine listening
models, we consider minimal error an overall better indicator of each trial’s performance.

3.3. Results and discussions

We report minimum parameter loss (P-loss) and multi-scale spectrogram loss (MSS) for all
matching trajectories in Fig. 3, accounting for 16 participants and 3 initialization methods.

Despite having varying expertise, all participants are able to improve upon the initialized
sound. The overall trend of the minimum accuracy can be summarized as follows: for target
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Figure 3: Minimum sound matching error achieved with each of the five sounds in the corpus.
Each row corresponds to a different sound. In blue is minimum Multi-scale spectrogram loss
(MSS) of different trials, in red is minimum parameter loss of different trials. Black vertical
lines indicate the mean value across trials. Yellow circles indicate the MSS and Ploss distance at
initialization.

sound 1 and 3, machine listening models improve sound matching accuracy on both P-loss and
MSS metrics. For target sound 2, machine listening models improve perceived difference but
deteriorate P-loss. For targets 4 and 5, machine listening models do not have an effect on the
minimum achieved accuracy.

For a given target sound and initialization setup, the performance across trials performed by
different participants may vary a lot. For example the initialization at random trials of target sound
3 have a significant standard deviation, whereas the trials corresponding to starting from PNP
model prediction for target sound 1 has very small variance in performance. These discrepancies
in performance may result from either expertise, complexity of the sounds themselves, fatigue as
the experiment proceeds, among other factors. We find the sound matching performance overall
unrelated to years of musical practice. Failing to understand the control knobs associated to high
level description of the partials distribution such as dispersion and damping, certain participants
may enter a phase of frustration and assert random attempts to fill the time limit, rendering the
data irrelevant. Certain knobs also have granularities that do not vary linearly with perception.
In these circumstances, it is easy to diverge suddenly and hard to return. Overally speaking, the
difficult nature of this task posed complications in evaluating the performance consistently.

4. CONCLUSION

In this paper, we have combined physical modeling synthesis, gestural mapping, machine
listening with neural networks, and visual feedback of haptic interactions. The overarching goal
behind this framework is to better understand the synergy of multiple senses (hearing, touch,
vision) in the creative work of sound designers and electronic music artists. For this purpose,
we have implemented a 2D rectangular drum physical model in C++ and integrated it with a
pressure-sensitive rectangular controller. With this integration, the framework produces both
high-quality audio data and high-quality gestural data at an affordable cost. We have recruited
16 participants to partner with the machine in sound matching tasks on a corpus of five sounds.
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We have compared the influence of initialization: i.e., either random or informed by the predicted
output of two machine listening models. Our main finding is that human approaches to sound
matching are highly varied and cannot be reduced to be one single strategy. At the moment, our
hypothesis seems to hold for certain sounds but not for others; there is no strong evidence of
machine listening aiding the convergence of sound matching in general. Future work is needed
to analyze the acquired multisensory data in finer detail and understand how machine listening
can become a reliable feature in pressure-sensitive touch surfaces. In particular, the machine
listening component in our framework informs the human only at the initial stage; the question
of designing sustained multisensory interactions for time-efficient sound design remains open.
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