
HAL Id: hal-04579719
https://hal.science/hal-04579719v1

Submitted on 18 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A methodology for the 3D characterization of surfaces
using X-ray computed tomography: Application to

additively manufactured parts
Florian Steinhilber, Joel Lachambre, David Coeurjolly, Jean-Yves Buffiere,

Guilhem Martin, Remy Dendievel

To cite this version:
Florian Steinhilber, Joel Lachambre, David Coeurjolly, Jean-Yves Buffiere, Guilhem Martin, et
al.. A methodology for the 3D characterization of surfaces using X-ray computed tomography:
Application to additively manufactured parts. Additive Manufacturing, 2024, 84, pp.104144.
�10.1016/j.addma.2024.104144�. �hal-04579719�

https://hal.science/hal-04579719v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


A methodology for the 3D characterization of surfaces using X-ray11

computed tomography: application to additively manufactured parts12

Florian Steinhilbera, Joel Lachambrea, David Coeurjollyb, Jean-Yves Buffierea, Guilhem Martinc, Remy13

Dendievelc14

aINSA Lyon, CNRS, MATEIS, Villeurbanne, F-69621, France
bUniversité de Lyon, CNRS, INSA Lyon, UCBL, LIRIS, Villeurbanne, F-69621, France
cUniversité Grenoble Alpes, CNRS, Grenoble INP, SIMAP, Grenoble, F-38000, France

Abstract15

Many studies highlight the significance of three-dimensional surface topography characterization in assessing
its effect on the mechanical or functional properties of materials. This is especially obvious for parts made
by additive manufacturing (AM), known for their complex shape and surface topographies. However, a vast
majority of 3D characterizations have constraints regarding the macroscopic geometry of the parts they can
probe. At the microscale, they are also unable to account for hidden surface features, e.g. notches hidden
by unmelted powder particles. Even with the use of X-ray Computed Tomography (XCT) − a tool with
the potential to circumvent these issues − data is often reduced to 2D or 2.5D formats for easier analysis,
but this leads to a loss of information. This underscores the need for XCT data post-treatment tools to
perform thorough 3D surface characterizations. Herein, we introduce a methodology for local roughness and
curvature characterization of surfaces of complex shapes using XCT. This method has been designed to be
user-friendly, especially for those without extensive data analysis expertise. It provides a comprehensive 3D
characterization and efficiently tackles the issues caused by hidden features. After a detailed description of
our methodology, we give a first illustrative example based on architected structures fabricated by Electron
Powder Bed Fusion (E-PBF). By integrating roughness and curvature metrics, we also derive a parameter
indicative of the stress concentrations caused by surface irregularities.

Keywords: 3D surface characterization, X-ray computed tomography, roughness, curvature, additive16

manufacturing17

1. Introduction18

Surface topography has a large influence on many functional and mechanical properties of materials.19

In biomedical applications, implants surface roughness is for instance suspected to have an impact on20

osseointegration [1, 2] and has been shown to foster bacteria adhesion [3, 4]. For load-bearing structures,21

surface topography alone may also lead to premature failure if poorly controlled [5, 6]. A rough surface will,22

for example, have a large area of contact with the environment, possibly accelerating corrosion mechanisms23

[7]. The presence of surface defects also creates stress concentrations which can lead to crack initiations and24

thus result in poor fatigue properties [8]. Rough as-built surfaces inherited from additive manufacturing are25

also more prone to hydrogen embrittlement than polished ones [9]. All these examples emphasize the need26

for a detailed characterization of surface topography.27

In parallel, advancements in material processes are leading to increasingly intricate surfaces. This is28

particularly the case in Additive Manufacturing (AM), which is gaining considerable attention. Since AM29

allows greater design freedom, additively manufactured parts often show more complex shapes than those30

obtained with conventional processes. Architected structures are a typical example [10, 11]. In such cases,31

standard contact-based roughness instruments or optical systems provide incomplete information due to32

limited access to the surface. Additionally, at the micro-scale, surfaces inherited from AM exhibit a large33

variety of surface features, such as notches, unmelted powders, or dross [12, 8, 13]. The interaction between34
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all those surface features can make surface analysis even more challenging. For instance, overhanging surface35

features or unmelted powder particles can hide underlying notches, as depicted in Fig.1. This complexity36

highlights the need for both instruments and analysis tools that can accurately characterize complex 3D37

structures and surface features.38

Perpendicular
notch

2.5D

3D
by XCT

Oblique notch

Notches hidden
by a spatter or

powder particles

Figure 1: Schematic showing the interest of characterizing AM as-built surfaces in 3D using XCT. Several examples are shown,
corresponding to different surface defects. The orange lines show surfaces as seen by a 2.5D characterization tool which probes
the surface from a single point of view and without the ability to look through matter. The blue lines correspond to the true
surfaces, i.e. the one which would ideally be obtained through XCT using a high resolution, with no noise nor artifacts. In two
of the three examples shown, the 2.5D surface characterization fails to account for notches because they are hidden by other
surface features.

While many studies report 3D roughness analyses, stricto sensu most of them are not fully 3D mea-39

surements. These approaches have limitations in terms of sample geometry and surface features they can40

characterize. These limitations can originate from the instruments used for raw surface acquisition, such41

as interferometers or confocal microscopes. The data representation used for subsequent analysis can also42

lead to information loss. To clarify this, key concepts will be introduced hereafter to differentiate existing43

approaches for 3D surface characterization and their actual capability to characterize complex 3D structures44

and surface features.45

Surface characterization often involves optical instruments like white light interferometry or confocal46

microscopy [14, 15, 16, 17, 18]. These instruments use unidirectional light sources, characterizing the surface47

from a single perspective. Consequently, surface topography is projected onto a single plane − the one48

perpendicular to the light source. This yields height maps with a single z-coordinate value for each (x,y)49

point on a regular grid. As the third (z-axis) dimension is only partially used, this data representation can50

be referred to as 2.5D [19, 20]. Accordingly, instruments like interferometers or confocal microscopes will be51

termed 2.5D instruments hereafter.52

2.5D characterization is feasible for surfaces with simple geometries like planes or cylinders. For complex53

surfaces, irregularities often prevent the measurement tool from accessing certain areas. This is obvious in54

AM parts with sophisticated geometries. Even when aiming at characterizing flat and accessible regions,55

limitations persist if the surface topography includes hidden features. This effect is depicted in Fig.1. Orange56

lines in Fig.1 show that a 2.5D surface characterization manages to describe a notch only if the latter is57

perpendicular to the surface. It fails if the notch is oblique or hidden by partially melted powders and/or58

spatters.59

In order to overcome such limitations, developments have recently been made in the field of free-form60

metrology [21, 22], which aims at characterizing surfaces of complex and arbitrary shapes. Raw surface61

acquisition can now be achieved through instruments like structured light scanners [23, 24] or commercial62

X-ray tomographs [25, 26, 16, 20]. These tools offer omnidirectional characterization, thereby facilitating63

the characterization of complex surfaces. To fully harness this omnidirectional capability, alternative data64

representations are required. The 2.5D representation limits each (x,y) point to only one z-coordinate,65

imposing a substantial constraint. To mitigate this, free-form metrology adopts surfaces represented as66

meshes or point clouds composed of three-dimensional points (x,y,z). Multiple points with identical x and67
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y coordinates can thus exist.68

While the free-form surface representation is versatile, it requires novel analysis techniques different from69

2.5D methodologies, e.g. for surface filtering. Although some studies have employed free-form representa-70

tions [25, 27, 22, 28], this approach is rarely used. Even when surfaces are captured using methods like71

XCT, they are often reduced to a 2.5D height map for subsequent analysis [16, 20, 29, 30, 31]. This trend72

stems from the fact that surface analysis operations, such as filtering of roughness parameters measurement,73

can be much more complicated when using a complete 3D representation instead of a simpler 2.5D one [21].74

Thus, some technical issues still need to be overcome to obtain more robust results. Even though the75

existing solutions may be sufficient, they are often sophisticated and therefore not necessarily user-friendly.76

They require advanced computer programming skills to be implemented and important computational re-77

sources. Further work is thus needed to address these challenges and promote the broader adoption of78

free-form metrology.79

Another distinction can be made between instruments that are able to look through matter (e.g. XCT)80

and those that are not (e.g. structured light scanning). Although 3D light scanning enables the charac-81

terization of complex geometries, it will actually be limited for parts with inaccessible areas (e.g. lattice82

structures or internal channels) or too complex/small surface features. On the contrary, the ability of XCT83

to look through matter and have access to internal features enables − at least in theory − the characteri-84

zation of any shape and account for any hidden surface features. Hence, as depicted by blue lines in Fig.1,85

XCT succeeds in properly accounting for complex 3D surface features such as notches hidden by unmelted86

powder, provided that the spatial resolution is sufficiently high.87

Note that for now, the spatial resolution accessible for each instrument has not been discussed yet.88

Typically, 2.5D tools achieve superior resolutions compared to XCT, even though recent progress in XCT89

has made micron-level resolutions feasible using laboratory sources.90

Tab.1 summarizes the different factors that can influence the capability of the various instruments to91

properly characterize surfaces with intricate 3D macroscopic shapes and/or hidden microscopic surface92

features.93

2.5D instruments Structured light scanning XCT(e.g. interferometers)
Source directionality Unidirectional Omnidirectional Omnidirectional
Data representation 2.5D 3D possible 3D possible

Ability to look through matter No No Yes
Possible to characterize No Yes Yes
complex 3D components
Possible to account for No No Yes
hidden micro-features

Table 1: Factors influencing the ability of different instruments to properly characterize surface with complex macroscopic
shapes and hidden surface micro-features (e.g. notches hidden by unmelted powder particles).

Beyond the question of performing a true 3D surface characterization, it may be important to question94

which information is the more relevant to extract from it. Most often, roughness characterization is reduced95

to the analysis of a few roughness parameters that characterize the height distribution of the surface.96

However, depending on the aim of the study, the surface height distribution may not contain all relevant97

information. For instance, the stress concentration caused by surface notches is known to be dependent not98

only on the notch depth (quantified by parameters such as the maximum notch depth S v) but also on the99

curvature at its root [32].100

Hence, various models exist that attempt to predict fatigue life by combining roughness and curvature101

measurements. Examples include the models of Neuber [33], Arola and Ramulu [34], and Lee et al. [35].102

Although these models show some conclusive results, they were also found to produce inaccurate estimations103

in some cases [36, 37]. It is worth noting that they have mostly been applied to regular machined surfaces104
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[38, 39, 40, 37]. Although some recent studies have attempted to extend it to as-built surfaces inherited105

from AM [35, 41], this area requires further exploration.106

From a more technical point of view, some improvements could be made to enhance curvature measure-107

ments and the resulting mechanical prediction accuracy. Many of the studies performed them from 2.5D108

[42, 40] or 2D [35, 39, 38, 37, 41, 36] data. Such an approach might significantly bias curvature values,109

similar to the issues observed with roughness measurements. Moreover, when calculating curvature in 2.5D110

or 3D, various definitions can be considered, e.g. principal, Gaussian, and mean curvature. The choice111

among these can significantly affect the results. Consequently, it is crucial to select a relevant one based112

on the intended application. As for now, there is a lack of clear guidance for choosing one definition over113

another. These issues are an additional motivation for this study.114

This study introduces a workflow for 3D surface characterization using XCT, measuring both roughness115

and curvature. By combining these two measurements, we propose a parameter representative of the severity116

of surface features with respect to mechanical properties. The aim is also to demonstrate the benefit of117

characterizing surfaces inherited from AM as free-form surfaces, taking into account hidden micro-features118

and opening new avenues to characterize components showing intricate macroscopic shapes. This approach119

was designed to be applied to AM samples, but it could also be employed in a broader context, e.g. for as-120

cast surfaces. An effort was made to ensure its accessibility, i.e. without the need for advanced programming121

and image analysis skills.122

For more details about the presented methodology and its application, the reader is redirected to the123

PhD thesis of Steinhilber [43]. In particular, the methodology is used to study the influence of surface124

roughness on fatigue properties of Ti64 samples produced by Electron beam Powder Bed Fusion (E-PBF)125

and Laser Powder Bed Fusion (L-PBF).126

2. Materials and XCT data acquisition127

Different samples were used to demonstrate the application of the developed workflow. All were man-128

ufactured by Electron Powder Bed Fusion (E-PBF) using an ARCAM A1 machine and Ti64 powders. To129

characterize their as-built surface, no surface treatment was applied. Powder grain size distribution ranged130

from 60 µm to 100 µm and the layer thickness was set to 50 µm. More details about the processing conditions131

can be found in [8]. To characterize their surface, samples were scanned using laboratory XCT.132

A 2 mm vertically built cylinder was first used as a first simple example. It was scanned using a cone beam133

phoenix | x-ray V | tome | x laboratory tomograph with a voltage of 90 kV, a current of 240 µA, an exposure134

time of 333 ms and 720 projections. No physical filter was used during the scan acquisition. Reconstruction135

was performed using a standard filtered back projection algorithm (phoenix datos x software). The voxel136

size used was 2.5 µm, but volumes were downscaled by a factor 2 before further analysis1. The resulting137

voxel size is therefore 5 µm.138

Two as-built Ti64 architected structures were also characterized: a gyroid structure [45, 46, 11] and an139

octet-truss lattice structure, see Fig.2.140

XCT scans were made with an RX Solutions laboratory tomograph using a Cu filter to mitigate beam141

hardening artifacts. The main acquisition parameters are summarized in Tab.2. Two scans were acquired142

at different resolutions for the gyroid structure. For all architected structures, reconstructions were done143

using an implementation of FDK algorithm [47].144

All XCT scans were converted to 8-bit after reconstruction to reduce data size. After conversion, volumes145

size were 158 Mo, 4.6 Go and 5.1 Go for the cylinder, the gyroid (10 µm scan) and the octet-truss lattice146

respectively.147

1The data were retrieved from the work of Persenot [44], who performed this downscaling to reduce data size.
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Figure 2: Ti64 architected structures fabricated by E-PBF. (a) Gyroid structure. (b) Octet-truss lattice structure.

Sample Gyroid Gyroid Octet truss
Voxel size 5 10 10(µm)

V (kV) 230 230 230
I (µA) 35 70 58

Cu Filter (mm) 1.4 1 1
Number of 3616 3616 2240projections
Exposure 2000 333 500time (ms)

Table 2: Acquisition parameters for XCT scans performed using the RX Solutions laboratory tomograph.

3. 3D surface characterization methodology148

3.1. Surface segmentation149

The first step of surface characterization is the segmentation, i.e. the extraction of the surface from XCT150

scans. Since it can be affected by noise, a noise-reducing filter is applied to the reconstructed volume before151

further calculations. An edge-preserving filter is used to preserve a detailed description of the surface [48].152

A median filter is used because it provides satisfying results while keeping computing time reasonable for153

large volumes.154

After filtering, the sample is segmented from the volume through thresholding. Here, thresholding aims155

at separating the two main peaks of the grayscale histogram, which will be referred to as dark (voids) and156

bright (sample) peaks − see Fig.3a. Several methods can be used to automatically determine an optimal157

threshold. One of the most popular is Otsu’s method [49, 50]. The latter makes the assumption that all158

voxels are separated into two classes based on their gray level while minimizing the inter-class variance. It159

yields in most cases consistent and robust results.160

However, it may not always be the best choice if one is looking for some specific surface features such as161

surface defects that will be prone to initiate failure during mechanical loading. In this specific case, partially162

melted particles are unlikely to be of much interest. They can even hide more severe surface defects such163

as notches. Contrariwise, deep and sharp notches are very often the most critical defects and are therefore164

of great interest. However, the sharpest ones are often difficult to segment from XCT data, because the165

corresponding voxels show intermediate grayscale values. This leads Otsu’s method to consider many of166

them as foreground voxels, erasing notches from the surface although they are the most interesting defects167

when questions related to crack initiation and failure must be tackled.168

This effect can be seen in Fig.3b and Fig.3c. Fig.3b shows an XCT radial slice of a 2 mm as-built E-PBF169

cylinder, where two deep notches can be seen. Fig.3c shows in orange the pixels considered as foreground170

5

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4647235

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



using Otsu’s threshold for segmentation. It can be seen that both notches are not properly accounted for171

when using Otsu’s threshold, although they are clearly visible on the grayscale image in Fig.3b.172

A threshold corresponding to a higher grayscale value than Otsu’s one will be certainly more adapted to173

capture such severe surface defects. Indeed, both partially melted particles and sharp notches typically show174

intermediate grayscale values because they are at the interface between matter and air. Thus, selecting a175

threshold that stands at the end of the plateau − just at the left border of the histogram’s bright peak −176

will enable to discard some parts of unmelted powder particles while better capturing sharp notches.177

The thresholding method proposed is inspired by the triangle threshold introduced by Zack et al. [51]. It178

is thereafter referred to as the Triangle Threshold for Bimodal Histograms (TTBH). Its principle is described179

schematically in Fig.3a.180

Smooth histogram

Normalized histogram

Black White

1

Maximum
abscissa

Maximum
abscissa

Bright
peak

Dark
peak

1

200 µm

Otsu (118)

200 µm

TTBH (181)

200 µm

Notches

Powder

a

b c d

Figure 3: (a) Definition of the TTBH, illustrated based on the E-PBF cylinder normalized grayscale histogram. (b) XCT 8-bit
radial slice showing two sharp notches and a partially melted powder (voxel size = 5 µm). (c) Otsu’s threshold application
(orange area) (d) TTBH application (purple area).

First, if the histogram is too noisy, it may be useful to smooth it. In the present work, a moving average181

of size 10 is applied. Second, the histogram is normalized so that both the bright peak maximum and the182

distance between the two histogram peaks are equal to 1. Finally, the desired threshold is simply the gray183

value which maximizes the distance d as defined in Fig.3a. As required, the obtained threshold is located184

just at the left edge of the bright peak. Fig.3d shows that the two sharp notches are clearly better captured185

using the TTBH than by Otsu’s method. The powder grain is cropped, which can be both an advantage186

and a drawback, depending on which surface features one aims to characterize.187

It may be worth mentioning that this thresholding method is particularly sensitive to noise and artifacts188

(e.g. beam hardening). This can be at least partially compensated by the use of the proper noise-reducing189

filter beforehand. It may also be relevant in some cases to make a compromise between the TTBH and190

Otsu’s threshold. A simple and convenient way to do that can be to calculate both and take an intermediate191

value.192

Following segmentation, the volume undergoes a cleaning process to remove all internal pores or tiny193

objects caused by measurement noise. This cleaned binary volume is subsequently referred to as the sample194

mask, illustrated in Fig.4b. In our case, the sample surface is defined as the surface mask depicted in195
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Fig.4c. It is the binary mask whose foreground is composed of all surface voxels. These surface voxels are196

the foreground voxels of the sample mask which have at least one background voxel as first neighbor. A197

connectivity of 1 is used to determine neighbors.198

Intensity Foreground
(Sample voxel)

Back-
ground

Foreground
(Surface voxel)

Back-
ground

a b c

Figure 4: (a) Schematic example of a grayscale XCT slice. (b) Corresponding sample mask. (c) Corresponding surface mask.

3.2. 3D roughness calculation199

The topography of a surface is often divided into 4 components, each one corresponding as a first ap-200

proximation to a range of spatial frequencies: the object’s form, the waviness, the roughness, and the201

micro-roughness [52, 53]. Most commonly, only the roughness component is considered significant for char-202

acterizing surface micro-features such as notches or unmelted powder particles. The form and waviness203

typically represent geometric deviations, while micro-roughness is often viewed as measurement noise. The204

objective is therefore to discriminate roughness from these other components to achieve a complete surface205

characterization.206

In the case of a conventional 2.5D surface characterization, the shape of the characterized surface is207

necessarily simple (plane, cylinder...). Form removal, which consists of subtracting the component geometry,208

can thus be done rather easily using least-squares optimization. Filters are then used to discriminate209

roughness from waviness (L-filter) and micro-roughness (S-filter). In both cases, the Gaussian filter is the210

default option [53].211

However, 2.5D characterization is only possible for parts with simple geometry, as discussed in Section212

1. In order to take full advantage of XCT, a 3D surface representation must be used − e.g. a mesh or a213

point cloud made of points with arbitrary (x,y,z) coordinates. In this case, the roughness characterization214

workflow can be more challenging. In particular, the form removal step is complex when no analytical215

expression is adapted. For 3D printed parts, a first approach consists of using the CAD file as a reference.216

This is sometimes done to measure geometrical deviations between the manufactured part and its CAD217

model [54, 55, 29, 56]. However, this requires the CAD file to be available, and the geometrical deviations218

to be small enough to get an accurate measurement.219

If the CAD file cannot be used, it is possible to smooth the raw surface and use the result as a reference.220

In this case, the roughness is defined as the distance between the surface and a smoothed version of it. A221

number of studies already addressed this topic, see the work of Jiang and Scott [21] for an extensive review.222

In such studies, surfaces are generally meshed and may be smoothed using morphological filters [57, 25],223

diffusion-based filters [58], anisotropic diffusion-based filters [59], or wavelet decomposition [60].224

The methodology presented here follows the same principle of surface smoothing and distance measure-225

ment. It can thus be applied to complex geometries without any need for a prior knowledge. However, unlike226

most common processing workflows, in our case, the surface is not extracted as a mesh for calculations. In-227

stead, all calculations are done on the digital volume obtained by XCT. One of the advantages is that it228

can be implemented in standard open-source image analysis software such as ImageJ. The overall image229

analysis workflow is schematically illustrated in Fig.5. An example of implementation of such a workflow230

using ImageJ can also be accessed via the online repository [61].231

The proposed workflow only uses as input data the sample mask, whose computation is detailed in232

Section 3.1.233
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The first step is the computation of the surface mask − also defined in Section 3.1. The latter will be234

used at the end of the workflow to extract data from volumes only at the voxels of interest − i.e. the surface235

voxels. The surface mask can be obtained by applying an erosion to the sample mask, and then computing236

the logical XOR operation between the sample mask and the result of the erosion.237

The second step of the workflow is the smoothing step. It is done here by converting the sample mask to238

float or integer values and applying a 3D Gaussian filter2. The chosen degree of smoothing will determine239

2An alternative solution, not developed here, would be to perform smoothing by applying a 3D morphological filter [62, 21]
on the sample mask.

Binary
volumes

Float/int volumes

Smooth volume

Smooth
mask SEDT

Convert to float/int
+ 3D gaussian filter

Sample
mask

Smooth
mask

2

3

4

5

6

Surface
mask

Thresholding

SEDT

Apply surface mask to SEDT

S-filter

Sample
voxels

Background

Surface
voxels

Background

Smoothed
sample
voxels

Background

Height

Background

Height

Background

Signed
distance

Voxel
intensity

Max

Min

Max

Min

Max

Min

Max

Min

Erosion
+ Logical XOR

7 Remove borders if presence of edge effects

Roughness
+

Micro-roughness

Roughness

1

8 Height distribution zero-centering

Figure 5: Workflow proposed for the 3D roughness computation. The sample mask and surface mask are defined in Fig.4. The
images shown correspond to transverse cross-sections of a 2 mm E-PBF Ti64 cylinder at different steps of the calculation.

8

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4647235

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



the limit between roughness on the one hand and waviness/form on the other hand. It is quantified by240

the cut-off wavelength λc [63], which is the wavelength considered to discriminate form and waviness from241

roughness. From an image processing point of view, a Gaussian filter is more often adjusted using the242

standard deviation σ, which can be easily derived from the cut-off wavelength following Eq.1.243

σ =

√
ln 2
2
· λc

π
≈ 0.187 · λc (1)

where σ and λc are the standard deviation and the cut-off wavelength of the Gaussian filter respectively.244

ISO standards provide rules to appropriately set the value of the parameter λc [53]. Although they are245

meant for 2D filters applied to height maps, they are used by extension in the developed workflow to adjust246

the 3D Gaussian filter. Ideally, the choice should be made by observing the surface and identifying the247

features that need to be characterized as roughness. It is then advised to set λc to be five times the size248

of the largest feature of interest, choosing among a list of predetermined values (0.25 mm, 0.8 mm, 2.5 mm,249

etc.) [53]. This choice is somehow arbitrary, especially for surfaces obtained by AM with complex topologies.250

This can explain the large variations of values used in the literature on AM materials [64]. Grazia Guerra251

and Lavecchia [27] used for example a cut-off wavelength of 0.25 mm while Vetterli et al. [65] used several252

values up to 2 mm.253

In the third step of the workflow, the smoothed volume obtained after filtering is segmented by thresh-254

olding. This results in a smoothed version of the sample mask, hereafter referred to as the smooth mask.255

The latter is then used as reference for roughness calculation. The most straightforward choice for the256

threshold value is the mean of background and foreground voxels values (e.g. 127.5, if the background is257

0 and foreground voxels are 255). However, this leads in general to some volume shrinkage, especially for258

large λc values. To avoid this problem, the threshold value is instead determined automatically so that the259

smooth mask volume equals the volume of the original mask.260

The fourth step aims at computing the distance between the sample surface and its smoothed version. For261

this purpose, the Signed Euclidean Distance Transform (SEDT) is computed from the smooth mask. This262

results in a float volume where the value at each foreground voxel is the distance to the nearest background263

voxel, and contrariwise for the values at the background voxels. The distances are signed, e.g. positive for264

background voxels and negative for foreground voxels.265

At the fifth step, the surface mask is applied to the smooth mask SEDT. This results in a sparse volume266

where most of the voxels have the same background value (e.g. 0), except the surface voxels which hold the267

distances to the smooth mask, i.e. the sought roughness values.268

The sixth step consists in applying an S-filter. This aims at removing the highest frequencies, in other269

words, the micro-roughness. The standard filter used for this purpose is again a Gaussian filter [53]. The270

cut-off wavelength used for this filter is commonly denoted λS . A procedure to calculate the S-filter using 3D271

Gaussian filters only based on normalized convolution [66] is described in Appendix A. This filtering step272

becomes particularly relevant if the voxel size set for XCT scans is not small enough to properly describe the273

surface topography. When the voxel size approaches the dimensions of surface features, the surface tends274

to be oversimplified and discretized, yielding a staircase appearance. Such oversimplification can result in275

sharp fluctuations in the roughness measurement. Using the S-filter helps to moderate such abrupt changes.276

The seventh step addresses edge effects that arise due to Gaussian filtering [67]. When computing the277

filtered value for a particular voxel using the Gaussian kernel, surrounding voxels are taken into account.278

However, for those voxels near the XCT scan boundary, the convolution radius might extend past this279

boundary. For these voxels, the XCT scan has to be extrapolated, for instance using an arbitrary constant280

value. The most common choice is zero. This value aligns well with our needs since 0 represents the281

background value that is assumed to envelop the sample. However, this method can result in biased values282

for surface voxels too close to the scan boundary. For example, in the context of a cylinder scan, the topmost283

and bottommost surface voxels may contain such biased values.284

Various solutions have been suggested to address this challenge for 2D or 2.5D roughness measurements285

[68]. The most straightforward solution is to discard roughness values for points located too close to the286

edges, typically within a distance of the cut-off value or half of it. In the described workflow, the approach287
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Figure 6: Surface roughness measurements, as described in Fig.5, applied to a 2 mm diameter as-built E-PBF cylinder. Compu-
tations were made from an XCT scan with a voxel size of 5 µm. Cut-off values were set to λc = 0.8 mm and λS = 0.015 mm = 3 voxels.
To avoid edge effects, points closer to the boundaries than λc

2 were discarded. Formulas for roughness parameter computations
are given in the ImageJ and Python scripts in an online repository [61].

adopted involves cropping the upper and lower borders by a width of λc
2 wherever necessary. However, if288

this method results in discarding too much data, other strategies, based on extrapolation or the use of289

normalized convolution [66], can be employed in the Gaussian filtering step. This would allow the user to290

address edge effects without the need to truncate volumes later on.291

Lastly, the eighth step ensures that the height distribution is zero-centered, meaning the average height292

is zero. This condition is intuitive and is assumed when computing certain roughness parameters like S sk293

and S ku. To achieve this, the average height is subtracted from the height of each surface voxel.294

An example of roughness calculated on a 2 mm diameter cylinder fabricated by E-PBF is shown in295

Fig.6. The initial sample’s surface and the smooth reference surface are displayed, as well as the derived296

roughness. Note that points closer than λc
2 to the upper and lower boundaries were discarded at the end of297

the computation.298

The triangle threshold for bimodal histograms presented in Section 3.1 was used for surface segmentation299

and a cut-off wavelength λc of 0.8 mm has been chosen for roughness calculation. Regarding the S-filter cut-300

off λs, a value of three times the voxel size (0.015 mm) was used.301

As far as computational performance is concerned, the use of 3D operations makes the presented method-302

ology demanding in terms of Random Access Memory (RAM). This can be a limitation for large volumes,303

which can be overcome to a certain extent by dividing the volume and performing computations in several304

steps. Processing time is nonetheless reasonably low since efficient implementations exist for the operations305

used. As an example, the computation for the 158 Mo XCT scan of the cylinder in Fig.6 took around 1 min306

on a conventional laptop with 8 CPU cores and using the ImageJ macro that can be accessed via the online307

repository [61]. A Python implementation is also given in [61], with some improvements to limit RAM usage308

and significantly increase computation speed.309

3.3. 3D curvature calculation310

The curvature κ is a measure of how a curve (in 2D) or a surface (in 3D) bends at a particular point.311

For a curve, it corresponds to the inverse of the radius ρ of the osculating circle at this given point, as312

schematically shown in Fig.7a.313

Curvature is a more complex concept for surfaces and several definitions exist. The closest 3D equivalent314

of the curvature in 2D would be the directional curvature, which measures how much the surface bends along315
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a particular direction. When the surface bends outward, the directional curvature is positive; conversely,316

it is negative. This requires a prior definition of which side of the surface is considered to be the outside.317

Although directional curvature can be calculated in an infinite number of directions, two are of particular318

interest. These are the direction of minimum curvature d⃗min and the one of maximum curvature d⃗max (the319

sign being considered), also known as principal directions. The corresponding curvatures are called the320

principal curvatures κmin and κmax.321

2D

3D

Osculating
circle

a

b

Figure 7: (a) Definition of the curvature κ and the radius of curvature ρ for a curve in 2D. (b) Schematic representation of a
saddle-like surface. The normal n⃗ and the principal directions are indicated at the saddle point. In this particular case, κmin < 0
and κmax > 0.

Fig.7b shows an example of a saddle-type surface, where d⃗min and d⃗max are respectively displayed in purple322

and orange.323

Knowing principal directions and curvatures, the directional curvature in any direction can be derived324

using Eq.2 [69].325

κ
(⃗
v
)
=

 vn

vmin

vmax


⊤

·

0 0 0
0 κmin 0
0 0 κmax

 ·
 vn

vmin

vmax


= v2

min · κmin + v2
max · κmax

(2)

where κ (⃗v) is the directional curvature in the direction v⃗, v⃗ = vn · n⃗ + vmin · d⃗min + vmax · d⃗max is an arbitrary326

vector and n⃗ = d⃗min × d⃗max is the surface normal.327

Finally, two other common curvatures are often used: the mean curvature κmean and the Gaussian cur-328

vature κgauss (see definitions in Eq.3 and Eq.4).329

κmean =
κmin + κmax

2
(3)

κgauss = κmin · κmax (4)
Although exact curvatures may be derived for parametric surfaces defined by analytical formulas, only330

estimations are possible for digital surfaces such as the one obtained by XCT. Several techniques can be331

used for this purpose. Point clouds can for example be approximated locally by a quadratic surface, which332

enables to derive curvature estimates from the obtained analytical formula [70].333

For surfaces defined as the boundary of a collection of voxels in 3D, integral invariants-based estimators334

have demonstrated their interests both in terms of accuracy and efficiency [71]. The principle is to move a335

spherical convolution kernel of radius rcurv along the surface − see Fig.8 for an example in 2D. Its intersection336

with the volume enables the estimation of some differential geometrical quantities.337
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Foreground
pixel

Background
pixel

Point where
curvature

is measured
Convolution

kernel (rcurv=2)

Figure 8: Principle of integral invariant based curvature measurement from a digital shape. The example is given in 2D for
clarity, but the principle remains the same for volumes. Here, the intersection area between the convolution kernel and the
object is measured by counting the number of pixels whose center falls into the kernel of radius rcurv.

For example, κmean is directly related to the volume of the intersection between the convolution kernel338

and the object. Hence, an estimation of κmean at a given boundary point can be computed using Eq.5 [72].339

κmean (rcurv) =
16

3 · rcurv
·
12 − Vinter (rcurv)

4
3 · π · r3

curv

 (5)

where rcurv is the radius of the spherical convolution kernel and Vinter(rcurv) is the portion of the convolution340

kernel’s volume that resides inside the surface’s boundary. By computing the covariance matrix of the341

intersection instead of its volume, it is possible to design estimators for the complete curvature tensor and342

thus estimate likewise principal curvatures and directions [71].343

Since computations are made on volumes, this offers the opportunity to perform computations using344

software such as ImageJ. Using Eq.5, κmean can for instance be computed using a linear convolution. Since345

an optimized implementation of this method is already available in the open-source C++ library DGtal, it346

has been used in the present work [73].347

The only parameter needed to perform the calculation is the radius of the convolution kernel rcurv, which348

is the scale at which the curvature is computed. Although this parameter is of great importance and has349

a quite intuitive meaning, it can be difficult to properly set in practice. A first constraint that limits the350

possible values for rcurv is the resolution of the XCT scan, since a minimum of a few voxels are necessary351

to limit noise in the measured curvature. If one aims at minimizing the noise while keeping the curvature352

measurement at a fine scale, it was found useful to apply a denoising filter after curvature computation. For353

this purpose, we used the same Gaussian filter that was used for the S-filter in Section 3.2.354

The choice of the convolution radius can also be driven by physical considerations and depends on the355

scale of the surface features of interest. This is the case in the example shown in Section 3.2, where curvature356

at a large scale can be used to detect biased roughness measurements near sharp geometrical features.357

The various definitions of curvatures introduced previously are complementary because they carry dif-358

ferent information, see e.g. Fig.9. Depending on the objective, one definition can be more relevant than359

others. Mean curvature is for example a relevant parameter concerning surface tension and wetting issues360

[74]. Triply Periodic Minimal Surfaces (TPMS) such as gyroids, which can be manufactured using AM361

processes [75, 76, 77, 78], are also characterized by a zero mean curvature. Such structures were for example362

found to achieve interesting energy absorption properties [79]. Gaussian curvature provides complementary363

information. For instance, a surface characterized by a zero Gaussian curvature is a developable surface364

(e.g. a cylinder). In the present work, curvature is computed with the aim to characterize surface notches365

and distinguish them from other surface features. The maximum and Gaussian curvatures do not seem to366
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Figure 9: Guide for the choice of relevant curvatures for the characterization of notches. (a) Notches visible on a surface mesh
extracted from an XCT scan of an as-built surface inherited from E-PBF. (b) Artificial object used as model, with different
types of notches. Each notch present in the artificial object shows a configuration that can be found on a real surface. (c) κmin,
(d) κmean, and (e) κσ measurements on the artificial object. κσ is here computed assuming that d⃗σ is vertical. Notch roots have
by definition a radius of curvature of 5 voxels (i.e. κ = 0.2).

be suited for this purpose, as they will have the same value (zero) both on a perfectly flat surface without367

any notch and at the root of a linear notch in a plane.368

The choice between the other curvatures being less straightforward, Fig.9 is helpful to guide our final369

choice. Fig.9b displays an artificial object showing ideal notches with different geometries. Each of those370

notches represents a configuration that can be found locally on a real surface, see Fig.9a. Notches A are cups,371

i.e. areas where κmin < 0 and κmax < 0. Notch B exhibits a saddle-like geometry, with principal curvatures of372

opposite signs. Notches C are linear ones in a plane, i.e. κmin < 0 and κmax = 0. Two orientations are shown373

to demonstrate that it is possible to discriminate different notches based on their orientation.374

Three curvatures are computed on this artificial object, namely κmin, κmean and κσ. κσ = κ
(
d⃗σ
)

is the375

directional curvature along the direction d⃗σ (vertical in this case). The comparison of the three curvatures376

in Fig.9c-e makes it possible to identify which one highlights best the different notches.377

The first one is the minimum curvature κmin, which successfully captures all notches. Furthermore, all378

have the same κmin value. The second curvature is κmean. Cups (type A) have the lowest κmean value whereas379

linear notches (C) show intermediate values. This difference is not necessarily desirable, since cups are not380

expected to reduce the mechanical properties more than linear notches. Even worse, κmean tends to 0 for the381

saddle-like notch (B). Although this notch was chosen as an example for the sake of clarity and seems far382

from a real case, there are many regions of the surface where κmin < 0 and κmax < 0. Thus, κmean seems less383

relevant than κmin to detect notches in general because it is somehow biased by the κmax contribution.384

Finally, the third curvature is the directional one, κσ. As illustrated in Fig.9e, all notches are well385

identified except the one parallel to d⃗σ. High κσ values are also more concentrated at notches roots in386

comparison with κmin. κσ can thus be considered the most appropriate choice when one aims at characterizing387

surface features with a specific orientation with respect to a loading direction.388

Based on these considerations, both κmin and κσ were thus computed on the same cylindrical sample used389
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Figure 10: (a) κmin and (b) κσ measurements on an as-built cylindrical sample fabricated by E-PBF. Computations were made
from an XCT scan with a voxel size of 5 µm, using rcurv = 30 µm = 6 voxels and λS = 0.025 mm = 5 voxels. The magnifying windows
provide an enlarged view on a notch parallel to d⃗σ. It shows that κσ manages to ignore it, whereas notches perpendicular to
the loading direction are kept.

in Section 3.2, see Fig.10a-b. Since the sample is a fatigue specimen meant to be loaded along its axis, κσ was390

computed along this direction. A radius of 30 µm (= 6 voxels) was chosen here for the convolution kernel.391

An additional filter was used similarly to what has been done for roughness, using λS = 0.025 mm = 5 voxels.392

These choices were made to provide a sufficiently detailed curvature measurement without being too much393

affected by noise. Fig.10a shows that κmin underlines the presence of notches, which correspond to the lowest394

values. κσ greatly attenuates the vertical notches, which can be seen when comparing enlarged views in395

Fig.10a and Fig.10b.396

3.4. Quantification of the harmfulness of surface notches397

The objective here is to combine both roughness and curvature to derive a parameter accounting for the398

mechanical severity of surface features. For surfaces derived from AM, the surface features that are expected399

to have the most significant impact on mechanical properties are notches [80, 8, 81]. To account for this400

notch effect, the simple analytical formula given in Eq.6 is used. It gives the stress concentration factor at401

the root of an elliptical notch in a semi-infinite panel, in the absence of plastic deformation [32]. The two402

parameters required to estimate the stress concentration factor Kt are the notch depth d and the radius of403

curvature at its root ρ (see Fig.11).404

Kt = 1 + 2

√
d
ρ

(6)

In the previous sections, d is estimated by the local height, which corresponds to roughness, while ρ was405

defined by the inverse of the curvature κσ. Some approximations still have to be made to apply Eq.6 using406

those parameters.407

First, it is important to emphasize that both the roughness and curvature, as calculated in Section 3.2408

and 3.3, are estimates. Therefore, their values may depend on the method and parameters used for their409

measurement. The curvature values, for instance, are notably influenced by changes in the convolution410
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σ

σ

d

ρ

σpeak

σpeak

Figure 11: Elliptical notch in a semi-infinite panel, submitted to a tensile stress σ in the direction d⃗σ perpendicular to the
ellipse major axis. d and ρ are respectively the depth of the notch and the radius of curvature at its root. This notch generates
a stress concentration given by Eq.6, which means that the local stress at its root σpeak is higher than the nominal stress in the
section.

radius rcurv and in the voxel size. While there are theoretical proofs, such as the one presented by Coeurjolly411

et al. [72], showing that integral invariant-based calculations approach exact curvature values as voxel size412

reduces, the resolution required to observe this might be very high. Keeping this in mind, one should treat413

these estimated values as semi-quantitative ones, that can for instance be used for ranking the severity of414

notches.415

Another approximation to consider is that Eq.6 is valid at the notch tip, which might be hard to detect416

automatically. As a result, the formula has been generalized and applied to every point on the surface where417

Figure 12: K∗t maps of a 2 mm diameter cylindrical sample fabricated by E-PBF. The K∗t formula is given in Eq.7 and makes
use of the roughness and curvature measured in the previous sections. The curvature κσ is computed in the direction of the
cylinder axis, which also corresponds to the build direction. The points where K∗t is not defined − because d ≥ 0 or height ≥ 0
− are by default colored in black. The parameters used for computations are λc = 0.8 mm | λS = 0.015 mm for roughness, and
rcurv = 50 µm | λS = 0.025 mm for curvature. (a) Surface as seen from the exterior of the sample. (b) Surface as seen from the
interior of the sample. The internal point of view is obtained from the surface extracted from the XCT scan.
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both κσ < 0 and d < 0. This means it is used across the entire notches, not just at their root. While Eq.6418

might not be applicable for numerous points, the highest values will still be found at the notch roots where419

the depth is maximal and the curvature is minimal. Therefore, the values derived are still relevant, especially420

when identifying areas with the highest stress concentration. In other words, it provides a semi-quantitative421

parameter that reflects the mechanical severity of surface notches. Finally, an approximate value of Kt,422

called K∗t , can be computed at the sample surface using Eq.7.423

K∗t = 1 + 2
√

height · κσ where height < 0, κσ < 0 (7)

where K∗t is the estimated local stress concentration, height is the local surface height obtained from roughness424

measurements and κσ is the directional curvature along the loading direction.425

Fig.12 shows an example of a K∗t map computed from the same cylindrical sample used in the previous426

sections. Roughness and curvature (κsigma) values used for computations are the ones presented in Section427

3.2 and 3.3.428

Different views of the surface can be provided. The first one in Fig.12a is the usual external view, which429

corresponds to what can be seen using a conventional 2.5D surface characterization. The area shown is the430

same as in Fig.6 and Fig.10. The two other views shown in Fig.12b, are internal views which can be generated431

after extracting the surface from the XCT scan. They offer a unique way to identify deep and sharp notches432

that would very often be hidden using conventional characterization methods, see the comparison between433

Fig.12a and Fig.12b. Once again, this illustrates the interest in characterizing the surface as a 3D free-form434

one obtained by XCT.435

4. Application of the developed methodology to parts with complex geometries436

In order to test the ability of the methodology developed in this work to characterize complex geometries,437

two E-PBF Ti64 architectured materials were studied: a gyroid structure and an octet-truss lattice structure.438

Both would be impossible to characterize using conventional 2.5D characterization tools and methodologies.439

440

4.1. Gyroid structure441

Fig.13a shows a picture of the studied gyroid. Two local tomography scans [82] were acquired at the442

center of the structure. Large artifacts were observed on the XCT scans, which made the use of the presented443

threshold for bimodal histograms inappropriate. Otsu’s threshold was found to be more efficient in this case.444

To examine the influence of voxel size on roughness, curvature, and K∗t measurements, two distinct voxel445

sizes were employed: 5 µm and 10 µm. In either case, roughness and curvature calculations were done using446

λc = 0.8 mm and rcurv = 50 µm.447

Fig.13b shows the measured roughness 3D map obtained from the lowest resolution scan. Two magni-448

fying windows are also displayed to illustrate a down-skin and an up-skin region. One can clearly notice,449

quantitatively, the higher roughness in the down-skin area. The roughness parameters measured for both450

voxel sizes are summarized in Tab.3. The average roughness S a is slightly lower for the lower-resolution451

scan, which is consistent since a lower resolution tends to smooth the surface.452

The higher maximum height S z and maximum valley depth S v are respectively 52 µm and 45 µm higher453

for the higher resolution scan, compared with the lower resolution one. Since the difference is roughly the454

same for S z and S v, it can be concluded in the present case that sharp and deep notches are slightly better455

captured using a smaller voxel size. The improvement is less significant for surface features that have positive456

height values such as unmelted powder particles.457

The skewness S sk (= asymmetry) and kurtosis S ku (= sharpness) values are also consistent with this458

conclusion. The increase of S ku with a higher resolution means that the surface height distribution contains459

more extreme values. The decrease in S sk may also be related to the fact that notches are better taken460

into account. Thus, both S ku and S sk suggest that using a smaller voxel size allows for a better capture of461

notches, in particular the deepest ones.462
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Voxel sizes, S a, S v and S z in µm
Voxel size Sa Sv Sz Ssk Sku

5 37.3 420 812 0.42 3.6
10 36.6 375 760 0.55 3.1

Table 3: Roughness parameters measured from the gyroid XCT scans with two voxel sizes using λc = 0.8 mm and λS = 0.05 mm.
To ensure consistency between the values measured for the two voxel sizes, the parameters were evaluated using only the
roughness values present on the surface available in both scans.

Figure 13: 3D characterization of an E-PBF Ti64 gyroid. The 3D roughness maps shown were obtained from the XCT scan
made with a 10 µm voxel size. (a) Picture of the gyroid sample. (b) 3D roughness map with magnifying windows showing a
down-skin and an up-skin region (λc = 0.8 mm and λS = 0.05 mm). c) 3D minimum curvature map with magnifying windows
showing a down-skin and an up-skin region (rcurv = 50 µm and λS = 0.05 mm). (d) Cumulative distribution function of K∗t for
both voxel sizes. The same area was used for the comparison of both scans.
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Figure 14: 3D characterization of an E-PBF Ti64 octet-truss lattice structure. (a) 3D minimum curvature map (rcurv = 50 µm
and λS = 0.05 mm). (b) 3D roughness map (λc = 0.8 mm and λS = 0.05 mm) with magnifying windows showing the region
near the lattice node where roughness measurements are biased. (c) 3D mean curvature map computed at large scale (rcurv =
1000 µm and λS = 0.05 mm). Nodes, where roughness measurements are biased, are clearly identified thanks to their low mean
curvature. The region highlighted in purple in b corresponds to the one with a mean curvature lower than −0.4 mm−1.

Fig.13c shows the 3D κmin map on the same surface as Fig.13b. Fig.13d illustrates how curvature evolves463

with respect to the convolution radius rcurv. The mean curvature is used here since it is known that it464

should equal zero for an ideal gyroid, i.e. with no roughness. The average value across the entire surface465

is represented by the average of absolute values mean|κmean|, analogous to the role S a = mean|height| plays466

in roughness metrics. As observed in Fig.13d, mean|κmean| tends to zero with increasing rcurv values. This is467

because a larger rcurv measures curvature at a larger scale, corresponding more to the gyroid shape (with468

zero mean curvature) than microscopic surface features, which have pronounced curvatures.469

Finally, Fig.13e-f show the K∗t measurements derived from roughness and curvature. Note that since470

the gyroid could be mechanically loaded in any direction, the minimum curvature is used instead of κσ to471

compute K∗t . Fig.13e shows the 3D K∗t map obtained from the scan performed with a 10 µm voxel size.472

Meanwhile, the cumulative distribution functions of the K∗t parameter for both voxel sizes are given in473

Fig.13f. The obtained K∗t values are slightly higher for the 5 µm voxel size scan. This can, once again, be474

attributed to the better ability at high resolution to properly capture sharp and deep notches.475

However, for both roughness and K∗t measurements, the benefits from decreasing the voxel size by a factor476

of 2 appear rather limited. The values obtained from the two voxel sizes turn out to be in good agreement.477

Considering that a voxel size reduction by a factor of 2 results in an eightfold increase in volume size and478

limits the analysis of larger objects, the benefits might not justify the trade-offs in this case.479

4.2. Octet-truss lattice structure480

While the gyroid shows the ability to characterize a complex 3D structure, it is a favorable example481

regarding the roughness measurement because it does not have sharp features like corners where roughness482
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measurements will tend to be biased. To account for this effect, the second example chosen is an octet-truss483

lattice structure which, contrary to the gyroid case presents sharp features. Fig.14a shows the κmin 3D map484

of the octet-truss. Here again, one has a good perception of the volume and surface topography details when485

the curvature is used for the 3D rendering.486

Fig.14b shows the 3D roughness map using a cut-off wavelength λc = 0.8 mm. It can be seen that487

roughness is successfully measured everywhere on the octet-truss lattice, except at nodes where points’488

height is clearly lower than it should be (see the regions delineated in purple). This shows the limit of the489

Gaussian filter to derive the reference surface and roughness measurements near sharp features.490

It is possible to get around this issue by discarding the roughness values in those regions. This can be491

done manually or with the help of a mean curvature computation. In the case of the octet-truss lattice492

structure, the mean curvature was measured using the integral invariant approach described in Section 3.3493

and a large convolution radius of 1 mm, see Fig.14c. It can be seen that nodes are characterized by a very494

low mean curvature at this scale. For example, the regions delimited in purple in Fig.14b were obtained by495

thresholding the mean curvature using a manually chosen value of −0.4 mm−1.496

The limitation of this method is that it does not enable the estimation of roughness at sharp features.497

Those may, however, be areas of particular interest. For example, it is the case if the aim is to quantify the498

impact of surface roughness on mechanical properties. Indeed, sharp features will have a stress concentration499

effect that will add to that due to the presence of surface notches. Even though this problem is complex500

and has no ideal solution, more advanced smoothing methods such as anisotropic diffusion of normals [59]501

may be relevant in such cases as a replacement for the conventional Gaussian filter. They are indeed used to502

smooth surfaces while keeping sharp features of the object’s form. This could lead to less biased roughness503

values at sharp features.504

Concerning the K∗t values obtained for complex structures, it is worth noting that the computed values505

estimate only the stress concentration generated by the surface topography at a micro-scale. For a more506

complete characterization, one may want to add the contribution of the macroscopic geometry. The latter507

may be computed using Finite Element Modeling (FEM) on the ideal part geometry. The same calculations508

could also be used to estimate locally the direction of maximum principal stress. These directions could509

then be used to compute the curvature instead of using a single direction for the whole part.510

511

5. Summary512

In this study, we propose a methodology for the 3D characterization of surface topography using XCT513

data, focusing on measuring both roughness and 3D curvature. While this methodology has broader appli-514

cations, we emphasized its usefulness on samples produced by additive manufacturing (E-PBF).515
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Key findings can be summarized as follows:516

• The proposed methodology could effectively account for hidden surface features on surfaces inherited517

from E-PBF. For example, the 3D method can identify notches that traditional 2.5D techniques would518

miss.519

• Our method effectively captures roughness and curvature in complex geometries such as architected520

structures. While the results are encouraging, certain geometric features, like sharp edges, present521

challenges in roughness assessments. In such instances, more sophisticated metrological tools might522

offer deeper insights.523

• We have tailored the methodology to make it accessible, even for those unfamiliar with advanced524

data analysis tools and programming. For example, we deliberately used standard image analysis525

techniques, such as 3D Gaussian filtering, to extract roughness from the raw surface. This approach526

can be applied using popular software like ImageJ. With the Gaussian filter being a standard operation527

for the analysis of 2D and 2.5D roughness, guidelines from ISO standards can be adapted for the528

presented 3D workflow.529

• We introduced several tools to leverage this 3D characterization in understanding the mechanical im-530

plications of surface notches. For instance, it was found that the standard Otsu’s thresholding missed531

some of the sharpest notches. We proposed an alternative, the triangle threshold for bimodal his-532

togram, which yielded better results in this case. Additionally, 3D curvature measurements enable533

the derivation of curvature in the direction of principal stress, κσ, underscoring the mechanical conse-534

quences of notches aligned perpendicular to the loading direction. Finally, we also proposed a model535

that integrates roughness and curvature data to compute a parameter, K∗t , that reflects the stress536

concentration induced by surface notches.537

• This method is currently applied to investigate the influence of surface roughness on fatigue properties538

and surface crack initiation mechanisms. This ongoing study focuses on E-PBF and L-PBF Ti64539

samples, before and after polishing treatments. The findings will be detailed in [43].540
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Appendix A. 3D Gaussian S-Filter using normalized convolution546

The following methodology can be used to apply any 3D linear filter on a set of voxels. In particular, it547

can be used to apply a Gaussian S-filter (or L-filter) to roughness values calculated following the workflow548

described in Section 3.2. It can be considered as a particular application case of the concept of normalized549

convolution introduced by Knutsson and Westin [66]. Conversely to a conventional convolution where all550

voxels are taken into account, normalized convolution can be used to ignore certain voxels. Here, it will551

be used to ignore background voxels and thus filter only the ones that carry actual information − i.e. the552

surface voxels that carry roughness values.553

554

A linear filter is an operation where the value at a given voxel is replaced by a linear combination of555

the value at the given point and its neighbors. Each neighbor has a specific weight w, i.e. the weight of556

its contribution to the final filtered value. The matrix assigning the weights for the central voxel and its557

neighbors is called the filter kernel. For a uniform (= mean) filter, all weights in the kernel will have the558

same weight. In the case of a Gaussian filter, weights decrease as the distance to the central voxel increases559

following a Gaussian law, see Fig.A.15. In both cases, weights are generally normalized, meaning the sum560

of all kernel weights equals 1. For example, this ensures that applying a Gaussian filter to a uniform volume561

made of 1 will result in a uniform volume made of 1. This is the standard ”global” normalization illustrated562

in Fig.A.15 and employed in common Gaussian filter implementations.563

564

However, the situation is a bit different when applying a S-filter to a set of surface voxels. In such a case,565

to compute the filtered value at a given voxel, only neighbor surface voxels should be taken into account566

instead of all neighbor voxels. The solution would be to explicitly loop over surface voxels only, and never567

visit background voxels. This can be done in programming languages such as C++. However, this still568

requires some programming skills, especially to achieve reasonable computation times. Conversely, there are569

already many efficient implementations of the standard Gaussian filter, including ones accelerated via GPU570

of FFT computations. The idea here is thus to use such optimized implementations ingeniously to compute571

indirectly the S-filter.572
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Figure A.15: Workflow proposed for the application of a 3D Gaussian S-filter. All calculations are done using operations on
digital volumes, just as the rest of the roughness computation workflow. The example provided in the present figure is restricted
to 2D, which means voxels are replaced by pixels. This choice is made to facilitate understanding and visualization, considering
the adaptation to a 3D case is straightforward. Note that in steps 1 and 2 of the ”local normalization” in Fig.A.15, a non-
normalized Gaussian filter is used for the sake of clarity only. The same steps can therefore be followed using a conventional
Gaussian filter.
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To do so, the first step consists of applying a conventional Gaussian filter to the volume where surface573

voxels contain roughness values, while background voxels contain 0 − see step 1 in Fig.A.15. Thus, back-574

ground voxels do not contribute to the final filtered value. Even though, the obtained filter is not properly575

normalized. Indeed, the sum of the weights of all neighbors that are taken into account (i.e. all neighbor576

surface voxels) should equal 1. However, this sum will be in general much lower than one, because most577

neighbor voxels are background ones (equal to 0). To correct this bias, one simply needs to compute the578

same conventional Gaussian filter to a volume containing 0 at background voxels and 1 at surface voxels,579

see step 2 in Fig.A.15.580

581

The resulting value at each point is the sum of all the Gaussian kernel weights that effectively come582

across surface voxels. It can be considered as a ”local normalization factor”, since by dividing the filtered583

value obtained in step 1 by this value, we obtain a properly normalized S-filter, see step 3 in Fig.A.15. This584

method is equivalent to use at each voxel a specific kernel. The latter contains 0 at background voxels, and585

at other voxels, a weight decreasing according to a Gaussian law with the distance to the central voxel. To586

be normalized, the sum of all weights must be equal to one. The trick here is to achieve such a (non-linear)587

computation using only linear filtration steps − i.e. using the same unique kernel for all voxels.588
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