
HAL Id: hal-04579634
https://hal.science/hal-04579634

Submitted on 17 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Estimation-of-Distribution Algorithms for Multi-Valued
Decision Variables

Firas Ben Jedidia, Benjamin Doerr, Martin S Krejca

To cite this version:
Firas Ben Jedidia, Benjamin Doerr, Martin S Krejca. Estimation-of-Distribution Algorithms for
Multi-Valued Decision Variables. Theoretical Computer Science, 2024, 1003, pp.114622:1-114622:16.
�10.1016/j.tcs.2024.114622�. �hal-04579634�

https://hal.science/hal-04579634
https://hal.archives-ouvertes.fr

Estimation-of-Distribution Algorithms for Multi-Valued
Decision Variables

Firas Ben Jedidiaa, Benjamin Doerrb, Martin S. Krejcab,∗

aÉcole Polytechnique, Institut Polytechnique de Paris, Route de
Saclay, Palaiseau, 91120, France

bLaboratoire d’Informatique (LIX), CNRS, École Polytechnique, Institut Polytechnique de
Paris, 1 rue Honoré d’Estienne d’Orves, Palaiseau, 91120, France

Abstract

The majority of research on estimation-of-distribution algorithms (EDAs) con-
centrates on pseudo-Boolean optimization and permutation problems, leaving
the domain of EDAs for problems in which the decision variables can take more
than two values, but which are not permutation problems, mostly unexplored.
To render this domain more accessible, we propose a natural way to extend the
known univariate EDAs to this setting. Different from a näıve reduction to the
binary case, our approach avoids additional constraints.

Since understanding genetic drift is crucial for an optimal parameter choice,
we extend the known quantitative analysis of genetic drift to EDAs for multi-
valued, categorical variables. Roughly speaking, when the variables take r dif-
ferent values, the time for genetic drift to become significant is r times shorter
than in the binary case. Consequently, the update strength of the probabilistic
model has to be chosen r times lower now.

To investigate how desired model updates take place in this framework,
we undertake a mathematical runtime analysis on the r-valued LeadingOnes
problem. We prove that with the right parameters, the multi-valued UMDA
solves this problem efficiently in O(r ln(r)2n2 ln(n)) function evaluations. This
bound is nearly tight as our lower bound Ω(r ln(r)n2 ln(n)) shows.

Overall, our work shows that our good understanding of binary EDAs natu-
rally extends to the multi-valued setting, and it gives advice on how to set the
main parameters of multi-values EDAs.

Keywords: estimation-of-distribution algorithms, univariate marginal
distribution algorithm, evolutionary algorithms, genetic drift, LeadingOnes
benchmark

∗Corresponding author
Email address: martin.krejca@polytechnique.edu (Martin S. Krejca)

Preprint submitted to Elsevier May 7, 2024

1. Introduction

Estimation-of-distribution algorithms (EDAs [1]) are randomized search
heuristics that evolve a probabilistic model of the search space (that is, a prob-
ability distribution over the search space). In contrast to solution-based algo-
rithms such as classic evolutionary algorithms, which only have the choice be-
tween the two extreme decisions of keeping or discarding a solution, EDAs can
take into account the information gained from a function evaluation also to a
smaller degree. This less short-sighted way of reacting to new insights leads to
several proven advantages, e.g., that EDAs can be very robust to noise [2, 3].
Since the evolved distributions often have a larger variance, EDAs can also be
faster in exploring the search space, in particular, when it comes to leaving
local optima, where they have been shown to significantly outperform simple
evolutionary algorithms [4–9].

While EDAs have been employed in a variety of settings and to different
types of decision variables [1, 10], they are very often presented and discussed for
the binary domain. In fact, the number of results in which they have been used
for discrete optimization problems with decision variables taking more than two
values, other than permutation problems, is scarce [11–15]. All of these results
have in common that they propose specific EDAs to deal with multi-valued
problems. To the best of our knowledge, no systematic way to model EDAs for
the multi-valued domain exists, even not for the easiest case of EDAs that do
not model dependencies, so-called univariate EDAs (we note that multi-variate
EDAs are much less understood, i.e., despite some theoretical works in this
direction [16, 17], there are no proven runtime guarantees for these algorithms).

In order to improve our theoretical understanding in this domain, we under-
take the first steps towards a framework of univariate EDAs for problems with
decision variables taking more than two values (but different from permutation
problems). We first note that the strong dependencies that distinguish a per-
mutation problem from just a problem defined on {1, . . . , n}n have led to very
particular EDAs for permutation problems. We did not see how to gain insights
from these results for general multi-valued problems.

We therefore define EDAs for multi-valued decision variables without build-
ing on any related existing work. We note that, in principle, one could transform
a multi-valued problem into a binary one by having, for each variable taking
r different values, r binary variables, each indicating that the variable has the
corresponding value. This would lead to a constrained optimization problem
with the additional constraints that exactly one of these variables can take the
value 1. This might be a feasible approach, but since such constraints generally
impose additional difficulties, we propose a way that does not need an addi-
tional treatment of constraints (in other words, we set up our EDAs in a way
that these constraints are satisfied automatically).

We defer the details to Section 4.2 and only sketch the rough idea of our
approach here. For each variable taking r values, without loss of generality the
values {0, . . . , r−1}, we have r sampling frequencies p0, p1, . . . , pr−1 that always
add up to 1. When sampling a value for the variable, we do this mutually exclu-

2

sively, that is, the variable takes the value i with probability pi. This appears to
be a convenient (and in fact very natural) set-up for a multi-valued EDA. We
note that there are some non-trivial technical questions to be discussed when
working with frequency borders, such as

[
1
n , 1−

1
n

]
in the classical binary case,

but we also come up with a simple and natural solution for this aspect. Moreover,
this model is well suited for categorical decision variables, i.e., variables whose
different values do not exhibit any neighborhood property. For other kinds of
variables, different, more concise models might be better suited, although our
model is also applicable.

As a first step towards understanding this multi-valued EDA framework,
we study how prone it is to genetic drift. Genetic drift in EDAs means that
sampling frequencies not only move because of a clear signal induced by the
objective function, but also due random fluctuations in the sampling process.
This has the negative effect that even in the complete absence of a fitness signal,
the EDA develops a preference for a particular value of this decision variable.
From a long sequence of works, see Section 5 for the details, it is well understood
how the time for this genetic-drift effect to become relevant depends on the
parameters of the EDA [18]. Consequently, if one plans to run the EDA for a
certain number of iterations, then this quantification tells the user how to set
the parameters as to avoid genetic drift within this time period.

Since such a quantification is apparently helpful in the application of EDAs,
we first extend it to multi-valued EDAs. When looking at the relatively general
tools used in [18], this appears straightforward, but it turns out that such a direct
approach does not give the best possible result. The reason is that for multi-
valued decision variables, the martingale describing a frequency of a neutral
variable over time has a lower variance (in the relevant initial time interval).
To profit from this, we use a fairly technical martingale concentration result of
McDiarmid [19], which, to the best our our knowledge, has not been used before
in the analysis of randomized search heuristics. Thanks to this result, we show
that the time for genetic drift to become relevant is (only) by a factor of r lower
than in the case of binary decision variables (Theorem 3).

We use this result to conduct a mathematical runtime analysis of the multi-
valued univariate marginal distribution algorithm (r-UMDA) on the r-valued
LeadingOnes problem in the regime with low genetic drift. This problem re-
turns, similar to the binary domain, the longest prefix of consecutive 0s in the
input. It is interesting since a typical optimization process optimizes the variable
sequentially in a fixed order. Consequently, in a run of an EDA on Leading-
Ones, there is typically always one variable with undecided sampling frequency
that has a strong influence on the fitness. Hence, this problem is suitable to
study how fast an EDA reacts to a strong fitness signal.

Our runtime analysis shows that also in the multi-valued setting, EDAs can
react quickly to a strong fitness signal. Since now the frequencies start at the
value 1

r , the time to move a frequency is a little longer, namely Θ(r ln(r)) instead
of constant when the sample size λ is by a sufficient constant factor larger than
the selection size µ. This still appears to be a small price for having to deal with r
decision alternatives. This larger time also requires that the model update has

3

to be chosen more conservatively as to prevent genetic drift (for this, we profit
from our analysis of genetic drift), leading to another ln(r) factor in the runtime.
In summary, we prove (Theorem 6) that the UMDA can optimize the r-valued
LeadingOnes problem in time O(r ln(r)2n2 ln(n)), a bound that agrees with
the one shown in [20] for the classical case r = 2. Our upper bound is tight
apart from a factor logarithmic in r, that is, we prove a lower bound of order
Ω(r ln(r)n2 ln(n)) in Theorem 10.

Overall, our work shows that r-valued EDAs can be effective problem solvers,
suggesting to apply such EDAs more in practice.

This work extends our prior extended abstract [21] by adding a lower bound
for the runtime of the r-valued UMDA on the r-valued LeadingOnes problem.
Also, it contains all proofs that were omitted in the conference version for reasons
of space. To avoid misunderstandings, we note that this work bears no similarity
or overlap with the paper Generalized Univariate Estimation-of-Distribution
Algorithms [22], which studies generalized update mechanisms for EDAs for
binary decision variables.

This article is organized as follows. We describe previous works in the fol-
lowing section and set the notation in the subsequent section. In Section 4,
we propose our multi-valued EDA framework. Our main technical results, the
analysis of genetic drift and the runtime analysis for the LeadingOnes prob-
lem, can be found in Sections 5 and 6. The paper ends with a short conclusion.

2. Related Work

Since the technical sections of this work contain three relatively indepen-
dent topics—the definition of multi-valued EDAs, genetic drift, and a runtime
analysis on the LeadingOnes benchmark—we present the previous works rel-
evant to these topics in the respective sections.

This being a theoretical work, we do not discuss in detail how EDAs have
been successfully used to solve real-worlds optimization problems and refer to
the surveys [1, 10].

Theoretically oriented works have accompanied the development and use of
univariate binary EDAs for a long time, see, e.g., the early works on genetic
drift described in Section 5. The first mathematical runtime analysis of an EDA
was conducted by Droste [23]. This seminal work, showing an asymptotically
tight bound for the runtime of the compact genetic algorithm on the OneMax
benchmark, already contains many ideas that are now frequently used in the
runtime analysis of EDAs. It also observed that EDAs optimize problems in a
very different manner, visible from the different runtimes shown on two linear
functions, which contrasts the famous analysis of how the (1 + 1) EA optimizes
linear functions by Droste, Jansen, and Wegener [24]. Interestingly, apart from
the works of one research group [25–27], Droste’s ground-breaking work [23]
was not followed up by other runtime analyses for around ten years. Since then,
starting with works like [28–31], the runtime analysis of EDAs has become very
active and has, despite the technical challenges in analyzing such complex algo-
rithms, produced many fundamental results and a good understanding of some

4

of the working principles of EDAs. We refer to the recent survey [32] for more
details.

An algorithmic concept related to EDAs is ant colony optimization
(ACO) [33]. ACO lends itself well to combinatorial optimization, which is typi-
cally multi-valued in nature, and ACO has been analyzed theoretically to some
degree, e.g., on the minimum-spanning tree problem [34], the traveling-salesman
problem [35], and shortest-path problems [36]. ACO is related to EDAs in that
ACO constructs solutions according to a probabilistic model, known as the
construction graph. However, in contrast to EDAs, ACO usually stores a best-
so-far solution, which helps enforce the probabilistic model. This in contrast to
the EDAs we consider in this work. A more thorough overview on theoretical
results for ACO is also provided in the same survey mentioned above [32].

3. Preliminaries

We denote by N the set of all natural numbers, including 0, and by R the
set of all real numbers. Additionally, for a, b ∈ N, let [a..b] = [a, b] ∩ N, and let
[a] = [1..a]. When we say that a random process is a martingale and do not
specify a filtration, then we mean that the process is a martingale with respect
to its natural filtration. Further, for all n ∈ N≥1 and p ∈ Rn

≥0, we denote the
1-norm of p, that is, the sum of the entries of p, by ∥p∥1. For a proposition P ,
we denote the Iversion bracket by 1{P}, which is 1 if P is true, and it is 0
otherwise.

Let n ∈ N≥1 and r ∈ N≥2. We consider the maximization of functions of the
form f : [0..r − 1]

n → R, which we call r-valued fitness functions. Whenever we
mention an r-valued fitness function, we implicitly assume that its dimension n
and the cardinality r of its domain are given. We call each x ∈ [0..r − 1]

n
an

individual, and we call f(x) the fitness of x.
We say that a random variable Y stochastically dominates another random

variable X, not necessarily defined on the same probability space, denoted by
X ⪯ Y , if and only if for all λ ∈ R, we have Pr[X ≤ λ] ≤ Pr[Y ≤ λ].

4. Multi-Valued EDAs

In this section, we generalize the three common univariate EDAs for the
binary decision variable to multi-valued decision variables. We do so in a manner
that is consistent with the existing (empirical) literature on univariate EDAs [13,
15]. We call our EDA variants multi-valued EDAs. To this end, we briefly discuss
the binary case in Section 4.1 before presenting our framework in Section 4.2.
In our presentation, we concentrate on the UMDA [37] and then briefly present
the generalizations of the other two common univariate EDAs.

We note that for classic evolutionary algorithms, multi-valued decision vari-
ables have been discussed to some extent [38–44]. Due to the very different
working principles, we could not see how these results help in designing and
analyzing multi-valued EDAs.

5

4.1. Binary EDAs

Binary EDAs refer to EDAs for pseudo-Boolean optimization, that is, the
optimization of functions f : {0, 1}n → R. This setting is a special case of opti-
mizing r-valued fitness functions, for r = 2. The probabilistic model of univariate
EDAs in this domain is a length-n vector p of probabilities (the frequency vec-
tor), where the probability (the frequency) at position i ∈ [n] denotes the prob-
ability that a sample has a 1 at position i, independent of the other positions.
Formally, for all x, y ∈ {0, 1}n, it holds that Pr[x = y] =

∏
i∈[n](pi

yi ·(1−pi)1−yi),

where we assume that 00 = 1.
Binary EDAs commonly take at least a parameter λ ∈ N≥1 (the population

size) as well as a pseudo-Boolean fitness function f as input and optimize f
as follows: Initially, the frequency vector p models the uniform distribution,
that is, each frequency is 1/2. Then, in an iterative manner, the algorithm
produces λ samples (the population) independently via p, and it updates p based
on these samples and their fitness. This process is repeated until a user-defined
termination criterion is met.

In order to prevent frequencies from only producing a single value (which
is the case if a frequency is 0 or 1), after the frequency vector is updated, it
is typically restricted to the interval [1/n, 1 − 1/n]. That is, if the frequency
is less than 1/n, it is set to 1/n, and if it is greater than 1 − 1/n, it is set to
1− 1/n. The extreme values of this interval are referred to as the borders, and
the value 1/n is called the margin of the algorithm.

UMDA. Algorithm 1 shows the univariate marginal distribution algorithm
(UMDA) [37], which is a well established binary EDA, both in the empirical [1]
and the theoretical [45] domain. In addition to the population size λ ∈ N≥1

and a fitness function, the UMDA also utilizes a parameter µ ∈ [λ], called the
selection size. In each iteration, the UMDA selects µ out of the λ samples that
have the best fitness (breaking ties uniformly at random). Each frequency is then
set to the relative frequency of 1s at the respective position (line 6). Afterwards,
the frequencies are restricted to lie within the frequency borders.

4.2. The Multi-Valued EDA Framework

We propose a framework for EDAs for optimizing r-valued fitness functions.
We call the resulting EDAs r-valued EDAs. Our framework closely follows the
one presented in Section 4.1. That is, an r-valued EDA starts with a probabilistic
model initialized to represent the uniform distribution, and it then iteratively
generates λ ∈ N≥1 samples independently, based on its model. This model is
then updated and afterwards restricted such that it does not contain the extreme
probabilities 0 and 1.

The difference to the framework for binary EDAs lies in how the probabilistic
model of r-valued EDAs is represented and how it is restricted from containing
extreme probabilities.

The probabilistic model. The probabilistic model of an r-valued EDA is
an n × r matrix (pi,j)(i,j)∈[n]×[0..r−1] (the frequency matrix), where each row
i ∈ [n] forms a vector pi := (pi,j)j∈[0..r−1] (the frequency vector at position i)

6

Algorithm 1: The UMDA [37] with parameters λ ∈ N≥1 and µ ∈ [λ],
maximizing a pseudo-Boolean fitness function f

1 t← 0;

2 p(0) ← (12)i∈[n];
3 repeat // iteration t
4 P (t) ← population of λ individuals, independently sampled

from p(t);

5 {x(t,k)}k∈[µ] ← multiset of µ individuals from P (t) with the highest
fitness (breaking ties uniformly at random);

6 for i ∈ [n] do p
(t+1)
i ← 1

µ

∑
k∈[µ] x

(t,k)
i ;

7 p(t+1) ← values of p(t+1), restricted to
[
1
n , 1−

1
n

]
;

8 t← t+ 1;

9 until termination criterion met;

of probabilities (the frequencies) that sum to 1. As in the binary case, samples
from p are created independently for each position. When creating an individual
x ∈ [0..r − 1]n, then, for all i ∈ [n] and all j ∈ [r − 1], the probability that xi

has value j is pi,j . Formally, for all x, y ∈ [0..r − 1]n, it holds that Pr[x = y] =∏
i∈[n]

∏
j∈[0..r−1](pi,j)

1{yi=j}, where we assume that 00 = 1.

The frequency matrix p is initialized such that each frequency is 1/r, repre-
senting the uniform distribution. When performing an update to p, it is impor-
tant to make sure that each row sums to 1.

Restricting the probabilistic model. The aim of restricting the fre-
quency matrix p is to clamp all frequencies, for some values a, b ∈ [0, 1] (the
lower and upper border, respectively) with a ≤ 1/r ≤ b, to [a, b]. That is, if a
frequency q is less than a, it should be a after the restriction, and if it is greater
than b, it should be b afterwards. For such a restriction, it is important for each
row i ∈ [n] that the frequency vector pi sums to 1 after the restriction. This
process is not straightforward. If q /∈ [a, b], and q is updated to q′ ∈ [a, b], then
this creates a change in probability mass of q′ − q. Hence, simply updating q
to q′ can result in all frequencies of pi summing to a value other than 1 after
the restriction.

We address the problem above as follows. To this end, let a, b ∈ [0, 1] be
the lower and upper border, respectively, with a ≤ 1/(r− 1)− 1/(r(r− 1)) and
b = 1−a(r−1). Further, let i ∈ [n] be a row of the frequency matrix we wish to
restrict, let pi ∈ [0, 1]n be the frequency vector after the update but before the
restriction (with ∥pi∥1 = 1), and let p+i ∈ [a, b]n be the vector pi after clamping
it to [a, b] but before taking care that the frequencies sum to 1. We define the
restriction of pi to [a, b], denoted by p′i, to be the vector where each frequency’s
share above a is reduced by the surplus of the probability relative to the share

7

above a. Formally, for all j ∈ [0..r − 1], it holds that

p′i,j = (p+i,j − a)
1− ar

∥p+i − (a)k∈[n]∥1
+ a. (1)

Note that 1− ar = ∥pi − (a)k∈[n]∥1 denotes how much probability mass should
be in the frequency vector, above a. The resulting frequency vector p′i sums to 1,
since∑

j∈[0..r−1]
p′i,j =

1− ar

∥p+i − (a)k∈[n]∥1

∑
j∈[0..r−1]

(p+i,j − a) +
∑

j∈[0..r−1]
a

= 1− ar + ar = 1.

Further, each frequency is at least a, since this value is added at the end of
eq. (1) and since p+i,j ≥ a by definition of p+i . Last, since each frequency is at
least a after restricting, the largest a frequency can be is 1− (r − 1)a = b.

In order to disallow the extreme frequencies 0 and 1 but to stay close to the
binary case, we propose to choose the upper border as 1 − 1/n. Following our
ideas above, this implies that the lower border is 1/((r−1)n). This is consistent
with the binary case but generalizes to the r-valued domain.

We say that an EDA is without margins if and only if the lower border is 0
and the upper border is 1. That is, the restriction of the frequencies does not
take place.

r-UMDA. We generalize the UMDA (Algorithm 1) to the r-UMDA (Algo-
rithm 2), utilizing our framework. This leads to the same generalization men-
tioned by Santana et al. [13]. Like the UMDA, the r-UMDA has three param-
eters, namely the population size λ ∈ N≥1, the selection size µ ∈ [λ], and the
r-valued fitness function f . It also updates its frequencies analogously to the
UMDA by choosing µ best individuals from the population of size λ and then
setting each frequency at position i ∈ [n] for value j ∈ [0..r − 1] to the relative
frequency of value j at position i among the µ best individuals (line 7). We note
that this results in a valid frequency vector for each row i ∈ [n], since∑
j∈[0..r−1]

1

µ

∑
k∈[µ]

1{x(t,k)
i = j} = 1

µ

∑
k∈[µ]

∑
j∈[0..r−1]

1{x(t,k)
i = j} = 1

µ

∑
k∈[µ]

1 = 1.

r-PBIL. Another popular univariate EDA is population-based incremental
learning (PBIL [46]). It operates very similarly to the UMDA, with the only
difference being in how it performs an update. In contrast to the UMDA, the
PBIL does not set a frequency to the relative frequency of respective values at a
position but, instead, computes the convex combination of the relative frequency
with the current frequency value in its frequency vector. To this end, it utilizes
a parameter ρ ∈ [0, 1], the scaling factor.

We generalize the PBIL to the r-PBIL (Algorithm 3). Each frequency vector
of the r-PBIL sums to 1 (before the restriction) because it is a convex combi-
nation of the r-UMDA’s update (which sums to 1) and the current frequency
vector (which also sums to 1).

8

Algorithm 2: The r-UMDA with parameters λ ∈ N≥1 and µ ∈ [λ],
maximizing an r-valued fitness function f

1 t← 0;

2 p(0) ← (1r)(i,j)∈[n]×[0..r−1];
3 repeat // iteration t
4 P (t) ← population of λ individuals, independently sampled

from p(t);

5 {x(t,k)}k∈[µ] ← multiset of µ individuals from P (t) with the highest
fitness (breaking ties uniformly at random);

6 for (i, j) ∈ [n]× [0..r − 1] do

7 p
(t+1)
i,j ← 1

µ

∑
k∈[µ] 1{x

(t,k)
i = j};

8 p(t+1) ← restriction of p(t+1) to
[

1
(r−1)n , 1−

1
n

]
, as described in

eq. (1);
9 t← t+ 1;

10 until termination criterion met;

r-cGA. Another popular univariate EDA is the compact genetic algorithm
(cGA [47]). The cGA only has a single parameter K ∈ R>0, the hypothetical
population size, and it creates only two samples each iteration. It ranks these
two samples by fitness and then adjusts each frequency by 1

K such that the
frequency of the value of the better sample is increased and that of the worse
sample decreased.

We generalize the cGA to the r-cGA (Algorithm 4). Each frequency vector
of the r-cGA sums to 1 after the update (before the restriction) because exactly
one entry is increased by 1

K and exactly one value is decreased by this amount
(noting that this can be the same frequency, in which case no change is made
overall).

5. Genetic Drift

We prove an upper bound on the effect of genetic drift for r-valued EDAs
(Theorem 3) in a similar fashion as Doerr and Zheng [18] for binary decision
variables. This allows us to determine parameter values for EDAs that avoid
the usually unwanted effect of genetic drift. The main novelty of our result over
that by Doerr and Zheng [18] is that we use a slightly technical martingale
concentration result due to McDiarmid [19] that allows one to profit from small
variances. Such an approach is necessary. If one directly applies the methods
presented by Doerr and Zheng [18], one obtains estimates for the genetic drift
times that are by a factor of Θ(r) lower than ours (that is, the genetic-drift
effect appears r times stronger).

In Sections 5.1 and 5.2, we first present a general introduction to the phe-
nomenon of genetic drift. In Section 5.3, we then prove a concentration result

9

Algorithm 3: The r-PBIL with parameters λ ∈ N≥1, µ ∈ [λ], and
ρ ∈ [0, 1], maximizing an r-valued fitness function f

1 t← 0;

2 p(0) ← (1r)(i,j)∈[n]×[0..r−1];
3 repeat // iteration t
4 P (t) ← population of λ individuals, independently sampled

from p(t);

5 {x(t,k)}k∈[µ] ← multiset of µ individuals from P (t) with the highest
fitness (breaking ties uniformly at random);

6 for (i, j) ∈ [n]× [0..r − 1] do

7 p
(t+1)
i,j ← (1− ρ)p

(t)
i,j +

ρ
µ

∑
k∈[µ] 1{x

(t,k)
i = j};

8 p(t+1) ← restriction of p(t+1) to
[

1
(r−1)n , 1−

1
n

]
, as described in

eq. (1);
9 t← t+ 1;

10 until termination criterion met;

on neutral positions (Theorem 3). Last, in Section 5.4, we consider the setting
of weak preference.

5.1. Introduction to Genetic Drift

In EDAs, genetic drift means that a frequency reaches the extreme values 0
or 1 due to random fluctuations from the stochasticity of the process and in the
absence of a clear signal from the objective function.

While there is no proof that genetic drift is always problematic, the gen-
eral opinion is that this effect should better be avoided. This is supported by
the following observations and results: (i) When genetic drift is strong, many
frequencies (in the binary case) approach the extreme values 0 and 1 and, con-
sequently, the behavior of the EDA comes close to the one of a mutation-based
EA, so the advantages of an EDA might be lost. (ii) The vast majority of the
runtime results for EDAs, especially those for harder scenarios like noise [2]
or multimodality [5], have only been shown in regimes with low genetic drift.
(iii) For some particular situations, a drastic performance decrease from genetic
drift was proven. For example, the UMDA with standard selection pressure but
small population size λ ∈ Ω(ln(n)) ∩ o(n) has a runtime exponential in λ on
the DeceptiveLeadingBlocks problem [16]. In contrast, when the popula-
tion size is large enough to prevent genetic drift, here λ = Ω(n ln(n)), then the
runtime drops to O(λn) with high probability.

Genetic drift in EDAs has been studied since the ground-breaking works
of Shapiro [48–50], and it appears in many runtime analyses such as [8, 51–
55]. Experimental evidences for the negative impact of genetic drift can further
be found in [18, 32, 56]. The most final answer to the genetic-drift problem
for univariate EDAs, including clear suggestions to choose the parameters as to

10

Algorithm 4: The r-cGA with parameter K ∈ R>0, maximizing an
r-valued fitness function f

1 t← 0;

2 p(0) ← (1r)(i,j)∈[n]×[0..r−1];
3 repeat // iteration t
4 x(t,1), x(t,2) ← two individuals, independently sampled from p(t);

5 y(t,1) ← individual with the higher fitness from {x(t,1), x(t,2)}
(breaking ties uniformly at random);

6 y(t,2) ← individual from {x(t,1), x(t,2)} \ {y(t,1)};
7 for (i, j) ∈ [n]× [0..r − 1] do

8 p
(t+1)
i,j ← p

(t)
i,j +

(
1{y(t,1)i,j = j} − 1{y(t,2)i,j = j}

)
1
K ;

9 p(t+1) ← restriction of p(t+1) to
[

1
(r−1)n , 1−

1
n

]
, as described in

eq. (1);
10 t← t+ 1;

11 until termination criterion met;

avoid genetic drift, was given by Doerr and Zheng [18]. In the case of the UMDA
(and binary decision variables, that is, the classic model), their work shows that
a neutral frequency (defined in Section 5.2) stays with high probability in the
middle range [0.25, 0.75] for the first T iterations if µ = ω(T). This bound is
tight. When regarding n frequencies together, a value of µ = Ω(T ln(n)) with
implicit constant computable from [18, Theorem 2] ensures with high probability
that all frequencies stay in the middle range for at least T iterations. Hence
these bounds give a clear indication how to choose the selection size µ when
aiming to run the UMDA for a given number of iterations. We note that the
quantification of genetic drift can also be used to design automated ways to
choose parameters, see the work by Zheng and Doerr [57], when no a-priori
estimate on T is available.

Given the importance of a good understanding of genetic drift, we now an-
alyze genetic drift for multi-valued EDAs, more specifically, for the r-UMDA.
We are optimistic that, analogous to the work by Doerr and Zheng [18], very
similar arguments can be applied for other main univariate EDAs.

5.2. Martingale Property of Neutral Positions

Genetic drift is usually studied via neutral positions of a fitness function.
Let f be an r-valued fitness function. We call a position i ∈ [n] (as well as, for
an individual x ∈ [0..r − 1]n, its corresponding variable xi and the associated
frequencies of an EDA) neutral (w.r.t. to f) if and only if, for all x ∈ [0..r−1]n,
the value xi has no influence on the value of f , that is, if and only if for all
individuals x, x′ ∈ [0..r − 1]

n
such that for all j ∈ [n]\{i} it holds that xj = x′

j ,
we have f(x) = f(x′).

11

An important property of neutral variables that we capitalize on in our
analysis of genetic drift is that their frequencies in typical EDAs without margins
form martingales [18]. This observation extends the corresponding one for EDAs
for binary representations. We make this statement precise for the r-UMDA.

Lemma 1. Let f be an r-valued fitness function, and let i ∈ [n] be a neutral
position of f . Consider the r-UMDA without margins optimizing f . For each

j ∈ [0..r − 1], the frequencies (p
(t)
i,j)t∈N are a martingale.

Proof. Let j ∈ [0..r − 1]. Since the algorithm has no margins, in each iteration

t ∈ N, no restriction takes place, so it holds that p
(t+1)
i,j = 1

µ

∑
k∈[µ] 1{x

(t,k)
i = j}.

Since i is neutral, the selection of the µ best individuals is not affected by
the values at position i of the λ samples. Consequently, for each k ∈ [µ], the

value x
(t,k)
i follows a Bernoulli distribution with success probability p

(t)
i,j . Hence,

E[1{x(t,k)
i = j} | p(t)i,j] = p

(t)
i,j . Further, by linearity of expectation, we get

E
[
p
(t+1)
i,j | p(t)i,j

]
=

1

µ

∑
k∈[µ]

E
[
1{x(t,k)

i = j}
∣∣ p(t)i,j

]
=

1

µ

∑
k∈[µ]

p
(t)
i,j = p

(t)
i,j ,

proving the claim.

As in previous works on genetic drift, the martingale property of neutral fre-
quencies allows to use strong martingale concentration results. Since in our set-
ting the frequencies start at a value of 1

r , we can only tolerate smaller deviations
from this value, namely up to 1

2r in either direction. With the methods of Doerr
and Zheng [18], this reduces the genetic drift by a factor of Θ(r2). We there-
fore use a stronger martingale concentration result, namely [19, Theorem 3.15],
which allows to exploit the lower sampling variance present at frequencies in
Θ(1r). We note that we adjust the theorem by incorporating comments by Mc-
Diarmid, especially [19, eq. (41)], mentioning that the absolute value in eq. (41)
should be around the sum, not around the maximum, as also observed by Doerr
and Zheng [18].

Theorem 2 (Martingale concentration result based on the variance [19, Theo-
rem 3.15 and eq. (41)]). Let (Xt)t∈N be a martingale with respect to a filtration
(Ft)t∈N. Further, for all t ∈ N≥1, denote the deviation by devt := |Xt −Xt−1|.
In addition, let b = supt∈N devt, and assume that b is finite. Last, for all t ∈ N,
let v̂t = sup

∑
s∈[t] Var[Xs −Xs−1 | Fs−1]. Then for all t ∈ N and all ε ∈ R≥0,

it holds that

Pr
[
maxs∈[0..t] |Xs − E[X0]| ≥ ε

]
≤ 2 exp

(
− ε2

2v̂t + 2bε/3

)
.

5.3. Upper Bound on the Genetic-Drift Effect of a Neutral Position

By utilizing Theorem 2, we show for how long the frequencies of the r-UMDA
at neutral positions stay concentrated around their initial value of 1

r .

12

Theorem 3. Let f be an r-valued fitness function, and let i ∈ [n] be a neutral
position of f . Consider the r-UMDA optimizing f . Let T ∈ N and j ∈ [0..r−1].
Then

Pr

[
maxs∈[0..T]

∣∣∣∣p(s)i,j −
1

r

∣∣∣∣ ≥ 1

2r

]
≤ 2 exp

(
− µ

12Tr + (4/3)r

)
.

Proof. We apply the same proof strategy as in the proof of [18, Theorem 1].
That is, we aim to apply Theorem 2. Naturally, one would apply the theorem to

the sequence of frequencies (p
(t)
i,j)t∈N. However, since the deviation of pi,j is very

large, namely 1, we consider instead a more fine-grained process (Zt)t∈N, which,
roughly speaking, splits each iteration of the r-UMDA into µ sections, each of
which denotes that an additional sample is added to the update. Formally, for
all t ∈ N and a ∈ [0..µ− 1], let

Ztµ+a = p
(t)
i,j (µ− a) +

∑
k∈[a]

1{x(t+1,k)
i = j}.

Note that, for all t ∈ N≥1, it holds that Ztµ = µp
(t)
i,j . Thus, the natural filtration

(Ft)t∈N of Z allows us to measure pi,j .
In order to apply Theorem 2, we check that its assumptions are met. To

this end, we first show that Z is a martingale. Since i is neutral, the selection
of the µ best individuals is not affected by the values at position i of the λ

samples. Consequently, for all k ∈ [µ], the random variable x
(t,k)
i follows a

Bernoulli distribution with success probability p
(t)
i,j . Thus, we get for all t ∈ N

and a ∈ [0..µ− 2] that

E[Ztµ+a+1 − Ztµ+a | Ftµ+a] = −p(t)i,j + E[1{x
(t,a+1)
i = j} | Ftµ+a] = 0, (2)

and further, by the definition of p
(t+1)
i,j , that

E
[
Z(t+1)µ − Ztµ+µ−1 | Ftµ+µ−1

]
= µE[p

(t+1)
i,j | Ftµ+µ−1]− p

(t)
i,j − E

[∑
k∈[µ−1]

1{x(t,k)
i = j}

∣∣ Ftµ+µ−1

]
=

∑
k∈[µ]

E[1{x(t,k)
i = j} | Ftµ+µ−1]− p

(t)
i,j

−
∑

k∈[µ−1]
E[1{x(t,k)

i = j} | Ftµ+µ−1]

= E[1{x(t,µ)
i = j} | Ftµ+µ−1]− p

(t)
i,j = 0, (3)

showing that Z is a martingale.

We take an alternative view of the event {maxs∈[0..T] |p
(s)
i,j − 1

r | ≥
1
2r},

whose probability we aim to bound. Note that this event is equivalent to {∃s ∈
[0..T] : |p(s)i,j − 1

r | ≥
1
2r}. A superset of this event is the event where we stop at

the first iteration such that the inequality holds. To this end, let S = inf{t ∈
N | Zt /∈ [µ2r ,

3µ
2r]} be a stopping time (with respect to F). From now on, we

13

consider the stopped process Z̃ of Z with respect to S. That is, for all t ∈ N, it
holds that Z̃t = Zmin{t,S}. Since Z is a martingale, so is Z̃.

Let t ∈ N, and let Yt be a Bernoulli random variable with success probabil-

ity p
(⌊t/µ⌋)
i,j that is Ft-measurable. Note that by eqs. (2) and (3), disregarding

the expected values, it holds that

Z̃t+1 − Z̃t = (Yt − p
(⌊t/µ⌋)
i,j) · 1{t < S}.

Thus, the maximum deviation b of Z̃ is 1. Further, let v̂t denote the sum of

variances, as defined in Theorem 2. Then, since p
(⌊t/µ⌋)
i,j and 1{t < S} are Ft-

measurable and since, due to Z̃ being stopped, it holds that p
(⌊t/µ⌋)
i,j ·1{t < S} ∈

[1
2r ,

3
2r], we get

Var
[
Z̃t+1 − Z̃t | Ft

]
= Var[Yt · 1{t < S} | Ft]

= p
(⌊t/µ⌋)
i,j

(
1− p

(⌊t/µ⌋)
i,j

)
· 1{t < S} ≤ 3

2r
.

Hence, v̂t ≤ 3t
2r .

Let p̃ denote the stopped process of pi,j with respect to S. Applying Theo-

rem 2 with t = µT and our estimates above, noting that Z̃0 = µ
r , yields

Pr

[
max

s∈[0..T]

∣∣∣∣p̃s − 1

r

∣∣∣∣ ≥ 1

2r

]
= Pr

[
max

s∈[0..T]
|p̃s − E[p̃0]| ≥

1

2r

]
= Pr

[
max

s∈[0..T]

1

µ
|Z̃sµ − E[Z̃0]| ≥

1

2r

]
≤ Pr

[
max
s∈[0..t]

|Z̃s − E[Z̃0]| ≥
µ

2r

]
≤ 2 exp

(
− (µ/(2r))2

2 · 3µT/(2r) + (2/3)µ/(2r)

)
= 2 exp

(
− µ

12Tr + (4/3)r

)
.

Since we only need to consider the stopped process, as explained above, and
since p̃ is identical to pi,j until the process stops, the result follows.

5.4. Upper Bound for Positions with Weak Preference

A position is rarely neutral for a given fitness function. However, we prove
that the results on neutral positions translate to positions where one value is
better than all other values. This is referred to as weak preference. Formally,
we say that an r-valued fitness function f has a weak preference for a value
j ∈ [0..r − 1] at a position i ∈ [n] if and only if, for all x1, ..., xn ∈ [0..r − 1], it
holds that

f(x1, .., xi−1, xi, xi+1, ..., xn) ≤ f(x1, .., xi−1, j, xi+1, ..., xn).

We now adapt Lemma 7 by Doerr and Zheng [18] to the r-UMDA.

Theorem 4. Consider two r-valued fitness functions f, g to optimize using
the r-UMDA, such that without loss of generality, the first position of f weakly
prefers 0 and the first position of g is neutral.

Let p correspond to the frequency matrix of f and q to the frequency matrix

of g, both defined by the r-UMDA. Then, for all t ∈ N, it holds that q
(t)
1,0 ⪯ p

(t)
1,0.

14

Proof. We prove our claim by induction on the number of iterations t. For the

base case t = 0, all frequencies are 1/r. Hence, q
(0)
1,0 ⪯ p

(0)
1,0.

For the induction step, let t ∈ N≥1 and let j ∈ [0..r − 1]. Further, let

Yj ∼ Bin
(
µ, q

(t)
0,j

)
. Since 0 is a neutral position of g, the selection of the µ best

individuals is not affected by the values at position 0 of the λ samples. Thus,

q
(t+1)
1,j = 1

µY . Further, since f weakly prefers 0s, defining Y ′
j ∼ Bin

(
µ, p

(t)
0,j

)
, it

holds that pt+1
1,j ≳ 1

µY
′.

Analogously to Doerr and Zheng [18], we note that since p
(t)
1,0 stochastically

dominates q
(t)
1,0 by induction hypothesis, there exists a coupling of the two prob-

ability spaces that describe the states of the two algorithms at iteration t in such

a way that p
(t)
1,0 ≥ q

(t)
1,0 for any point ω in the coupling probability space. For such

an ω, it then follows that Yj ⪯ Y ′
j , as the success probability of the former is

bounded from above by that of the latter. Hence, q
(t+1)
1,j = 1

µY ⪯
1
µY

′ ⪯ p
(t+1)
1,j ,

which proves the claim.

We now apply Theorem 4 and extend Theorem 3 to positions with weak
preference.

Theorem 5. Let f be an r-valued fitness function with a weak preference for 0
at position i ∈ [n]. Consider the r-UMDA optimizing f . Let T ∈ N. Then

Pr

[
mins∈[0..T] p

(s)
i,0 ≤

1

2r

]
≤ 2 exp

(
− µ

12Tr + (4/3)r

)
. (4)

Proof. Let g be an r-valued fitness function with neutral position i. Let q be
the frequency matrix of the r-UMDA optimizing g. By Theorem 4, it follows for

all s ∈ N that p
(s)
i,0 stochastically dominates q

(s)
i,0 . Applying Theorem 3 to g for

position i, we have

Pr

[
mins∈[0..T] q

(s)
i,0 ≤

1

2r

]
≤ 2 exp

(
− µ

12Tr + (4/3)r

)
.

Using the stochastic domination yields the tail bound for f .

6. Runtime Analysis of the r-UMDA

We analyze the runtime of the r-UMDA (Algorithm 2) on an r-valued variant
of LeadingOnes. We start by describing the previous runtime results of EDAs
on LeadingOnes (Section 6.1), then define the r-LeadingOnes problem for-
mally (Section 6.2), and finally state and prove our main result (Theorem 6,
Section 6.3).

15

6.1. Previous Runtime Analyses of EDAs on LeadingOnes

In contrast to OneMax (another popular theory benchmark function),
LeadingOnes is not that extensively studied for EDAs. This is surprising,
as LeadingOnes is interesting as a benchmark for univariate EDAs, since
the function introduces dependencies among the different positions of a bit
string, but the model of univariate EDAs assumes independence. However, since
LeadingOnes only has a single local maximum, known runtime results are
rather fast.

In a first mathematical runtime analysis of an EDA, however, using the
unproven no-error-assumption (which essentially states that there is no genetic
drift), it was shown that the UMDA optimizes the LeadingOnes benchmark in
expected time O(λn). This was made rigorous by Chen et al. [27] with a proof
that the UMDA with population size Ω(n2+ε) optimizes LeadingOnes in time
O(λn) with high probability. Here the relatively large required population stems
from the, then, incomplete understanding of genetic drift.

In a remarkable work [28], Dang and Lehre prove a runtime of O(nλ ln(λ)+
n2), only assuming that the sample size λ is at least logarithmic. Hence this
result applies both to regimes without and with genetic drift. In the regime
with genetic drift, however, the dependence on λ is slightly worse than in the
result by Chen et al. [27]. This was improved by Doerr and Krejca [20], where
an O(nλ ln(λ)) upper bound was shown for the whole regime λ = Ω(n ln(n))
of low genetic drift. More precisely, when µ = Ω(n ln(n)) and λ = Ω(µ), both
with sufficiently large implicit constants, then the runtime of the UMDA on
LeadingOnes is O(nλ ln(λµ)) with high probability. We note that the analysis

by Doerr and Krejca [20] is technically much simpler than the previous ones,
in particular, it avoids the complicated level-based method used by Dang and
Lehre [28]. We note that also lower bounds [3, 20] and runtimes in the presence
of noise have been regarded. Since we have no such results, we refer to the
original works.

Besides the UMDA, LeadingOnes was considered in the analysis of newly
introduced univariate EDAs. Interestingly, each of these algorithms optimizes
LeadingOnes in O(n ln(n)) with high probability. This runtime is faster by
a factor of n/ ln(n) when compared to classical EAs, and it suggests that
LeadingOnes is a rather easy problem for EDAs. Friedrich, Kötzing, and
Krejca [29] proved the first of these results for their stable compact genetic
algorithm (scGA), which introduces an artificial bias into its update process
that is overcome by the LeadingOnes function. However, it was later proven
that the scGA fails on the typically easy OneMax function [58], highlighting
that the scGA is not a good EDA in general.

The next result was proven by Doerr and Krejca [58], who introduce the
significance-based compact genetic algorithm (sig-cGA). The sig-cGA saves a
history of good individuals and only updates a frequency when the number of
bits in the history of that position significantly deviates from its expectation.
This algorithm also performs well on OneMax, i.e., exhibits an O(n ln(n))
expected runtime.

16

The last result was proven recently by Ajimakin and Devi [59], who intro-
duce the competing genes evolutionary algorithm (cgEA). The cgEA utilizes the
Gauss–Southwell score as a quality metric for the positions of its samples. Iter-
atively, it picks the position i with the best score and creates a new population
by letting each individual of the previous population compete against a copy
of it where the bit at position i is flipped. Based on the best individuals cre-
ated this way, the frequency at position i is immediately set to either 0 or 1,
whichever value turns out to be better. This approach works very well for a va-
riety of theory benchmarks, as proven by the authors. For example, for optimal
parameter values, it exhibits a (deterministic) linear runtime on OneMax, and
it optimizes the Jumpk benchmark with high probability in O(4kn ln(n)) time.

6.2. The r-LeadingOnes Benchmark

The r-LeadingOnes function (eq. (5)) is a generalization of the classical
LeadingOnes benchmark [60] from the binary to the multi-valued domain. Be-
fore we define the generalization, we briefly present the LeadingOnes function.

LeadingOnes. LeadingOnes [60] is one of the most commonly mathe-
matically analyzed benchmark functions, both in the general domain of evo-
lutionary computation [45] as well as in the domain of EDAs [32]. For a bit
string of length n ∈ N≥1, it returns the number of consecutive 1s, starting from
the leftmost position. Formally, LeadingOnes : {0, 1}n → [0..n] is defined as
x 7→

∑
i∈[n]

∏
j∈[i] xi. The function has a single local maximum at the all-1s

string, which is also its global maximum.
r-LeadingOnes. Inspired by LeadingOnes from the binary domain, we

define r-LeadingOnes : [0..r − 1]n → [0..n] as the function that returns the
number of consecutive 0s, starting from the leftmost position. Formally,

r-LeadingOnes : x 7→
∑

i∈[n]

∏
j∈[i]

1{xj = 0}. (5)

In contrast to the binary case, the single local optimum of r-LeadingOnes is
the all-0s string, which is also its global optimum.

6.3. Runtime Results

We analyze the runtime of the r-UMDA (Algorithm 2) on the r-Leading-
Ones benchmark (eq. (5)) in the regime with low genetic drift. For the upper
bound (Theorem 6), compared to the binary case [20, Theorem 5], we get an
extra factor of order r ln(r)2 in the runtime. The factor of r is a result of the
increased waiting time to see a certain position out of r. The factor of ln(r)2

stems from the choice to stay in the regime with low genetic drift as well as for
the time it takes a frequency to get to the upper border. For the lower bound,
(Theorem 10), compared to the binary case [20, Theorem 6], we get an extra
factor of order r ln(r).

Our two bounds differ by a factor in the order of ln(r) (for polynomial
population sizes). We believe that our lower bound is missing a factor of ln(r),
as we currently do not account for the time it takes a frequency to get from its
starting value 1

r to 1− 1
n for this bound.

17

We prove the upper bound in Section 6.3.1 and the lower bound in Sec-
tion 6.3.2. Both bounds are a generalization of the binary case.

6.3.1. Upper Bound

Our upper bound shows that the number of iterations until an optimum is
found for the first time is almost linear in λ and in n, only adding a factor in
the order of ln(r).

Theorem 6. Let s ∈ R≥1. Consider the r-UMDA optimizing r-LeadingOnes
with λ ≥ 3seµ, µ ≥ 24(n + 1)r ln(n)(1 + ln2s(r)), and n ≥ 4r. Then with a
probability of at least 1 − 2

n − ln2s(2r)n
2−0.5n =: psucc, the frequency vector

corresponding to the value 0 is set to (1− 1
n)i∈[n] in n ln2s(2r) iterations.

Hence, after λ
(
n ln2s(2r)+1

)
fitness function evaluations, the r-UMDA sam-

ples the optimum with probability at least psucc
(
1− exp(− λ

2e)
)
.

The basic premise for our proof is that for the entirety of the considered iter-
ations, frequencies corresponding to the value 0 remain above a given threshold
since r-LeadingOnes weakly prefers 0 at all positions. We define this thresh-
old as 1

2r , and we show that in a sequential manner, position by position, the
frequencies corresponding to 0 are brought to 1 − 1

n within a given number of
iterations until all positions are covered.

First, we provide a guarantee on the concentration of all the probabilities
during the entirety of the algorithm’s runtime, in a way to avoid genetic drift
and to remain above a minimal threshold for all frequencies.

Lemma 7. Let s ∈ R≥1. Consider the r-UMDA with λ ≥ µ ≥ 24(n +
1)r ln(n)(1 + ln2s(r)) optimizing a function that weakly prefers 0 at every posi-
tion. Then with a probability of at least 1 − 2

n , for each i ∈ [n], the frequency

p
(t)
i,0 remains above 1

2r for the first n(1 + ln2s(r)) iterations.

Proof. By Theorem 5 with T = n(1 + ln2s(r)), we have for all i ∈ [n] that

Pr

[
min

k=1,...,T
p
(k)
i,0 ≤

1

2r

]
≤ 2 exp

(
− µ

12n(1 + ln2s(r))r +
4r
3

)
.

Since µ ≥ 24(n+ 1)r ln(n)(1 + ln2s(r)), we get

Pr

[
min

k=1,...,T
p
(k)
i,0 ≤

1

2r

]
≤ 2 exp

(
−24(n+ 1)r ln(n)(1 + ln2s(r))

12n(1 + ln2s(r))r +
4r
3

)
≤ 2 exp

(
−24(n+ 1) ln(n)(1 + ln2s(r))

12(n+ 1)(1 + ln2s(r))

)
≤ 2 exp(−2 ln(n)).

Hence, it follows that

Pr

[
mink=1,...,T p

(k)
i,0 ≤

1

2r

]
≤ 2

n2
.

Applying a union bound over all n positions yields the result.

18

In the proof of our next result, we apply the following Chernoff bound. We
apply it in order to quantify the number of iterations necessary to converge
every position i ∈ [n].

Theorem 8 (Chernoff bound [61, Theorem 1.10.5]). Let k ∈ N≥1, δ ∈ [0, 1],
and let X be the sum of k independent random variables each taking values in
[0, 1]. Then

Pr[X ≤ (1− δ) E[X]] ≤ exp

(
−δ2E[X]

2

)
.

An important concept for our analysis, following the approach by Doerr and
Krejca [20], is that a position is critical. Informally, a position is critical if and
only if the frequencies for all smaller positions corresponding to value 0 are
at the upper border. Our runtime proof relies on showing that the r-UMDA
quickly increases the frequency of a critical position to the upper border, thus
making the next position critical. Formally, let t ∈ N. We call a position i ∈ [n]
critical for the r-UMDA on r-LeadingOnes in iteration t, if and only if for all

k ∈ [i− 1], it holds that p
(t)
k,0 = 1− 1

n , and that p
(t)
i,0 < 1− 1

n .
We now show that once a position i ∈ [n] becomes critical, with high prob-

ability, with s ∈ R≥1 being an appropriate value separating λ from µ (that is,
defining the selection pressure), it takes less than n ln2s(r+1) iterations to bring
the frequency of the value 0 to the upper border 1 − 1

n . We also prove that it
remains there for a sufficient number of iterations until the convergence of the
frequency matrix.

Lemma 9. Let s, u ∈ R≥1. Consider the r-UMDA optimizing r-LeadingOnes
with λ ≥ 3seµ and µ ∈ N≥1. Consider an iteration t ∈ N such that position

i ∈ [n] is critical, and let b ∈ R>0 such that p
(t)
i,0 ≥ b ≥ 2

n . Then with a probability

of at least 1− u ln2s(
1
b) exp

(
− sµb

24

)
, it holds for all θ ∈

[
ln2s(

1
b)..u ln2s(

1
b)
]
that

p
(t+θ)
i,0 = 1− 1

n .

Proof. We start by proving that, for all θ ∈ [0..u ln2s(
1
b)], the frequency p

(t+θ)
i,0

multiplies by at least 2s during an update, with high probability (and is then

restricted). To this end, let t′ ∈ [t..t + θ], and assume that p
(t′)
i,0 ≥ b, and that

position i or a position greater than i is critical (where we assume, for conve-
nience, that if all frequencies for value 0 are 1− 1

n , then position n+1 is critical).
Furthermore, let X denote the number of sampled individuals in iteration t′ that

have at least i leading 0s. Note that p
(t)
i,0 ≥ b by assumption as well as that i

is critical in iteration t. We discuss later via induction why these assumptions
also hold for iteration t′.

We consider the process of sampling a single individual. Since position at

least i is critical, by definition, for all k ∈ [i− 1], we have p
(t′)
k,0 = 1− 1

n . Hence,
the probability that all these positions are sampled as 0 for this individual is

(1 − 1
n)

i−1 ≥ (1 − 1
n)

n−1 ≥ 1
e . This yields E[X] ≥ λp

(t′)
i,0

e , and since λ ≥ 3seµ,

this yields E[X] ≥ 3sµp
(t′)
i,0 .

19

By the Chernoff bound (Theorem 8) and by the assumption p
(t′)
i,0 ≥ b, we get

Pr

[
X ≤ 5

2
sµp

(t′)
i,0

]
≤ Pr

[
X ≤ 5

6
E[X]

]
≤ exp

(
−E[X]

72

)
≤ exp

(
−
sµp

(t′)
i,0

24

)
≤ exp

(
−sµb

24

)
.

We consider p
(t′+1)
i,0 as defined in Section 4.2, which is the updated frequency

before being restricted to
[

1
(r−1)n , 1 −

1
n

]
. Since p

(t′+1)
i,0 ≥ min(Xµ , 1) by the

definition of the update of the r-UMDA, we have

Pr

[
p
(t′+1)
i,0 ≤ min

(
5

2
sp

(t′)
i,0 , 1

)]
≤ Pr

[
X ≤ 5

2
sµp

(t′)
i,0

]
≤ exp

(
−sµb

24

)
.

In order to update p
(t′)
i,0 , the frequency vector p

(t′+1)
i is restricted to the

interval
[

1
(r−1)n , 1 −

1
n

]
, which entails that the updated frequency p

(t′+1)
i,0 may

reduce when compared to p
(t′+1)
i,0 . However, since the restriction adds at most

the lower border (that is, 1
(r−1)n) to a frequency, any restriction rule adds at

most a probability mass of 1
n to the frequency vector. We assume pessimistically

that, in order for the frequencies to sum to 1, this mass is entirely subtracted

from p
(t′+1)
i,0 during the restriction (noting that this does not take place once

p
(t′+1)
i,0 ≥ 1 − 1

n , as this means that it is set to the upper border instead).

Further, the assumption p
(t′)
i,0 ≥ b ≥ 2

n yields that 5
2sp

(t′)
i,0 − 1

n ≥ 2sp
(t′)
i,0 . Hence,

we get that

Pr
[
p
(t′+1)
i,0 < min

(
2sp

(t′)
i,0 , 1− 1

n

)]
≤ Pr

[
p
(t′+1)
i,0 < min

(5
2
sp

(t′)
i,0 −

1

n
, 1− 1

n

)]
≤ exp

(
−sµb

24

)
.

By induction on the iteration t′ (starting at t), it follows that, with an ad-
ditional failure probability of at most exp

(
− sµb

24

)
per iteration, the assumptions

that p
(t′)
i,0 ≥ b and that position at least i is critical are satisfied.

Starting from iteration t, a union bound over the next u ln2s(
1
b) iterations

yields that the frequency pi,0 continues growing exponentially with a factor of 2s

for the next u ln2s(
1
b) iterations with probability at least 1−u ln2s(1b) exp

(
− sµb

24

)
.

Since, by assumption, p
(t)
i,0 ≥ b, it reaches 1− 1

n after at most ln2s(
1
b) iterations

during that time, concluding the proof.

We now prove our main result.

Proof of Theorem 6. Since r-LeadingOnes weakly prefers 0s at all positions
i ∈ [n], by Lemma 7, with a probability of at least 1 − 2

n , for all i ∈ [n], the
frequency pi,0 remains above 1

2r for the first n(1 + ln2s(r)) iterations.

20

For each position i ∈ [n], we apply Lemma 9 with b = 1
2r and u = n as well

as µ ≥ 24nr ln(n) and s ≥ 1, noting that the assumption b ≥ 2
n is satisfied,

since we assume n ≥ 4r. Hence, for each i ∈ [n], with a probability of at least
1 − ln2s(2r)n

1−0.5n, after at most ln2s(2r) iterations, the frequency pi,0 is set
to 1 − 1

n and remains there for at least (n − 1) ln2s(2r) iterations. Further, by
a union bound over all n frequency vectors, the above holds for all frequency
vectors, with probability at least 1− ln2s(2r)n

2−0.5n.
Combining everything, with probability at least 1 − 2

n − ln2s(2r)n
2−0.5n, it

holds by induction on position i that once position i is critical, the frequency pi,0
reaches 1 − 1

n in at most ln2s(2r) iterations and remains there until at least
iteration n ln2s(2r). Since position 0 is critical in iteration 0, it follows that the
frequencies for value 0 are set, in increasing order of their position, to 1 − 1

n .
After at most n ln2s(2r) iterations, all such frequencies are at the upper border,
which proves the first part of the claim.

For the second part, note that once for all i ∈ [n] holds that pi,0 = 1 − 1
n ,

which occurs with probability at least psucc, as shown above, the r-UMDA cre-
ates the global maximum of r-LeadingOnes during the next iteration with
probability at least (1 − 1

n)
n ≥ 1

2e for each offspring. Since the algorithm cre-
ates λ offspring independently, the probability of not creating the global max-
imum within the next λ fitness evaluations is at most (1 − 1

2e)
λ ≤ exp(− λ

2e).
Multiplying the complementary probability with the previous success probabil-
ity psucc thus concludes the proof.

6.3.2. Lower Bound

As the upper bound (Theorem 6), the lower bound shows an almost linear
dependency of the number of iterations until the optimum is sampled for the
first time with respect to λ and n, only adding a factor of order ln(r). The
difference of ln(r) to the upper bound stems from the bound on µ, which is
larger by a factor of around ln(r) in the upper bound.

Theorem 10. Let δ ∈ (0, 1) be a constant. Consider the r-UMDA optimizing
r-LeadingOnes with λ ≥ µ ≥ max{24(n+1)r ln(n), 6 1+δ

δ2 ln(n)}. Furthermore,

let d = ⌈log2r/3((1+δ)λµ)⌉ = ⌈
ln((1+δ)λ/µ)

ln(2r/3) ⌉ and let ξ = ⌈log2r/3(n2λ)⌉+1. Then

with probability at least 1 − 4n−1, the r-UMDA does not sample the optimum
in iteration ⌊n−ξ

d ⌋ − 1 or earlier. This corresponds to more than λ⌊n−ξ
d ⌋ fitness

function evaluations until the optimum is sampled for the first time.

Our proof of Theorem 10 follows closely the proof for a lower bound on
the runtime of the UMDA on LeadingOnes in the binary case by Doerr and
Krejca [20, Theorem 6]. The proof mainly relies on the leftmost position in a
population that never had at least µ samples with a 0 so far. This position
increases each iteration with high probability by only about ln(λµ)/ ln(r) =:
d. Before this position is sufficiently close to n, it is very unlikely that the
r-UMDA samples the optimum of r-LeadingOnes. Hence, the runtime is with
high probability in the order of n

d .

21

To make this outline formal, we say that a position i ∈ [n] is selection-
relevant in iteration t ∈ N (for r-LeadingOnes) if and only if the population
in iteration t of the r-UMDA optimizing r-LeadingOnes has at least µ in-
dividuals with at least i − 1 leading 0s. Note that multiple positions can be
selection-relevant in the same iteration, and that position 1 is always selection-
relevant. Furthermore, for each iteration t ∈ N, we say that position i ∈ [n]
is the maximum selection-relevant position if and only if i is the largest value
among all selection-relevant positions in iteration t.

An important observation is that if position i ∈ [n] is not selection-relevant
up to (including) iteration t ∈ N, then i is also neutral up to iteration t. The
reason is that the selection of individuals is solely determined by positions up to
the smallest position j ∈ [n] of the µ best individuals where one of them contains
a value different than 0. All following positions do not change the ranking of
the µ best individuals. Hence, if i > j, then i is neutral.

The following lemma shows that the frequency for value 0 in positions that
were not yet selection-relevant remain close to their starting value of 1

r , as they
are neutral up to that point.

Lemma 11. Let g ∈ N≥1. Consider the r-UMDA optimizing r-LeadingOnes
with λ ≥ µ ≥ 24(g + 1)r ln(g). For all i ∈ [n], let Ti denote the first iteration
such that position i is selection-relevant, and let T sel

i = min{Ti, g}. Then with
probability at least 1− 2ng−2, it holds for each i ∈ [n] and each t ∈ [0..T sel

i] that

p
(t)
i,0 ∈ (12

1
r ,

3
2
1
r).

Proof. Let i ∈ [n] . We show that the sequence (p
(t)
i,0)t∈N remains in (12

1
r ,

3
2
1
r)

as long as t ≤ T sel
i by aiming to apply Theorem 3. We then conclude the proof

via a union bound of the failure probabilities (that is, the probabilities that a
frequency does not remain in said interval) over all possible values for i.

Conditional on T sel
i , since i only becomes selection-relevant the earliest in

iteration Ti, position i is neutral up to (including) iteration Ti. That is, for all
t ∈ [0..Ti−1], position i has no influence on the fitness of each individual in pop-

ulation P (t) (and thus on the updated frequency p
(t+1)
i,0). Hence, by Theorem 3,

by T sel
i ≤ g, and by the lower bound on µ, we get that

Pr

[
maxs∈[0..T sel

i]

∣∣∣∣p(s)i,0 −
1

r

∣∣∣∣ ≥ 1

2r

∣∣∣∣T sel
i

]
≤ 2 exp

(
− µ

12T sel
i r + (4/3)r

)
≤ 2 exp

(
− µ

12(g + 1)r

)
≤ 2 exp

(
−24(g + 1)r ln(g)

12(g + 1)r

)
≤ 2g−2.

By the law of total probability, this bound also holds independently of the
outcome of T sel

i .
Taking the union bound of the above bound over all n values for i yields

that the overall failure probability is at most 2ng−2, concluding the proof.

For the next lemma, we make use of the following Chernoff bound, which
we apply in order to show that new offspring does not extend the prefix of

22

leading 0s by too much. It is a non-trivial extension of the typical Chernoff
bound to the case where we have an upper bound on the expected value of the
sum of independent Bernoulli random variables. This extension is non-trivial as
the upper bound on the expectation also results in a stronger probability bound.

Theorem 12 (Chernoff bound [61, Theorem 1.10.21 (a) with Theorem 1.10.1]).
Let k ∈ N≥1, and let X be the sum of k independent random variables each taking
values in [0, 1]. Moreover, let δ, µ+ ∈ R≥0 such that µ+ ≥ E[X]. Then

Pr
[
X ≥ (1 + δ)µ+

]
≤ exp

(
−1

3
min

{
δ2, δ

}
µ+

)
.

In the following lemma, we show that the maximum selection-relevant posi-
tion increases each iteration with high probability by at most roughly logr(

λ
µ).

To this end, we tie it to the concept of a critical position, as defined in Sec-
tion 6.3.1. This proof is heavily inspired by the proof of Doerr and Krejca [20,
Lemma 4], but we fix a mistake in their proof, where the penultimate estimate
of the application of the Chernoff bound bounds the exponent in the wrong
direction.

Lemma 13. Let δ ∈ (0, 1) be a constant. Consider the r-UMDA optimizing
r-LeadingOnes with µ ≥ 6 1+δ

δ2 ln(n). Furthermore, consider an iteration t ∈ N
such that position i ∈ [n] is critical and that, for all positions i′ ∈ [i + 1..n],

it holds that p
(t)
i′,0 ≤

3
2
1
r . Let d =

⌈
log2r/3

(
(1 + δ)λµ

)⌉
. Then, with probability at

least 1− n−2, the maximum selection-relevant position in iteration t is at most
min{n, i+ d}.

Proof. We note that λ ≥ µ by the definition of the r-UMDA and since δ > 0, it
holds that d ≥ 1. Furthermore, we assume that i < n− d, that is, it holds that
min{n, i + d} = i + d. For i ≥ n − d, we statement claims that the maximum
selection-relevant position is at most n, which is trivially the case, as all positions
are in [n].

For a position k ∈ [n] to become the maximum selection-relevant position in
iteration t, by definition, it is necessary that at least µ individuals in popula-
tion P (t) have at least k− 1 leading 0s. We show via Theorem 12 that it is very
unlikely that such a prefix of leading 0s extends by much.

To this end, let k = i + d, and let X denote the number of individuals
from P (t) with at least k leading 0s. Since we assume that each frequency of
value 0 at a position larger than i is at most 3

2
1
r , as well as due to the independent

sampling of the r-UMDA and due to the definition of d, it follows that

E[X] ≤ λ

(
3

2

1

r

)d

= λ

(
2

3
r

)−d

≤ λ
µ

(1 + δ)λ
=

µ

1 + δ
.

23

Hence, by applying Theorem 12 with µ+ = µ
1+δ , recalling that δ ∈ (0, 1), and

by applying the bound on µ, we get that

Pr[X ≥ µ] = Pr

[
X ≥ (1 + δ)

µ

1 + δ

]
≤ exp

(
−1

3
min

{
δ2, δ

} µ

1 + δ

)
= exp

(
−1

3
µ

δ2

1 + δ

)
≤ n−2.

Consequently, with probability at least 1 − n−2, the population P (t) contains
fewer than µ offspring that have at least k leading 0s. That is, the largest
position k′ ∈ [n] where at least µ offspring have at least k′ leading 0s is at most
k − 1, which is equivalent to the maximum selection-relevant position being at
most k.

The next lemma is the last one before we prove our lower bound. The
lemma shows that it is very unlikely for the r-UMDA to sample the optimum
of LeadingOnes while many frequencies for value 0 are not high yet (which is
measured by the critical position).

Lemma 14. Consider the r-UMDA optimizing r-LeadingOnes, and consider
an iteration t ∈ N and a position i ∈ [n] such that, for all positions i′ ∈ [i +

1..n], it holds that p
(t)
i′,0 ≤

3
2
1
r . Then, with probability at least 1− λ(32

1
r)

n−i, the
r-UMDA does not sample the optimum in this iteration.

Proof. We bound the probability for sampling the optimum this iteration from
above. The probability for a single offspring to be the optimum is, due to the
upper bound on the last n− i frequencies, at most (32

1
r)

n−i, as all positions need
to be a 0. Taking a union bound over all λ samples of this iteration concludes
the proof.

Lemmas 7, 13 and 14 are sufficient for proving Theorem 10.

Proof of Theorem 10. We only show the bound on the number of iterations.
Since we start counting iterations at 0 and since the r-UMDA creates exactly λ
offspring each iteration, the bound on the number of fitness function evaluations
follows immediately.

For the entirety of the proof, we assume that during the first n iterations,
all frequencies for value 0 remain in (12

1
r ,

3
2
1
r) as long as they did not become

selection-relevant yet. By Lemma 11 with g = n, noting that µ is sufficiently
large, this occurs with probability at least 1 − 2n−1. Furthermore, we assume
that n− ξ ≥ d, as Theorem 10 yields a trivial lower bound of 0 otherwise.

We continue by proving via induction on t ∈ [0..n] that with probability at
least 1− (t+1)n−2 it holds that each position i ∈ [(t+1)d+2..n] is not relevant
up to (including) iteration t.

For the base case t = 0, by the definition of the r-UMDA, for all positions

i ∈ [n], it holds that p
(0)
i,0 = 1

r . This especially means that position 0 is critical
this iteration. Applying Lemma 13, noting that the requirements for δ and µ are

24

met, proves the base case, as, with probability at least 1 − n−2, the maximum
selection-relevant position in iteration 0 is d.

For the inductive step, assume that the inductive hypothesis holds up to
(including) iteration t ∈ [0..n−1]. Hence, with probability at least 1−(t+1)n−2,
the maximum selection relevant-position in iteration t (and up to there) is at
most (t + 1)d + 1. This implies that the critical position k ∈ [n] in iteration
t + 1 is also at most (t + 1)d + 1. Furthermore, all frequencies for value 0 at
positions greater than (t+1)d+1 have not been selection-relevant yet. Thus, by
our argument at the beginning of the proof, these frequencies are at most 3

2
1
r .

Overall, by Lemma 13, in iteration t + 1, with probability at most n−2, the
maximum selection-relevant position in iteration t+1 is at least k+d+1. Via a
union bound with the failure probability of the inductive hypothesis, this proves
the claim, that is, with probability at least 1−(t+2)n−2, the maximum-selection
relevant position in iteration t+ 1 is at most k + d ≤ (t+ 2)d+ 1.

This claim shows that, for t′ = ⌊n−ξ
d ⌋ − 1 ≤ n, with probability at least

1 − n−1, each position greater than n − ξ + 1 is never selection-relevant up to
(including) iteration t′. Hence, by our argument at the beginning of the proof,
these frequencies are at most 3

2
1
r . Applying Lemma 14 with i = n− ξ + 1 then

yields that the r-UMDA does not sample the optimum in each iteration up to t′

with a probability of at least 1 − λ(32
1
r)

n−i = 1 − λ(32
1
r)

ξ−1 ≥ 1 − n−2 per
iteration. A union bound over at most t′ + 1 ≤ n iterations then shows that
with probability at least 1−n−1, it holds that up to (including) iteration t′, the
r-UMDA does not sample the optimum.

Last, a union bound over the three error probabilities of the three arguments
above then shows that with probability at least 1−4n−1, the r-UMDA does not
sample the optimum up to (including) iteration t′, concluding the proof.

7. Conclusion

We have proposed the first systematic framework of EDAs for problems
with multi-valued decision variables. Our analysis of the genetic-drift effect and
our runtime analysis on the multi-valued version of LeadingOnes have shown
that the increase in decision values does not result in significant difficulties.
Although there may be a slightly stronger genetic drift (requiring a more con-
servative model update, that is, a higher selection size µ for the UMDA) and
slightly longer runtimes, these outcomes are to be expected given the increased
complexity of the problem. We hope that our findings will inspire researchers
and practitioners to embrace the benefits of EDAs for multi-valued decision
problems, beyond the previously limited application to mostly permutations
and binary decision variables.

An interesting question for future work is to analyze whether other model
representations, especially for multi-valued problems that do not consider cate-
gorical variables, have a benefit over our model.

25

Acknowledgments

Thank you to Josu Ceberio for some useful discussions. This work also
profited from many scientific discussions at the Dagstuhl Seminar 22182
“Estimation-of-Distribution Algorithms: Theory and Applications”. This work
was supported by a public grant as part of the Investissements d’avenir project,
reference ANR-11-LABX-0056-LMH, LabEx LMH.

References

[1] M. Pelikan, M. Hauschild, F. G. Lobo, Estimation of distribution algo-
rithms, in: J. Kacprzyk, W. Pedrycz (Eds.), Springer Handbook of Com-
putational Intelligence, Springer, 2015, pp. 899–928.

[2] T. Friedrich, T. Kötzing, M. S. Krejca, A. M. Sutton, The compact genetic
algorithm is efficient under extreme Gaussian noise, IEEE Transactions on
Evolutionary Computation 21 (2017) 477–490.

[3] P. K. Lehre, P. T. H. Nguyen, Runtime analysis of the univariate marginal
distribution algorithm under low selective pressure and prior noise, in:
Genetic and Evolutionary Computation Conference, GECCO 2019, ACM,
2019, pp. 1497–1505.

[4] V. Hasenöhrl, A. M. Sutton, On the runtime dynamics of the compact
genetic algorithm on jump functions, in: Genetic and Evolutionary Com-
putation Conference, GECCO 2018, ACM, 2018, pp. 967–974.

[5] B. Doerr, The runtime of the compact genetic algorithm on Jump functions,
Algorithmica 83 (2021) 3059–3107.

[6] S. Wang, W. Zheng, B. Doerr, Choosing the right algorithm with hints
from complexity theory, in: International Joint Conference on Artificial
Intelligence, IJCAI 2021, ijcai.org, 2021, pp. 1697–1703.

[7] R. Benbaki, Z. Benomar, B. Doerr, A rigorous runtime analysis of the 2-
MMASib on jump functions: ant colony optimizers can cope well with local
optima, in: Genetic and Evolutionary Computation Conference, GECCO
2021, ACM, 2021, pp. 4–13.

[8] B. Doerr, M. S. Krejca, The univariate marginal distribution algorithm
copes well with deception and epistasis, Evolutionary Computation 29
(2021) 543–563.

[9] C. Witt, How majority-vote crossover and estimation-of-distribution algo-
rithms cope with fitness valleys, Theoretical Computer Science 940 (2023)
18–42.

[10] P. Larrañaga, J. A. Lozano (Eds.), Estimation of Distribution Algorithms,
Springer, 2002.

26

[11] R. Santana, P. Larrañaga, J. A. Lozano, Protein folding in simplified models
with estimation of distribution algorithms, IEEE Transactions on Evolu-
tionary Computation 12 (2008) 418–438.

[12] R. Santana, P. Larrañaga, J. A. Lozano, Learning factorizations in esti-
mation of distribution algorithms using affinity propagation, Evolutionary
Computation 18 (2010) 515–546.

[13] R. Santana, A. Ochoa-Rodriguez, M. Soto, Solving problems with integer
representation using a tree based factorized distribution algorithm, in:
International NAISO Congress on Neuro Fuzzy Technologies, 2002.

[14] R. Santana, A. Mendiburu, Model-based template-recombination in
markov network estimation of distribution algorithms for problems with
discrete representation, in: World Congress on Information and Communi-
cation Technologies, WICT 2013, 2013, pp. 170–175.

[15] H. Mühlenbein, The equation for response to selection and its use for
prediction, Evolutionary Computation 5 (1997) 303–346.

[16] P. K. Lehre, P. T. H. Nguyen, On the limitations of the univariate marginal
distribution algorithm to deception and where bivariate EDAs might help,
in: Foundations of Genetic Algorithms, FOGA 2019, ACM, 2019, pp. 154–
168.

[17] B. Doerr, M. S. Krejca, Bivariate estimation-of-distribution algorithms can
find an exponential number of optima, Theoretical Computer Science 971
(2023) 114074.

[18] B. Doerr, W. Zheng, Sharp bounds for genetic drift in estimation-of-
distribution algorithms, IEEE Transactions on Evolutionary Computation
24 (2020) 1140–1149.

[19] C. McDiarmid, Concentration, in: Probabilistic Methods for Algorithmic
Discrete Mathematics, volume 16, Springer, Berlin, 1998, pp. 195–248.

[20] B. Doerr, M. S. Krejca, A simplified run time analysis of the univariate
marginal distribution algorithm on LeadingOnes, Theoretical Computer
Science 851 (2021) 121–128.

[21] F. Ben Jedidia, B. Doerr, M. S. Krejca, Estimation-of-distribution algo-
rithms for multi-valued decision variables, in: Genetic and Evolutionary
Computation Conference, GECCO 2023, ACM, 2023, pp. 230–238.

[22] B. Doerr, M. Dufay, General univariate estimation-of-distribution algo-
rithms, in: Parallel Problem Solving From Nature, PPSN 2022, Part II,
Springer, 2022, pp. 470–484.

[23] S. Droste, A rigorous analysis of the compact genetic algorithm for linear
functions, Natural Computing 5 (2006) 257–283.

27

[24] S. Droste, T. Jansen, I. Wegener, On the analysis of the (1+1) evolutionary
algorithm, Theoretical Computer Science 276 (2002) 51–81.

[25] T. Chen, K. Tang, G. Chen, X. Yao, On the analysis of average time
complexity of estimation of distribution algorithms, in: Congress on Evo-
lutionary Computation, CEC 2007, IEEE, 2007, pp. 453–460.

[26] T. Chen, P. K. Lehre, K. Tang, X. Yao, When is an estimation of distri-
bution algorithm better than an evolutionary algorithm?, in: Congress on
Evolutionary Computation, CEC 2009, IEEE, 2009, pp. 1470–1477.

[27] T. Chen, K. Tang, G. Chen, X. Yao, Analysis of computational time of
simple estimation of distribution algorithms, IEEE Transactions on Evo-
lutionary Computation 14 (2010) 1–22.

[28] D. Dang, P. K. Lehre, Simplified runtime analysis of estimation of distri-
bution algorithms, in: Genetic and Evolutionary Computation Conference,
GECCO 2015, ACM, 2015, pp. 513–518.

[29] T. Friedrich, T. Kötzing, M. S. Krejca, EDAs cannot be balanced and
stable, in: Genetic and Evolutionary Computation Conference, GECCO
2016, ACM, 2016, pp. 1139–1146.

[30] D. Sudholt, C. Witt, Update strength in EDAs and ACO: How to avoid ge-
netic drift, in: Genetic and Evolutionary Computation Conference, GECCO
2016, ACM, 2016, pp. 61–68.

[31] M. S. Krejca, C. Witt, Lower bounds on the run time of the univariate
marginal distribution algorithm on OneMax, in: Foundations of Genetic
Algorithms, FOGA 2017, ACM, 2017, pp. 65–79.

[32] M. Krejca, C. Witt, Theory of estimation-of-distribution algorithms, in:
B. Doerr, F. Neumann (Eds.), Theory of Evolutionary Computation: Re-
cent Developments in Discrete Optimization, Springer, 2020, pp. 405–442.
Also available at https://arxiv.org/abs/1806.05392.

[33] M. Dorigo, T. Stützle, Ant colony optimization, MIT Press, 2004.

[34] F. Neumann, C. Witt, Ant colony optimization and the minimum spanning
tree problem, Theoretical Computer Science 411 (2010) 2406–2413.

[35] T. Kötzing, F. Neumann, H. Röglin, C. Witt, Theoretical analysis of two
ACO approaches for the traveling salesman problem, Swarm Intelligence 6
(2012) 1–21. doi:10.1007/S11721-011-0059-7.

[36] D. Sudholt, C. Thyssen, A simple ant colony optimizer for stochastic short-
est path problems, Algorithmica 64 (2012) 643–672.

[37] H. Mühlenbein, G. Paass, From recombination of genes to the estimation
of distributions I. Binary parameters, in: Parallel Problem Solving from
Nature, PPSN 1996, Springer, 1996, pp. 178–187.

28

https://arxiv.org/abs/1806.05392
http://dx.doi.org/10.1007/S11721-011-0059-7

[38] B. Doerr, D. Johannsen, M. Schmidt, Runtime analysis of the (1+1) evo-
lutionary algorithm on strings over finite alphabets, in: Foundations of
Genetic Algorithms, FOGA 2011, ACM, 2011, pp. 119–126.

[39] B. Doerr, S. Pohl, Run-time analysis of the (1+1) evolutionary algorithm
optimizing linear functions over a finite alphabet, in: Genetic and Evo-
lutionary Computation Conference, GECCO 2012, ACM, 2012, pp. 1317–
1324.

[40] B. Doerr, D. Sudholt, C. Witt, When do evolutionary algorithms optimize
separable functions in parallel?, in: Foundations of Genetic Algorithms,
FOGA 2013, ACM, 2013, pp. 48–59.

[41] T. Kötzing, A. Lissovoi, C. Witt, (1+1) EA on generalized dynamic
OneMax, in: Foundations of Genetic Algorithms, FOGA 2015, ACM, 2015,
pp. 40–51.

[42] Y. Yu, C. Qian, Z. Zhou, Switch analysis for running time analysis of
evolutionary algorithms, IEEE Transactions on Evolutionary Computation
19 (2015) 777–792.

[43] A. Lissovoi, C. Witt, MMAS versus population-based EA on a family of
dynamic fitness functions, Algorithmica 75 (2016) 554–576.

[44] B. Doerr, C. Doerr, T. Kötzing, Static and self-adjusting mutation
strengths for multi-valued decision variables, Algorithmica 80 (2018) 1732–
1768.

[45] B. Doerr, F. Neumann (Eds.), Theory of Evolutionary Computation—
Recent Developments in Discrete Optimization, Springer, 2020. Also
available at http://www.lix.polytechnique.fr/Labo/Benjamin.Doerr/doerr
neumann book.html.

[46] S. Baluja, Population-Based Incremental Learning: A Method for Integrat-
ing Genetic Search Based Function Optimization and Competitive Learn-
ing, Technical Report, Carnegie Mellon University, 1994.

[47] G. R. Harik, F. G. Lobo, D. E. Goldberg, The compact genetic algorithm,
IEEE Transactions on Evolutionary Computation 3 (1999) 287–297.

[48] J. L. Shapiro, The sensitivity of PBIL to its learning rate, and how detailed
balance can remove it, in: Foundations of Genetic Algorithms, FOGA 2002,
Morgan Kaufmann, 2002, pp. 115–132.

[49] J. L. Shapiro, Drift and scaling in estimation of distribution algorithms,
Evolutionary Computing 13 (2005) 99–123.

[50] J. L. Shapiro, Diversity loss in general estimation of distribution algorithms,
in: Parallel Problem Solving from Nature, PPSN 2006, Springer, 2006, pp.
92–101.

29

http://www.lix.polytechnique.fr/Labo/Benjamin.Doerr/doerr_neumann_book.html
http://www.lix.polytechnique.fr/Labo/Benjamin.Doerr/doerr_neumann_book.html

[51] S. Droste, Not all linear functions are equally difficult for the compact
genetic algorithm, in: Genetic and Evolutionary Computation Conference,
GECCO 2005, ACM, 2005, pp. 679–686.

[52] C. Witt, Domino convergence: why one should hill-climb on linear func-
tions, in: Genetic and Evolutionary Computation Conference, GECCO
2018, ACM, 2018, pp. 1539–1546.

[53] C. Witt, Upper bounds on the running time of the univariate marginal
distribution algorithm on OneMax, Algorithmica 81 (2019) 632–667.

[54] D. Sudholt, C. Witt, On the choice of the update strength in estimation-
of-distribution algorithms and ant colony optimization, Algorithmica 81
(2019) 1450–1489.

[55] J. Lengler, D. Sudholt, C. Witt, The complex parameter landscape of the
compact genetic algorithm, Algorithmica 83 (2021) 1096–1137.

[56] F. Neumann, D. Sudholt, C. Witt, The compact genetic algorithm struggles
on Cliff functions, in: Genetic and Evolutionary Computation Conference,
GECCO 2022, ACM, 2022, pp. 1426–1433.

[57] W. Zheng, B. Doerr, From understanding genetic drift to a smart-restart
mechanism for estimation-of-distribution algorithms, Journal of Machine
Learning Research 24 (2023) 1–40.

[58] B. Doerr, M. S. Krejca, Significance-based estimation-of-distribution algo-
rithms, IEEE Transactions on Evolutionary Computation 24 (2020) 1025–
1034.

[59] A. D. Ajimakin, V. S. Devi, The competing genes evolutionary algorithm:
Avoiding genetic drift through competition, local search, and majority vot-
ing, IEEE Transactions on Evolutionary Computation 27 (2023) 1678–1689.

[60] G. Rudolph, Convergence Properties of Evolutionary Algorithms, Verlag
Dr. Kovǎc, 1997.

[61] B. Doerr, Probabilistic tools for the analysis of randomized optimization
heuristics, in: B. Doerr, F. Neumann (Eds.), Theory of Evolutionary Com-
putation: Recent Developments in Discrete Optimization, Springer, 2020,
pp. 1–87. Also available at https://arxiv.org/abs/1801.06733.

30

https://arxiv.org/abs/1801.06733

	Introduction
	Related Work
	Preliminaries
	Multi-Valued EDAs
	Binary EDAs
	The Multi-Valued EDA Framework

	Genetic Drift
	Introduction to Genetic Drift
	Martingale Property of Neutral Positions
	Upper Bound on the Genetic-Drift Effect of a Neutral Position
	Upper Bound for Positions with Weak Preference

	Runtime Analysis of the r-UMDA
	Previous Runtime Analyses of EDAs on LeadingOnes
	The r-LeadingOnes Benchmark
	Runtime Results
	Upper Bound
	Lower Bound

	Conclusion

