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Abstract. We propose in this article to generate good rhythms from
geometric properties. This approach is based on the work by Toussaint,
who investigated the properties that make a “good” rhythm good in his
book The Geometry of Musical Rhythm. To do this, he analyzed the
shapes of polygons corresponding to certain rhythms to derive geometric
properties of a good rhythm. In this article, we propose to quantify these
properties using original mathematical formulas. This scores each rhythm
against several properties to measure how good a rhythm is, resulting
in the generation of rhythms with k£ onsets and n pulses. When k = 5
and n = 16, we reveal that the son rhythm obtains the best score, as
predicted by Toussaint at the end of his book. Applying the method for
other values of k£ and n, we demonstrate that some of the rhythms with
the highest scores are musically important rhythms, such as the tresillo
rhythm with k£ = 3 and n = 8, the fume-fume rhythm with k£ = 5 and
n = 12, the samba rhythm with &k = 7 and n = 16 or the Steve Reich’s
signature rhythm with k = 8 and n = 12.

Keywords: Musical rhythm - Geometry of music - Generating music -
Geometrical modeling of rhythms.

1 Introduction

What Makes a “Good” Rhythm Good? is the central theme of Toussaint’s book
The Geometry of Musical Rhythm [14]. To address this question, he investigated
the properties of six distinguished rhythms, each with £ = 5 onsets and n = 16
pulses: son, bossa-nova, gahu, rumba, shiko and soukous rhythms. These “good”
rhythms were chosen given their musical importance. They are represented in
polygon notation in Figure 1, which helps to understand the cyclical aspect of
a rhythm. The originality of Toussaint’s work is the geometric approach he uses
to describe the properties that make these rhythms good. In particular, only
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(d) Rumba rhythm (e) Shiko rhythm (f) Soukous rhythm

Fig. 1. The six distinguished rhythms in polygon notation. The n pulses are indicated
by numbers in the cyclic representation (from 1 to n = 16 here), and black points
correspond to the k onsets (k = 5 here).

the shape of polygons associated with rhythms is analyzed, instead of using
a more traditional representation such as a score. The properties of a “good”
rhythm he proposed are therefore described using a mathematical, rather than
musical, language. Among the six distinguished rhythms, he concluded that the
son thythm is the best one, as it satisfies the most properties [14]. But what
about other rhythms that have & = 5 onsets and n = 16 pulses? Is there a
rhythm as good or even better than the son rhythm? What are the “good”
rhythms for other values of k onsets and n pulses? In this article, we propose
mathematical models of the properties obtained by Toussaint to answer these
questions and generate “good” rhythms with k onsets and n pulses.

We inherit from Toussaint’s book the challenging term “good” rhythm, with
the understanding that it underlines the theoretical interest of studying certain
rhythmic properties in relation to the importance and pertinency of rhythms in
their musical context. It is by no means an evaluation in an ethical sense. Rather,
it points to the desire to have landmarks and measures of theoretical interest in
the otherwise mindnumbing list of all combinatorially possible rhythms. In the
following, we will omit the quotation marks for “good” with the understanding
that the attribute stands for the value of fulfilment of rhythmic properties. This
also includes the possibility for dissense among music theorists about the rele-
vance of certain properties (see for example the criticism of some of Toussaint’s
featured properties [6]). Therefore, the purpose of this article is not to generate
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the best possible rhythms, which is a highly complex problem, but to extend
Toussaint’s work by providing non-binary mathematical formulas that measure
each of these properties.

Previous works have already used the geometric properties of polygons asso-
ciated with rhythms to generate good rhythms, such as balance [11], eveness [12]
or interlocking reflection [13]. However, to our knowledge, there is no method that
combines several properties with a non-binary score to generate good rhythms.
To this end, in Section 2, we propose mathematical formulas for quantifying
certain properties that characterize a good rhythm, in order to determine the
level at which a rhythm with k& onsets and n pulses satisfies each property, and
to assign it a score aggregating all properties. Then, in Section 3, we apply this
method to rhythms with & = 5 onsets and n = 16 pulses to generate good
rhythms according to several properties. Finally, we apply the method to other
values of k onsets and n pulses in Section 4 and demonstrate that some of the
rhythms with the highest scores are musically important rhythms.

2 Characterizing the Properties of Good Rhythms

In this section, we present the properties we have considered in order to gen-
erate good rhythms. Most of these properties are from the book The Geome-
try of Musical Rhythm by Toussaint [14]. The main contribution of this article
is to propose mathematical formulas to measure how a given rhythm satisfies
each property. This quantification makes it possible to generalize the analysis
to rhythms other than the six distinguished rhythms illustrated in Figure 1. In
particular, this enables to analyze a large database of rhythms, which would be
impossible to do manually. Among the properties mentioned in [14], we have
selected 12 that are particularly relevant for obtaining good rhythms. For each
property, we normalize the value obtained by the mathematical formula with the
min-magz normalization® with the exception of the symmetry, shadow and fractal
properties, to avoid overemphasizing these properties because we noticed that
the min-max normalization gave too much importance to these properties (the
values for rhythms with & = 5 onsets and n = 16 pulses lie in the interval [0.6, 1],
[0.4,1] and [0.2, 1], respectively). We therefore sum the 12 values of the 12 prop-
erties to obtain a score between 0 and 12 for each rhythm (the sum was chosen
for its compensation effect among the properties). By computing the score of all
rhythms that have, for example, 5 onsets and 16 pulses, this allows to generate
good rhythms with 5 onsets and 16 pulses based on geometric properties only.
In the remainder of this article, we define a rhythm R with k onsets and n
pulses by R = {77, ...,Tx} with T; € Z,,, where k and n are non-zero integers
such that k& < n. In this case, we set xz; € Z the representative of T; € Z,
such that 0 < z; < n — 1. For example, the son rhythm displayed in polygon

that 1 = 0 in order to identify an onset as the beginning of the rhythm. We

3 The min-max normalization of z is defined by the formula iy

are respectively the minimum and maximum values of the data.

where m and M
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define d; = x;11 — z; the duration between two successive onsets z; and x4
with zp+1 = z1 + n, and the interval as the minimum duration between two
onsets which are not necessarily successive. In the rest of this section, we present
each of the 12 properties we have considered to generate good rhythms, explain
the relevance of each property from a musical point of view and use existing or
newly proposed mathematical formulas to quantify how much a rhythm satisfies
each property in order to give it a score out of all 12 properties.

2.1 Eveness

The eveness of a rhythm characterizes how well the onsets are temporally spaced.
If £ divides n, then the polygon associated with the rhythm that maximizes
eveness is a regular polygon. Otherwise it is the rhythm that best approximates
the regular polygon. For example, with £ = 5 and n = 16, the rhythm that
maximizes eveness is the bossa-nova rhythm (or its rotations) represented in
polygon notation in Figure 1(b), which is close to a regular pentagon. Rhythms
that maximize eveness given k onsets and n pulses are called Fuclidean rhythms.
There exists an algorithm for generating the Euclidean rhythms with &k onsets
and n pulses up to a rotation [12]. To quantify the eveness of a rhythm, Milne
et al. have proposed the following formula [8], by identifying Z,, with vectors of
norm 1 in the complex space:

k
1 2in (XL —4
Eveness:E Ze (F-1%)

=1

This formula can be interpreted as the sum of the deviations between the
polygon associated with the rhythm {e*"= }o<;<) and the regular polygon

{e*™ % Yo<j<k

2.2 Balance

The balance of a rhythm measures how close the centroid of the associated
polygon is to the center of the circle. This concept was introduced by Milne
et al. and has also been generalized to musical scales [8,9]. The formula for
quantifying the balance of a rhythm is as follows:

1 2im =L
Balance =1 — T Ze n

Among rhythms with k£ = 5 onsets and n = 16 pulses, the rhythm that maximizes
the balance is not the bossa-nova rhythm but the son rhythm (Figure 1(a)),
which demonstrates that eveness and balance are two different concepts.
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2.3 Area

Another way of quantifying the dispersion of the onsets is to consider the area
of the polygon associated with the rhythm. The larger the polygon area, the
more dispersed the onsets, and vice versa. This idea has already been mentioned
in [14], but rhythms with the largest area are barely addressed. We propose to
use this property to characterize a good rhythm, which can be quantified as:

11 d;
_ : j
Area = 3 jE:1 sin (27Tn )

This formula can be interpreted as a sum of isosceles triangles at the center of
the circle. Among rhythms with k£ = 5 onsets and n = 16 pulses, the bossa-nova
rhythm is the one that maximizes area. It is important to note that this property
is close to eveness and balance but is different.

2.4 Oddity

The oddity characterizes rhythms with an even number of pulses that do not
have two onsets that are opposite to each other, i.e. two onsets that divide the
rhythm into two sub-rhythms of equal length [2]. We can therefore quantify the
oddity of a rhythm as its proportion of onsets that do not divide the rhythm in
half, as follows for n even:

1
Oddity =1 - = |RN (R+n/2),

where R+ n/2 = {1 +n/2,..., T +n/2} is the thythm R shifted in time by
half its length. This concept does not make sense for n odd, for which the oddity
is not defined. Not all rhythms that maximize oddity are good. For example,

the rhythm {0,1,2,3,4} maximizes oddity but is not musically relevant, which
argues for the combination of different properties to generate good rhythms.

2.5 Closure

For rhythms with n = 16 pulses, Toussaint has defined the closure of a rhythm
if the last onset is equal to 12, meaning that the last onset is located on the
last strong beat [14]. Here, we propose to generalize this notion to give it more
nuance. First, we propose to measure how an onset is a strong beat by computing
its orbit, defined as: Orb(z;) = {Z; X ¥ | § € Z,}. For example, if n = 16, we
have Orb(4) = {0, 4, 8,12} and Orb(5) = Z1. With fewer elements in the orbit,
the onset is a stronger beat. Therefore, we define the closure of a rhythm to
quantify the level at which the last onset Ty, of the rhythm is on a strong beat:

1
Closure = 1 — - |Orb (7%)|

This formula generalizes the idea introduced by Toussaint, but is useless if n is
prime, as the strong and weak beats are more complex to determine.
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2.6 Aperture

Inspired by the closure property, we propose here the aperture property. A
rhythm satisfies this property if its second onset Tz is on a weak beat. We
propose the following formula to quantify this property:

1
Aperture = — |Orb (73)|
n

For example, if n = 16 and T3 = 3, the aperture is maximal. The aperture
creates tension while the closure makes a resolution. This new property partly
explains why the tresillo rhythm {0, 3,6} is one of the most important rhythms
with &k = 3 onsets and n = 8 pulses. In this case, the second onset is on a weak
beat (Zz = 3) which creates tension, while the last onset is not on a weak beat
(T3 = 6) which can be interpreted as a resolution.

2.7 Deepness

The deepness property characterizes rhythms where each interval between on-
sets occurs with a unique multiplicity, such that these multiplicities are the set
{1,2,...,k — 1} [5]. The formula that quantifies deepness is as follows:

k(k _ 1) [n/2]
Deepness = —5 ogpnglifvlz/m Zl h; —max (0,5 +1—p) |,
where H = {hy,...,h|y/2)} is the ordered full interval-content histogram, and

|«] is the integer part of z. Rhythms that maximize the value of deepness are
called deep rhythms. There are some links between Euclidean and deep rhythms.
If a rhythm is Euclidean then it is deep, but the converse is false [5]. There is
also an algorithm for generating deep rhythms [3]. Finally, some deep rhythms
are also minimally even (unlike Euclidean rhythms, which are maximally even)
which reveals that these concepts are related but also very different.

2.8 Entropy of Full Histogram

The entropy of full histogram ensures that interval multiplicities between onsets
are similar [14]. This property can be quantified using the following formula:

[n/2]
Entropy of Full Histogram = — Z pjlogs (pj),
j=1

where P = {py,... Pln/2 J} is the normalized full interval-content histogram.
Unlike the deepness property, this produces a rhythm with a flat histogram if
zero-multiplicity intervals are not considered.
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2.9 Entropy of Durations

The entropy of durations ensures that the durations between two successive
onsets are similar to each other. This property is quantified with the following

formula:
k

Entropy of Durations = — Z d;log, (d;)
j=1

We propose this property because it provides another method of obtaining a
rhythm with temporally dispersed onsets.

2.10 Symmetry

One of the properties that characterizes a good rhythm is that the associated
polygon has an axis of symmetry [14]. To quantify this property, we propose to
compute the maximal proportion of symmetrical onsets according to the different
axes with the following formula:

1
Symmetry = Ognjzg;/ z |S;(R) N R,

where S;(R) is the symmetry of R with respect to the axis passing through the
points {0, }, i.e.: S;(R) = {j —7; | 77 € R}, and n/ = n — 1 if n even or n if
n odd.

2.11 Shadow

The shadow property characterizes rhythms that have a cyclic rhythmic contour
that is the same as the cyclic rhythmic contour of the shadow of the rhythm [14].
We first introduce a function N of normalization such that N(z) = 1ifx > 0, —1
if  <0and 0 if z =0, and we set z1; = x; +n. The cyclic rhythmic contour
CR of a rhythm R is defined by the cyclic contour of the rhythm durations:
CR = {N(zit2 — 22,41 + 2;) }1<i<k. Next, the shadow of a rhythm R is defined
by the set {%(xi+1 —;) }1<i<k, and the cyclic rhythmic contour C'S of the shadow
of a rhythm is given by: C'S = {N (243 — Tit2 — Tit1+ ;) h1<i<k- Consequently,
the shadow property quantifies the similarity of CR and C'S with respect to
rotation, which is given by the following formula:

Shadow = max

jeax lie{1,....k}:cri =csiyjl,

ceny

where CR = {ery,...,crg} is the cyclic rhythmic contour of the rhythm and
CS ={es1,...,csi} is the cyclic rhythmic contour of the shadow of the rhythm.
Among the six distinguished rhythms, only the son rhythm maximizes it.
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2.12 Fractal

The fractal property characterizes the inclusion of a dilated R sub-rhythm in R.
We propose the following formula to quantify this property:

max |R'UIR|,

1
Fractal = —
k R'CR/IIR'CR

where R/l = RNA{0,..., T[]} is the rhythm R until time 2|, |, and IR' =
{lxy,...,lzg} is the rhythm dilated by [ such that 2 < [ < n. For example,

maximizes the value of fractal because R’ = {0,5,6} is included in R and 2R’ =

{0,10,12} is also included in R and we have £|R' UIR'| = 1.

3 Generating Good Rhythms for Kk =5 and n = 16

In this section, we present the results we obtained by applying the proposed
method to rhythms with £ = 5 onsets and n = 16 pulses. First, Table 1 provides
the values of the six distinguished rhythms for all 12 properties described in
Section 2. The last line of this table is the sum of the 12 values, and measures

Table 1. Values of the six distinguished rhythms for all 12 properties.

Son Bossa-nova Gahu Rumba Shiko Soukous
Eveness 0.99 1.0 0.97 0.98 0.97 0.94
Balance 1.0 0.94 0.85 0.91 0.92 0.92
Area 0.97 1.0 0.97 0.97 0.93 0.87
Oddity 1.0 1.0 0.5 1.0 0.5 0.5
Closure 0.86 0.0 0.57 0.86 0.86 0.0
Aperture 1.0 1.0 1.0 1.0 0.14 1.0
Deepness 0.33 1.0 0.0 0.33 1.0 0.0
Entropy H 0.97 1.0 0.97 0.97 0.94 0.87
Entropy D 0.37 0.0 0.81 0.56 0.0 0.81
Symmetry 1.0 1.0 0.6 0.8 1.0 0.8
Shadow 1.0 0.6 0.6 0.4 0.6 0.8
Fractal 0.8 0.6 0.6 0.6 0.6 0.6
Total 10.29 9.14 8.44 9.37 8.46 8.11

how good a rhythm is. The son rhythm is the one with the highest score among
the six distinguished rhythms. However, what about other rhythms with £ =5
onsets and n = 16 pulses? We have applied the method to these rhythms such
that the first onset is located at the origin (z7 = 0). This generates many different
good rhythms by selecting those with the best score. We have represented the
twenty rhythms with the highest scores in Figure 2 using polygon notation.
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Fig. 2. Generation of the twenty rhythms with the best score for £ = 5 and n = 16.

9
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The son rhythm is the rhythm with the highest score, as predicted by Tou-
ssaint [14]. This can be explained by the fact that most of the properties come
from his book, for which the son was already on top. Also, among these twenty
rhythms, (k) is the rumba rhythm and (t) the bossa-nova rhythm. The other
rhythms represented in Figure 2 are rhythms that are close to the six dis-
tinguished rhythms, in the sense that they share common properties because
they have a high score. It is also possible to generate “bad” rhythms by se-
lecting rhythms with the worst score, as already done in [7]. For example,

the worst scores.

4 Generating Good Rhythms for Other Values of kK and n

In this section, we apply the method for other values of k£ onsets and n pulses
and demonstrate that some rhythms with the best score are musically important.
The three rhythms with the highest scores for onset and pulse values (k, n) equal
to (3,8), (5,12), (7,16) and (8,12) are illustrated in Figure 3 using polygon
notation. For k = 3 and n = 8, the rhythm with the highest score is the tresillo
rhythm, shown on the left in Figure 3(a), used in part in Latin and Afro-Cuban
music. For k = 5 and n = 12, the rhythm with the highest score is the fume-
fume rhythm, shown on the left in Figure 3(b), frequently employed in West
African music. For £ = 7 and n = 16, the rhythm with the highest score is
the samba rhythm necklace from Brazil, shown on the left in Figure 3(c). Note
For k = 8 and n = 12, the rhythm with the highest score is the Steve Reich’s
signature thythm [15], shown on the left in Figure 3(d), used in Clapping Music
and in many of his compositions. However, with our method, the rhythm with the
highest score is not always the most popular rhythm. For kK = 7 and n = 12, one
the bembé rhythm is not the one with the best score for k = 7 and n = 12
because it fails to satisfy the closure and aperture properties. The rhythm with

5 Conclusion and Future Work

We have proposed in this paper a simple method for generating good rhythms
based on a geometric approach. Despite the simplicity of this method, we have
demonstrated that the results are the ones expected from Toussaint’s findings, as
some of the best generated rhythms are musically significant. Furthermore, defin-
ing scores, i.e. gradual satisfaction properties, instead of binary values allows, to
some extent, to link qualitative concepts with concrete geometrical measures. In
our future work, we will add other properties to the 12 we have chosen, and study
their relevance. We also plan to go further in linking formal properties and mu-
sical meaning, for instance, high degree of deepness leads to good phase canons
as done by Steve Reich [4]. In addition, perceptual analyses can be performed
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(d) k=8 and n =12

Fig. 3. Generation of the three rhythms with the best score (from left to right) for
different values of k onsets and n pulses. In each case, the rhythm with the best score
is a musically important rhythm: (a) the tresillo rhythm, (b) the fume-fume rhythm,
(c) the samba rhythm and (d) the Steve Reich’s signature rhythm.

to determine whether the generated rhythms are indeed good and to determine
whether certain properties are more important than others, as already done for
eveness, balance or entropy [10]. We also believe that the case where n is odd
or prime is worth studying, by adapting certain properties and analyzing the
obtained results. Moreover, the proposed approach can be framed within the
theory of formal concept analysis. Rhythms are objects O, satisfying a series of
properties P, to some degree. This satisfaction relation can be seen as a fuzzy
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binary relation I, thanks to the gradual nature of our formulas, in O x P, i.e.
for r € O and p € P, I(r,p) is the degree to which rhythm r satisfies property p
(score computed according to the relevant formula for p). From the formal con-
text (O, P, I), fuzzy formal concepts can be derived, and organized in a lattice
(see [1] for details on formal concept analysis). This structured way of represent-
ing rhythms and their properties could then be used for classification, or more
generally as a support for the music-theoretical discourse about rhythms. Sim-
ilar reasoning can be employed to generate musical scales by adapting certain
geometric properties to the associated polygons, e.g. based on the work in [3].
Finally, we hope that these results, developed from a purely mathematical ap-
proach, can be applied in a musical context for composition and improvisation
using the rhythms generated by this type of method.
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