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2 Université Clermont Auvergne, CNRS, ENSMSE, LIMOS, F-63000
Clermont-Ferrand, France

fabien.feschet@u-auvergne.fr

Abstract. The processing of 3D digital objects often requires the com-
putation and analysis of their geometrical features. The normal vectors
of the object’s surface in particular provide important information used
in image processing applications. We present in this paper a new method
for the estimation of normal vectors on the surface of a 3D digital object.
It is both local and parameter-free. The proposed method involves the
study of neighborhoods around points using planar sectors. Experimen-
tal evaluations using multigrid approaches show that it is both faster
and more robust than state-of-the-art methods in the field, while being
of comparable accuracy.

Keywords: Digital Geometry · Digital plane · Local surface analysis ·
Normal estimation

1 Introduction

Digital objects are involved in many applications of 3D image processing and
medical imaging (e.g. shape recognition, feature extraction, shape matching and
visualization). In such contexts, geometric characteristics of these objects are
often necessary and have been the subject of many studies. More particularly,
estimating differential quantities, such as normal vectors, on the shape boundary
typically proves to be a very useful tool for analyzing the local geometry of digital
objects.

Several methods have been proposed for normal estimation in the field of
Digital Geometry. In [3], Charrier and Lachaud proposed a notion of maximal
planes at a given scale to cover a digital surface. Such planes serve as local tan-
gent planes and are used to estimate the normal vector at each point on the
surface. The scale value allows to handle the presence of noise on the surface.
Then, they used those planes to estimate the normal vector at each point on the
surface. Lachaud et al. presented in [9] another approach, called plane probing
algorithm, for estimating normals. More precisely, the method extends a tetra-
hedron’s neighborhood around a point on a digital surface. Such neighborhood
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describes the characteristics of a digital plane among those containing the point
under consideration.

In this paper, we propose a new approach to the estimation of the normal
vector at each point of a digital surface by structuring the local neighborhood
into planar sectors. This enables a more refined analysis of the neighborhood
of a point. More particularly, such neighborhoods can be considered as locally
representative of the shape, allowing for the estimation of the normal vector at
each point.

The proposed method is evaluated and compared with state-of-the-art ap-
proaches. The evaluation of differential characteristic estimators is done by show-
ing their multi-grid convergence [4]. It consists in testing the estimators on 3D
digital objects which are the results of the digitization of continuous Euclidean
shapes (such as the ones shown Fig. 1). These and other digital objects men-
tioned in this paper were obtained using Object Boundary Quantization [8], i.e.
by computing the intersection of an Euclidean shape with the cubical grid at
different resolution. The size of a grid, called the digitization step of the dig-
itized shape and denoted by h, is the distance between two consecutive cells
of the grid. For example, in Figure 1, the four Euclidean shapes were digitized
with h = 0.25. To demonstrate multi-grid convergence of a normal estimator, its
estimations must be closer to the real value on the Euclidean shape the smaller
h is.

x2 + y2 + z2 − 25 = 0 x2y2z2 + 4x2 + 4y2 + 3z2 − 100 = 0
Sphere Leopold

z4 + 64(x2 + y2 − z2 − 1) = 0 0.03(x4 + y4 + z4)− 2(x2 + y2 + z2)− 8 = 0
Hourglass Goursat

Fig. 1: The digital surfaces considered in this paper and the polynomial equations
defining the underlying Euclidean shapes.
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This article is organized as follows: Section 2 provides some definitions used in
this paper as well as a state of the art about normal estimators on digital objects.
The proposed approach to obtain a new parameter-free normal estimator, based
on the neighborhood structuring, is described in Section 3. In Section 4, we
propose an experimental evaluation of this estimator.

2 Preliminaries

This section first recalls some definitions that are used in this paper, followed
by the state of the art presentation.

2.1 General Definitions

A 2D digital image can be represented as a grid of square cells whose center are
points of integer coordinates (i.e. in Z2), usually called pixels. This paper deals
with 3D objects. Similarly, they can be defined in the digital space of Z3 and
with a grid of cubic cells. These cubes are digital points of Z3, referred to as
voxels, and their faces can be referred to as surfels (shown Figure 2); for ease of
notation, we denote the set of surfels of a given voxel v by Surfs(v).

Two voxels are α-connected, or α-adjacent, if they share a surfel, an edge,
or a vertex, with α = 6, 18, or 26 respectively to each of these three cases (as
illustrated in Fig. 2). For a given set of voxels X ⊂ Z3, an α-path between two
voxels a, b ∈ X is a sequence of α-connected voxels of X joining a to b. If an
α-path exists for every (a, b) ∈ X, then X is said to be α-connected.

a surfel

another surfel

va

b
c

d
e

v is 6-connected to a, b
v is 18-connected to c, d
v is 26-connected to e

Fig. 2: Types of adjacencies on voxels.

We study digital objects O which are 6-connected finite subsets of Z3. Let
such an object’s surface be SO = {s ∈ Surfs(p1)∩Surfs(p2) | p1 ∈ O, p2 ∈ Z3\O}
be the set of surfels forming the interface between O and its complement in Z3.
Let VO = {p ∈ O | ∃s ∈ Surfs(p) ∩ SO} be the subset of voxels of O for which
at least one surfel belongs to SO, or in other words the voxels that are visible
from the outside of the object O (see Fig. 1).

Let us define a digital plane as the set of voxels x ∈ Z3 such that

µ ≤ ⟨x, n⟩ < µ+ ω (1)
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Fig. 3: A piece of the naive digital plane with characteristics n = (4, 7, 11) and
µ = 2.

where µ ∈ Z is the digital plane’s offset from the origin of the space, ω ∈ Z
is its thickness, and n ∈ Z3 is the normal vector to the digital plane. In other
words, a digital plane is the set of digital points located between two parallel
real planes, with n being both the normal vector to the digital plane and to the
two supporting real planes. A digital plane for which ω = max(|a|, |b|, |c|) is said
to be naive; these naive digital planes are the thinnest digital planes retaining
18-connectedness without having 6-connected holes [1]. While an infinite digital
plane has unique characteristics, an infinite set of possible characteristics can be
associated to a finite piece of a digital plane. Digital plane recognition algorithms
from the literature thus return one tuple of characteristics n, µ and ω among
the possible ones.

2.2 State of the Art

Digital Plane Recognition We recall in this paragraph two methods to rec-
ognize pieces of naive digital planes.

The first one was proposed by Gérard et al. [7], called Chord algorithm. It
uses the chord set of the considered voxels, and more precisely its thickness.
If it is thin enough, this guarantees the existence of at least one digital plane
containing the considered voxels. This method then estimates the characteristics
of this digital plane, with an empirical behavior for the whole process that is
quasi-linear.

The other method is COBA, short for Convex Optimization-Based Algorithm,
from Charrier and Buzer [2]. It consists in considering digital plane recognition
as a feasibility problem on a convex function, corresponding to the distance
between the two supporting hyperplanes of the possible digital plane containing
the considered set of voxels. The use of cuts on the solution space then allows the
authors to obtain a linear worst-case complexity, and an empirical computation
time that is comparable to that of the Chord algorithm.3

3 See https://www.dgtal.org/doc/stable/modulePlaneRecognition.html#

modulePlaneRecognition_sec5 for more details.

https://www.dgtal.org/doc/stable/modulePlaneRecognition.html#modulePlaneRecognition_sec5
https://www.dgtal.org/doc/stable/modulePlaneRecognition.html#modulePlaneRecognition_sec5


A Parameter-Free Normal Estimator on Digital Surfaces 5

Digital Normal Estimation By using one of the previous digital plane recog-
nition methods on a planar neighborhood of a point on a digital surface, a nor-
mal estimation can be deduced from the characteristics of the recognized plane.
Charrier and Lachaud [3] proposed a notion of maximal planes at a given scale
covering a digital surface. It can also be used to estimate the normal vector at
each point on the surface.

Another approach to the problem of digital normal estimation is that of
plane probing algorithms (PP), introduced by Lachaud et al. in [9]. It gives
a normal vector estimation by extending around a point on a digital surface
a tetrahedron that describes the characteristics of a digital plane. The choices
made when extending this tetrahedron’s neighborhood allow this approach to
select the correct digital plane among the ones containing the considered voxels
and to compute, when used on a surface contained by a digital plane, its exact
normal.

Cœurjolly et al. presented in [5] a normal estimation method using the notion
of integral invariants (II) to produce curvature and normal estimators with the
property of multi-grid convergence on sufficiently smooth (C3) surfaces, with

a theoretical convergence speed of O(h
2
3 ). This property guarantees that the

estimation computed at a given point on a digital surface gets closer to the
expected real value on the corresponding Euclidean surface when the digitization
step h gets smaller and the digitization itself gets finer. This method consists
in applying a kernel of a given size on the digital surface and then computing
integral quantities on the intersection between this kernel and the digital surface,
from which the desired information can then be deduced. It is considered the
state of the art in Digital Geometry.

Since a meaningful comparison with the normal vector estimation methods
used for meshes would require a proper mapping between meshes digital surfaces,
it will be left for an extended version of this paper.

3 Proposed Approach

In this section, we describe our local approach for the estimation of normal
vectors on a digital surface following three steps:

1. first, we build a maximal planar circular neighborhood around a voxel on
the surface (Figure 4);

2. then we extend this neighborhood in order to recover local planarity infor-
mation by constructing planar angular sectors (Figure 5);

3. finally, we compute the normal estimation by averaging the normal vectors
to the planar sectors (Section 3.2).

3.1 Neighborhood Around a Point

Let p ∈ VO be the point on the surface of the object at which we want to compute
a normal estimation. First, we build a neighborhood of radius r ∈ N∗ around p
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Fig. 4: Examples of some of the largest neighborhoods computed on the objects.
The colormap corresponds to the value of Rp for each voxel of the surface.
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(a) plane PRp (b) first sector (c) second sector

NRp(p) BRp+1(p)

Fig. 5: A voxel p (black) and its neighborhood of size 4 (Rp = 3). The bottom
pictures show (a) the digital plane PRp in red, and in (b) and (c) the two planar
sectors constructed from the voxels not belonging to PRp

. The darker-colored
voxels in (b, c) show the starting path for the sector.

defined as Nr(p) = {q ∈ VO | d(p, q) ≤ r and p, q are 18-connected in VO}.
18-connectedness ensures that the neighborhood retains simple connectedness
on the surface of the object.

We denote by Rp the biggest radius for which NRp
belongs to a naive digital

plane, named PRp
. We compute Rp by incrementing r one by one until either

Nr(p) is no longer planar or Nr+1(p) = Nr(p), i.e. there are no new voxel to
add at this distance. Figure 4 shows examples of planar neighborhoods found on
the digital objects studied on this paper, and a distribution map of the different
values of Rp on these objects.

3.2 Construction of Planar Angular Sectors

For our normal estimation, we consider the non-planar neighborhood NRp+1(p);
we define its border as BRp+1(p) = NRp+1(p)\NRp

(p). If BRp+1(p) is not empty,
some of its voxels may belong to PRp

, but not all, as shown Figure 5(a). Those
voxels in BRp+1(p) that do not belong to PRp

are significant for characterizing
the local structure of the digital surface: we therefore use them as the starting
points for building planar sectors.
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Fig. 6: Step-by-step construction of the second sector from Figure 5. At each
step, accepted paths are shown in green, while red paths do not belong to the
same digital plane as the rest of the sector and are thus rejected.

Union of Voxel Paths To build a planar sector, we start with a voxel e in
BRp+1(p) that does not belong to PRp

. We compute a 26-path in NRp+1(p) from
e to p, staying close to the line segment [ep] by minimizing the angle between
this segment and the one between e and the next voxel of the path at each step
(see Fig. 6). 26-paths are preferred to 18-paths for this as they are more likely
to stay close to [ep] and to belong to a naive digital plane. The 18-paths are
included in the 26-paths, there are thus more possibilities with 26-paths. Such
paths are also computed for e’s neighbors in BRp+1(p); if they all belong to
the same naive digital plane, we consider their union to be a sector. We then
continue to add neighboring paths, alternately on each side of the current sector,
until adding the next one would make the sector non-planar. Figure 6 (right)
shows an example of result from this process.

We repeat this process until every voxel of BRp+1(p) not in PRp
has been

included in at least one sector. We then consider the set of sectors built in this
manner, to which we add the set of voxels belonging to the plane PRp , as an
additional sector.

Normal Estimation The sectors obtained through the previous step are all
planar. We can therefore associate to each of them the corresponding normal
vector to their digital plane. By computing an average over these vectors, we
obtain an estimation of the normal vector at p. This average is computed by
normalizing the normal vectors and projecting them on the surface of the unit
sphere. We then use the method from [10] to build a regular grid on the unit
sphere, with an empirical precision of approximately 3.10−5, in order to approx-
imate the geodesic barycenter of the normal vectors to the sectors. Using this
method, we can thus compute a normal estimation for every voxel on the surface
of a 3D digital object.

4 Experimental Results

3D Digital Objects Studied Figure 1 shows the four digital surfaces that
were considered in the experiments, constructed from four continuous Euclidean
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Fig. 7: The digital surfaces resulting from the digitization of Goursat using de-
creasing digitization steps h, from h = 1 to h = 0.2.

Table 1: Number of voxels in the digitizations of the four shapes using decreasing
digitization steps.

h Sphere Leopold Hourglass Goursat

1 222 194 254 1 634
0.8 354 298 414 2 546
0.6 654 570 778 4 614
0.4 1 550 1 406 1 830 10 590
0.2 6 342 6 062 7 546 42 842
0.1 25 746 24 874 30 754 172 686
0.08 40 442 38 914 48 190 270 206
0.06 71 894 69 374 86 038 480 906
0.04 162 290 156 586 194 166 1 083 242

shapes. The Sphere and the Hourglass are convex; Goursat is convex with slightly
concave areas, while Leopold is mostly concave with thin edges. As mentioned
in the introduction of this paper, these digital surfaces were obtained using
Object Boundary Quantization [8]. This allows to generate the digital object
corresponding to a real shape defined by a polynomial equation at a chosen
resolution. This is done by using grids of different sizes (h) which intersect the
real shape. Consequently, we generate digital surfaces of increasing precision,
and use the normal vectors to the underlying real shape as ground truth. As a
result, the smaller h is, the bigger the resulting digitized object will be, or in
other words the better its resolution will be. Smaller h will thus result in digital
objects that are closer to the underlying Euclidean shape (see Figure 7). We will
show in the experiments the multi-grid convergence behavior of our estimator:
the smaller h is, the more correct the estimate of the normals is and therefore
the less error there is.

Computation Time Analysis As Table 1 shows, the number of voxels of a
digitized shape increases rapidly as h decreases. The normal estimation methods
we considered in this paper use a local approach; thanks to this, the time they
need to process an entire digital surface stays relatively low. However, as h
decreases and the digital objects get closer to the real shapes, these methods
take into consideration neighborhoods of increasing size, and each voxel takes
more time to process. Table 2 contains, for each method, the computational
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Table 2: Number of voxels processed per minute for each object and digitization
step by each method.

Sphere Leopold
h ours r II PP

1 all all all 4 440
0.8 17 700 all all 2 950
0.6 13 080 32 700 32 700 1 557
0.4 9 118 22 142 19 374 775
0.2 6 342 12 196 6 894 181
0.1 4 291 8 582 1 716 47
0.08 3 111 6 740 1 444 −
0.06 2 568 4 793 549 −
0.04 2 497 3 453 − −

h ours r II PP

1 all all all all
0.8 all all all all
0.6 28 500 28 500 28 500 all
0.4 17 574 28 119 20 085 703
0.2 8 304 15 155 7 772 164
0.1 4 975 8 291 2 073 45
0.08 3 538 6 486 1 297 −
0.06 2 775 4 955 559 −
0.04 2 303 4 121 − −

h ours r II PP

1 all all all 5 080
0.8 20 700 all all 2 435
0.6 11 114 25 933 38 900 1 496
0.4 10 765 26 141 18 300 610
0.2 7 546 14 511 7 546 145
0.1 4 393 10 251 1 464 42
0.08 3 707 9 638 927 −
0.06 3 073 7 170 574 −
0.04 1 981 5 110 − −

h ours r II PP

1 8 170 23 341 81 699 1 634
0.8 7 274 19 585 50 919 509
0.6 7 098 17 089 46 140 256
0.4 5 295 13 237 22 531 163
0.2 3 570 7 140 8 568 40
0.1 2 186 4 667 1 919 −
0.08 1 851 4 503 1 518 −

Hourglass Goursat

speed we observed in our experiments, in terms of voxels processed per minute,
using the reference implementations provided by the authors (see Section 4). It
shows that our method scaled better than II and PP on the four digital surfaces;
as a result, and in order to keep computation times down, we did not pursue the
experiments when these two methods became notably slow compared to ours.

Implementation Details The experiments presented here were carried out
using DGtal [6], an open-source C++ library providing data structures and
algorithms for Digital Geometry applications. It provides reference implementa-
tions by their authors of the normal estimators we compare our method to. The
algorithm we used for the recognition of naive digital plane pieces, the Chord
algorithm (see Sect. 2.2), is also implemented in DGtal, as well as many others.

Results Figure 8 shows the results obtained on each digital surface. On the
left-hand side, the graph represents the average computation time in minutes of
each normal estimator, with the number of voxels of the digital surface by way of
comparison. The right-hand side graphs show, for each method, the mean error
between its normal estimations and the ground truth. This error is computed
as the geodesic distance between the normalized vectors projected on the unit
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Fig. 8: Computation times and mean errors for the four objects in relation to h
(from top to bottom the Sphere, Leopold, the Hourglass, and Goursat).
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sphere and averaged over the whole digital surface. In the legend, the acronyms
respectively refer to the results obtained using the Integral Invariants method
(II), the plane probing method (PP), the method presented here (ours), and the
normal vectors to the digital planes PRp at each point p of the surface (r).

The digitization process sometimes results in voxel artifacts, for which there
is no naive digital plane containing the neighborhood (i.e. Rp = 0). In these
cases, the average of the normal vectors to the visible surfels is used for our
method and (r).

In the following, we will describe the results obtained by our normal estimator
compared with the normal vectors to the digital planes PRp , the plane probing
method, and the Integral Invariants method.

– The figures show that our estimations have a similar behavior to the normal
vectors given by the digital planes (r). Our method however has a consistently
smaller mean error, for an execution time that is quite similar. Moreover, the
estimations are improved for high digitization steps in particular, meaning
when the digital surface is less precisely fitted to the real shape.

– The plane probing estimator shows an overall worse performance than the
other estimators (which was predictable, see 2.2). It is also much slower than
both our method and Integral Invariants. Nonetheless, it shows interesting
behavior on Leopold, where it outperforms other estimators, including ours,
when h is big. This is mostly due to the fact that Leopold is both the
smallest shape out of the ones considered here, with a digital surface of only
194 voxels when h = 1, and is the most concave shape. This is however
only true for the biggest h, as our method quickly ”catches up” to the plane
probing estimator, and gets significantly better as h decreases. Moreover,
and as the graphs for other shapes show, the behavior of the plane probing
method is quite erratic on convex shapes, and we outperform it in all other
cases.

– On the three convex shapes (the sphere, the hourglass and Goursat), the
Integral Invariants estimations have the lowest error of the methods we com-
pared, as was expected. However, it can be noted that our estimator behaves
in a very similar way on these shapes and our mean error stays close to that
of II, especially on the hourglass shape on one hand, and in comparison to
the plane probing estimator on the other hand. Integral Invariants also shows
signs of erratic behavior on Leopold when the digitization step is big, be-
fore appearing to stabilize, but with a relatively high error compared to the
other methods. This shows that while our method performs slightly worse in
regard to precision, it has a more consistent behavior over different surfaces.
Another important point is that II is significantly slower than our method
when h increases.

These experiments show that our new method for normal estimation provides
an alternative to state-of-the-art methods, using only the information given by
digital plane pieces in a local neighborhood. While not as precise as Integral
Invariants on convex shapes, it is both faster and more robust on concave shapes.
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Our method also displays improving precision when the shapes’ digitizations
get finer, which hints towards a possible multi-grid convergence. Moreover, this
algorithm is easily parallelized, as each voxel is processed independently.

5 Conclusion

We have presented in this paper a new method for the estimation of normal
vectors on digital surfaces. This new method is local and parameter-free, and
gives results that are comparable to the state of the art in terms of mean error,
while being faster and more stable on different surfaces. While the multi-grid
convergence of this estimator is not formally proved, we do observe experimen-
tal convergence and a similarity of behavior with a state-of-the-art convergent
normal estimator. Possible future directions for this work include using thicker
digital planes, and exploring the behavior of the method on noisy surfaces. We
believe this work can open research directions on the study of local properties of
digital surfaces using planar sectors, and we will continue to explore this topic
in the future.
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