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Stable Phase Retrieval with Mirror Descent

Jean-Jacques Godeme* Jalal Fadili* Claude Amra Myriam Zerrad'

Abstract. In this paper, we aim to reconstruct an n-dimensional real vector from m phaseless mea-
surements corrupted by an additive noise. We extend the noiseless framework developed in [15], based
on mirror descent (or Bregman gradient descent), to deal with noisy measurements and prove that the
procedure is stable to (small enough) additive noise. In the deterministic case, we show that mirror de-
scent converges to a critical point of the phase retrieval problem, and if the algorithm is well initialized
and the noise is small enough, the critical point is near the true vector up to a global sign change. When
the measurements are i.i.d Gaussian and the signal-to-noise ratio is large enough, we provide global
convergence guarantees that ensure that with high probability, mirror descent converges to a global mini-
mizer near the true vector (up to a global sign change), as soon as the number of measurements m is large
enough. The sample complexity bound can be improved if a spectral method is used to provide a good
initial guess. We complement our theoretical study with several numerical results showing that mirror
descent is both a computationally and statistically efficient scheme to solve the phase retrieval problem.

Key words. Phase retrieval, Noise, Stability, Inverse problems, Mirror descent.

1 Introduction

1.1 Problem statement and motivations

The phase retrieval problem arises in many applications including X-ray crystallography, diffraction
imaging, and light scattering, to name just a few; see [24, 16, 19] and references therein. Phase re-
trieval is a very active research area and we refer to [24, 16, 19, 13, 28] for recent reviews of the current
state of the art.

Our focus in this paper is phase retrieval with possibly noisy measurements. In real applications,
the intensity measurements are not perfectly acquired. For instance, let us consider light scattering for
precision in optics [ 1] which is our motivating application, where the goal is to describe the roughness of
apolished surface. The latter is illuminated with a laser source, and the diffusion is measured by moving a
detector. Then the power spectral density of the surface topography can be directly measured. However,
during the acquisition process, different types of noise can corrupt the measurements such as photon
noise, thermal noise, Johnson noise, efc.. Knowing the statistical model underlying the noise and the way
it contaminates the measurements can prove useful to achieve robust reconstruction. The noise model
can then be incorporated as the negative log-likelihood in the minimization objective. There are several
noise models used in phase retrieval. One of them is the signal-dependent Poisson noise model which
models the photon count noise. Another noise model is the (complex-valued) noise arising from multiple
scattering, which can be modelled by the (complex) circularly-symmetric Gaussian distribution, and used
to describe Rayleigh fading channels encountered in communication systems. Yet another source of noise
is the thermal one or the incoherent background noise.
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In this manuscript, and similarly to [8, 12, 9], we will work with a generic additive noise model,
without any particular statistical assumption, in which the noisy phase retrieval problem reads

Recover £ € R" from the measurements y € R™ .
(NoisyPR)

ylr] = layz|* +elr], 7 € [ml),

where [r] is the r-th entry of the corresponding vector, and € € R™ is the noise vector. Throughout the
paper, A is the m X n matrix with a’s as its rows.

Since z is real-valued, the best one can hope for is to ensure that & is uniquely determined from its
intensities up to a global sign. Phase retrieval is in fact an ill-posed inverse problem in general, and even
for € = 0, checking whether a solution to (NoisyPR) exists or not is known to be NP complete [23]. The
situation is even more complicated in presence of noise. Thus, one of the major challenges is to design
efficient recovery algorithms and find conditions on m, (a;),¢c[m] and € which guarantee stable recovery
in presence of noise. This is the goal we pursue in this paper.

In this paper, we cast the noise-aware phase retrieval problem (NoisyPR) as the smooth but nonconvex

minimization problem
win 4 7(2) = 3" (4] — [(An) )P (1.1)
TeR™ dm ’ ’

7‘:1
In fact, this is the same problem as in (3.1) studied in the noiseless case in [15]. There, we proposed a
mirror descent algorithm based on a suitably chosen entropy. In particular, we analyzed the case where
the measurements were eitheri.i.d standard Gaussian measurements or drawn from the Coded Diffraction
Pattern (CDP) model. It is our aim in this paper to extend these results to the noisy case and prove stability
guarantees for mirror descent to minimize (3.1).

1.2 Prior work

In phase retrieval, understanding the impact of noise is crucial because real-world measurements are
invariably corrupted by it. Thus, establishing stability of phase retrieval to (small enough) noise is of
paramount importance. Stability of phase retrieval to (small enough) noise has been studied by several
authors with various measurement ensembles and reconstruction procedures. For convex relaxations,

Candes and Li showed in [6] that a noise-aware variant of PhaseLift is stable against additive noise with

. — € .
a reconstruction error bound O <||m|] , HHI”Hle) as soon as m 2 n (complex) Gaussian measurements are

taken (see also [8] where the sample complexity was m 2 nlog(n)). This is of course only meaningful
if the signal-to-noise ration is sufficiently high. This result has been extended to the case of sub-Gaussian
measurements in [17]. For nonconvex formulations, Huang and Xu in [20] analyzed the performance of
the Wirtinger flow and showed that any solution of this algorithm enjoys a reconstruction error upper
lell el
mt/47 | z][v/m
flow algorithms are stable against additive noise as shown respectively in [32],[30] and [14]. Indeed, these
lell
J

bound O <min { as soon as m = n. The amplitude, the reshaped and the Wirtinger

authors showed that the reconstruction error scales as O ( m) . The convergence result is obtained under

the specific assumption that ||e|| ., < ||Z||. In [31], the authors study the performance of the amplitude-
based model and showed the solution satisfies the following reconstruction upper bound O (%) as

soon as m 2 n. The truncated Wirtinger flow [9], which can account even for Poisson noise, has been

llell
vm|z|

lello < N1Z]1* provided that m > n. It was shown there that this is the best statistical guarantee any
algorithm can achieve by derlvmg a fundamental lower bound on the minimax estimation error.

shown to be stable with a reconstruction error bound that scales as O < ) under the assumption



1.3 Contributions and relation to prior work

In this paper, we claim that mirror descent to solve (3.1) is stable against sufficiently small additive
noise. This in turn provides recovery error bounds of the noisy phase retrieval problem (NoisyPR). In
the deterministic case, we show that for almost all initializers, mirror descent converges to a critical point
near the true vectors (up to sign ambiguity) where the objective has no direction of negative curvature.
In the random case, we consider i.i.d Gaussian measurements, and in the regime where the signal-to-
noise ratio is large enough (see Assumption (A. 1)), we provide a complete geometric characterization
of the landscape of the nonconvex objective provided that m > nlog® (n). In turn, this allows us to
describe the set of the critical points of f as the union of the strict saddle points and global minimizers
of f. From this, we provide a global convergence to a point in Argmin(f), which is near Z (up to
sign ambiguity), as soon as the number of samples is large enough. If m 2> nlog(n), using a spectral
initialization method, we provide a local convergence to a vector in the neighborhood of the target vector

(up to sign ambiguity). By "near" we mean a reconstruction error that eventually scales as O ( Vg"‘li")
which matches the minimax optimal bounded established in [9, Theorem 3]. Compared to the Wirtinger
flow and variants, our algorithm, by adapting to the geometry, offers an easier and dimension-independent
choice of the parameters (in fact one, the descent-step size), and has global convergence guarantees.

Our results can be easily extended to sub-Gaussian measurements with minor changes. The case
where a,’s are drawn from the CDP model is, however, far more challenging. Indeed, this model en-
joys less randomness compared to the (sub-)Gaussian case and many of our arguments that require the
uniformization of some bounds that are difficult to extend to the CDP model. Nevertheless, numerical
experiments suggest that stable recovery still holds for our mirror descent algorithm with CDP measure-
ments.

1.4 OQOutline of the paper

The rest of the paper is organized as follows. Section 2 gathers preliminary material necessary to our
exposition. In Section 3, we recall the mirror descent algorithm with backtracking and establish its global
and local convergence guarantees in the deterministic case. In Section 4, we sample complexity bounds
with Gaussian measurements for our deterministic guarantees to hold with high probability. Section 5
describes the numerical experiments. The proofs of technical results are deferred to the appendix. In
particular, Section C studies the landscape of the noise-aware objective with Gaussian measurements.

2 Preliminaries

2.1 Notations

We denote (-, -) the scalar product and ||-|| the corresponding norm. B(x,r) is the corresponding ball
of radius  centered at = and S"~! is the corresponding unit sphere. For m € N*, we use the shorthand
notation [m] = {1,...,m}. The i-th entry of a vector z is denoted x[i]. Given a matrix M, Mis its
transpose and M ™ is its adjoint (transpose conjugate) when it is complex. Let Apyin (M) and Apax (M)
be respectively the smallest and the largest eigenvalues of M. For two real symmetric matrices M and
N, M = N if M — N is positive semidefinite.

dom(f) is the domain of the function f. f* denotes the Legendre-Fenchel conjugate of f. Recall
that the set of critical points of a differentiable function f is crit(f) = {z € R" : Vf(z) =0}.

Let us denote the set of true vectors by X = {£z}. For any vector z € R", the distance to the set of
true vectors is

dist(z, X) = min(||lz — z||, |z + Z|)). 2.1



Our limitation of the ambiguity set to { %} may appear restrictive since even for real vectors, the equiv-
alence class is much larger than what we are allowing. However, our restriction will be justified in the
oversampling regime.

2.2 Bregman toolbox

Definition and properties Since our focus is on phase retrieval, we will restrict our discussion here
to entropy/kernel functions ¢ that are strictly convex and differentiable on the whole space. As such,
¢ is in fact a Legendre function; see [22, Chapter 26]. Observe that following [22, Theorem 26.5], a
function is Legendre if and only if its Fenchel conjugate ¢* is Legendre. Moreover V¢ is a bijection
from int(dom(¢)) = R™ to int(dom(¢*)) with Vo* = (Vo) ~L.

For any function differentiable function ¢ : R™ — R, its Bregman divergence is

Dy(x,2) = ¢(x) = ¢(2) = (Vo(2),2 = 2) . (2.2)
This proximity measure is not a distance (it is not symmetric in general for instance nor it verifies
the triangle inequality). If ¢(z) = % |z||%, the Bregman divergence is the usual euclidean distance

2
Dy(z,2) = 5 ||lz — 2|*.

Throughout the rest of the work, we use the following properties of the Bregman divergence.
Proposition 2.1. (Properties of the Bregman distance)
(i) The Bregman divergence of ¢ is nonnegative if and only if ¢ is convex. If in addition, ¢ is strictly
convex, then its Bregman divergence vanishes if and only if its arguments are equal.
(it) Linear additivity: for any o, f € R and any differentiable functions ¢, and ¢2 we have

D01¢1+,3¢2(:C> Z) = aD¢1 (.1‘, Z) + 5D¢2(x7 Z)v (2.3)

forall x,z € R™
(iii) The three-point identity: For any x,u,z € R", we have

Dy(x,2) — Dg(x,u) — Dy(u,2) = (Vop(u) = Vo(z), 2 —u) . (2.4)

(iv) Suppose that ¢ is also C? and V?¢ () is positive definite for any x. Then for every convex compact
subset 0 C R", there exists 0 < g < Oq < 400 such that for all x, z € Q,

% o — 21 < Dy(a,2) < 22 o — 2. @5
Regularity of functions The following definition extends the classical gradient Lipschitz continuity
property to the Bregman setting. This notion is coined "relative smoothness" and is important for the
analysis of optimization problems with objective functions that are differentiable but lack the popular
gradient Lipschitz-smoothness. The earliest reference to this notion can be found in an economics pa-
per [4] where it is used to address a problem in game theory involving fisher markets. Later on it was
developed in [3, 5] and then in [18], although first coined relative smoothness in [18].

Definition 2.2. (L—relative smoothness) Let ¢ and g be differentiable functions. g is called L—smooth
relative to ¢ if there exists L. > 0 such that L¢ — ¢ is convex on R", i.e. for all z, z € R”,

Dy(x,2) < LDy(x, 2). (2.6)

When ¢ is the energy entropy, i.e. ¢ = % [|]I%, (2.6) is nothing but a manifestation of the standard
descent lemma implied by Lipschitz continuity of the gradient of g.

In a similar way, we also extend the standard local strong convexity property to a relative version w.r.¢
to an entropy or kernel ¢.



Definition 2.3. (Local relative strong convexity) Let C be a non-empty subset of R” and ¢ and g be
differentiable functions. For o > 0, we say that g is o-strongly convex on C relative to ¢ if

Dy(z,2) > 0Dg(z,2) ¥ (x,2)€C* (2.7)

When C = R", we recover the notion of global relative strong convexity. If ¢ is the energy entropy
(ie. ¢ = % IE ||2), one recovers the standard definition of (local/global) strong convexity.

The idea of global relative strong convexity has already been used in the recent literature, see e.g.
[27, Proposition4.1] and [2, Definition 3.3]. Its local version was first proposed in [25]. Relation of
global relative strong convexity to gradient dominated inequalities, which is an essential ingredient to
prove global linear convergence of mirror descent, was studied in [2, Lemma 3.3].

We record the following simple lemma which will be useful to compare Bregman divergences of
smooth functions through the partial Loewner ordering of their respective hessians.

Lemma 2.4. Let g, ¢ € C*(R"). IfVu € R™, V2g(u) = V2¢(u) for all u in the segment [z, 2], then,
Dy(x,2z) < Dg(x, 2). (2.8)
Proof. The result comes from the Taylor-MacLaurin expansion. Indeed we have Vz, z € R™
Dy(x,2z) = g(z) — g(2) — (Vg(2),2 — 2)
— /01(1 —7){z —2,V3g(z +7(z — 2))(z — 2)) dr,
and thus
Dy(a,2) — Dy(x,2) =

/0 (1=7){z -2, (V*(z +7(x — 2)) — V2g(z + T(z — 2))) (z — 2)) dr.

The positive semidefiniteness assumption implies the claim. O

3 Deterministic Stable Recovery

3.1 Mirror descent with backtracking

Observe that the objective in (NoisyPR) can be decomposed as

o= S (D) PP ~ (AR - el 3.0

r=1

fz) =

The objective f is C?(R™) and nonconvex (in fact only weakly convex). Moreover, its gradient is not
Lipschitz continuous. However, using the strongly convex entropy (see [15, Proposition 2.6] for its prop-
erties),

LTV S
0() = > el + L, 62)

f turns out to be smooth relative to .

Lemma 3.1. Ler f and v defined in (1.1)-(3.2). f is L—smooth relative to 1) on R" for any L >
m

e 2 Nl (3l1ar” + el ).
r=



See Section A.1 for the proof. This estimate of the modulus of relative smoothness L is crude and
depends also on the noise. This estimate will be largely improved for Gaussian measurements.

This relative smoothness property is the key motivation behind considering the framework of mir-
ror descent or Bregman gradient descent. The mirror descent scheme with backtracking is detailed in
Algorithm 1.

Algorithm 1: Mirror Descent for Phase Retrieval

Parameters: 0 < Ly < L (see Lemma3.1), xk €]0,1[, £ < 1.

Initialization: z( € R";

for k=0,1,...do

repeat
=T
Tpp1 = Flzg) = Vi (Vip(zg) — 1V f(zk));
Lk < Lk / f 5
until Dy (xp11, 2) < ELk Dy (Tpq1, Th)s
Lyy1 < §Lg;
| Output: z;1.

The pair (f,) defined in (1.1)-(3.2) satisfies [5, Assumptions A, B, C, D] and thus the mapping
F in Algorithm | is well-defined and single-valued on R™. Moreover, the mirror step Vi)*(z) can be
computed easily as V)*(z) = t*z, where t* is the unique real positive root of the third-order polynomial
t3||2]|* + ¢ — 1 = 0; see [15, Proposition 2.8].

3.2 Deterministic recovery guarantees by mirror descent

Before the deterministic result, we start by recalling the notion of strict saddles.

Definition 3.2 (Strict saddle point). A point x, € crit(f) isastrict saddle point of f if Amin (V2 f(24)) <
0. The set of strict saddle points of f is denoted strisad(f).

We now claim that mirror descent is stable against additive noise, as demonstrated in the following
theorem.

Theorem 3.3. Consider the noisy phase retrieval problem cast as (1.1). Let (v),cy be a bounded
sequence generated by Algorithm 1. Then,
(i) the sequence (), has a finite length, converges to a point in crit( f) and the values (f (1)) ;e
are nonincreasing.
Take Ly, = L,Vk > 0. Then,
(ii) for Lebesgue almost all initializers xo, the sequence (y,),cy converges to a critical point which
cannot be a strict saddle, i.e. xj;, — T € crit(f)\strisad(f).

(iii) Assume that Argmin(f) # (. Let p,o > 0 such that p > % and define the radius v <

| p2_2lel® — —
m. Ifthe initial point xo € B(X,r) and f is o-strongly convex relative to 1 on B(X, p)
then x3, € B(X, p),Vk € N, and

2
dist?(w, ®) < (1 90)" 2 21 63
mo
See Section A.2 for the proof.

Some remarks are in order.



Remark 3.4.

e Clearly, claim (i) suggests that even in the presence of the noise, any bounded sequence of Algo-
rithm 1 will converge to a critical point of f with decreasing values. Let us observe that the se-
quence generated by our algorithm is bounded if for instance f is coercive, in which case Argmin( f)
is also a non-empty compact set. This happens to be true when A is injective, i.e. in the oversam-
pling regime as we will show in the random case.

e Claim (ii) shows that when the initial guess g is chosen according to a distribution that has a
density w.r.t the Lebesgue measure with constant step-size, then the sequence generated by mirror
descent converges to a critical point where f has no direction of negative curvature.

e Concerning our local results in claim-(iii), if mirror descent is well initialized i.e., in a ball of
sufficiently small radius » < p around the true vectors X, and if f is strongly convex relative to
1 on the larger ball B(X, p), then all the iterates (z,)cy Will remain in B(X, p). Moreover, the
sequence (xy)ren Will converge to a critical point Z obeying

~ = 2
dist(z, X) < \/\/;LLZH.

4 Stable Recovery from Gaussian Measurements

The deterministic stable recovery results of Theorem 3.3(ii)-(iii) require for instance a local relative strong
convexity condition around +Z and possibly a good enough initial guess. A natural question to ask is
when these conditions hold true. In turns out that this is indeed the case in the oversampling regime with
i.i.d Gaussian measurements, and if the noise is small enough. This section is devoted to rigorously
show these statements.

We consider that the sensing vectors (a; ),¢[,] are drawn i.i.d from a real zero-mean standard Gaus-
sian distribution. We also work under the following assumption on the noise €.

Assumption (A.1). Denote € =

NE

e[r]. Given A €]0, 1], we suppose that

1
m

0< 71) <X and el <cs min(||Z[|*, 1),

. _ ~ 4.1
(1= N) [} /A min(z]?,1) - ¢ @D

2/6 min(|z[|*, 1)

for some constant ¢; € |0,

To get better understanding of this assumption, we observe that it implies that
el _ el _ (L=2)VA
12 = 2
vm|z|® |z 2v/6

On the other hand, for the observation model (NoisyPR) with i.i.d real Gaussian sensing vectors, the
signal-to-noise ratio (SNR) is captured by

<1.

oNR & S lo ol 3m ]’
el el

In other words, Assumption (A. 1) amounts to imposing that the SNR is large enough, i.e.

612
VSNR > TonvE

7



Let us also observe that Assumption (A. 1) imposes that the empirical mean € is non-negative. This is
a practical assumption that is fulfilled in many applications and will be helpful to describe the landscape of
the noise-aware objective for Gaussian measurements. However, it was not used to have the deterministic
guarantees.

Some of our stable recovery guarantees will be local provided that Algorithm 1 is initialized with
a good guess. For this, we will use a spectral initialization method; see for instance [7, 9, 21, 32, 30,
29]. The procedure consists of taking x( as the leading eigenvector of a specific matrix as described in
Algorithm 2.

Algorithm 2: Spectral Initialization.

Input: y[r],r =1,...,m
Output: x(

Ser 12 2 ylr] >(ar,z)? Ser
t — T — T T .
TS T Sl T Sl )
m
Take x the top eigenvector of Y = L 3" y[r]a,a, normalized to ||zo| = A.

To lighten notations and clarify our proof, we consider the following events on whose intersection

our deterministic convergence result will hold with high probability. Let fix o €]0,1[ and \ € ] 9—\1/5, 1 [
e The event

Extrictsad = {erit(f) = Argmin(f) U strisad(f)} “2)

means that the set of critical points of the function f reduces to the set global minimizers of f and

the set of strict saddle points.
e The event

Eeont = {Va €R", [ V2f(2) ~E (V2f(@) | < o (ol + 717 3+ elloc) ] 43)

captures the deviation of the Hessian of f around its expectation.

e The event .

fus = {vo € B (1) lal? < - 40l @)

corresponds to the injectivity of the measurement operator A.

e Let us denote by Egnag the event on which the function f is L—smooth relative to ¢ with L =
3+ €+ omax(|z]? /3 +1,1).

e Letusdefine p = GL\/%M > 0 and &y is the event on which f is o-strongly convex relative to
o locally on B(X, p), with o = Amin(||Z||*, 1) — € — gmax(||Z]|* /3 + ||e]| , 1).

e We end up denoting

5conv = Cstrictsad ) gconH N 5inj N gsmad N <5‘scvx- (45)

Our main result for Gaussian measurements is the following.

. 1 Amin(|z]|*,1)—¢
Theorem 4.1. Fix \ € } VoL 1[and o€ }0, 2max (121234 D)

ated by Algorithm 1. Under Assumption (A. 1), let us define for any k €]0, 1]

[. Let (x1) e be the sequence gener-
(1= ) (Amin([7]* 1) - € — omax(7]]* /3 + [le] . 1)
3+ ¢+ omax(|[2]* /3 + [lell, 1)
2V2 ]

\/m (cs min(|z]%, 1) —€>

8

v= €[0,1]

and

g:




()

(ii)

If the number of measurements m is large enough i.e., m > C(p)nlog3(n), then for almost all
initializers xq of Algorithm I with the step-size v = 3+,5+Qmax(”;“'§/3+”€|| 0y e have
zp — «* € Argmin(f) N B (X,<)
and 3K > 0 such that for all k > K, we have
T —K | 2
dist”(zg, X) < T(l — )" 46 (4.6)

m(v/I+o— 2
Both above events hold with a probability at least 1 — 2e™ et e~ m) _5e—Cn 4/n? —
c/m, where c, ( are fixed numerical constants.

Suppose that o obeys (B.16). If m is such that m > C(o, ||€||,,)nlog(n), and Algorithm I is

initialized with the spectral method in Algorithm 2, then (4.6) holds for all k > K = 0 with

VIFo—1)2
m( ‘gQ ) . e_Q(m)

probability at least 1 — 2e~ — he < — 4/n?, where ( is a fixed numerical

constant.

The choice of parameters can be made easier to grasp when ||Z|| = 1 as assumed in many works.

Corollary 4.2. Suppose that ||z|| = 1 and the noise is small enough. Fix \ € } ﬁ, 1 [and 0€ } 0,25¢ {

Let (x1,),,cy be the sequence generated by Algorithm I with the step-size v = 31+;E+Kg’ where k €]0,1].
Then the statements of Theorem 4.1 hold true with

@

(-0O-8 2|

3+¢+0 m(cs —¢)

Remark 4.3.

When the number of measurements is sufficiently large as in claim (i), the SNR is large enough and
the initial point zg is chosen randomly from a measure that has a density w.r.t Lebesgue measure,
then mirror descent converges, eventually linearly, to an element of Argmin(f) which is within a
factor of the noise level from X. The local convergence rate is dimension-independent. To the best
of our knowledge, this is the first kind of results for the noisy phase retrieval problem.

When the number of measurements is in the less demanding regime of the second claim, then
mirror descent with spectral initialization again converges to a noise region around X’.

We recover the rate of [15, Theorem 3.2] in the noiseless case.

In the normalized setting of Corollary 4.2, the convergence rate behaves as

(Lﬂgg§+o«1_M+ﬁ+z+@.

It is important to observe that in the noisy case, the true vectors £+ are not even critical points of
2
f. Nonetheless, Lemma A.2 will show that +Z are actually %—minimizers.

Proof.

We prove this claim by combining Theorem 3.3 and the characterization of the structure of crit( f)
that we provide in Theorem C.3. For the moment, let us assume that the event &y, holds true.

e By construction, Econy C &inj Which means that the operator A is injective showing the coer-
civity of the objective f which implies that the sequence (), generated by Algorithm |
is bounded.

e From the event &4, we deduce that the function f is L-smooth relative to 1) with L =
3 + ¢+ omax(||Z]|* /3 4 ||e]l, ,1). Since the initializer is chosen at random with a fixed
stepsize Theorem 3.3-(i)(ii) guarantees that (x), o converges to z* € crit(f)\strisad(f)
and (f(xx)),cn also converges to f(x*).

9



(ii)

e The event .y shows that the function f is o-strongly convex relative to v on B(?, p) with
o= Amin(||z|?,1) —¢— Qmax(||:f|| /3 + |l€ll » 1). Given that Assumption (A. 1) holds,
Corollary B.6 implies that p? — 4H H > ( where we recall that p = (L\/%)HEH Let us denote

2_4fel®

= max(® (),

e Moreover, Egtrictsad Nolds true, and thus crit(f)\strisad(f) = Argmin(f), which means

that for almost all initilizers g,

7”2

zp — ¥ € Argmin(f) and f(xp) — min f — 0. (4.7)

We now claim that 3K > 0, large enough, such that Vk > K, dist(z g, f) < r which will allow
to invoke Theorem 3.3(iii). By Lemma B.3, we have for any £ € N

€l
vm ||

with probability at least 1 —e (™) Since ;;, — x*, there exists K large enough such that Vk > K

dist(zg, X) < ||l — 2*|| +8

, - el
dist(zg, X) <9 -
vm||z|

with the same probability. To conclude, it is then sufficient to show that

el
el

This is true for sufficiently high SNR, i.e. under our Assumption (A. 1). Therefore we deduce from
Theorem 3.3-(iii) that the sequence (zx)r>x € B(X, p) and for k > K,

P 1— k-1 4 2
dist?(zy, X) < (1 - ("””)0'> o M’

L mo
< (1 )k K 2 H H
< (1 - )k Kp2 + g 3
. 112 ~ J—
where we have used (B.12) i.e., 0 > % which implies that dist(z, X) <.

Let us now compute the probability that E.ony occurs. The events Egpad, Escvx are contained in

Econtl, see respectively Lemma B.4 and Lemma B.5. From Lemma B.2, £.,,11 occurs with a prob-

m(/TFe-1)*
ability 1 — 5e=¢" — 4/n? — 2¢~ =" as soon as m > C(p)nlog(n). Besides, close ob-

servation of the Hessian concentration (noisy part) highlights that it implies the injectivity of the
measurements thus &y,; is also contained in E.onp. Thanks to Theorem C.3, the event Egtricsad

holds with a probability 1 — ¢/m as soon as m > C(p)nlog3(n). Finally, we conclude with a

m(y/TFe-1)
union bound that £y, holds with a probability at least 1 — 2e~ B R 5¢=¢" —4/n% —c/m

(¢, c are a fixed numerical constant) for m > C(o)n log®(n), which complete the proof.

By [15, Lemma B.4], the operator A is injective entailing by the coercivity of f that the sequence
(2k) ey is bounded. From Corollary B.6, when the signal-to-noise coefficient ¢, satisfies (4.1),
r is well-defined. Lemma B.8 shows that when g obeys (B.16), the initial point g given by Al-

gorithm 2 is in the right f—attentive topology at the distance at most r = 1/ p? 4” ” . Thanks

to LemmaB.5, p is the radius of the ball B(X, p) where we have o-strong ConveX1ty relatlve to
¢ with o = Amin([|z]*,1) — € — omax(||Z||* /3 + ||€||, , 1). The last point to check before

10



applying Theorem 3.3 comes from Lemma B.4 which shows that f is L—smooth relative to v with
L =3+7¢+ omax(|z|* /3 + €]l > 1). We deduce from Theorem 3.3 that

k—1 2
_ 1— 4
dist?(zy, X) < (1 _(d=x)o “)0> p° + Alell” ,

L mo

2

< 1_,/)1{71(/)2_’_4”6”
mao

S —

(
(1

VK2 4 2,

Let us observe that this statement is true only on the intersection of the above events, we call it

El onv- Let now compute the probability that £, occurs. We conclude with an appropriate union

bound similar to the previous one, taking into account the fact that the spectral initialization event

m(v/TFe—1)2
8

is contained in E.onpy. Finally, the statement holds with a probability at least 1 — 2e™
5e~¢" —4/n? (C is a fixed numerical constant) for m > C(p)n log(n), which completes the proof.
]

5 Numerical experiments

In this section, we discuss some experiments to illustrate and validate numerically the efficiency of our
phase recovery algorithm. In each instance, we measured the relative error between the reconstructed
vector T and the true signal one T as

dist(z, X)

5.1
Bl e

In the experiments, we set ||Z|| = 1 and = was the output of Algorithm I at iteration K large enough.

5.1 Experiments with Gaussian sensing vectors
5.1.1 Reconstruction of 1D signals

The aim is to reconstruct a randomly generated one-dimensional signal of length n = 128 from m noisy
observations where the sensing vectors were drawn i.i.d from the standard Gaussian ensemble. The noise
vector ¢ is chosen uniform such that € = 1075,

In Figure 1, the blue line shows the evolution of the objective (left) and the relative error (right) using
Algorithm 1 with m = 128 x log?(128), where the initial point was drawn from the uniform distribution.
The red line is the result of reconstruction from m = 5x 128 xlog(128) measurements where Algorithm 1
was intialized using the spectral method in Algorithm 2 (the top eigenvalue was computed with the power
iteration method using 200 iterations). In both cases, we run Algorithm 1 with a constant step-size v =
3_8'1%9_ = (see Theorem4.1). As predicted by the latter, the curves in blue (i.e. with random initialization)
have two regimes: a sublinear regime and then a local linear regime. Moreover, with spectral initialization
(red curves), f and the relative error converge linearly at the same rate as in the local regime of the blue
curves, hence confirming our theoretical findings. As anticipated also, both f and the relative error
eventually stabilize at a plateau whose level is governed by the noise level.

5.1.2 Comparison with the Wirtinger flow

We compared our mirror descent algorithm (with and without spectral initialization) with the Wirtinger
flow [7]. However, the Polyak subgradient method proposed in [11], that we included in our comparison
in [15], is only applicable to the noiseless case as it needs the value of min f which is no longer known in

11



objective value

value with random init
value with spec init.
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40

60

Number of iterations

80
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Error with random init.

—— Error with spec init.
- -noise mean
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Number of iterations
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Figure 1: Reconstruction of signal from Gaussian measurements. The noise mean is €.
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Figure 2: Phase diagrams for Gaussian measurements.

presence of noise. We used the spectral method in Algorithm 2 for the Wirtinger flow, and we compared
with mirror descent with and without spectral initialization.

For this, we report the results of an experiment designed to estimate the phase retrieval probability
of success of each algorithm as we vary n and m. The results are depicted in Figure 2. For each pair
(n,m), we generated 100 instances and solved them with each algorithm. Each diagram shows the

empirical success probability (among the 100 instances) of the corresponding algorithm. An algorithm
2lel ~ 10-5. The grayscale of each point

is declared as successful if the relative error (5.1) is less than \/%
in the diagrams reflects the observed probability of success, from 0% (black) to 100% (white). The solid
curve marks the prediction of the phase transition edge. On the left panel of Figure 2, we also plot a
profile of the phase diagram extracted at n = 128.

One observes a phase transition phenomenon that is in agreement with the predicted sample com-
plexity bound shown as a solid line. Moreover, mirror descent performs better than the Wirtinger flow
with both use spectral intialization. Mirror descent with uniform random initialization has a weaker re-
covery performance with a transition to success occurring at a higher threshold compared to the version

of mirror descent with spectral initialization. This is in agreement with our theoretical findings as more

measurements are needed in this case to ensure stable recovery.

12



5.2 Experiments with the CDP model

‘We now turn to the case of structured measurements from the CDP model. This model uses P coded
diffraction patterns/masks followed by a Fourier transform. The observation model is given by

2

n—1
_ _;2mit
=D zed, 05|+ | (52)
=0 )
‘]7p
where j € {0,...,n—1}andp € {0,..., P — 1}, € is the noise. The total number of measurements is

thus m = nP (i.e. the oversampling factor is P). (d}),e(p) are i.i.d copies of a random variable d, and
in our experiment, d takes values in {—1,0, 1} with probability {1/4,1/2,1/4}. Here we performed a
similar experience to the Gaussian case described in Section 5.1.1, where we chose the number of masks
P = 7 x log®(128) and a constant step-size y = g'—ig, with € = 107°. Despite the lack of theoretical
guarantees for the CDP model in the noisy case, that we conjecture are true, one can observe in Figure 3
that we have very similar results to those for Gaussian measurements.

value with random init Error with random init.
102 value with spec init. . Error with spec init.
10 .
oise mean
10t
£ E
[ -2
g 5 10
(o)
IS [
£ £
' ge]
2 = 10
o) k)
) ~
10
109 e m e e e N e e =N ===
0712 L L L L L 10'6 L L L L L
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Number of iterations Number of iterations

Figure 3: Reconstruction of signal from Noisy CDP. The noise mean is €

5.3 Recovery of a 2D image

In this experiment, we work with the image of the beautiful Unicaen’s' phoenix whose dimension is
396 x 396. Our goal is to recover the image from noisy CDP measurements with P = 90 masks. The
noise is chosen such that € = 1075, We used the spectral method to find the initial guess and run mirror
descent for 1000 iterations. The results are displayed in Figure 4 showing that our algorithm converges
to the desired image with a relative error of order 10~2.

Appendices

A Proofs for the Deterministic Case

Throughout the work, we use when it is convenient the following decomposition of the objective function
fin(1.1).
Ve eR", f(z) = fnu(z) + fny(2), (A1)

'Unicaen = University of Caen

13



(a) Original Unicaen’s phoenix (b) The CDP measurements averaged over the P = 90 masks

(c) Recovered Unicaen’s phoenix

Figure 4: Reconstruction of an image from noisy CDP measurements.

where fx1, and fny denote respectively the noiseless and the noisy part of f and we have

L~ T 712\ ? 1 ¢« T T le]”
Inn(z) = - ;::1 <|ar z|? — |a, l‘|2> , fay(z) = 5 ;e[r] (|ar z|? — |a, x|2) t o
(A.2)
The following computations are straightforward:
Vib(z) = <Hx!|2 + 1) z, V2h(z) = (an? + 1) Id + 222", (A3)
1 & 1
Vi) = — Zl <|arTx\2 - |aTTa_;|2> ara,z — p. Zl elrlara, 'z (A4)
and
1 & 1 &
V3 f(a) = Z; (3|a;x|2 _ |aTT:z|2> ava, Z; e[rlara,” (A.5)

A.1 Proof of Lemma 3.1

Proof. For all x,u € R", it easy to check that

(u, V(@) = (Jlall” + 1) ull.

14



On the other hand, we have

<u, VQf(x)u> = %Z <3|arTx’2 —|a,z|> - e[r]) |a, ul?

IA
3|~
NE

(3@&;2 - e[r]) PR

r=1
< l i 3 || 2 2 2 1 2
<\ ar||” + llellog ) Narll™ | (el +1) e
r=1
S 2 2
Thus forany L > L 3~ ||a,|| <3 llar ||~ + ||€Hoo), we have for all z € R"
r=1
V2 f(z) = LV*(x). (A.6)
The claim then follows from Lemma 2.4 with g = f and ¢ = L), and Proposition 2.1(ii). O

A.2 Proof of Theorem 3.3

Let us start with the following intermediate results.

Lemma A.1. Let the sequence (x1)rcn be generated by Algorithm 1. Then for all u € R™,

Dy (t, Tpor1)+75(f (@h41) —min f) < Dy (u, xk) = 6Dy (@41, 0) =16 Dy (w, @)+ (f (w) —min f).
(A7)

Proof. From [15, Lemma A.2], we have
Vu € R", Dy (u, xp41) + v (f (@r41) — f(w) < Dy (u, 2) — KDy (@41, Tk) — V6D (u, 21) -

Subtracting min f from both sides yields the result. O

Lemma A.2. Assume that Argmin(f) # (. We have

OSf(:l::E)—minfSM.
m

2

Proof. Let z* € Argmin(f). We prove the claim for Z. By optimality, we have f(z*) < f(z) = H4€7|7‘1 ,
which equivalently reads

m 2 m
3 (|aﬁx*|2 - |arTf|2> <23 e <|aﬁx*|2 - |aTTf]2).
r=1 r=1
Applying Young’s inequality to the right-hand side then entails
2
I

1-63 (\aﬁxﬂ? - |aﬁgz12)2 < ”65 V6 €10, 1[- (A.8)

r=1

15



Consequently, using (A.8) and Young’s inequality again, we get

4mDy(+3,2*) = dm(f(z) — f(2*))

m m 2
=23 elr] (|ar 22— \QJ@F) <\ar |aTT9E]2)
r=1

r=1

<23 elr) (jor %" - Jo,TaP)
r=1
el Tz 2\ e el
< 1_5—1—(1—5);(|a7«$| —|arx]> et
The minimal value of the right hand side is 4 ||¢||* attained for § = 1/2. O
Proof.

(i)-(ii)  Similar to the proofs of the corresponding claims in [15, Theorem 2.11].

(iii) We give the proof for  and obviously the same holds at —z. We proceed by induction. We first
have that o € B(z,r) C B(Z,p) since r < p. Suppose now that for k& > 0, (z;)o<i<k C B(Z, p).
Applying Lemma A.1 at Z and using Lemma A.2, we have

2
€
Dw(i‘, kaJrl) < Dw(f, .Z'k) — /€D¢($k+1, xk) — ’ny(f, a:k) + ")/HTTU (A.9)

< Dy(@.28) — 1Dy (& 24) + 71 dls

< (1 - 10)Dy (2. a1) +vﬂ

where we also used positivity of D,, and local o-relative strong convexity of f since xz, € B(Z,p).
Iterating the last inequality, we get

2 k
€]l

_ € ;
Dy (&, 41) < (1 =70) 1Dy (2, 20) + 97— > (1 =70)"
i=0
2
< (1 —~y0)" Dy (Z,20) + el (1 —(1— ’ya)kH) (A.10)
mo
< Dy (Z, o) + —HEHZ
> P Ly mo .
It then follows from Proposition 2.1(iv) that
, , 2| el” 2|Jel?
2 2 2
— < — Q) < r‘O <
ok = a1 < llzo — 72 O(p) + = - < 120(p) + = - < p?
This shows (3.3). ]

B Proofs for Gaussian Measurements

B.1 Expectation and deviation of the hessian

Lemma B.1. (Expectation of the hessian) If the sensing vectors (a,«)re[m] are sampled following the
Gaussian model then we have for any x € R",

E(V*f(x)) =3 (200" + || 1d) — 227" — |z 1d — ala. B.1)
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Proof. The proof combines (A.5),[15, Lemma B.1] for the expectation of the first (i.e. noiseless part),
and the last term comes the fact that the sensing vectors have zero mean and unit covariance. O

Lemma B.2. (Concentration of the hessian) Fix o €]0,1], if the number of samples obeys m >
C(0)nlogn, for some sufficiently large constant C'(9) > 0 then

[V (2) ~ B (V2 (@) | < o (\xn Ll uenm) ®2)
m o— 2
holds simultaneously for all x € R™ with a probability at least 1 — 5" — % — 26_@, where

( is a fixed numerical constant.

Proof. By the triangle inequality, we have

IV2f(z) —E (V2 (@) <

1 m
=5 :(3\ar:r| aray’ — |z araﬁ) - (6:13:BT—|—3H:UH2Id—2:E:ET— ||;z~||21d)
m

r=1

m

% Z arar —eld

The concentration of the first term has been proved for the noiseless case (see [15, Lemma B.3]) with a
probability 1 — 5e=¢" — %. For the noisy part, we have

1 m
— Z arar — <ararT— Id)
m :

where A is the m x nmatrix whose r—th row is the vector a,.. From [15, Lemma B.4], we get that for
any o €]0, 1,

m

, (B.3)

< ollello

1 m
— Z e[rlaya,’ —€ld
m r=1

with a probability at least 1 — 2e™ mt*/2 \ith £ = = 2 + t with m > 1n. We conclude by applying a
simple union bound. 0
B.2 Optimal solution near the true vector

Lemma B.3. Assume that Assumption (A. 1) holds and that m > cn where c is a positive numerical

constant. Then for any x* € Argmin(f),

T el
dist(z*, X) < 8——— (B.4)
vm |z

holds with probability 1 — e~(™),

Proof. Let us use the following notation: X* = z*2*| X = zz',e = \/Em and €y = 4e.
2
By optimality of z*, we have f(z*) < f(z) = %, which also implies that

m

m
> (lars*? = |a,z?) Z — |a,'z[?).

r=1
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Applying Young’s inequality to the right-hand side then entails
m
3 (la &2 — o, 2[?)” < 4lelf?. (B.5)
r=1
Fix ¢ €]0,1[. Using [9, Lemma 1], there are positive numerical constants C' and C’ such that if
m > n¢"2log(1/¢), then with probability at least 1 — C’e~C¢*™ we have

m
LS (105 — 027 2 08101 - 07 x* - X2
r=1

Thus, in view of (B.5), we the same probability, we have

- 20
| X —X}|Fgm6. (B.6)

Therefore taking ¢ = 0.4 in (B.6) one has

| X* = X|| < eo- (B.7)
The rest of the proof is inspired by that of [8, Theorem 1.2]. Since |z*||* and ||Z||* are the largest
eigenvalues of the rank-one symmetric matrices X* and X, we have from Weyl’s perturbation inequality
of the eigenvalues that

211 = 121 < | X* = X[l < eo-

Let us assume that ||:EH2 = 1 and the general case is obtained via a simple rescaling argument. Under
Assumption (A. 1), € is small enough so that g < 1. We then get that ||z*||* € [1 — ey, 1 + €o]. The
sin-0-Theorem [10] implies that

I x

- YHF <%0

sinf| <
Jsin ] < H:13*||2 “1—¢’

where 0 < 6 < 7 is the angle between x* and Z which are the eigenvectors of X* and X associated to
the eigenvalues ||z*||? and 1, respectively. We can then write

a* = ||z*|| (cos OZ + sin OF),

€

where Z— is a unit vector orthogonal to z. We apply the Thamessou-Pythagoras theorem to get

|z — 2% = (1 — ||2*| cos ) + ||z*||? sin? 6.

Since cosf = m, we have
2
1+eo>V1+e€ > |z*] cosf > \/1—60_ : €0 >1— e,

— €0

where we used that ey < 1/3 in the last inequality. We then get that
(1 — ||z*|| cos 0)* < €2.

In turn
63(1 + €o)

(1 —¢€p)?

lo* —2|* < & + < def

for eg < 1/3. We also know that
lo* =2 <2+€ <7/3
for ¢y < 1/3. We therefore get that
dist(z*, X') < 8min(e, 1) < 8,

where the last inequality is a consequence of Assumption (A. 1). O

18



B.3 Relative smoothness

Lemma B.4. Fix o €0, 1], if the event E.ony holds true then,
Va,z €RY, Dy(e,2) < (3+ ¢+ omax (2] /34 el 1)) Dulw,2). BB

Proof. Let fix o €]0, 1], for any u € R", we have

E (V2f(w)) + o(llul® + |12]* /3 + [lello)1d
(2uu + ul? Id) — 277 — || Id—%Id+Qmax(H£||2/3+||6HOO,1) (Hu||2+1> 1d,
j3(2uu o (Jul” + 1)1d) + &d + g max(|z]]* /3 + lle]. . , 1) V2 (),
< 3V (u) + eV2¢(u) + omax(||Z]® /3 + |lel o , 1)V (),
< (3+ &+ omax(|a)® /3 + ello . 1)) VZ(w), (B.9)
We conclude by applying Lemma 2.4 in the segment [z, z]. O

B.4 Local relative strong convexity

. Amin(||z]|%,1)—¢
Lemma B.5. Fix )\ € ] 9%/5, 1 { and for o € |0, 2maxrzl||i|(|l‘2z/g+||)e||;,l) { If the event E o holds true,

then for any x, z € B(z, p) or x,z € B(—z, p), we have
D) > (Amin(#]° 1) ~ € omas(|#] /3 + el . ) Dy(e2).  (B.10)

where p = % lZ|-
Proof. For any u € R", we have
2, (1212
V2 f(u) = B (V2 (w) = o (lul® + 171 /3 + llell..) 1a
= Gun’+ 3 [lul|* — 222" ||z *1d — ed — o max(||Z]|* /3 + lell . » 1) ([|u® + 1).

We then obtain, for any v € S"!

J(va(u) + omax([|Z))? /3 + Jlell . 1)V2¢(u)> v>3 <2 (vTu>2 + Hu\|2> . (2 (J:z)g n HxH2> .

Let p > 0 be small enough, to be made precise later. Thus for any u = +& + pv we get
vV f(u)ot+omax(|Z]* /3 + [|e]l o , 1)o VP (u)o
> 6 (v 3:) 1 6p2 £12p0'F + 3|72 £ 6907 + 3p% — 2 (UTZZ‘>2 _lz? —¢
4<v :c> 1 9p% £ 18007 + 2 |7)% — & (B.11)
For the entropy v, we also have

2 2
Jv%(u)vz||u||2+1+2(vTu) :2(va) +3p° + £6p0'T + 12| + 1.
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At this step, the proof becomes very similar to the noiseless phase retrieval (see [15, Lemma B.6]).

Indeed, let us observe that we showed that for any vector u = + + pv with p = % ||Z|| we have,

2 2
4 (J:z«) +9p% £ 180"z 4+ 2 || Z||> > Amin(||z]*, 1) (2 (Jaf) +3p% + £6pv'Z + || Z|* + 1>
By replacing this result in (B.11), we get
vV f(w)o + gmax(|[2]* /3 + [[ell, , 1)o'Vp(w)v
2
> Amin(||z]/*,1) <2 (UT{Z‘) +3p% + +6p0'z + ||| + 1) —¢
> ()\ min(||z]|2, 1) —E) V2 (u)v
Finally, we have that
T 2 . — (2 ~ ~ 112 2
o (V2 (@) = (Amin(|lz]* 1) = & = omax(||z]* /3 + [l .+ 1)) V() v = 0

forallv € S Land p < % ||Z||. To conclude the proof, let us observe that with the prescribed bound
on o, we have

Amin(|z|*,1) — ¢

o = Amin(]|z]*,1) — € — omax(|[z[* /3 + [|e]l o , 1) > 5 >0, (B.12)
where we used Assumption (A. 1) on the noise. Therefore, (B.10) follows simply by invoking Lemma 2.4.
O

We have the following corollary which gives a condition on the coefficient of the signal-to-noise ratio
cs ensuring that the neighborhood of strong convexity p is greater than the noise.

Corollary B.6. For any fixed A € ]
4H€||

. _12 ~
{and 0 € }0 Amin([z]%1)—¢ , if Assumption (A. 1) is

VL " 2max(||Z)1% /34 €l oo 1)

satisfied then 1 = p? > 0, where p = 7; 1Z]).

4H H >0ie p> oldlee From (B.12) we have,

Proof. To have the desired result, it suffices that p? — NG

VAmin(z|?, 1) -
Vo > NG

thus,

2llelloo - 2v2 e H < 2V2cmin(|z)*, 1)
Vo \/)\mm (I|z)1?, \/)\mln (|z]|*,1) — ¢

Therefore it suffices to show that

2\[03 mm(HxH )

\//\mln (lz|*,1) —

Replacing now p by its expression, we get that cs should satisfy

(1= ) 2] /A min(7]]% , 1) — € > 2v/Ge, min(|z]2, 1)

which holds thanks to Assumption (A. 1). ]
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Remark B.7. This result estimates the maximum signal-to-noise ratio for which we ensure that the neigh-
borhood of strong convexity around the true vectors is well-defined. Let us notice that a more practical
upper bound is

1—=2)VA 1
cs < ( JVA < . (B.13)
2v/6 9v2
. . N . 1=2)vVX 1
Indeed, it is a simple maximization of the function A\ — UG over } VoL 1 [

B.5 Spectral initialization

We now show that the initial guess zg generated by spectral initialization (Algorithm 2) belongs to a
small f-attentive neighborhood of X'.

Lemma B.8. Fix ¢ €]0, 1] and assume that for v € [m)], we have €[r] < |a,'z|?. If the number of sam-
ples obeys m > C(p)nlogn for some sufficiently large constant C(o) > 0 and (B.2) holds true then x
satisfies:

(i) dist(xo, X) < n1(0) || T
m:]0,1[ —]0,1[

QH(J%J hwﬂ+®+“i?”) (B.14)

, where

which is an increasing function.
(ii) Moreover, we have

(m(e) |Zl))

fan) < 5@+ (@4 e lal + 22Dy ) @) a2, wts)

with L = 3 + € 4+ gmax(||Z]|* /3 + [|e], , 1)
(iii) Besides, for \ €]0,1], if

11— 1
102 4]l max ([|z]|, 1)
\/3 (6 (1+ 55" - i) +1)

Blx r 2 _ (1202 a2 _ 4lell?
then we have x( € ( 7max<m,1)> where r +— || 7] e

(B.16)

o<t

Proof. (i) Denote the matrix

1 — 1 —
Y = — Zy[r]ara;: — Z (lar'Z|? + €[r])ara, .
r=1 r=1

We have w.h.p
1Y —EM)| < o([* + llello) < (1 +¢s) 2]

Let 7 be the eigenvector associated with the largest eigenvalue Xof Y such that ||Z|| = ||z (obvi-
ously A is nonnegative since Y is semidefinite positive). Then,

o(1+ ) 2| > (f(y 237 — ||Z|21d — ad) ’.f‘

= [Xlja)? - 2% - Jz||* - €)ja)?
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Hence
~T- Y 152 D) !
2(2'2)* > Mzl® — 2" —€llz]* — o1+ co) |z "
Moreover, since A is the largest eigenvalue of Y, applying the concentration inequality at z w.h.p
Mz > 2YE > @T(mu |1Z% 1d —ad) z—o(1+c) |z
nd o, ~n=2 14
=3z +€llz]” = o(1 +cs) [12]-
Merging the last two inequalities, we get
~T- 14 =2 — (4 4 =2 _y
2(22)* > 3z|* + €zl — o(1 + o) z]1* — [Izll* = €llz]* — o(1 + c) |1z
4 — (4
=2[]Z]" = 20(1 +¢) ||z
Which implies that

dist(7, X) \/2—2\/1—9 1+c¢s) ||z -
By definition of z¢ in Algorithm 2, g = y/ = 3=, y[r] £ ”, \/ Z la,TZ|% + €[r ])7” and thus

w.h.p
[m- ||Zr ylr |H u—‘\/ m1y, |raTHTx12+e[ D,

it comes out that,

o ete)]al
o)) < £

lzo — 7| =

dist(xg, X) < dist(z, X) + ||lzo — 2| < <\/2 —2y/1—po(l+e¢s)+ o1 + Cs)) |z .

(i) Under our sampling complexity bound, event E.onp1 defined by (4.3) holds true w.A.p . It then
follows from Lemma B.4 applied at Z and z, that

Df(m()a ) < LD¢(1’0, )
The latter implies that

Flao) < @) + IV F@ 1o — ) + LW gy

¢[r]a,a, 'z, we obtain from (B.3) that
1 m

13 o]
m r=1
Combining the two last inequality yields to

feo) < £(@) + ((1 T o)es 7] + L@W’)”f”)mg)) (o) |22,

NE

Since V f(z) = L
1

r

IVF@) < llell oo 12l < (1 + o) llell 1211 -

2
(iii) In view of (i), it is sufficient to show that 1;(p) ||Z|| < ————=—. Since from Proposi-
max( @(r),l)

tion 2.1(iv), we have

2
O(r) < 6|2 + ) +1 < (a (1 LU Al ) ; 1) mas (|7 1).

2
mo |7

and 7 is an increasing function, we conclude.
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C Landscape of the Noise-Aware Objective with Gaussian Measurements

C.1 Warm up: Critical points of E ( f)

We start by studying and characterizing the set of critical points of E (f). This can be seen as the asymp-
totic behavior of the critical points of f when the number of measurements m grows to +oo.

Proposition C.1. We have
. > n. T o Ly 9 2
crit(E (f)) = {0} URcUSw e R": ol =0, af* =  (Jlall” +€) {

where X, £ {ia@ 1+ —= 3” P } Those sets are respectively, the local maximizer, the set of global
minimizes, and strict saddle points of E (f).

Before proving this result, we the closed form expressions of the expectation of f and its derivatives.

Lemma C.2. For all x € R", we have:

2 2 (a2
(F@) =2 (el + 121%) - 2 P ) — (T2 o 10 A0,

E
VE (f(2)) = 3 l2]* « — 22(2T%) — 2|z — &,
V2E (f(z)) = 3 (mu Pk Id) — 277" — ||7)*1d — eld.

Proof. By linearity of the expectation, we have E (f(z)) = E (fn1.(x)) + E (fxy(x)). Linearity again
yields

B (g (@) = — - 3] (58 (ara”) 2 — 7 (a0, ) + 1L,

2m =
L ¢ lll®
g 2 ] (e = ) + 20 A)
We also have
T2, T=2
E (fyn(z E E(\ar x| ) 4 E ]E(]ar )— ;1 [ e

From [15, Lemma B.1], we know that

m
VreR", E (Z |arTaz|2ararT> = 2za' + ||a:||21d.
r=1

Therefore we have

m

1 « 1 1 3
E <4m Z |arTx|4> = a:T(E <4m Z |aTT$2ararT>> x = Za:T<2mxT+ HxHQ) T =7 lz|*,

r=1

and
< mewﬂ=<m+wﬁmﬁmQWM?
Whence we have
E (fue)) = 5 (Jel* + 1allt) - 5 2] ] — 12Tl €2

The claim follows simply by summing (C.1) and (C.2).
We deduce the gradient and the hessian by straightforward derivation of E ( f). O
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Proof. (PropositionC.1)
e The origin : Let us observe that VEE (f(0)) = 0, it follows that the value of the hessian at zero
satisfies

V2E (f(0)) = — ||z]|*1d — 222" — eId < —(||z||* + ¢)Id — 2zz" < 0,

where we have used that € is non-negative (see Assumption (A. 1)). It follows that 0 is a local
maximizer of E (f).
e Subspaces with no critical points:

2~
1. For any point in {x ER™:0 < |z < HJ:HTJFG}, we have

(e, VE (f(@)) = (311> = |2 =€) ll2]]* = 222> < (3]12]* = |l7]]* — €) |]* < 0.

We deduce that, (x, VE (f(z))) < 0 which implies that || VE (f(z))|| is bounded away from

zero on this region, and thus that there are no critical points there.
N2, ~ ~
2. Consider a point in {x eR"™: HQE”TJFE < lz|? < ||z|* + §} and recall that it is a critical
point if and only if

(3 )% = ||Z]% - ”g) = 2(37)z. (C.3)

2~
Combining Assumption (A. 1) and the fact that ||z||* > ”z”%, we get that <3 lz))? = ||Z)? - '€> /2
is the positive eigenvalue of the rank-one matrix matrix ZZ'. This is equivalent to 3 ||z||* —
|1Z)|* — € = 2|, i, ||z]|* = ||Z]|* + & which contradicts the definition of this region,
showing again that there are no critical points there.
3. For a point in the region {;1: eR™: ||z|* > ||z||* + %}, we have the lower bound

(2, VE (f(@))) = (3lle]* = |2) =€) ll2]]” - 21222,

> (3ll)> - 32 € Jl2l* > 0.

Hence, | VE (f(z))|| is bounded away from zero on this region yielding the same conclusion.
2, ~
e Strict saddle points: A point in the sphere {:c eR™: ||z]* = ”“:”T“} is a critical point if it is

orthogonal to the true vector Z. Indeed we have,
VE (f(z)) = 0 <= (3 Iz|® - 1Z))? —'g) v =25ir < 72 =0.
Besides, for any v € R™ we have
(v, VZE (f(2))v) = 6[v'e* + 3 [l]|* [o]|* — 210z — ||2)]* [[v]* — €]o]|*
= 6JoTaf? — 2102 + |lo]* (3]} - |12I)* - )
= 6lv'z|> — 2|v'z|?.
In the direction v = z, we deduce that
(2, V’E (f())z) = 6]|z]* >0,
and in the direction v = T we have
(7, VZE (f(#)) 2) = —2]|zll" <0,
where we have used orthogonality of x and Z. These facts show that the critical points in this

region, i.e. points orthogonal to Z, are strict saddle points of E (f).
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e Global minimizers: In view of the above, local/global minimizers can only occur on the sphere
{a: eR": ||z|* = ||z|]* + g} Any point in his set is a critical point of E (f) if and only if

VE (f(z)) = 0 <= (3 |z]|® — \|a§||2—'€)$:2i'i'Ta: = (HiHQId—E:E:T)m:O.

Therefore, x is a critical point on this region if and only if z is an eigenvector of ZZ', that is
x € span(Z), or equivalently, 35 € R such that x = Sz with

2 _ 220512 _ 1212 4 € _
ol = B2l = 17l + 5 = B =\ [1+ .

The set of critical points in this region is reduced to X, = {j::i’1 /1+ %} Forz € X, we
have

V2E (f(z)) = 6az' — 277"+ (3 || = |72 - g) Id
= (682 — 2)zz'+ 2||z)*1d = 2 ||z||* 1d.

Indeed, we have
oF
682 —2=4+ —— >4>0,
]
where we use again the non-negativity of € in Assumption (A. 1). We conclude that X is the set
of global minimizers of E (f).
O

C.2 Main result: Critical points of f

In this section, we study the landscape of the objective function f for the Gaussian measurement model.
Our main result hereafter characterizes the set of critical points of f for m large enough.

Theorem C.3. (Critical points of f) Fix \ € ] 9—\1/5, 1 { Let us assume that the noise vector satisfies

Assumption (A. 1). If m 2 nlog(n)3, then
crit(f) = Argmin(f) U strisad(f) (C4)

where Argmin(f) = {£a*}. This holds with probability of at least 1 — .= where c is a positive numerical
constant.

Remark C4.

e In [26, Theorem 2.2], the authors study the geometry of f in the noiseless case here coined as
fnz. We aim with our result to extend it to the noisy case with small enough noise (see Assump-
tion (A. 1)).

o This result shows that when the number of measurements m is sufficiently large and the noise ¢ is
very small compared to the true vector which is entailed by a large SNR, then the set of critical
points of the objective function f is reduced to the set of global minimizers Argmin(f) and the
set of strict saddle points strisad( f). The strict saddle avoidance of mirror descent will then imply
that the sequence provided by mirror descent will always converge to global minimizers of the
function f.
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We recall the radius p = % ||Z|| defined in LemmaB.5. To prove Theorem C.3, we consider the
following regions of R™ which are helpful to characterize the landscape of f:

1 1
Ri={o e B @B (V@) a) < - g belP el - g llall . e
Rs = {:z: € R" : dist(z, X) < ,0} , (C.6)
Ro = (Rl U Rg)c. (C.1D

We also define specific regions R% and R,

1 2112 1 4
s = R™: (x,E > — —
Rs = {o e R @ BOI@) 2 o el el + 15 el

1 11
R§=={$EZR”1<%mE(VfC®)>>HxHW%!H$V

- Az < el < il diss(a, ) > LI
250 20

3

where d, = Hfﬁ%ﬁll if z # £+ and any vector on the unit sphere otherwise.

Let us observe that these regions are similar to those defined in [26] replacing f by fnr. Indeed,
the idea behind our assumptions is the fact that small noise will introduce small perturbations in the
function f, and therefore under our assumption of small noise, the latter has benign influence on the
landscape of f (see Figure 5). Mainly, in the region R; the function f still has negative curvature. In
the region Ro, f has a large gradient and in R3 relative strong convexity with respect to our chosen
entropy ¢. It is important to observe that in the noisy case, it is not true that the true vectors X are
critical points of f or even E (f). However, we have already shown in Lemma A.2 that +Z are actually
%—minimizers. Moreover, we have already given in Proposition C.1 a description of the set of critical
points of E (f), providing a hint that in the large oversampling regime, the geometry of f is close to
that of fxr,. This result shows that the set of critical points of E (f) is also reduced to the set of strict
saddle points with symmetric global minimizers of E (f). This set of minimizers, that we denoted X’
(see Proposition C.1), are direct perturbations of the true vectors X by the noise; see also Lemma B.3
which quantifies the distance of global minimizers of f to X in probability.

Proof. In the following, all assertions are to be understood in high probability sense. The proof consists
in invoking properly the statements of Proposition C.5. In the region R, Proposition C.5-(i) shows that

Vo € Ri, (&, VAf(2)Z) < ——(1—c5) |||, (C.8)

i.e. f has anegative curvature in the direction of the true vectors X which means that any critical point
in R is a strict saddle point for f. From Proposition C.5-(iii) and (iv), we deduce that

1
Vo € R§ U RS, HVﬂ@HZBaﬁl—%HMMWW- (€9

Moreover, Proposition C.5-(v) entails that Ry C RS U RS which means that (C.9) holds true for all
2 € Ra. Thus the gradient of function f is bounded away from zero on Ry which means that there are
no critical points in this region. Therefore, local/global minimizers of f are necessarily located in the
region R3. It remains to show that the only critical points in the domain R3 are just the elements of
Argmin(f)? which contains only two points £2*. This will be a consequence of o-strong convexity of
f on Rs. In the following, since R3 = B(Z, p) U B(—z, p), we prove the claim only on B(Z, p) and the

“Remember that Argmin(f) is a nonempty compact set by injectivity of A under the assumed measurement bound.
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flz,y)

Figure 5: Landscape of the function f as m — oo; we have (m,n) = (200, 2) and the true vectors are [+3/4, 0]. The noise
vector is generated at uniform in [-1,1] such that € ~ 5.1073. One clearly sees that the geometry of the landscape of f is
preserved and that the only minimizers of f are very close to the true vectors.

same holds for the symmetric case with —z. Let x € B(Z, p)\{z*}. In view of Proposition C.5-(ii), we
have

Df(w,a*) = f(z) = min f > oDy (w,a*) > 2 o —2*|*.

The right hand side is positive since x # x*, which means that f has a unique minimizer on B(Z, p).
Moreover,

Dy(a*, ) = min f — [(z) = (V(@),2" — ) > oDy(a",2) > T [lo — "],

and thus o
(Vf(@),w = %) 2 Dy(at,2) > Tl — a7
Cauchy-Schwarz then entails
o
IVf@)l = 5 llz =2 >0

meaning that f has no other critical point than 2* on B(Z, p). This completes the proof. O

The proof of the above result heavily relies on the behaviour of f on each region. This is the subject
of the next proposition.

Proposition C.5. If the number of samples obeys m > nlog> (n) then with probability 1 — £ where c
is a positive numerical constant, we have the following statements.
(i) In the region R1, the objective f has a negative curvature i.e.,

Ve e Ry, (%, V2f(2)T) < ———(1—c)|z| (C.10)

(ii) In Rs, [ is o-strongly convex where o > 0 is given in Proposition B.5.
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(iii) The gradient is bounded from away from zero in R5. More precisely,

Ve eR;, (x,Vf(z) = (1= cs) [l |1]* (C.11)

1
1000
(iv) We have
1
Vo€ RE,  (de VI (@) 2 s (1= ) 7 ] el €12
(v) We have Ro C R5 U Rg

Remark C.6. The previous result extends the series of propositions ([26, Proposition 2.3-2.7]) to the
noisy case. All the statements depend on the (inverse) signal-to-noise coefficient c; which obviously less
than 1 under our assumption. In the noiseless case, let us observe that we recover all the Propositions
mentioned above.

Proof.
(i) For any = € Ry, we have

(z,V2f(2)z) = %23 ’2

2
’ a,,Ta:

T - S ]

r=1

m
1 Z
m
r=1

By using similar concentration inequalities as in Lemma B.2 we have the following

m T2 2 1 & T2
S sl [o 7 <E (25" 8]a ] o) + ol el
m m
r=1 r=1
1 1 1
— ar—rj‘ >E|— Z ar—rx‘ — oz
mr:l mrzl

r=1

After summing, we get

(2, V2 f(2)z) < (2,E (V2 f(2) ) + o la|® |2[* + o |2I|* + ocs |12I|* [|=]* -

We choose now ¢ = ﬁ, and since x € R, we finally obtain that

(292 @) < 150 Il 1217 = o5 o+ o0 Il 1212 + 2o 12l + gaes I Dl
1 4
=——((1- 7|
o= c)al
(ii) Combine Lemma B.5 and 1—strong convexity of 1.
(iii) Letz € R3,
1 m m 9 9 1 m 9
(x,Vf(x - ‘ Z a,,Ta’;‘ arTa:’ —EZG[T] arx‘ .
r=1 r=1 r=1
using the same concentration arguments as in the proof of Lemma B.2, we get
(5,9 0) > (o, B (V@) — oo ol = e o g~ L Dl
’ - 100 1000 1000
1] llellog
> o el 121 + 2o el — 1 llel = oo fl al? — P dele,

1
:m(l — ) |1z 1=,

where we used Assumption (A. 1) in the last inequality.
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(iv) We have,

v)

(de, Vf(2)) = (de, VINL(2)) + (da, V [y (2)) -

On the one hand, we have

a, T

2
‘ (dearaTTx).

(Ao, rn(0)) = =

Therefore, the proof bears exactly the same path as the proof of [26, Proposition 2.6]. Indeed using
Lemma B.2 more precisely [15, Lemma B.2], we have for m 2> nlog(n)

a,'T

’ 2

(dy'ara, 'z )<dTE<mzm:

2
_ Z
. Q- :Z:’ arar> 1000 H:CH H H ”‘TH

r=1

with probability larger than 1 — %, C > 0.
To bound the first term, we use the line of reasoning used in the proof of [26, Proposition 2.6] to
get that when m > nlog(n)3, with a probability at least 1 — %, C’ > 0, we have

1000

1 m
der TT >deE -
(dy'ara,'x) > (mz

2
CLTT:E‘ arar—r> r— ——|z || | dz|[ [l ,
r=1

we refer to [26, Section 6.5] for the details of the proofs. Then, provided that m > nlog(n)?3, with
a union bound, we have with probability at least 1 — C+TC/ that

(e ¥ ) > (B (Y fin )} — 2 1ol ] e
On the other hand, with similar arguments as in the proof of Lemma B.2 and using again Assump-
tion (A. 1), we have with probability larger than 1 — €+
1 m
T T
(e, V fivg () = o (m > cllosar ) 7 2 (e, B (Vg () = o
We combine now the last two inequalities to get
> E
(Ao V() 2 (s E (VI @)~ 5o 21 Nl e — 5

20%0/. Using the definition of the region R% we obtain the claimed

with probability at least 1 —
result.

The proof is similar to that of [26, Proposition 2.7] which consists of showing that R" = R; U
R U RQL U Rs. We then get out claim by definition of R9 and that R” = R; U Rs U 'R3. The
idea is to divide the R into several overlapping regions and show that we can cover them with our

good partition. To achieve this task we will use the set

Ry = {fv €R™: (dy, E(V[(2))) > % 120 I lld ], [l]] < II:L"II}
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o We can cover the set R, = { € R" : 22| < L ||z|| ||#||} with both Ry and RS. If ||z]|* <
208
51 ||33H

1 301
- 2 _ L _ 2 Y T
(2,921 @)7) + 755 7P lal> = 62 + oot P 2] — 312 2]
3 301 149 L 1
< 21 Nl ~ o 2l 2l ~ = )
100 50
298 149 _ 112 4
< Bt - 12 el <l — ol
< L
—_— 0 .
If flz]? > 626 |1z
T2 _ 201 =el12
(@ E (V@) — = llolP 2l = 3 ) - < %) —ﬁuxn ]2 - 2]
> 3 Jall* — 5 el 121 — 20 Nl 2] ~ el
299 751 -
>+ 22 et = B2 ag? — 2
100 100 500
> et 2t (L L) (25 e
- 100 100 500 9\/§ 626
> —||lz||*,
100

where we have used the fact that € > 0 combined with the practical upper bound on ¢, (B.13).

Since Zg? > ggg, we conclude that R, C R URS.

o Theset R, = {z € R" : |2z > 1 ||2|| |Z]|; |#]] < 25 |||} is covered by the set R;. In-
deed for any = € Ry, we have,

1
(2,92 (@)7) + 10 Wl 2] = 62 + S0l 1 — 3 Jal* — &
901 149 - 4
< D ol lal ~ o el — 2lal — 5 I
901 [/ 57 149_4~_2 1, _4
< - _ _
< (100) 17— 222 )~ 20 — o )
e e

since € > 0.

e Let consider the set R, = {zeR: Lz|||z]| < |2Z| < , which is covered
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by R% and RY . For any = € R, such that ||z|| > 1998 ||Z|| we have

E
(@ E (V5 @))) — g 1712 ] + 7o 1l
1
=3Hx\l4—2(fﬂ5«°) = ll2l1* |21l = Ellll® = =5 1217 [ll1”
> 20 +500 22 2] = 2(aTz)? — 2(aTr)? — &lal

99 \? 501
> — - -

>@19962_2& +@ I
— \ 100 \ 1973 100 500 \f

> 0.

Therefore, we have R, N {x ER™: [|zf| > /1528 Hi‘H} C R3. To show the remaining
inclusion, we use an (a, 3)—type argument. Let assume that ||z|| = o ||Z||, |z'Z| = 8 =

— _ ~ —n2 .
1Z]| [|z]| = a8 ||Z]| and € = & ||Z||* with « € [%,,/}ggg} Bell Bande e [o, 9%]
We have

(@ = 2, E(Vf(@))) = 3|all" +32) (I2]]” — 2”) - 2(2)? — |l2]]* |2]]* + & (@) — [}
=1Z)|*a (3a® +38(1 — a?) — 202 — a+ (8 — a)).

Whence we have

S <<x CEE (V@) — [z le] Ida ||) — 308 + 38(1 - o) — 208°
B 250
—a+e(f—a)— 2;0\/1—1—042 — 2af3.

It is straightforward that in this domain 21%\/ 1+ a2 —-2a8< ﬁ 3969_129V7§84527 < 10000
Therefore we define the following function

41

p(a, B,e) = 30° +36(1 - 0®) = 208” — a +e(8 - o) = 1550

Then p has a unique minimizer arising at (O 998237, 19090, 9\1f) with a value 2%%380' We
deduce that

<fﬂ—f,E(Vf(m))>—% Iz)* || lds | > O

Therefore R, C RE URE.
e Wenow cover Ry = {z eR": 2|2 ||z]| < |22 < |||l 2], |lz|| > &5 |Z]|} with RS, R3
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and RY . For any z € Ry, with ||z|| > /191 HEH, we have

1000
(@, E (V@) — — ll2]? |2]2 —— ||z u 9 21t — 2% — 221 22 )2 — 2
’ 500 100 100 500
1501 )
> _
> 28 ot — 2 el 1 ~ e
299 1500 1 \y 19y uo
> 277 _ -
> 2o lall = (o + 575 ) el el

209 /1501 1 ) 1000, 4
> (700~ + )™ =
100 \ 500 ' 92/ 1031

hence we have Ry N {m ER™: [|zf| > /123 HQ‘CH} C RE. When 22 < |z < /103% we

have,

2 —112 2 = —12
Ida||* = 1Z]1* + 2] - 22" = [|Z[|* (1 + o® — 2a8) ,

1031 99 :
where we have o € [25, W} and g € [100, 1] Therefore, we consider

1_
p(0,8.0) =1 +0? 208~ L1

with A € ]9\#, g] The maximum value of p is taken at (a, B, \) = (%, %, g) thus
pla, B, A) < 3170570 We deduce that R4 N {1: ER™, 2 < ||zf| < 4/ 1886} C Rs3. When

% [zl ]l < % ||JJ||, we have

1 _
e (= B E @) — g 11 ol ) =50 + 3501 - %) — 20

1
—/1+a?—-2ap

250
where o € [%, \/%], RS [19090, 1} and e € [ , 9{} One check easily that

1
1 22 > 0.
550 —V1+a af >
Consequently, we have Ry N {z € R" : 1 ||z ||lz]| < 2 ||z|} RY. Finally Ry C RE U
R3URL.
By construction, we have R, U Ry U R, U Ry = R”, and therefore
"=R,URy,UR.URy

CRIURSUREY URs

/ 11
= urg U (R {z e ® 2ol < Joll} ) uRy

/ 11
~RiuRsu (R 0o R gl < ol f 0 RS ) URs

—a+e(f—a)—

p(a, B,e) = 30 + 368(1 — a2) —2083% — +e(f—a)—

=RIUREURIUR;.
O
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