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2 1 INTRODUCTION

embryonic development and cell fate determination. We present an

innovative method aimed at modeling these intricate processes by

leveraging scRNAseq data from various human developmental

stages. Our implemented method identifies pseudo-perturbations,

since actual perturbations are unavailable due to ethical and

technical constraints. By integrating these pseudo-perturbations

with prior knowledge gene interactions, our framework generates

stage-specific Boolean networks (BNs). We apply our method to

medium and late trophectoderm developmental stages and identify

20 pseudo-perturbations required to infer BNs. The resulting BN

families delineate distinct regulatory mechanisms, enabling the

differentiation between these developmental stages. We show that

our program outperforms existing pseudo-perturbation

identification tool. Our framework contributes to comprehending

human developmental processes and holds potential applicability to

diverse developmental stages and other research scenarios.

1 Introduction

Current assisted reproductive technologies, specifically in vitro fertilization

(IVF), struggles with a 25% success rate, necessitating innovative approaches.

Advanced technologies like transcriptomics and proteomics offer a deeper

understanding of embryo development. Deciphering this process aims to refine

and establish robust embryo quality assessment techniques. Our field’s future

lies in computational models for preimplantation development, starting with

transcription factor networks, invaluable for predicting perturbation impacts.

Understanding the sequence of events that regulate human preimplantation

development remains a central question. In our work (Meistermann et al.,
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2021), single-cell transcriptomic (scRNAseq) analysis delineated transcription

factor hierarchies. In cancer, Chevalier et al. (2020) inferred Boolean networks

from scRNAseq using pseudo-time distributions, focusing on cell fate dynamics

through averaged cell expressions at each stage. Dunn et al. (2019) utilized

knockout data on mouse stem cells, revealing insights via perturbation-based

approaches.

Our study, an extension of our previous research (Bolteau et al., 2023),

introduces a framework to derive Boolean networks (BNs) illustrating human

preimplantation development’s progression. Leveraging prior knowledge

network (PKN) and scRNAseq data mapping, our approach identifies

stage-specific pseudo-perturbations. This step is essential due to the limited

availability of perturbation data, prompting us to extract

pseudo-perturbations from scRNAseq data, leveraging its redundancy and

sparsity. These identified pseudo-perturbations play a crucial role in

constructing stage-specific Boolean Network (BN) models. In particular, our

approach models each state in human development with a pool of 20 cells

expressing different gene expression behavior.

2 Background

In this section we define the concepts needed to understand our method.

Prior Knowledge Network A Prior Knowledge Network (PKN) is a

signed and oriented graph, where nodes correspond to biological entities (e.g.,

genes, proteins), and edges represent causal or functional relationships

between these entities (Radulescu et al., 2006). Nodes in the PKN are

categorized into four types principally based on the graph’s topology: (i)

protein complexes, explicitly denoting protein complexes; (ii) inputs,
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representing nodes without predecessors; (iii) readouts, denoting nodes

without successors; and (iv) intermediates, encompassing other nodes.

Pseudo-perturbation A pseudo-perturbation represents a Boolean vector

that encodes the expression status of a set of k genes (of type input and

intermediate) within a particular cell. In the context of comparing cells across

various classes or developmental stages, a match refers to a pair of 2

pseudo-perturbations from different classes that exhibit an exact gene

expression vector, signifying similarity in genetic activity.

Experimental Design An experimental design is composed of different

pseudo-perturbation combinations in specific cells along with the associated

values for the readout genes, encompassing Boolean values for

pseudo-perturbations and normalized values for the readout genes. An

experimental design can be seen as multiple entry-output values describing

different states a biological system can take. Such information can be used to

infer a model which explains globally the system’s behavior.

ASP Introduction Answer Set Programming (ASP) (Baral, 2003) stands as

a declarative programming paradigm utilized to delineate knowledge bases using

rules. Atoms, composed of predicates with associated terms (integers, constants,

or variables), form the fundamental units of these programs. Atoms assert basic

knowledge in a straightforward manner. ASP’s rules consist of a head and a body

where the head, a set of atoms, denotes the goal, while the body delineates the

conditions for its deduction. Within the body, literals, representing propositions,

can be either positive or negative. Two specific rules exist in ASP: facts and

integrity constraints. Facts, presented as rules with only a head and no body,

serve to represent essential knowledge. Conversely, integrity constraints define

limitations on the admissible interpretations of a knowledge base, ensuring that
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only valid models are considered. We present in Supplementary Note 1, a logic

program example to better understand the explained concepts. ASP provides a

powerful way of specifying complex rules and constraints, proving instrumental

in solving diverse problems across domains like artificial intelligence, natural

language processing, and planning.

3 Materials and Methods

3.1 Data

In this study, we exploit scRNAseq data from stage-matched human embryos,

leveraging the dataset initially compiled by Petropoulos et al. (2016) and

subsequently refined in Meistermann et al. (2021). This dataset comprises the

expression profiles of 34, 054 genes across 1, 496 cells derived from 88

stage-matched human embryos. Our analysis is based on the count matrix.

We acknowledge and address the zero-inflation concern present in scRNAseq

datasets (Jiang et al., 2022), noting that our dataset contains 63% zero values,

a phenomenon we consider crucial in our methodology. Following up on the

annotation provided by Meistermann et al. (2021), we focus on investigating

the trophectoderm (TE) cell fate, specifically targeting the transition between

the medium TE and late TE developmental stages, encompassing 248 and 332

cells, respectively. Of note, the TE cell fate maturation is necessary to

promote embryo implantation, a key step in embryo viability and pregnancy

success.

For preprocessing, we filtered the scRNAseq count matrix to retain genes

present in the Prior Knowledge Network (see Section 3.3), binarizing input

and intermediate genes. Genes were marked “expressed” (1) if at least 2 reads

were observed, otherwise “absent” (0). Readout genes underwent “Min-Max”
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Table 1: Case studies description.

Dataset Source
Class name
(C1;C2)

Genes1 Cells2 #C1’s cells2 #C2’s cells2

A artificial C1;C2 10 10 5 5

B
subset of

single-cell data
ETE ; MTE 30 24 12 12

C
subset of

single-cell data
ETE ; MTE 100 50 25 25

D
subset of

single-cell data
ETE ; MTE 120 200 100 100

P
phosphoproteomics

data3
CR ; PR 79 191 136 55

SC single-cell data MTE ; LTE 111 680 348 332
ETE = early TE ; MTE = medium TE ; LTE = late TE ; CR = Complete Remission ; PR =

Primary Resistant (see (Chebouba et al., 2018)). 1 For dataset P, proteins are studied (not genes).

2 For dataset P, patients are studied (not cells). 3 From Chebouba et al. (2018).

normalization, scaling values to [0, 1]. We curated diverse dataset subsets for

testing various case studies, detailed in Table 1. Additionally, we included an

extra case study (P in Table 1) from an alternate dataset with

phosphoproteomics data sourced from Chebouba et al. (2018).

3.2 Method overview

Our method involves three steps aimed at constructing stage-specific Boolean

Networks (BNs), as depicted in Figure 1. Initially, we reconstruct a Prior

Knowledge Network (PKN) by querying a biological knowledge database to

establish gene-gene interactions. Subsequently, we establish an experimental

design tailored to each developmental stage, outlining the necessary entries

and outputs essential for BN inference. Finally, we integrate the PKN with the

previously created experimental designs to derive stage-specific BNs. Further

elaboration on these steps is provided in the following sections. Our

implemented framework, along with the complete set of data and results, can

be accessed at the following link: https://doi.org/10.5281/zenodo.10580801 .

https://doi.org/10.5281/zenodo.10580801
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5 1 0 1 0.7 0.8 0.5 B
4 1 1 0 0.6 0.1 0.2 B

Cell A C D F G H Class
3 1 0 1 0.8 0.3 0.9 A
2 1 1 0 0.2 0.5 0.3 A

Cell A C D F G H Class
5 1 0 1 0.7 0.8 0.5 B
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readout_diff(3,5) = |0.8-0.7| + |0.3-0.8| + |0.9-0.5| = 0.9
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VS.
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[1,0,1]

Cell 3
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[0,1,0]
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Same
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Inference

Figure 1: Developed framework comprising three main steps. A. The PKN
was reconstructed using the pyBRAvo tool that queries the Pathway Commons
database with an input gene list. B. The ASP program selects a set of
k genes (here, k = 3 with A,C and D) to maximize pseudo-perturbation
identification. In this example, 2 (optimal) pseudo-perturbations are identified:
(cell 1, cell 5) and (cell 2, cell 4). Redundancies in scRNAseq data are observed,
with cell 3 sharing the same Boolean vector as cell 1, representing two equivalent
solutions. The second sub-step identifies pseudo-perturbations maximizing
readout difference between the two classes, leading to the selection of pairs
(cell 3, cell 5) and (cell 2, cell 4), forming the experimental design. C. Boolean
networks (BNs) are inferred using the Caspo tool, combining the reconstructed
PKN and both experimental designs. Each BN is compatible with the
PKN topology and minimizes the gene expression error in the (entry-output)
experimental designs.
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3.3 PKN Reconstruction

In our framework, the reconstruction of the PKN relies on the utilization of

the pyBRAvo tool (Lefebvre et al., 2021). Starting from a list of genes,

pyBRAvo employs queries on the Pathways Commons resource to identify the

predecessors of the initial genes (Figure 1A). This iterative process continues

until a specified reconstruction depth is reached. Through pyBRAvo, we

generate a gene interaction graph, serving as the foundational knowledge base

for our methodology. Pathway Commons v.13 (Rodchenkov et al., 2019) is

leveraged, excluding miRTarBase, MSigDB, and CTD databases to eliminate

miRNA and toxicogenomics interactions.

Subsequently, this reconstructed PKN undergoes a reduction process to

align with the genes present in both the PKN and the expression matrix.

Furthermore, inputs directly linked to a single direct successor readout are

eliminated to focus solely on gene regulation pathways involving various gene

types (inputs, intermediates and readouts).

It is important to note that this method step is optional. Users possessing

a PKN tailored to their specific case study have the flexibility to utilize it and

execute the subsequent method steps. The approach aims to be as adaptable

as possible to accommodate different user-specific PKNs.

3.4 Experimental Design Construction

In the context of developmental stage differentiation, an experimental design

formulated for each class comprises the pseudo-perturbations and their

associated readout values, maximizing differences between the two

classes (Figure 1B). After obtaining pseudo-perturbations, thoroughly detailed

in Section 3.4.1, we encounter various cells exhibiting identical Boolean vectors

(Figure 1B.1), also named as redundant cells. To discern between redundant



3.4 Experimental Design Construction 9

cells we maximize the discrepancies in readout values for these cells across the

two studied developmental stages (see Section 3.4.2). These

pseudo-perturbations are amalgamated with readouts, fashioning specific

experimental designs for each developmental stage under study. Although

both experimental designs share the same pseudo-perturbation values

(identical entries), they possess different readout values (distinct outputs). In

the final step of our framework, we aim to understand the transition from

identical entries in both classes to distinct outputs.

3.4.1 Pseudo-perturbation Identification

This method takes a binary matrix, E, where eij denotes the presence or absence

of activity level of gene j in cell i. The objective is to generate a subset of genes

and cells that adhere to various constraints, ensuring an identical number of

pseudo-perturbations across different classes.

Problem Statement Let C represent the complete set of cells and G the

complete set of genes in our experimental dataset. Each cell is uniquely

associated with a class (A or B), hence C = A ⊎ B. Using the binary matrix

E, the relation IG is defined such that IG(ci) = {gj ∈ G | eij = 1} represents

the active genes for cell ci. The restriction of IG to a subset G′ is denoted by

IG
′
(ci) = IG(ci) ∩G′.

Problem formulation. Given the association matrix E between the set G of

genes and the set C of cells (where C comprises cells from two disjoint sets, A

and B), along with a parameter k limiting the number of selected genes, the aim

is to identify a subset G′ of genes and the largest subset C ′ (C ′ = A′ ⊎B′ ⊂ C,

where A′ ⊂ A and B′ ⊂ B) satisfying the following constraints:

1. The size of G′ is fixed to k (for largest instances, k << |G|).
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2. ∀c1, c2 ∈ A′ (resp. B′) with c1 ̸= c2, we ensure that IG
′
(c1) ̸= IG

′
(c2).

3. ∀c1 ∈ A′ (resp. B′), ∃c2 ∈ B′ (resp. A′), such that IG
′
(c1) = IG

′
(c2).

This process results in a binary vector bi for each ci ∈ C ′, where bij = 1

(resp. bij = 0) if gene gj ∈ IG
′
(ci) (resp. /∈ IG

′
(ci)). This vector, termed a

pseudo-perturbation, captures the gene expression profile within a subset of

cells. Note that due to the non-uniqueness of sets G′ and C ′, multiple

pseudo-perturbation vectors may exist.

Constraints Justification. The imposed constraints play a crucial role

within the framework, particularly in Boolean network inference and single-cell

data analysis. Constraint 1 reduces the search space, enhancing computational

efficiency, and simplifying subsequent Boolean network learning steps.

Constraint 2 mitigates redundancy in gene selection from cells within the

same class, essential due to zero values and redundancy in single-cell data.

Constraint 3 promotes similarity in gene expression between distinct classes,

facilitating meaningful comparative analysis during Boolean network inference.

Although cells from different classes exhibit evolutionary differences, selecting

genes with similar expression patterns allows for comparable conditions, aiding

accurate modeling of distinct regulatory mechanisms. Finally, a larger

selection of pseudo-perturbations enhances the Boolean network inference,

enabling exploration of various regulatory mechanisms.

In addition to this problem statement, we present in Supplementary Note 2

a line by line description of the ASP logic program.

3.4.2 Readout Difference Maximization

After obtaining pseudo-perturbations, we encounter various cells with identical

Boolean vectors. To discern between redundant cells, our objective is to

maximize the differences in readout values for these cells across the two
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studied developmental stages (Figure 1B.2). Further details on this method

are established in Supplementary Note 3. This process yields an association of

each optimal pseudo-perturbation to a vector of normalized readout

expressions, maximizing differences between the two classes.

3.5 Boolean Network Inference

Here, we outline the process of inferring and validating Boolean Networks

(BNs) using our implemented method (Figure 1C). A Boolean network is a

mathematical model employed to illustrate interactions among elements within

a biological system. In this model, each component is represented as a node,

and relationships between these components are defined by Boolean functions.

These functions articulate the activation or deactivation of each node (such as

genes or proteins) based on the states of the connected nodes (Kauffman,

1969).

We employed Caspo (Videla et al., 2017) to infer BNs for each studied

classes. The goal is to derive BNs that accommodate both biological

knowledge represented by gene interactions in the PKN and the observed gene

expression in the case study. Using logical rules and constraints, Caspo

computes BNs that best fit the data through optimizations (using the mean

squared error function, MSE), allowing an optional fixed tolerance. The

method outputs a set of BNs for each class, derived from the same input (prior

knowledge and pseudo-perturbations data) but with different outputs (readout

values). These BN families encapsulate knowledge and observations by

establishing logical connections between genes. Comparing these BN families

enables the identification of distinct behaviors between classes.

Additionally, we present a method that uses the MSE score for sorting cells

into one of the two studied classes. This approach evaluates the alignment with
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Boolean Network (BN) families, determining the most suitable class for gene

expression observations. The assessment includes the computation of the MSE

between the BN readout predictions and the actual readout measurements for

each cell’s gene expression. Subsequently, the cell is categorized into the class

with the lowest MSE. The overall accuracy, per-class accuracy, and Balanced

Accuracy (BAC) are then analyzed to provide a comprehensive evaluation of

the sorting process.

4 Results

4.1 Comparing Pseudo-perturbation Generation

Programs

Our pseudo-perturbations identification program, inspired from Chebouba

et al. (2018), proposes an additional constraint (see Section 3.4.1, Problem

Statement, constraint 2), specifically aiming to ensure the generation of

distinct pseudo-perturbations comprising k expressed genes within the same

class. While increasing computational time, it proves valuable in handling

redundant scRNAseq data.

Both programs were applied to datasets A − SC (see Table 2). For

comparison purposes, we post-processed the results from Chebouba et al.

(2018) by removing redundant solutions (values in parenthesis in Table 2). For

further insights into dataset specific features, please refer to Table 1.

Optimal solutions were attained by both programs for datasets A and B

(see Table 2). Suboptimal results are denoted with an asterisk (*) over the

fixed timeouts. Our program (O in Table 2) yielded suboptimal results for

datasets C − SC, while Chebouba et al.’s program (C in Table 2) exhibited

suboptimal outcomes for datasets D and P . Chebouba et al.’s version
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demonstrated shorter execution times than our version when no timeout was

imposed. Analysis of the number of distinct pseudo-perturbations generated

by each program reveals two different behaviors contingent on dataset nature

and complexity. Firstly, for single-cell datasets (A −D and SC), Chebouba et

al.’s program computes either an equal or a smaller count of

pseudo-perturbations when removing redundancies. For instance, for dataset

C, Chebouba et al.’s program derives an optimal solution comprising only 1

distinct pseudo-perturbation, while our program yields suboptimal results,

generating 6 and 11 distinct pseudo-perturbations for k = 3 or k = 10

respectively. This disparity is more pronounced in larger datasets like D (10

vs. 22) or SC (3 vs. 20). It indicates that Chebouba et al.’s program infers

numerous redundant solutions, lacking the ability to differentiate them

effectively, highlighting our program’s superiority in handling scRNAseq data.

Secondly, our version showcases superior outcomes for phosphoproteomics data

(23 vs. 25), affirming its adaptability across single-cell or averaged cell

population gene-expression datasets.

Table 2: Comparison of ASP programs on different datasets.

Dataset k
Execution time Distinct Pseudo-Perturbations

C O C O

A 3 0.008s 0.008s 3 (4) 3

B 3 0.048s 0.223s 1 (132) 4

C
3 1.420s 10 min* 1 (625) 6
10 1.424s 10 min* 1 (600) 11

D 10 10 min* 10 min* 10 (2,436) 22

P 10 50h* 50h* 23 (64) 25

SC 10 5h 2 min 65h* 3 (77,618) 20

C corresponds to the Chebouba et al.’s logic program, while O corresponds to our logic program.

For Chebouba et al.’s program, in parenthesis, the total number of pseudo-perturbations vectors

(redundancy comprising). * Execution time corresponds to the fixed timeout.
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4.2 Application on a Real Case Study

4.2.1 PKN Reconstruction

We used 438 transcription factor (TF) genes involved in human embryonic

development as input for pyBRAvo software (Lefebvre et al., 2021) to

reconstruct a PKN. These TF genes were identified through SCENIC (Aibar

et al., 2017) analysis of scRNAseq data (TF list in Supplementary Note 4).

The exploration depth parameter was fixed to 2, i.e. up to 2 levels upstream

of the initial TFs. Only gene transcription events were queried, yielding a

PKN of 327 nodes and 475 edges, with only 28 of the 438 initial TFs found in

the database. We then reduced the network to 191 nodes (84 input genes, 27

intermediate genes, 14 readout genes, and 66 complexes) and 285 edges

(Figure 2), limited to genes measured in scRNAseq data and complexes linked

to these genes.

Figure 2: Reconstructed Prior Knowledge Network.
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4.2.2 Experimental Design Reconstruction

Pseudo-perturbation Identification For pseudo-perturbations

identification we used k = 10. This choice was determined in a prior study

(Bolteau et al., 2023), which explored different k values and identified k = 10

as the most optimal. The program was executed on a computer cluster

equipped with 160 CPUs and 1.5 TB of RAM, requiring 65 hours to generate

20 pseudo-perturbations. It is crucial to emphasize that this outcome is

sub-optimal, i.e. a greater number of pseudo-perturbations could potentially

be identified. Additionally, the set of 20 pseudo-perturbations obtained is not

unique: more than 1 million of various sets of 10-genes could also lead to 20

pseudo-perturbations.

The 20 selected matching cells represent a significant portion of the overall

cell pool for both developmental stages for the 10 selected genes. Each stage

includes redundant cells, with 242 for medium TE and 276 for late TE,

collectively constituting, respectively, 75.2% (262/348) and 89.1% (296/332) of

the total cells.

Experimental Design Reconstructed From the selected cells by

pseudo-perturbations, we ran the readout difference maximization (see

Section 3.4.2) to select the most different cells between both developmental

stages, and combine these pseudo-perturbations with readout expression to

form the experimental design. In Figure 3, we visualize the 20

pseudo-perturbations and the associated expression for the readouts retrieved

in the inferred BNs (see Figure 4).
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Figure 3: Graphical representation of computed experimental designs. Each
row (left side) represents an optimal pseudo-perturbation on the 10 selected
input (green) and intermediate (red) genes. Binarized vectors are illustrated
using bars, where a black (resp. white) bar means the gene is active (resp.
inactive). On the right side, readout genes in blue, present in the inferred BNs
(cf. Figure 4), are shown. In each box, the curve represents the normalized
readout gene expression evolution between the medium TE (M, left) and late
TE (L, right) developmental stages.
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4.2.3 Boolean Network Inference

Families of BNs Using Caspo software (Videla et al., 2017), we infer

families of BNs for medium and late TE using the reconstructed PKN and

specific experimental designs. Caspo generates BNs adhering to PKN

topology, optimizing the Mean Square Error (MSE) between Boolean

predictions of readout nodes and experimental measurements. Our Caspo

parameters are set as: (i) length = 2 to restrict nodes receiving at most 2

“AND” logical functions, and (ii) fit = 0.001 to permit exploration beyond

the optimal BN up to a distance of 0.1% from the optimal MSE.

Figure 4 displays the learned BNs union for the two studied developmental

stages. The size is equal to 8 for medium TE and 15 for late TE, with

respective optimal MSEs of 0.1421 and 0.1924. The higher MSE for late TE

indicates a more intricate fitting between inferred BNs and experimental data,

resulting in less precise BNs compared to medium TE. While the medium TE

family contains 2 BNs, the late TE family comprises 4. Notably, these BN

families diverge in gene regulatory mechanisms. Late TE BNs display more

extensive connectivity with 3 inputs and 4 readouts, compared to 2 inputs and

1 readout in medium TE. Both share 4 genes, including 2 inputs (SMAD3 and

E2F1 ), 1 intermediate (EGR1 ), and 1 readout (PSAT1 ). Late BNs exhibit

supplementary readout genes, namely GSR, CEBPB, and CEBPD, indicating

that the readout measurements matched the late TE BNs prediction, given the

selected pseudo-perturbation Boolean vectors. However, medium TE BNs

could not predict the observed measurements with minimal error on these

three genes. This suggests higher complexity in late TE regulatory

mechanisms compared to medium TE.
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Figure 4: Families of inferred Boolean networks (BNs) for medium and late TE
developmental stages. Each network represents the union of (sub-)optimal BNs
learned from the reduced PKN and the experimental design. The width of the
arcs represents the frequency of occurrence of this arc in the BNs.

Single Pseudo-perturbation Analysis We employed the Mean Square

Error (MSE) metric to sort each 20 cells identified as pseudo-perturbations in

both medium and late TE stages, comparing the calculated gene expression

across the inferred Boolean Networks (BNs) with actual data (Figure 5).

Notably, the sorting accuracy for medium TE BNs stands for 70%

(Figure 5A), highlighting their reliability in individual pseudo-perturbation

predictions. In contrast, late TE stage outcomes reveal a lower accuracy of

15%, once again emphasizing the challenges in modeling the regulatory

mechanisms of late TE. Examining the proximity of MSE values for cells in

both medium and late TE, we observe that late TE cells are predominantly

sorted into the medium TE class. Additionally, we note that for poorly sorted

late TE cells, the MSE values obtained with late TE BNs are generally close

to those obtained with medium TE BNs (Figure 5B). These observations could

be explained by the fact that late TE BNs involve fitting 4 readouts, as

opposed to 1 readout for medium, aligning with the lower sorting outcomes for
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A.

B.

#Cells Accuracy Medium TE Accuracy Late TE Accuracy BAC

40 43 % (17/40) 70 % (14/20) 15 % (3/20) 43 %

Figure 5: Mean Squared Error (MSE) scores outcomes. A. Description of the
accuracy results obtain using our MSE score method. B. Medium TE vs. Late
TE MSE obtain for each 20 cells involved in pseudo-perturbations (values in
negative logarithmic scale).

late TE. Additionally, the higher MSE for late TE (see Section 4.2.3, Families

of BNs), indicates a lesser accuracy with experimental data.

In conclusion, this analysis, bridging BN network logical behavior to single

cell data, could be useful for selecting the best answers of selected genes

maximizing pseudo-perturbations. As mentioned before, numerous equivalent

answers exist for 10-genes (over 1 million of equivalent solutions – cf.

Section 4.2.2). Therefore, numerous sets of BN families could be proposed.

5 Discussion and Conclusion

Studying human embryonic development poses challenges, often requiring

system perturbations, which are infeasible here. To overcome this, we propose

an original framework utilizing human embryonic scRNAseq data to identify
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pseudo-perturbations and construct Boolean network families representing two

specific developmental stages.

In this study, our method identifies 20 pseudo-perturbations that show

gene expression entry-output behavior across cells in two stages. Our pipeline

computes Boolean networks families modeling medium and late trophectoderm

(TE) stages, unveiling higher complexity in late TE. Notably, our program

outperforms existing techniques like Chebouba et al. (2018) in

pseudo-perturbation identification. This pipeline infers Boolean networks to

model and compare developmental stages, presenting a novel methodology.

Compared to other methods proposing computational models from scRNAseq

data (Dunn et al., 2019; Chevalier et al., 2020), our method outputs logic

models when no perturbation data is available, and uses a pool of cell

behaviors to represent a single developmental stage. Extending this approach

to other developmental stages could deepen our understanding of regulatory

mechanisms in the human embryonic development. In addition, its

adaptability makes it versatile for diverse case studies. As part of our work, we

aim to enhance the metric for sorting single cells. While the Mean Square

Error (MSE) utilized in our study is a commonly used metric, it may yield

improved class predictions when integrated with additional types of

information, such as the significance of gene expression readouts. Another

aspect we are presently addressing involves refining the efficiency of our logic

program.
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A., Soumillon, M., Mikkelsen, T., Barrière, P., Chazaud, C., Chappell, J.,
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Supplementary Notes

Supplementary Note 1: Small example of an ASP program

We introduce a concise logic program example, demonstrating the concepts presented in the paper,

in selecting potential perturbations for medium TE and late TE developmental stages (see Listing 1).

1 cell(c1). cell(c2). cell(c3).

2 class(early_TE). class(medium_TE). class(late_TE).

3 be_part(c1,early_TE). be_part(c2,medium_TE). be_part(c3,late_TE).

4 gene(g1). gene(g2).

5 expr(c1,g1,0). expr(c1,g2,0).

6 expr(c2,g1,0). expr(c2,g2,1).

7 expr(c3,g1,1). expr(c3,g2,1).

8 pert(C,G,S,CL) :-expr(C,G,S), cell(C), gene(G), be_part(C,CL).

9 {sel_pert(C,G,S,CL) : pert(C,G,S,CL)}.

10 :-sel_pert(_,_,_,early_TE).

11 #show sel_pert/4.

Listing 1: Example of a logic program.

The logic program delineates knowledge through facts (lines 1-7). For instance, the predicate

expr(c1,g1,0) on line 4 signifies that in cell c1, the gene g1 exhibits an expression value of

0. Line 8 introduces a rule defining a predicate pert/4 (with an arity of 4, i.e. composed of

4 terms), modeling experimental data, where gene G demonstrates an expression value S in cell

C, associated with class CL. Line 9 selects a subset of predicates pert/4 using sel pert/4,

representing the chosen perturbations. This construct, known as choice rules, is central in ASP

modeling, generating potential combinations of candidate solutions. These solutions are typically

filtered using constraints. For instance, line 10 restricts the solution candidate sel pert/4 linked

with the class early TE. Finally, line 11 presents the answer to this program, focusing solely on the

sel pert/4 predicate. This answer is rendered as a set of assignments (answer sets) of constants

to the terms of the sel pert/4 predicate; each assignment validates all program rules.
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Supplementary Note 2: Implemented ASP program

In this note, we provide a step-by-step explanation of the ASP program devised to identify pseudo-

perturbations. Our program, based on the method proposed in Chebouba et al. (2018), differs

primarily in the rule governing the generation of distinct Boolean pseudo-perturbation vectors. Our

logic program is tailored specifically to handle scRNAseq data, which often exhibits redundancy

due to cells within the same developmental stage sharing identical gene expressions. Additionally,

scRNAseq data commonly presents a strong abundance of zero values.

In Listing 2, we present the ASP encoding.

1 {selgene(G):pert(C,G,S,CL)} = k.

2 selpert(C,G,S,CL) :-selgene(G), pert(C,G,S,CL).

3 equal(I,J,G) :-selpert(I,G,S1,C1), selpert(J,G,S2,C2), C1<C2, S1 = S2.

4 countequal(I,J,M) :-M={equal(I,J,_)}.

5 0{affinity(I,J)}1 :-countequal(I,J,k).

6 nbInputOnes(C, N) :-N={pert(C,G,1,_) : selinput(G)}, affinity(C,_).

7 :-affinity(C,_), nbInputOnes(C,N), N<1.

8 diff(I1,I2,G) :-selpert(I1,G,S1,C1), selpert(I2,G,S2,C2), C1==C2, S1!=S2, I1<I2.

9 countdiff(I1,I2,M) :-M={diff(I1,I2,_)}.

10 :-countdiff(I1,I2,0), affinity(I1,_), affinity(I2,_), I1<I2.

11 :-countdiff(I1,I2,0), affinity(_,I1), affinity(_,I2), I1<I2.

12 #maximize{1,I: affinity(I,_)}

Listing 2: ASP encoding of pseudo-perturbation generation.

The pert/4 predicate, an instance in our program referring to experimental data, emerges from

discretized scRNAseq data associated with input and intermediate genes. It delineates the expres-

sion of gene G at value S in cell C, linked to class CL. Starting from line 1, our logic program

initiates by selecting a set of k genes from all potential input and intermediate genes using the

selgene/1 predicate. This action generates
(
m
k

)
answer sets, where m denotes the total count

of input and intermediate genes. The subsequent rules aim to filter these candidate answer sets.

Line 2 introduces the selpert/4 predicate, summarizing experimental data for the selected genes.

Following this, line 3 employs the equal(I,J,G) predicate to identify pairs of cells I and J from

distinct classes (C1<C2), exhibiting the same measured value S for gene G (S1=S2). Moving for-
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ward to line 4, the countequal(I,J,M) predicate enumerates the count of genes M demonstrating

identical values across cells I and J . Recall that we are interested in finding k identical values

associations for k genes. Therefore, in line 5, we define the predicate affinity(I,J), which will be

generated 0 or 1 times when there are k similarities for cells I and J , aiming to identify potential

optimal pseudo-perturbations. Notably, the terms affinity/2, represented by variables I and J ,

pertain to cells in the first and second classes, respectively.

To handle data sparsity, lines 6-7 introduce rules. Line 6 defines nbInputOnes/2, calculating

the count of input genes having a value of 1 for a cell C selected by the affinity/2 predicate.

Then, line 7 prohibits the selection of an affinity(C, ) if the count of 1-valued input genes in cell

C is less than 1 (N<1). This ensures that each pseudo-perturbation has at least one active input

gene, disallowing vectors where all genes remain inactive (equal to 0).

To discern distinct pseudo-perturbations, additional rules (lines 8-11) are introduced. Line

8 defines the diff(I1,I2,G) predicate, selecting cells I1 and I2 from the same class but with

differing values for gene G. The subsequent countdiff/3 predicate on line 9 records the disparities

in expression values of the selected genes between cells I1 and I2. In line 10 (resp. line 11), the

constraint forbids predicates countdiff(I1,I2,0), where there is no difference in expression values

for the selected genes, for cells I1 and I2 selected to be affinities in line 5 for the first class (resp. for

the second class). Combined lines 5, 10, and 11 keep only one cell association when the same cell

is associated with other cells, such as retaining only affinity(c1,c2) and not affinity(c1,c3)

from possible associations.

Finally, line 12 aims to maximize associations specified by the affinity/2 predicate concerning

the first class, left term.

Supplementary Note 3: Readout difference maximization

Diverse cells have the same Boolean vectors as identified pseudo-perturbations. We search to maxi-

mize the difference in readout values for these redundant cells across the two studied developmental

stages.

Mathematical definition Given a set of pseudo-perturbation binary vectors, O, and the matrix

of preprocessed scRNAseq data with normalized readout values, the aim is to find sets of cells A′

and B′ associated by all pseudo-perturbation vectors in O that maximize the differences between

their readout vectors, rA
′
(for readouts of cells in A′) and rB

′
(for readouts of cells in B′).
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Algorithm For each vector b in the set of optimal pseudo-perturbations, relating cells c1 (in A′)

and c2 (in B′):

1. Identify a set of redundant cells for each class by finding cells in class A and B with identical

binarized vector b (sets RA
b and RB

b ). Both sets include cells c1 and c2 respectively.

2. Compare all pairs of cells in RA
b × RB

b , calculating the readout gene value differences while

retaining the maximum difference.

This process yields an association of each optimal pseudo-perturbation to a vector of normalized

readout expressions, maximizing differences between the two classes.

Supplementary Note 4: Transcription factors list

Below we list the transcription factors used as input of pyBRAvo tool for the PKN reconstruction

(see Section 4.2.1).

ACO1

AKR1A1

ANXA1

ANXA11

ARG2

ARID5B

ASH2L

ATF2

BACH2

BARHL2

BARX1

BARX2

BATF

BCL11A

BCL3

BHLHE40

CARF

CBFA2T2

CCDC25

CDX1

CDX2

CEBPA

CEBPB

CEBPD

CELF5

CERS2

CERS3

CERS6

CLOCK

CPEB1

CREB5

CREBL2

CTBP1

CTCFL

CTNNB1

CUX2

CYB5R1

DAB2

DBP

DDIT3

DDX4

DDX43

DLX1

DLX2

DLX3

DLX4

DLX5

DMRTB1

DMRTC2

DNMT1

DPRX

DUXA

E2F8

EBF1

EBF2

EBF3

ECSIT

EGR1

EGR2

EIF5A2

ELF3

ELK3

EMX1

EN1

ERG

ESRRG

ETFB

ETS2

ETV1

ETV4

ETV5

EXO5

EZR

FEZF2

FHL2

FIGLA

FLI1

FOSB

FOSL1

FOXA2

FOXD2

FOXN2

FOXO3

FOXP1

FOXQ1

GATA2

GATA3

GATA4

GBX1

GBX2

GCM1

GIT2

GOT1

GPD1

GRHL1

GRHL2

GRHL3

GRHPR

GTF2A1L

GTF3A

H2AFY

HAND1

HCFC2

HES1

HESX1

HEY1

HEY2

HHAT

HHEX

HIF1A

HIRIP3

HIST1H2BN

HIST2H2BE

HKR1

HLF

HNF1A

HNF4A

HOXA4

HOXA7

HOXA9

HOXB13

HOXB6

HOXC10

HOXD8

HTATIP2

HUNK

ING3

IRF3

IRF4

IRF6

IRF8

IRX2

IRX3

IRX4

IRX5

ISL2

JAZF1

JDP2

JRKL

KDM4A

KDM4D

KDM4E

KLF11

KLF12

KLF17

KLF18

KLF2

KLF3

KLF4

KLF6

KLF7

KLF9

KLRG1

LARP1

LEF1

LHX2

LHX5

LHX8

LRRFIP1

LSM6

LUZP2

MAF

MCTP2

MECOM

MIXL1

MLXIPL

MSI2

MSRA

MSRB3

MTHFD1

MYCL

MYLK

NANOG

NANOGP8

NCALD

NEUROG2

NFATC1

NFE2

NFIX

NFKB1

NFKB2

NFYA
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NKX2-5

NKX3-1

NKX3-2

NKX6-1

NKX6-2

NMI

NNT

NOBOX

NR1H4

NR2E1

NR2F2

NR3C1

NR3C2

NR4A3

NR5A2

NR6A1

NRF1

OLIG1

OSR1

OSR2

OTX1

OTX2

OVOL1

OVOL2

P4HB

PARP1

PAX9

PBX3

PIR

PITX2

PKM

PKNOX2

PLAG1

PLAGL1

POLD2

POU5F1B

PPARG

PPARGC1A

PRDM1

PRDM10

PRDM11

PRDM14

PRDM16

PRDX5

PRKAA1

PRKAA2

PSMC2

PSMD12

RAB14

RAB18

RARB

RAX2

RBBP9

RELB

RFX4

RFXANK

RLF

RORB

RUNX1

RUNX2

RUVBL1

RXRA

SALL2

SATB1

SETBP1

SHOX2

SIN3A

SMAD5

SMAD6

SNAI1

SNAI3

SND1

SOD1

SOX1

SOX11

SOX15

SOX17

SOX2

SOX30

SOX4

SOX5

SOX9

SP110

SP6

SPIC

SSX3

STAT3

STAT5A

SUCLG1

TAF7

TAGLN2

TBPL2

TBX2

TBX3

TBX5

TCF24

TCF7L1

TCF7L2

TEAD1

TEAD3

TFAP2A

TFAP2B

TFAP2D

TFCP2L1

TFEB

TGIF2LX

THAP1

THRB

TIGD2

TOPORS

TP63

TPI1

TPPP

TRIB2

TRIB3

TRIP10

TULP1

UBE2V1

UGP2

VENTX

YWHAZ

YY2

ZBTB11

ZBTB16

ZBTB49

ZBTB7B

ZCCHC14

ZEB1

ZFHX3

ZFP3

ZFP37

ZFP42

ZFP62

ZFP64

ZFP90

ZHX2

ZHX3

ZIC3

ZIK1

ZIM2

ZIM3

ZKSCAN4

ZKSCAN5

ZNF10

ZNF117

ZNF132

ZNF134

ZNF136

ZNF140

ZNF146

ZNF155

ZNF157

ZNF16

ZNF165

ZNF17

ZNF174

ZNF18

ZNF182

ZNF184

ZNF19

ZNF200

ZNF211

ZNF214

ZNF215

ZNF226

ZNF23

ZNF230

ZNF25

ZNF256

ZNF266

ZNF280A

ZNF284

ZNF304

ZNF329

ZNF331

ZNF341

ZNF343

ZNF350

ZNF354A

ZNF362

ZNF385A

ZNF394

ZNF408

ZNF416

ZNF438

ZNF439

ZNF440

ZNF479

ZNF490

ZNF506

ZNF528

ZNF530

ZNF534

ZNF541

ZNF549

ZNF555

ZNF557

ZNF559

ZNF561

ZNF569

ZNF574

ZNF578

ZNF584

ZNF586

ZNF595

ZNF596

ZNF597

ZNF599

ZNF606

ZNF610

ZNF616

ZNF630

ZNF654

ZNF668

ZNF669

ZNF674

ZNF675

ZNF677

ZNF679

ZNF684

ZNF689

ZNF69

ZNF697

ZNF701

ZNF702P

ZNF705A

ZNF705CP

ZNF705D

ZNF705G

ZNF706

ZNF708

ZNF714

ZNF716

ZNF727

ZNF735

ZNF736

ZNF766

ZNF79

ZNF814

ZNF829

ZNF830

ZNF831

ZNF844

ZNF845

ZNF878

ZNF880

ZNF891

ZNF92

ZRSR2

ZSCAN10

ZSCAN18

ZSCAN32

ZSCAN4

ZSCAN5A

ZSCAN5B

ZSCAN5C
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