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Abstract 38 

 39 

DNA barcoding has largely established itself as a mainstay for rapid molecular 40 

taxonomic identification in both academic and applied research. The use of 41 

DNA barcoding as a molecular identification method depends on a “DNA 42 

barcode gap” ⎯ the separation between the maximum within-species 43 

difference and the minimum between-species difference. Previous work 44 

indicates the presence of a gap hinges on sampling effort for focal taxa and 45 

their close relatives. Furthermore, both theory and empirical work indicate a 46 

gap may not occur for related pairs of biological species. Here, we present a 47 

novel evaluation approach in the form of an easily calculated set of 48 

nonparametric metrics to quantify the extent of proportional overlap in inter- 49 

and intraspecific distributions of pairwise differences among target species 50 

and their conspecifics. The metrics are based on a simple count of the number 51 

of overlapping records for a species falling within the bounds of maximum 52 

intraspecific distance and minimum interspecific distance. Our approach takes 53 

advantage of the asymmetric directionality inherent in pairwise genetic 54 

distance distributions, which has not been previously done in the DNA 55 

barcoding literature. We apply the metrics to the predatory diving beetle 56 

genus Agabus as a case study because this group poses significant 57 

identification challenges due to its morphological uniformity despite both 58 
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relative sampling ease and well-established taxonomy. Results herein show 59 

that target species and their nearest neighbour species were found to be 60 

tightly clustered, and therefore difficult to distinguish. Such findings 61 

demonstrate that DNA barcoding can fail to fully resolve species in certain 62 

cases. Moving forward, we suggest the implementation of the proposed 63 

metrics be integrated into a common framework to be reported in any study 64 

that uses DNA barcoding for identification. In so doing, the importance of the 65 

DNA barcode gap and its components on the success of DNA-based 66 

identification using DNA barcodes can be better appreciated. 67 

 68 

Introduction 69 

  70 

 The utility of DNA barcodes (1, 2) to provide species-level 71 

identifications to unknown specimens depends strongly on historical, 72 

geographical, and ecological processes shaping mitochondrial DNA (mtDNA) 73 

polymorphism (3, 4).  Current identification based on DNA sequences further 74 

depends on the comprehensiveness of genomic sequence libraries housed in 75 

databases such as the Barcode of Life Data Systems (BOLD) 76 

(http://www.barcodinglife.org; (5)) and GenBank 77 

(https://www.ncbi.nlm.nih.gov/genbank). In addition, the successful use of 78 

such data assumes sequencing, as well as species labelling, are error-free. 79 
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Despite access to over 12 million DNA barcodes across more than 340 80 

thousand multicellular species in BOLD as of February 2023, current 81 

specimen sampling efforts are likely not sufficient to enable accurate 82 

taxonomic assignment of many sequences, as a majority species are still 83 

missing, and oftentimes less than 10 individuals (typically comprising only 84 

singletons) have been sampled for a species (6).  85 

 Having a broad representation of within-species genetic diversity is 86 

necessary when it comes to elucidating genetic species boundaries and to 87 

accurately estimate the DNA barcoding gap ⎯ the difference between 88 

maximum intraspecific and minimum (nearest neighbour) interspecific 89 

sequence variation (7, 8). Empirical observation inferred from marker-90 

specific variation suggests intraspecific distances do not usually exceed those 91 

found among species, thereby indicating DNA sequences aptly capture the 92 

evolutionary genetic boundaries of species (1, 2).  The existence of the DNA 93 

barcode gap has been invoked as the primary explanation for why DNA 94 

barcoding works well in practice; however, it has been demonstrated to fail in 95 

(population genetic) theory (9, 10, 11). In fact, several studies have suggested 96 

that DNA barcoding gaps can be an artifacts of insufficient specimen sampling, 97 

particularly across biological space (see (12) for some taxon-specific 98 

examples). With greater spatial coverage, intraspecific distances increase as a 99 
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result of isolation-by-distance, whereas interspecific distances tend to shrink 100 

due to encountering more closely related species (13). While much work has 101 

been devoted to assessing patterns of intraspecific variation using DNA 102 

barcodes and highlighting the importance of specimen sampling for reliable 103 

DNA barcode gap estimation (12), the role of interspecific genetic diversity on 104 

the success of DNA-based taxon identification has attracted less attention. 105 

Early on in DNA barcoding, barcode gaps were calculated using the mean 106 

intraspecific and mean interspecific genetic distance (7). However, this 107 

scheme was prone to exaggerating the width of gaps, leading to poor species 108 

delimitation and resolution of taxon boundaries. False positives in the form of 109 

taxonomic oversplitting (where the minimum interspecific distance falls 110 

below the maximum intraspecific distance), and false negatives manifesting as 111 

excessive species lumping (where the nearest neighbour distance lies above 112 

the maximum intraspecific distance), were common (7, 12). Later arguments 113 

for the use of the maximum intraspecific distance and the minimum 114 

interspecific distance greatly reduced identification biases in threshold-based 115 

species delimitation, but did not eliminate them altogether (8). Further, 116 

problems arise from the reporting of the DNA barcode gap, particularly in 117 

taxon reference library publications, where it is often treated as a binary 118 

(Yes/No) response, rather than as a continuous random variable with 119 
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measurable statistical error reflecting the overall extent of intraspecific and 120 

interspecific distribution overlap. Robust sampling is therefore necessary to 121 

reliably detect DNA barcode gaps when they actually exist (12).  122 

 Several computational and statistical approaches, in both parametric 123 

(model-based) and nonparametric (data-driven) settings, have been proposed 124 

to address the proper use of DNA barcodes. Tools for specimen identification 125 

and species delimitation include both frequentist likelihood and Bayesian 126 

posterior estimation models fitted via Markov Chain Monte Carlo (MCMC), for 127 

instance (14, 15). Taxon delineation methods like the Generalized Mixed Yule 128 

Coalescent (GMYC) (16), Automatic Barcode Gap Discovery (ABGD) (17), 129 

Poisson Tree Processes (PTP) (18), the Barcode Index Number (BIN) system 130 

(19), and Assemble Species by Automatic Partitioning (ASAP) (20) have seen 131 

extensive use as stand-alone tools for species delineation tasks (e.g., the splits 132 

(Species LImits by Threshold Statistics) R package (21), as well as various 133 

webservers), despite numerous computational, statistical, and 134 

interpretational challenges (12). Often, the plethora of available methods for 135 

specimen identification and species delimitation tasks produces conflicting 136 

results when applied across the same dataset, making the selection of a single 137 

method daunting for end users. 138 
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 Generally, specimen identification using DNA barcodes is routine 139 

whenever species boundaries delimited using standardized loci such as 140 

cytochrome c oxidase subunit I (COI) are concordant with those inferred from 141 

the examination of morphological characters. Despite DNA barcoding’s strong 142 

presence and widespread use over the past two decades, what appears to still 143 

be missing is an automatic multi-use tool to assess genomic markers for 144 

downstream specimen identification. While consensus largely exists regarding 145 

marker choice for multicellular eukaryotic taxa like animals, plants, and fungi, 146 

the same cannot be said for unicellular and prokaryotic organisms such as 147 

protists and cyanobacteria, where a multimarker approach is likely required 148 

for accurate DNA barcode gap assessment (e.g., (22, 23)). This makes the 149 

development of such a marker evaluation scheme imperative. 150 

 In this paper, we propose statistical metrics to evaluate the DNA 151 

barcode gap based on coalescent theory (24), whose deep role in DNA-based 152 

species delimitation was previously noted by Hubert and Hanner (25) and 153 

applied using the multispecies coalescent (MSC) (26, 27).  The application of 154 

the MSC in a multilocus context to help resolve instances of mixed haplotype 155 

clusters arising from non-monophyly was also previously advocated for by 156 

Collins and Cruickshank (28). They argued that multilocus MSC approaches 157 

provide stronger biological support for speciation events between sister taxon 158 
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pairs compared to simpler distance-based heuristics. Here, easily computed 159 

nonparametric statistics are proposed to measure the separation between 160 

intraspecific and interspecific sequence variation between pairs of species. 161 

They are relatively straightforward to implement and evaluate.  162 

 163 

DNA Barcode Gap Metrics 164 

 Define the proposed DNA barcode gap metrics as follows: 165 

𝑝𝑥 =
# {𝑑𝑖𝑗≥min 𝑑𝑋𝑌}

# {𝑑𝑖𝑗}
  (1),  166 

𝑞𝑥 =
# {𝑑𝑋𝑌≤max 𝑑𝑖𝑗}

# {𝑑𝑋𝑌}
 (2).  167 

where dij are intraspecific differences, dXY are interspecific differences and # 168 

corresponds to the “Number of”. Note in traditional estimation of the DNA 169 

barcode gap, the distribution of interspecific distances excludes the target 170 

species. In contrast, the present approach deviates from this by including all 171 

pairwise interspecific distances across all species pairs. The justification for 172 

employing this scheme is that it more accurately accounts for all species’ and 173 

coalescent histories in the available sample of DNA sequences. Note, px and qx 174 

are calculated for each species (x), such that #{dij } is the number of pairwise 175 

differences for a particular species and max dij is for a given species. See Table 176 

1 for a complete set of definitions.  177 

[Fig. 1 near here] 178 
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[Fig. 2 near here] 179 

[Table 1 near here] 180 

Equations (1) and (2) above express the degree of proportional overlap of 181 

intraspecific and interspecific genetic distance distributions. The metrics can 182 

be applied to either differentiate species at the genus level, or resolve 183 

separation of target taxa and their nearest neighbours (i.e., sister species) 184 

within a genus of interest. For example, XY would cover either an entire genus, 185 

with each species being well sampled, or the nearest neighbour species. The 186 

quantity px measures the overlap of intraspecific differences with interspecific 187 

ones, whereas qx measures the overlap of interspecific differences with 188 

intraspecific ones. To distinguish metrics for nearest neighbours, we add a 189 

prime symbol (‘) to px and qx. The proposed metrics outlined here stand in 190 

sharp contrast to previous ones which only examine “average” effects at the 191 

“community” level. While we here apply the metrics at the species level, they 192 

are easily extended to the level of Operational Taxonomic Units (OTUs) and 193 

other similar species proxies. Figures 1 and 2 motivate the statistics. In 194 

Figure 1, the quantity tAB corresponds to the time species A and B formed. tXY, 195 

min is the (unobserved) minimum divergence time for two mitochondrial genes 196 

from different species within the genus. tij, max is the (unobserved) maximum 197 

divergence time for two mitochondrial genes from individuals of the same 198 
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species across the entire genus. The Most Recent Common Ancestor (MRCA) of 199 

the sample is noted, but in principle, the maximum (unobserved) divergence 200 

time between species A and B (tAB, max) may be further back in time. Figure 2 201 

relates times in Figure 1 to the proposed statistics, and the distributions of 202 

intraspecific and interspecific distances.  203 

 Quantities px and qx (as well as px‘ and qx‘) are bounded between zero 204 

and one. Values near or equal to zero suggest evidence of species’ DNA 205 

barcode gaps within the genus under consideration for a given sample and 206 

species identifications. Conversely, values near or equal to one indicate little 207 

to no evidence of species’ DNA barcode gaps, and therefore lack of support for 208 

specimen assignment to species. Distances may be measured using, for 209 

example, p-distance, Jukes-Cantor (JC69) (29) or Kimura-Two-Parameter 210 

(K2P) models (30). More specifically, px and qx are calculated through 211 

counting the number of specimen record distances lying within the bounds for 212 

intraspecific and interspecific comparisons and then dividing this sum by the 213 

total number of considered distances, respectively. It should be noted that px 214 

and qx, as well as px‘ and qx‘, are calculated herein using a hybrid approach 215 

based on both the mean and the smallest intraspecific distance (see next 216 

section). While the use of the minimum is more common than the mean in the 217 

DNA barcoding literature, it is susceptible to specimen assignment errors in 218 
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BOLD and GenBank. Nevertheless, while the minimum interspecific distance 219 

can more easily expose cases of DNA barcode sharing, in well sampled taxa 220 

identified using highly diagnosable gene markers, phenomena such as 221 

introgressive hybridization still do occasionally occur. 222 

 A logical next step is testing for statistical significance and assessing 223 

deviations from expectations for a particular hypothesis. The proposed 224 

metrics are associated with considerable uncertainty given low sample sizes 225 

for most taxa within DNA barcode libraries. Thus, calculation of standard 226 

errors (SEs), which can be estimated through nonparametric bootstrapping 227 

(31) for instance, provided sample sizes are sufficiently large, is necessary. In 228 

cases where sample sizes are small however, no amount of bootstrapping will 229 

help ameliorate uncertainty, and if applied naively, give a false assessment of 230 

certainty (12), especially when the metrics are found to be equal to zero. 231 

Bootstrapping distances will not be informative in such cases. A more robust 232 

bootstrapping approach in the context of estimating the true degree of 233 

distribution overlap entails resampling alignment sites directly, like is done in 234 

phylogenetics, as opposed to distances themselves. Because a distance is 235 

already a summary over a set of sites, resampling nucleotide positions has the 236 

advantage of retaining more information given DNA barcode sequences are 237 

short in length. Thus, bootstrapping at the level of sites may be more 238 
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informative because, in principle, sites leading to no overlap may not be 239 

included and an overlap may arise. In fact, because genetic distances used in 240 

calculating the proposed metrics are not statistically independent and 241 

identically distributed (IID) (12), estimator SEs will depend directly on the 242 

number of sampled species within the focal genus (K), as well as indirectly on 243 

the number of sampled specimens per species (N). Therefore, plots of the 244 

proposed metrics versus their estimated SEs could be informative. In this 245 

regard, considering two species, one well sampled, and the other poorly 246 

sampled, the lower values of the proposed metrics will likely produce larger 247 

SEs for the well-sampled species when its sample size is downsized to that of 248 

the poorly sampled species. Appropriate (1 – )100% confidence intervals for 249 

the “true” DNA barcode gap metrics are also easily constructed, where  is the 250 

desired significance level cutoff (e.g.,  = 0.05 for 95% confidence).  251 

 252 

Case Study: Agabus Diving Beetles (Coleoptera: Dytiscidae) 253 

 We use the predaceous diving beetle genus Agabus (Coleoptera: 254 

Dytiscidae), as a test case, which was previously examined by Bergsten et al. 255 

(13) in the context of assessing the scale of geographic sampling on DNA 256 

barcoding. Agabus consists of 199 named Linnaean species according to the 257 

Global Biodiversity Information Facility (GBIF). DNA sequences for COI-5P, 258 
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COI-3P, and CYTB were automatically downloaded from GenBank and BOLD, 259 

aligned to reference sequences for Agabus bipustulatus, and cleaned on 260 

November 1, 2022 with the R package MACER (Molecular Acquisition, 261 

Cleaning and Evaluation in R) using default parameters (32). Data processing 262 

included removing sequences with ambiguous and/or missing nucleotide data 263 

(which was handled using pairwise deletion), omitting sequences containing 264 

sequencing artifacts such as stop codons, and excluding genus- and species 265 

level outliers (through use of the 1.5  IQR (interquartile range) rule to 266 

discard taxon records having excessively divergent distance values). Aside 267 

from being well-represented within BOLD and GenBank, gene markers 268 

investigated were specifically selected due to their high representativeness in 269 

Agabus, widespread use in the DNA barcoding literature, as well as centrality 270 

in studies of phylogenetics and molecular evolution. All statistics were 271 

computed in R (33) using p-distances and integrated within MACER. 272 

Nonparametric bootstrap 95% percentile confidence intervals for the 273 

population means of px, qx, px’, and qx’ across all species for each marker were 274 

calculated with 10000 replications where possible using the boot R package 275 

(34, 35). In computing px’, and qx’, it was not uncommon for focal taxa to be 276 

equally distant to multiple nearest neighbours based on the minimum 277 

interspecific distance. In such cases, ties were broken by employing the 278 
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species having the smallest mean interspecific distance among all nearest 279 

neighbours for a given target species.  Scatterplots displaying log10-280 

transformed probabilities for all examined species were generated using the 281 

ggplot2 R package (36). This transformation was selected to aid overall 282 

visualization of the difference between px and qx versus px' and qx’ by reducing 283 

any skewness inherent in the data. In cases where corresponding (px, qx) and 284 

(px', qx’) pairs were equal to zero on the untransformed scale, resulting in 285 

infinite values on the log10 scale, observations were replaced by a large 286 

negative number (here, -5) prior to plotting. Following this, the number of 287 

species displaying zero values was then indicated. 288 

 289 

Statistical Interpretation, Notes and Caveats  290 

 Calculated values of the proposed statistics and other important 291 

quantities can be found in Table 2.  292 

 A defining characteristic of metrics (1) and (2) is their asymmetric 293 

directionality with respect to intraspecific and interspecific distribution 294 

overlap (as well as those for target species and their closely aligned relatives). 295 

This is akin to measuring the Kullback-Leibler (KL) divergence (37) between 296 

two probability distributions P and Q: the distance between P and Q is not 297 

necessarily equal to the distance between Q and P. When no DNA barcode gap 298 
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is observed for a species, the extent of overlap will be different depending on 299 

whether one is looking at intraspecific or interspecific distances. Note, px and 300 

qx are informative in comparison to px’ and qx’ because computed probabilities 301 

reveal the extent to which the distribution of nearest neighbours differs from 302 

the genus as a whole. 303 

 The newly described statistics can be employed in several ways. Firstly, 304 

the proposed quantities can be utilized to assess gene marker efficacy for 305 

specimen identification: markers attaining lower values of the proposed 306 

metrics are preferable as DNA barcoding loci to those displaying higher 307 

values, provided selected markers reflect relevant species’ histories. Such 308 

behaviour would occur in the case where gene markers possess low rates of 309 

substitution and display no polymorphism within species; however, it will not 310 

solve the problem of incomplete lineage sorting or introgression. Secondly, 311 

through coalescent simulations, the defined metrics can be used to assess 312 

whether obtained values are consistent with a population-level process 313 

having a particular combination of Ne values, mutation rate (µ), dispersal rates 314 

(m), and divergence times () as seen in Figures 1, 2, and Table 1, and in a 315 

similar vein to Yang and Rannala (27). This agrees well with the universal 316 

observation that molecular identifications are significantly hampered when 317 

both intraspecific and interspecific distances are below a predefined arbitrary 318 
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threshold (e.g., the 2% rule (1, 2) or the 10 rule (38)), which may occur 319 

given variable rates of molecular evolution in both taxa and gene markers. 320 

However, cautious interpretation should be exercised as these patterns are 321 

unlikely to hold strongly in practice for highly speciose groups showing recent 322 

adaptive diversification at large spatial scales. In fact, evolutionary processes 323 

such as random genetic drift and purifying selection occurring within genes 324 

commonly employed in studies of speciation effectively cancel out traces of 325 

intraspecific variation over short timeframes.  However, such a pattern is less 326 

likely to be a problem for neutral mitochondrial loci, but exceptions have been 327 

described (e.g., (39)).    328 

 In comparing results for Agabus across sequenced markers for 329 

examined taxa, several findings are noteworthy.  330 

[Table 2 near here] 331 

Overall, results point to COI-5P being the most suitable gene marker for 332 

species delimitation using DNA barcodes in this group, followed by COI-3P. 333 

CYTB was found to perform poorly as a DNA barcode for diving beetles, 334 

whereas species coverage, albeit still poor, was 21.6% (43/199) and 18.1% 335 

(36/199) for COI-5P and COI-3P, respectively. Two equally important factors 336 

complicate accurate estimation of DNA barcode gaps, and therefore optimal 337 

selection of genomic markers for unambiguous specimen identification: the 338 
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number of sampled specimens per species in a genus, and the number of 339 

species in the genus. While the COI-5P dataset comprised more species, that 340 

for COI-3P contained a larger number of specimens, suggesting these two 341 

crucial elements are difficult to balance in tandem. This can be seen through 342 

examining the 95% bootstrap percentile intervals for 𝑝̅𝑥, 𝑞̅𝑥, 𝑝̅𝑥′, and 𝑞̅𝑥′, 343 

which are all quite wide in most cases, meaning there is considerable 344 

uncertainty as to their true population means, given poor sampling of taxon 345 

genetic diversity. Results overall point to considerable overlap between target 346 

species of interest and all other taxa within a given genus. For example, 347 

computed mean probabilities for all loci in the qx, px’, and qx’ directions 348 

differed by an order of magnitude (Table 2). This finding suggests that the 349 

proposed metrics have sufficient discriminatory power to detect DNA barcode 350 

gaps. In comparing intraspecific and interspecific differences, values of px 351 

were found to all be equal to one (COI-5P; 43 species; COI-3P: 36 species; 352 

CYTB: two species), indicating complete overlap of the intraspecific 353 

distributions with interspecific distributions, and hence no evidence of DNA 354 

barcode gaps across all three assessed genes. A probability of one will always 355 

occur whenever a minimum interspecific distance of zero is found. In contrast, 356 

much less, but still significant, overlap was noted in the qx direction, ranging 357 

from 5.191  10-5 (7 species: A. bifarius, A. biguttatus, A. brunneus,  358 
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A. conspersus, A. discolor, A. pallens, and A. setulosus) to 0.1759 (A. thomsoni) 359 

for COI-5P, 0.0030 (4 species: A. alexandrae, A. binotatus, A. clypealis, and A. 360 

faldermanni) to 0.3175 (A. ambiguus) for COI-3P, and 0.0100 (A. nevadensis) to 361 

1 (A. bipustulatus) for CYTB, leading to similar conclusions regarding the 362 

presence (or lack thereof) of DNA barcode gaps; however, this depended 363 

strongly on the locus being considered (Table 2; Figure 3). In comparing 364 

target taxa to their closest conspecifics for all assessed loci, values of px' for 365 

COI-5P ranged from zero (21 species: A. ajax, A. anthracinus, A. audeni,  366 

A. bicolor, A. bifarius, A. biguttatus, A. brunneus, A. colymbus,  A. conspersus,  367 

A. crassipes, A. didymus, A. discolor, A. erichsoni, A. infuscatus, A. labiatus,  368 

A. moestus, A, nebulosus, A. pallens, A. sturmii, A. uliginosus and A. undulatus) to 369 

one (eight species: A. clavicornis, A. clypealis, A. congener, A. inscriptus,  370 

A. lapponicus, A. serricornis, A. setulosus, and A. thomsoni), whereas those for 371 

qx' ranged from zero (21 species, same as above) to 0.3922 (A. thomsoni). 372 

Similarly, values of px' for COI-3P ranged from zero (20 species: A. affinis,  373 

A. alexandrae, A. amoenus, A. aubei, A. bipustulatus, A. cephalotes, A. clypealis,  374 

A. didymus, A. disintegrates, A. faldermanni, A. fulvaster, A. lapponicus,  375 

A. melanarius, A. pseudoclypealis, A. serricornis, A. sturmii, A. tristis,  376 

A. uliginosus, A. undulatus, and A. unguicularis) to one (10 species: A. binotatus, 377 

A. brunneus, A. congener, A. glacialis, A. guttatus, A. heydeni, A. labiatus,  378 
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A. ramblae, A. rufulus, and A. zimmermanni) and those for qx' spanned zero (20 379 

species, same as above) to 0.2230 (A. ambiguus). In the case of CYTB, all 380 

values of px' and qx' were identical to those of px and qx since only two species 381 

were sequenced. Based on these findings, 21/43 (48.8%) species, 20/36 382 

(55.5%) species, and 0/2 (0%) show evidence of a DNA barcode gap for COI-383 

5P, COI-3P, and CYTB, respectively. It is interesting to note that while 384 

calculated means of qx, px' and qx' point to COI-5P being superior to all other 385 

examined genetic loci in terms of identification performance, since they attain 386 

the smallest values (as would be expected in animal DNA barcoding studies), 387 

the above results point to COI-3P instead. This reinforces the tradeoff between 388 

balancing the number of specimens sampled for a given species, and the 389 

number of species included within a target genus, as well as the fact that DNA 390 

barcoding has been one-sided. Results for px‘ and qx‘ compared to px and qx 391 

make intuitive sense since the genus-level distribution of pairwise differences 392 

encompasses a mixed distribution comprising closely- and more distantly-393 

related species. Findings outline here suggest the above species may warrant 394 

further DNA barcode scrutiny, due in part to Agabus’ difficult morphology and 395 

widespread Holarctic range hampering successful classification in certain 396 

cases (13). For instance, a large degree of overlap between intraspecific and 397 

interspecific distributions (as well as those for target species and their closest 398 
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neigbours) could be evidence for a recent evolutionary origin, species 399 

hybridization, or mitochondrial introgression. Thus, DNA barcoding will fail to 400 

discriminate species displaying such patterns.   401 

 A potentially useful tool to visualize values of p’ and q’ computed for all 402 

species’ neighbours across all assessed genetic markers is the heatmap, where 403 

colour intensity is directly proportional to the magnitude of calculated 404 

probabilities. In this way, generated heatmaps can be employed as “look-up 405 

tables” to better gauge intraspecific and interspecific distribution overlap for 406 

specific pairs of species of interest (and not just the closest neighbour) to a 407 

given study. Preliminary investigation has shown this type of visualization to 408 

be revealing, particularly when species are not well separated based on plots 409 

like Figure 3; thus, they will be included in future work. 410 

 It seems only one similar methodology for DNA barcode marker 411 

selection has been proposed before: the probability of correct identification 412 

(PCI) (40, 41). However, this statistic has not gained wide traction in the DNA 413 

barcoding community, appearing to be employed only for Fungi (42), and is 414 

further based purely on statistical, and not coalescent, theory (12). The PCI 415 

employs jackknife resampling of a binomially distributed random variable to 416 

obtain estimates of standard error and confidence intervals of specimen 417 

identification success with and without the influence of PCR failure (12, 41). 418 
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An approach that has seen a much larger body of research as a species 419 

delimitation tool for both sexually- and asexually-reproducing organisms is 420 

the so-called K/  ratio (43, 44, 45, 46, 47, 48, 49). It measures average 421 

pairwise sequence differences between clade pairs (K) versus said differences 422 

found within a clade (). If K/ ≥ 4 (the so-called “4 rule”), lineages belong to 423 

distinct species with at least 95% probability based on Rosenberg’s index of 424 

reciprocal monophyly (50). Unlike the PCI, it appears K/ has not seen 425 

adoption within the DNA barcoding community-at-large, despite showing 426 

promise for DNA barcode gap detection (12, 47). It is stressed that the 427 

approach here is simpler than the abovementioned ones and also overcomes 428 

the need for order statistics in the case of Phillips et al. (12), as our metrics 429 

are easily summarized as simple arithmetic means with well-defined sampling 430 

distributions in the limit as sample sizes increase. However, indices discussed 431 

here are not the only ones possible, and others should be explored. Problems 432 

may arise when multiple curve intersection points or when missing/zero 433 

genetic distance values are present. Hence, more sophisticated techniques 434 

such as data interpolation, kernel smoothing, local regression, numerical 435 

integration, or data transformation may be required. Statistical frameworks 436 

like mixture models may also be worth exploring. While our method 437 

demonstrates that DNA barcoding has been a one-sided argument, it must be 438 
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stressed that obtained estimates likely do not mirror ground truth, since 439 

calculated probabilities are based on small taxon sample sizes, making 440 

pairwise distance distributions difficult to estimate in practice. A recent 441 

article by De Sanctis et al. (51) presents a coalescent theory simulation 442 

framework to examine accuracy of taxonomic binning in query sequences to 443 

references found within curated genomic databases. This approach may 444 

additionally prove informative in introducing greater theoretical rigor into 445 

DNA barcoding for molecular species identification purposes.  446 

 447 

Conclusion  448 

 449 

 Here, we characterize the DNA barcode gap using the multispecies 450 

coalescent through proposing a suite of easily computed and interpreted 451 

nonparametric estimators inspired by population genetics theory along with 452 

observed trends in taxon DNA sequence diversity. Application to the beetle 453 

genus Agabus demonstrates the promise of the proposed statistical metrics 454 

for DNA barcode locus selection. The present approach, while having a strong 455 

basis in coalescent theory, is ideally suited to addressing applied research 456 

questions pertaining to DNA-based specimen identification, such as those 457 

encountered in studies of seafood fraud and invasive pest management using 458 

techniques like environmental DNA (eDNA)-based targeted species detection 459 

and metabarcoding, in addition to characterizing interspecific sequence 460 
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diversity. While our metrics are simple, incorporating other coalescent 461 

approaches is worthwhile, as is research integrating sample size estimation 462 

with tools like HACSim (Haplotype Accumulation Curve Simulator) (52). 463 

These are left for future studies.  464 
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 543 
 544 

Figure Captions 545 

 546 

Figure 1. Multispecies coalescent tree depicting a coalescence history for two 547 

species/OTUs and four sampled individuals of a given genus backwards in 548 

time to the Most Recent Common Ancestor (MRCA). A case of incomplete 549 

lineage sorting is depicted, where species/OTU A is paraphyletic to 550 

species/OTU B.  Indicated divergence times are also shown. 551 

 552 

Figure 2. Graphical depiction (modified from (7)) of the DNA barcode gap 553 

metrics, for a single hypothetical species/OTU x with genetic distances .  Note 554 

that distribution overlap (orange area) is implicitly accounted for in the 555 

calculation of px and qx. Similar visualizations can be generated for both px’, and 556 

qx’.  557 

 558 

Figure 3. Plots of px and qx for all assessed Agabus species on the log10(x) scale 559 

across three mitochondrial loci calculated using p-distance. Top: Intraspecific 560 

vs. genus-level comparisons. Bottom: Target species vs. nearest neighbour 561 

comparisons.  562 

 563 
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Tables 564 

Parameter Definition Range 
K Number of identified species/OTUs 

within a genus of interest 
(0, ) 

tXY, min Minimum divergence time within 
the genus or set of sister species 

(0, ) 

tij, max Maximum divergence time within 
the genus or set of sister species 

(0, ) 

tAB Divergence time between 
species/OTUs A and B within the 
genus 

(0, ) 

x Pairwise genetic distances for all 
sampled specimens for species x 
within the genus or set of sister 
species 

[0, 1] 

f(x) Distribution of all pairwise genetic 
distances for all specimens of 
species x within the genus or set of 
sister species 

[0, 1] 

f(dij, x) Distribution of intraspecific genetic 
distances for species x within the 
genus or set of sister species 

[0, 1] 

f(dXY) Distribution of interspecific genetic 
distances for the entire genus or set 
of sister species 

[0, 1] 

px Proportional overlap of f(dij, x) with 
f(dXY)  

[0, 1] 

qx Proportional overlap of f(dXY) with 
f(dij, x) 

[0, 1] 

px’ Proportional overlap of f(dij, x’) with 
f(dXY) for nearest neighbour species 
x’ within the genus 

[0, 1] 

qx’ Proportional overlap of f(dXY) with 
f(dij, x’) for nearest neighbour species 
x’ within the genus 

[0, 1] 
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 566 

 567 

 568 

 569 

Table Captions 570 

 571 

Table 1. Coalescent DNA barcode gap model parameters, definitions and 572 

ranges. Ranges are indicated using interval notation, where parentheses and 573 

brackets signify open and closed intervals respectively. 574 

 575 

Table 2. Calculated DNA barcoding gap statistics using p-distance for 576 

several sequenced mitochondrial loci in Agabus considering only species with 577 

at least two specimens. L is the alignment length in basepairs. N is the number 578 

of sequences used to compute the pairwise genetic distance matrix. H is the 579 

number of unique haplotypes. 580 

 581 
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