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Abstract

We present a modification to Self-Consistent Charge Density Functional based Tight

Binding (SCC-DFTB), which allows computation based on approximate atomic charges.

We obtain these charges by means of a machine learning (ML) process, which combines

a Coulomb model with a neural network. This allows us to avoid the Self-Consistent

Charge (SCC) cycles in SCC-DFTB calculation, while keeping its accuracy. The main

input of the model are the atomic positions characterized by a set of Atom-Centred

Symmetry Functions (ACSF). The charge inference from our ML algorithm is as close

as 10−2 unit of charge from the exact SCC solution. Our ML-DFTB approach provides

a good approximation of the density matrix and of the energy and forces with only one

single diagonalization. This is a significant computational saving with respect to the

complete SCC algorithm, which allows us to investigate bigger ensemble of atoms. We

show the quality of our approach in the case of charged Silicon Carbide (SiC) clusters.

The ML-DFTB Potential Energy Surface (PES) mimics rather well the SCC-DFTB

PES despite its simplicity. This allows us to obtain the same geometric structure

1



ordering with respect to energy for small clusters. The dissociation barriers for ion

emission are well reproduced, which opens the way to investigate ion field emission and

charged cluster stability. The ML-DFTB approach is obviously not limited to charged

clusters nor to SiC materials. It opens a new route to investigate larger clusters than

investigated by standard SCC-DFTB, as well as surface and solid state chemistry at

the atomic level.

1 Introduction

Machine learning algorithms have recently appeared in the field of quantum chemistry and

they offer a possible route to increase the size of molecules and atomic clusters investigated

by means of quantum chemical calculations. An obvious use of machine learning is perhaps

finding the functional for DFT calculation. Such difficult research is still in its infancy1.

Following a different route, several authors use it to generate new kind of Machine Learning

Potentials2,3 (MLP). There are two kinds of neural network. The first series uses static

descriptors while the second series uses self descriptors. The latter are usually based on a

Message Passing Neural Network (MPNN) architecture. The first neural network proposed

for atomic structure determination was the Deep Tensor Neural Network proposed in 2017

by Schütt et al. 4 . It was soon followed by several ML approaches like SchNet5, PhysNet6

and AIMNet7. These models are used to provide ML inference of energy and forces, and

sometimes atomic charges. ML is not restricted to NN. Alternative regression models, like

gaussian regression potential can also be used to compute energy, forces, and other quantities

like the electronic density8. Note however that such kind of algorithms do not predict

other properties related to the electronic density, which are by construction not available.

Moreover, the total charge of a cluster, when predicted, is usually not conserved in these

models and an alternative approach is desirable to study charged molecules and clusters with

a prescribed charge.

To build a charge-conserving algorithm, we choose to adapt the Charge Equilibration via
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NN Technique9 (CENT) model based on High Dimension Neural Network10 (HDNN) often

used to predict potential energy surfaces. In particular, the fourth generation of HDNN

models infer the energy from atomic charges like in CENT11. The atomic charges are thus

used in this model to compute the energy, with an accuracy of the order of 2 meV as

discussed by Faber et al. 12 . The link with electronic structure methods based on explicit

atomic charges is rather natural. In particular, the link with Density Functional based on

Tight-Binding13–15 (DFTB) model, as this method is based on atomic charge definition to

introduce flexibility in the Tight-Binding (TB) method. A good ML inference of atomic

charges could thus be followed by a DFTB calculation based on the potential generated

by these charges, as in the full Self-Consistent Charge (SCC-)DFTB approach. Moreover,

in SCC-DFTB, the computational bottleneck is in the self-consistent determination of the

charges, which requires iterative computation of a potentially large eigenvalue problem for

large atomic system, despite the reduced basis set. It is thus interesting to bypass as much

as possible the SCC iterations to get the electronic density. This is the route we shall follow

here, by combining an atomic charge prediction algorithm with SCC-DFTB.

Previous attempts to use machine learning in the framework of DFTB focus mainly on

the improvement the DFTB accuracy with respect to DFT reference results. Some authors

choose to modify the original Hamiltonian and overlap matrix element to fit better the energy

and dipole of small organic molecules16. Some others follow a similar route to reproduce

better the density of states, in particular for SiC material17. Some other authors follow a

simpler alternative route, which consists in obtaining an improved repulsive function with the

aim of reducing the difference between DFT and DFTB energies for various crystallographic

phase of pure silicon18.

In the present work we do not attempt to improve the DFTB parametrization. We limit

ourselves to derive a model as close as possible to the targeted SCC-DFTB reference while

using a charge inference; our work should be considered a proof of concept.

In this paper, we focus on charged clusters. The interest in small charged objects has
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experienced a complete renewal at the end of the twentieth century with the discovery of

new methods to produce atomic and molecular clusters19. The recent progresses in this

field allow chemists to produce an incredibly large variety of clusters covering a very broad

range of size from a few-atom clusters to dust grains20,21. Regarding the chemical nature

of these clusters, almost all kind of chemical bonding can be found, from weekly bound van

der Waals to tightly bound ionic clusters, and from covalent to metallic clusters20–23. Upon

charging, either suddenly or by means of a soft nearly adiabatic process, a cluster is going

to evolves to release the excess energy accumulated by charging. It will thus deform and

eventually release the charge excess by ion emission. Such a charge emission process is a quite

general physical process, which can be observed as soon as a material surface experiences

a sufficiently strong electric field. This fundamental process controls the charge over mass

limit sustainable by an assembly of atoms, which considerably depends on the chemical

nature of the inter-atomic forces19. In the field of material science, the charge instability

finds a metrology application with its use in Atom Probe Tomography24 (APT). In this case,

the application of a large electric potential to a very sharp tip allows scientists to perform

three-dimensional chemical analysis of materials at the nanometre scale. The stability of

weakly charged molecular clusters also presents a strong interest in mass spectrometry as it

is currently used to identify molecular objects21.

Theoretical investigation of charged clusters was so far relatively limited. For few-atoms

clusters the method of quantum chemistry based either on wave function or Density Func-

tional Theory (DFT) are often used. Such a limited number of atoms barely represent a

surface of a sample with terraces or defects due to the erosion induced by atom emission and

it is difficult to achieve a comparison with experiment obtained with such kind of samples.

For large atomic systems, theoretical modelling often resort to ad hoc force fields, which are

limited in their transferability to one single class of materials for a given force field. To over-

come this limitation, we use the SCC-DFTB to simulate the electronic structure of clusters

made of few hundred atoms. It avoids the bottleneck of integral calculation, which limits ab
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initio methods. It also limits the rank of the algebraic problem by using a minimal basis set

and restores to some extent the accuracy by using ad hoc short range repulsion terms. It

provides thus a minimal description of chemical bonding at a cheap computational cost and

we can use it to generate the potential energy surface of such a system as well as the forces

experienced by each atom, like in ab initio molecular dynamics. Moreover, the DFTB ma-

terial parameters data are rather rich25, and the method offers thus the possibility to study

many materials of different nature, which allows a sensible comparison with experiments.

Our machine learning algorithm combines atomic environment data based on Atom-

Centered Symmetry Functions26 (ACSF) and a simple Coulomb model described in section 2.

The ML algorithm presented in section 3 provides us a computationally cheap first guess of

the atomic charges, which are used as input for a SCC-DFTB computation of the electronic

density, and then the energy and the atomic forces. The quality of the charge prediction

algorithm with respect to the SCC algorithm convergence is discussed in section 3. As an

example, we investigated Silicon Carbide (SiC) charged clusters in section 4.

This semiconducting material is an interesting test case for APT where the analysis

reveals some composition bias which might be due to field induced atomic reorganization at

the surface27. Moreover, we use the existing parameterization for SCC-DFTB25. The quality

of the simulation is discussed for a few examples of cluster geometries obtained with ML-

DFTB and compared with SCC-DFTB and DFT results. We also demonstrate in section 5

the fidelity of the simulation to reproduce dissociation energy barriers, which are of prime

interest for APT. Finally, our general conclusions and perspectives about the ML-DFTB

method are given in section 6.
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2 Model

2.1 Atomic charge inference

Our model is a two-step model, which combines a machine learning inference of atomic

charges and the determination of the energy with the help of DFTB computation using the

inferred charges. The first step is similar to the CENT algorithm9 adapted in our case to the

prediction of atomic charges for a cluster of total charge Qtot. The atomic charges q = {qA}

are obtained by minimization of the Lagrangian L defined as:

L = χq +
1

2
qγq + λ (qr−Qtot) (1)

The CENT model9 has proven to be quite useful for ionic clusters28 and crystals29. It

is a ML adaptation of charge equilibration method30,31, which has been used to predict

constrained atomic charges and to deduce the energy of the system. In this method, the

quadratic term can be regarded as the Coulomb interaction between atomic sites with a

site occupation controlled by a Hubbard parameter and the linear term can be considered

as an approximate band energy linearized with respect to atomic charge variation. There

is however a major difference between our approach and the CENT method, as we do not

attempt to get the energy from the quadratic charge dependence implied by equation 1. On

the contrary, we use the inferred charges as input for a DFTB calculation.

In the above equation, the set of linear term χ = {χA} is provided by machine learning.

Note that χ is merely a fitting parameter which does not represent a true physical quantity,

like the DFTB band energy. The second term is simply the SCC energy as defined in the

SCC-DFTB method13. The matrix γ reduces to the pure Coulomb interaction of unit charges

at large distance and is constrained to the Hubbard parameter for on-site diagonal elements.

It takes into account the long range Coulomb interaction, which is essential for charged

clusters. The last term in equation 1 is simply the charge constraint with the Lagrange

multiplier λ and the vector r = (1, 1, 1, ..., 1) stands for the N-rank vector filled with 1
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so that qr =
∑

A qA. From a numerical point of view, the simple quadratic form of the

Lagrangian is particularly convenient to find the solution q that minimizes it. Moreover,

we shall see that despite its simplicity, it produces a rather good approximation of atomic

charges qA to be used in SCC-DFTB calculation.

We can easily eliminate λ by means of a few algebraic manipulations. We can show that:

λ = −Qtot + rγχ

rγr
(2)

q = −γ(χ + λr) (3)

Hence, the charge vector q is completely defined by the vector χ. We obtain the necessary

values of χ from the machine learning algorithm defined in section 3. The input of the

algorithm are the positions of the atoms characterized by the ACSF26 and the chemical

nature of the atoms, either C or Si in the present case. The output of the ML algorithm

is a complete set of parameter χA for each atom A. Thus, for each atom A we obtain a

charge qA, which depends on the environment of the atom A. A comparison of the charge

distribution with reference charges is shown in figure 1 for SiC clusters for our training set

made of 8 · 104 clusters. The typical dispersion is of the order ±0.01 unit of charge, for an

average charge per atom of the order of 0.10. We have also plotted, in figure 2, the energy

and forces of the ML-DFTB with respect to SCC-DFTB. Despite a small systematic shift of

the energy, the global agreement is better than the charge agreement.

Once we have obtained the atomic charges {qA}, we use them as input for a SCC-DFTB

calculation with an improved guess. This guess of charge should ideally match the exact

charge, which result from the SCC-DFTB calculation, so that the iterative self-consistent

energy minimization process would reduce to one single step. There are however unavoidable

fluctuations inherent to the machine learning process. We have thus two alternatives. We can

either use the machine learning charges to perform a single diagonalization and determine
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approximate energy and forces as detailed in section 2.2, or perform a complete SCC cycle

with the benefits of an improved charge guess as detailed in section 2.3.

2.2 Bypassing SCC calculation

Once obtained from ML, the atomic charges q are used in a parametric Hamiltonian h(q).

We then perform only one diagonalization of this Hamiltonian to compute the DFTB orbital

coefficients cnµ. In this way, our model reduces to a standard tight-binding calculation

regarding the computational cost. The Hamiltonian h(q) is defined as in SCC-DFTB:

hµν(q) = hµν(0) +
1

2

∑
AB

(qAγABSB,µν + SA,µνγABqB) (4)

where h(0) is the band Hamiltonian and the second term comes from the derivative of the

SCC term with respect to the orbital coefficients, with SA,µν the overlap matrix related to

the basis functions centered on atom A and conversely for SB,µν with respect to atom B.

The choice of this matrix corresponds to Mulliken definition of atomic charge, which reads:

SA,µν =
1

2
(Sµ∈Aν + Sµν∈A) (5)

Denoting ρµ,ν a density matrix element, the total SCC-DFTB energy reads:

E =
∑
µν

ρµνhµν(0) +
1

2

∑
AB

qAγABqB (6)

A straightforward use of eq. 6 as the energy definition, by simply substituting the ML

charges in the Coulomb term, is not consistent with the SCC-DFTB. In such a case, the

Coulomb term no longer depend on the density matrix and implicitly on the related orbital

coefficients cnµ. Thus, the minimization with respect to the orbital coefficients cnµ would

produce a set of molecular orbitals {φn} solution of h(0)φn = εnφn, which are quite different

from the true SCC-DFTB molecular orbitals produced using h(q) defined by eq. 4. Hence,
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the energy as defined by eq. 6 would be quite far from the targeted SCC-DFTB energy. In

the course of the model development, we of course investigate the possibility to proceed as in

SCC-DFTB with the ML charge inference only used as a starting point and then minimizing

the energy defined by eq. 6, with the charge depending explicitly on the density matrix. In

doing so, we use a first order algorithm as implemented in standard DFTB codes32,33 and

the output charge results from a steepest descent along the energy gradient with respect to

orbital coefficients. Obviously, the first order algorithm gives no control of the length of such

a displacement, and the output charge can be substantially different from the input charge,

unless the inferred ML charges are very nearly identical to the converged SCC charges. We

can overcome this difficulty by using the orbital rotation algorithm presented in the next

section 2.3, at the expense of more time consuming second order algorithm. Moreover, if

we content ourselves of one single diagonalization when starting from the SCC-DFTB, the

sequence of energies produced along a deformation path does not coincide exactly with the

minimum energy in a variational sense. At some points, the small deviation from SCC charge

produces a Hamiltonian h(q) such that the eigenfunctions and eigenenergies do not vary

continuously along the path. Such a situation is quite likely when stretching a bond, when

the antibonding and bonding orbitals merge to produce a localized orbital on the stretched

atom. In other words, we observed diabatic orbital ordering changes along a deformation

path, which introduces energy jumps when using the definition (6). We circumvented the

problem by defining alternatively the energy with the help of equation 7 below:

E =
∑
µν

ρµνhµν(q) +
1

2

∑
AB

qAγABQB +QAγABqB −
1

2

∑
AB

qAγABqB (7)

where qA−QA =
∑

µν ρµνSA,µν by definition of the ionic charge QA. We obtain the machine

learning energy by using the machine learning charges for each {qA} in this expression.

Such an algorithm warrants the energy continuity, because the eigenorbitals now correspond

exactly to the energy minimum.

Since the density matrix ρ results from the diagonalization of h(q), this choice corresponds
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to the minimum energy for the first term. In other word, we minimize the energy (7) for

the value of the parameters qA given by the machine learning algorithm. The first term is

simply the weighted sum of the orbital energies εn resulting from the diagonalization of h(q),∑
n ωnεn, where the weight ωn is the occupation of the molecular orbital n. The expression

(7) of the energy is equivalent to the SCC-DFTB energy when self-consistent charges are

used. This expression is convenient, as it allows us to use the Helmann-Feynmann theorem to

get the derivative of the first term without evaluating explicitly the density matrix derivative.

We can therefore obtain the forces as the energy derivatives with respect to the atomic

coordinates, provided we know the charge derivatives with respect to the atomic coordinates.

Since the ACS functions are themselves derivable quantities with respect to atomic coordi-

nates, the ML charges are also derivable quantities. Using the definition 4, we obtain the

energy derivative with respect to the atomic coordinate X:

∂E

∂X
=

∑
µν

(
ρµν

∂hµν(0)

∂X
− σµν

∂Sµν
∂X

)
+

1

2

∑
µν

ρµν
∑
AB

∂

∂X
(qAγABSB,µν + SA,µνγABqB)

+
1

2

∑
AB

∂

∂X
(qAγABQB +QAγABqB)− 1

2

∑
AB

∂

∂X
(qAγABqB) (8)

where σµν =
∑

n ωnεncnµcnν is the energy weighted density matrix, with cnµ the expan-

sion coefficients of the orbital n in the atomic basis µ. We can reorganize a bit the above

expression. We first introduce the electronic charge resulting from the diagonalization:

pA =
∑
µν

ρµνSA,µν (9)

and we define the potential derivative with the help of the symmetry property γAB = γBA:
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∂Vµν
∂X

=
1

2

∑
AB

(
qAγAB

∂SB,µν
∂X

+ qBγBA
∂SA,µν
∂X

)
=

∑
A,B

qAγAB
∂SB,µν
∂X

(10)

With these two definitions, we obtain eventually:

∂E

∂X
=

∑
µν

(
ρµν

(
∂hµν(0)

∂X
+
∂Vµν
∂X

)
− σµν

∂Sµν
∂X

)
+

1

2

∑
AB

γAB(pA +QA − qA)
∂qB
∂X

+
1

2

∑
AB

∂γAB
∂X

(qA(pB +QB) + qB(pA +QA)− qAqB) (11)

When the ML charges are identical to the SCC charges, we have qA = pA + QA. Thus

the second summation cancels out and the last summation simplifies to
∑

AB
∂γAB

∂X
qAqB, so

that we recover the SCC-DFTB expression of the energy derivative, as expected.

To make the above expression practical, we need a closed form expression of the ML

charge derivatives. The expression depends on the machine learning parameters and is

detailed in section 3.

2.3 Charge guess as input of SCC calculation

It is definitely desirable to use the ML charge inference to speed up the standard SCC-

DFTB calculation. In such a case, the whole machinery of existing SCC-DFTB codes would

be available to obtain energy, forces and other properties, and there would be no need for

an alternative energy definition like eq. 7. We evaluate such a possibility in this section.

Obviously, the ML charges do not match exactly the charges resulting from the complete

SCC cycles, and their improvement is necessary to achieve self consistency. Unfortunately,

the very first steps of the Broyden algorithm used in standard SCC-DFTB packages like
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DFTB+32 or deMon-Nano14 do not take advantage of the improved charge guess. To cir-

cumvent this problem, we use a different algorithm based on molecular orbital rotation to

minimize the energy. The starting point of the minimization is the set of molecular orbitals

obtained by diagonalization of the SCC-DFTB Hamiltonian built with the ML charge guess

q. The gradient and Hessian with respect to orbital rotation R are then calculated to deter-

mine the orbital rotation parameters Rmn. The expression of energy derivatives with respect

to rotation parameters is given in supporting information section 1. Since the minimization

algorithm is based on a second order approximation of the energy surface with respect to R,

a new approximate set of orbitals is generated by minimization of the approximate energy.

This new set of orbitals is then used to start a new cycle of orbital rotation until the energy

reaches a minimum. There are various ways to exploit the information contained in the

second order derivative of the energy. We simply use here an augmented Hessian method.

It is extremely efficient when the starting point is inside the quadratic area for the energy

surface, and a few iterations are sufficient to achieve convergence up to machine accuracy.

Moreover, such an algorithm is often more stable than first order algorithm based on iterative

diagonalization of the DFTB Hamiltonian. The efficiency of the algorithm is clearly related

to the cluster and the accuracy of the input charge. In some cases, 1 or 2 cycles are sufficent

to reach convergence. This is systematically less with our augmented Hessian algorithm

than with the DFTB+ package standard algorithm which generally requires a minimum of

10 cycles.

The drawback of the method is the size of the full Hessian in the space of orbital rotation

parameters, which scales unfavorably with the system size. Despite a smaller number of

cycles, the number of algebraic operations in each cycle makes a single step often more

demanding than a single diagonalization. In the present work, we do not attempt to improve

the second order algorithm. Nevertheless, it is clear that improved first order algorithm

as suggested by Challacombe 34 or various approximate second order methods as discussed

for example in literature35–39, combined with the cheap SCC-DFTB Hessian diagonal as a
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preconditioner, could reduce significantly the computation time.

We analyze how the deviation from the SCC solution affects the number of necessary

cycles to reach convergence. To realize this, we add a small variation randomly sampled

from a Gaussian distribution to the converged SCC-DFTB charges. A standard deviation

of 10−1 unit of charge places the system charges relatively far out of the quadratic area

where our second-order algorithm converges efficiently. On the contrary, as soon as the

average deviation is less than 10−3, very few cycles, typically 1 or 2, are necessary to reach

convergence. With our present ML algorithm, the charge deviation is typically 10−2, which

is good enough for our purpose. However, it is clear that an improvement of the charge guess

could improve substantially the computational efficiency.

3 Machine learning parameterization

The efficiency of the model presented in the above section depends critically on its ability

to reproduce the atomic charge of the reference SCC-DFTB calculation by means of the La-

grangian defined in equation 1. The machine learning process consists in obtaining the values

of the {χA}, each χA being obtained from a corresponding set of ACSF {gi}A. The χ are

calculated through a dedicated High Dimensional Neural Network (HDNN) for each element,

either C or Si in the present case, so that the difference between the reference and model

charges is minimized for a large training set of reference geometries. The choice of ACSF

is quite common for HDNN26,40. We took them from Himanen et al. 41 and we give the list

of the parameters used in the present work in supporting information section 2. Alternative

choices of rotation, translation and permutation invariant parameters are possible42–44.

The training process was done with the PyTorch45 package. The HDNN is made of 3

successive hidden-layers of rank 72, 72 and 34. The choice of the cutoff function between each

layer is important to ensure the derivability of the charge with respect to the atomic positions.

In the present work, we choose the modified SoftPlus46 functions f(x) = log(1 + e−βx) with
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a parameter β = 100. This kind of function performs better than the hyperbolic tangent

often used in ML. They are twice differentiable and correct to some extent for the vanishing

gradient problem, which may happen in the minimization process. To summarize, our HDNN

consists in a chain of applications χ = φ4 ◦ φ3 ◦ φ2 ◦ φ1 ◦ φ0(g) defined as follows:

χi = f(y4i ) = φ4(g
4) y4i =

∑
k

w4
ikg

4
k + b4i

gn+1
i = f(yni ) = φn(g4) yni =

∑
k

wnikg
n
k + bni (12)

g0i = gi

The optimization of the ML parameters wnik and bni is done by means of the Adam

method47 with a learning rate of 10−4. For the ML training, we generate the atomic charges

according to Mulliken definition for a series of clusters computed using the SCC-DFTB

method13 with the DFTB+ package32 and the Matsci03 parameterization25. We do not

attempt to optimize the DFTB parameters for charged systems and we expect the average

atomic charge of 0.10 to be sufficiently small for the neutral parameterization to be valid.

The size and shape of the clusters were chosen randomly from a spherical cut in a SiC

P63mc6H lattice, with different positions for the cluster center. For each cluster so obtained,

we first minimize the energy by means of a steepest descent algorithm for 100 iterations.

Then we perform a molecular dynamics simulation in the micro-canonical ensemble with

a time step of 2 fs over a few 100 iterations. The initial conditions for this dynamics are

obtained by sampling a Maxwell-Boltzmann distribution of velocity for a temperature of

500 K. This choice of temperature was done to probe sufficiently large geometric deformation

of the cluster. We also enhance the training set by sampling randomly the chemical nature

of the surface atoms and then repeat the above algorithm. We keep a few configurations

randomly chosen along each trajectory.

Finally, the training set is made of 80% of the selected geometries. The test and validation
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sets are made of 10% each. The whole set of clusters is summarized in table 1.

Table 1: Number of SiC cluster structures and associated number of atoms grouped by range
of size.

Type Size range Structure Atoms
cluster 0-10 15307 87795

11-80 52140 2114304
81-300 29338 4710602
301-800 242 89216

Total 97269 7001917

It is of course important that the ML charges are simply derivable quantities with respect

to the atomic position, so that the forces could be obtained at a cheap numerical cost. To

achieve our goal, we express the vector p as a combination of atomic charges q with the

Lagrange parameter λ:

p = A−1Θ with p =

q

λ

 , Θ =

−χ
Qtot

 and A =

γ 1

1 0

 (13)

whereQtot is the total charge of the cluster and γ matrix is the same as defined in SCC-DFTB

formalism13,14. The derivative of p with respect to an atomic coordinate X reads:

∂p
∂X

=
∂A−1

∂X
Θ + A−1

∂Θ

∂X

= A−1
∂A

∂X
A−1Θ + A−1

∂Θ

∂X
(14)

The numerical derivative of the matrix A requires the analytic derivative of γ as given

by Elstner et al. 13 . There is one matrix derivative for each coordinate. However, only one

single row and one single column of A depend on a given coordinate X, and this remains a

cheap computation.

In the second term, ∂Θ
∂X

is composed of the derivative of the neural network with respect

to the ACSF vector g and their derivatives. It is obtained by chain rule differentiation of
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equation (12) to obtain another chain of applications. The derivative chain is merely the

original chain with f changed for f ′. It reads explicitly:

∂χi
∂X

= f ′(y4i )
∑
k

w4
ik

∂g4k
∂X

∂gn+1
i

∂X
= f ′(yni )

∑
k

wnik
∂gnk
∂X

(15)

∂g0i
∂X

=
∂gi
∂X

where f ′ is the derivative of the function f and the variables yni are defined in equation (12).

We initiate the derivative chain with the derivatives of the ACSF. There is one such

chain for each atom coordinate. There are thus as many HDNN evaluations as there are

atoms times the number of coordinates, i.e. 3N2 chains for N atoms. The derivative f ′ is

quite simple and the algebraic operations are fast for the small matrices of the network, so

that the HDNN derivation itself is not the dominant part of the computation time, which is

dominated by the evaluation of the ACSF derivatives. The whole algorithm for ML-DFTB

forces is competitive with respect to the SCC-DFTB forces, which does not require the

atomic charge derivatives.

4 Relaxed geometry of charged SiC clusters

As a first endeavour, we have relaxed a few cluster geometries with ML-DFTB, SCC-DFTB

and also DFT as a reference. The DFT computation was done by using PBE functional

and default HGH pseudo-potential with the BigDFT package48. We consider three different

kinds of geometry corresponding to bulk, cage and segregated atomic arrangements.

We have first relaxed a (SiC)37 cluster with a total charge Qtot = +8. The initial positions

were obtained from a cut of the cluster in a 6H SiC crystal. Since the forces are available

in ML-DFTB, the optimization by means of a BFGS method is quite fast. The relaxed
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geometries are illustrated in figure 3. The difference between the relaxed geometries can

barely be observed in the figure. We have therefore characterized the similarity between

two structures as the normalized dot product of the ACSF of the two structures, g · g′/gg′.

These quantities are depicted by the colored matrix on the left hand side. The dark blue

with a value of 1 corresponds to perfect identity, i.e. g = g′, while lighter colors correspond

to a larger difference. We observe an excellent agreement between the ML-DFTB and SCC-

DFTB. The agreement of both SCC-DFTB and ML-DFTB with DFT is also fair. The

clustering of the C atoms as C2 pairs is well reproduced by both parametric methods. On

the other hand, the main difference comes from the outermost Si atoms (top left of the

cluster).

Cage-like neutral clusters of SiC have been investigated by Patrick et al. 49 . These kinds

of structures are quite stable, in particular for the (SiC)12 cluster, though they do not

correspond to the lowest energy isomer50,51. We present here the relaxed geometry for

(SiC)12 with a total charge Qtot = +2. The geometries are shown in figure 4. We observe an

excellent agreement between ML-DFTB and SCC-DFTB. The agreement with DFT is fair

also, though the DFT structure is more compact. The origin of the difference lies obviously

the DFTB parameters, which have been optimized for bulk rather than for cluster structure.

Finally, we present in figure 5 a segregated cluster of (SiC)12 for total charge Qtot = +2.

According to DFT calculation, such segregated structures, with the carbon atoms on one side

and the silicon atoms on the other side, are typical of small neutral SiC clusters50. The isomer

energy ordering is however sensitive to the functional choice. More elaborated wave function

calculations predict a more symmetric closo structure to be the lowest energy isomer51. The

B3LYP and PBE functionals reproduce this isomer ordering. The starting geometry for

our relaxation corresponds to the isomers obtained by DFT calculation for neutral (SiC)12

cluster50. In the case of charged clusters with Qtot = +2 our own DFT calculation with PBE

functional gives the closo isomer to be the lowest energy isomer, while the segregated isomer

depicted in figure 5 is 1.2 eV above. The SCC-DFTB reproduces the correct ordering for
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these two isomers. However, the ML-DFTB fails to reproduce this ordering. This is a clear

indication that the training set lacks of non-stoichiometric structures, i.e. carbon-rich or

silicon-rich structures and the atomic charges predicted for such structures deviate from the

reference SCC-DFTB charges. Nevertheless, the agreement between ML-DFTB and SCC-

DFTB regarding the geometry is excellent. The agreement with DFT is fair also and the

global shape is faithfully reproduced by the parameterized models. Most of the difference

comes from the fine positioning of the Si atoms, a more accurate parameterization of the

DFTB parameters might improve the agreement.

We have finally analyzed the deviation from the average atomic charge used in the training

set. We have computed the mean error in the predicted charge and in the resulting energy

when computing these quantities with the ML-DFTB model for an average charge per atom

varying by ±20 percent. The calculation was done for 250 randomly chosen clusters with a

size distributed between 10 and 200 atoms. The results are plotted in figure 6. Regarding

the atomic charge distribution, the mean value deviates more or less quadratically from the

reference value of 0.01 at q̄ = 0.10 to reach 0.03 at q̄ = 0.08 and q̄ = 0.12. The variation does

not depend significantly on the cluster size. Regarding the energy, the relative variation

is much smaller than for the charge, except for the point at q̄ = 0.115 where it becomes

as large as 12 meV, i.e. 50% more than the standard deviation of 8 meV observed for the

other charges. Thus, we believe our approach to be valid in a range of an average charge

of ±10 percent around the value used to set the ML parameters. Increasing the range of

charge validity would certainly be possible if a broader training ensemble, made of different

reference charges, was used.

5 Stability of charged SiC clusters

For charged clusters and also for sharp tips, the stability is governed by ion field emission.

A key quantity in this matter is the energy barrier an atom has to overcome to be released
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out of the cluster. As an illustration of the method, we give here an example of such barriers

for C and Si emission from a (SiC)37 cluster with a total charge Qtot = +7. The geometry

of the cluster was optimized from a cut in the bulk structure, but we do not attempt to

search for the lowest energy isomer. Our purpose here is only to check the consistency of the

ML-DFTB with respect to SCC-DFTB regarding the energy barrier. The C and Si atoms

were chosen to be the less bound surface atoms for each element. As a test case, we simply

move the atom out of the cluster along the path defined by its initial position and the center

of mass of the cluster.

The figure 7 presents the energy obtained with our model and a full SCC-DFTB calcu-

lation along such a path for C atom. We have also plotted, on the lower panel, the charge

of the stretched atom with respect to the displacement length. The abscissa is the distance

between the atom and the centre of mass of the cluster. Regarding the charge, the agreement

of the ML-DFTB model with the reference SCC-DFTB calculation is rather good, in partic-

ular in the long range limit, dominated by the Coulomb interaction between the stretched

carbon atom and the remaining cluster.

We observe larger deviation at short distances around 6Å, corresponding to the equilib-

rium position of the stretched atom on the cluster surface. In this range, the model energy is

deeper by about 1 eV, which is an average error of about 13meV/atom. This is typically the

precision reached for energy prediction by machine learning models. For instance in their

work R. Haffizi et al.52 report that this error amount to 22meV/atom, while T.W. Ko et al.3

reach 7.3meV/atom for their best model with respect to this criterion.

Most significantly, the shape of the dissociation energy barrier is quite well reproduced all

along the dissociation path. For instance in figure 7, the measured energy barriers with both

method amount to 5.08 eV; the relative error of the ML-DFTB approximation amounting to

1.5 · 10−3.

In the figure 8, we have plotted the result of stretching for a Si atom. The agreement is

as good as in this case of C stretching. We also observed a small systematic energy shift of
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the order of 1 eV, but the shape of the barrier is also faithfully reproduced and the atomic

charge matches quite well the reference charge.

In the present case, the height of the barrier is of the order of 5.5 eV for both elements.

This is obviously an upper dissociation limit because the cluster atoms are frozen at their

initial equilibrium position. We observe that the carbon atom carries out more charge than

the silicon atom. Accordingly, the C atom stretching lowers the energy more than the Si atom

stretching. From a thermodynamic point of view, C atom emission is therefore preferable.

These results are gratifying as they offer the possibility to study dissociation barriers with

confidence for much larger clusters and with more accurate methods such as nudge elastic

band, molecular dynamics simulation or Monte Carlo methods.

6 Conclusion

We have used a machine learning method to infer the atomic charges used in SCC-DFTB

calculation. The quality of the charge inference is of the order of ±10−2 unit of charge.

We have shown that this is sufficiently good to obtain meaningful energies at the cost of

one single tight-binding calculation. This is a significant saving with respect to standard

SCC-DFTB calculation, for which a large number of SCC iterations are necessary to achieve

convergence. As shown in supporting information section 3 the saving is of the order of

the number of diagonalizations necessary to reach convergence in SCC-DFTB calculation,

i.e. typically 30 to 100 cycles (or even up to a few hundred for a large charged cluster

with several equivalent atomic positions). In our ML-DFTB approach, the computational

effort is transferred to the training part of the machine learning. Moreover, there are some

cases for which the SCC-DFTB convergence is poor or even fails, most often because of near

degeneracy of the orbital energy around the Fermi level. The ML-DFTB does not suffer

from this drawback, and a safe alternative algorithm based on orbital rotation can be used

to exploit efficiently the ML charge as a first guess.
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Unlike previous development of HDNN oriented toward prediction of energy, the ML-

DFTB model gives access to energy, forces and atomic charges, and hence to the electronic

density and the related properties. The force evaluation is analytical, which guarantees a

fast evaluation with respect to finite difference scheme. The ML-DFTB model presented

here opens new possibilities to study large molecules, atomic clusters or solids with an

accuracy close to that of SCC-DFTB. The method is obviously not restricted to SiC clusters

and numerous sets of DFTB parameters for other elements are available to build up a

database for charge inference. Thus, the large possibilities of SCC-DFTB to investigate many

different materials of various chemical nature may be transferred to ML-DFTB. Regarding

the accuracy, robustness and transferability of the model, it is clear that the ML-DFTB

inherit from the limitations of the SCC-DFTB. If more accuracy is necessary, in particular

for dissociation barrier, it is certainly possible to improve the DFTB parameterization in

several ways, as discussed in the literature16–18.

The present work was oriented toward charged cluster studies, with field emission in

mind. The training set was thus build with charged clusters having an average charge per

atom of 0.10 unit of charge. Nevertheless, we have seen that the ML-DFTB reproduces

quite faithfully the SCC-DFTB results for clusters with smaller and larger average charge

around the chosen training charge of 0.10. It is obviously possible to enhance the training

set to extent the charge range, including the important case of neutral clusters. For further

work on charged clusters, it may be interesting to consider a model based on DFTB353

and more elaborated charge definition, for instance one of those cited in the overview of

charge models given by Marenish et al.54, instead of the standard Mulliken definition. A

ML-DFTB3 method would prove especially useful as the SCC charge convergence in DFTB3

is much more tricky than the original one13.

The possibility to investigate systems made of thousands of atoms opens new possibilities

of simulation in the field of APT. In particular, the emission barriers and the preferred emis-

sion sites could be investigated by means of nudge elastic band. It is also possible to perform

21



dynamics to investigate atom migration or surface reconstruction following atom emission.

While in principle feasible with more accurate DFT methods, the current development of

DFT codes does not allow us to perform such a research program routinely. In the same

topic of ion field emission, the ML-DFTB method is also attractive for the investigation of

charged cluster stability.
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7 Associated Content

As supporting information, the reader will find the three following items. First the literal

computation of first and second order derivatives of the DFTB2 hamiltonian with respect to

rotations within the orbitals space. Second the ASCF parameters used to describe atomic

environements for the machine learning charge prediction model we used. And third the tim-

ings improvement we have measured for SiC clusters with our prototypical implementation

of ML-DFTB.
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Figure 1: Correlation plot of the ML charges versus SCC charges for our training set with
an average charge per atom q̄ = 0.10. The colour scale is indicative of the number of points
at a given charge: the more yellow the colour, the higher the number of points.
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Figure 2: Correlation diagram of ML-DFTB versus SCC-DFTB, for energy and force com-
ponents.
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Figure 3: Comparison of the (SiC)37 structures obtained from direct 6H crystal without
relaxation, and the relaxed DFT, SCC-DFTB and ML-DFTB, with a total charge Q = +8.
The colored matrix indicates the agreement between two structures. The perfect agreement
corresponds to dark blue and the lighter the blue, the stronger the disagreement.
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Figure 4: Comparison of the (SiC)12 cage structures obtained from our initial guess, and
the relaxed DFT, SCC-DFTB and ML-DFTB. The colored matrix indicates the agreement
between two structures. The perfect agreement corresponds to dark blue and the lighter the
blue, the stronger the disagreement.
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Figure 5: Comparison of the (SiC)12 segregated structures obtained from our initial guess,
and the relaxed DFT, SCC-DFTB and ML-DFTB. The colored matrix indicates the agree-
ment between two structures. The perfect agreement corresponds to dark blue and the
lighter the blue, the stronger the disagreement.
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Figure 6: Mean absolute energy error (upper panel) and mean absolute charge error (lower
panel) as a function of the charge constraint expressed as average atomic charge q̄, for our
training set characterized by q̄ = 0.10.
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Figure 7: Energy and charge (respectively upper and lower panel) along a dissociation path
for C atom stretching. The abscissa is the distance between the stretched atom and the
centre of mass of the cluster. The small difference of about 1 eV between the ML-DFTB
and reference potential energy is mainly a cumulative effect associated to tiny atomic charge
differences.
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Figure 8: Energy and charge (respectively upper and lower panel) along a dissociation path
for Si atom stretching. The abscissa is the distance between the stretched atom and the
centre of mass of the cluster.
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1 First and second order energy derivatives

To improve a charge guess, or a density matrix guess, we need an algorithm using explicitly

the first and second order derivative of the energy, so that the direction of displacement and

its magnitude can be obtained by means of a Newton-type algorithm. In the following, we

detail the derivation of such an algorithm for DFTB. We start from the standard definition

of the SCC-DFTB energy1–3:

E =
∑
µ,ν

ρµνhµν +
1

2

∑
A,B

qAγABqB, (1)

with the density matrix ρ defined from the molecular orbital coefficients cnµ and weight ωn

of the orbital n as:
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ρµν =
∑
n

ωncnµcnν , (2)

and the net atomic charge on atomic centre A, qA, is defined with the Mulliken definition as:

qA =
∑
µ,ν

ρµνSA,µν . (3)

Here, SA,µν denote the partial overlap matrix for atom A, and the complete overlap matrix

is hereafter conventionally denoted as Sµν .

If we know an initial guess of charge for each atom A, we can generate a first set of

molecular orbital coefficients c0nµ as the solution of the generalized eigenvalue problem:

∑
ν

(
hµν +

∑
A,B

qAγABSB,µ,ν

)
cnν =

∑
ν

Sµνcnν . (4)

We now seek for the rotation matrix eR of orbital coefficients, which minimizes the energy

E. Any antisymmetric matrix R is a priori acceptable. The coefficients cnµ are defined from

the initial coefficients c0nµ as:

cnµ =
∑
p

(eR)npc
0
pµ. (5)

The rotation parameters that mix two orbitals with the same weight ωn do not change

the density matrix. They are thus discarded from the optimization process. Moreover,

Rpq = −Rqp, and the total number of rotation parameters is of the order of half the product

of occupied orbitals by the number of virtual or partially occupied orbitals.

We shall expand the energy with respect to R up to second order. We need the second

order expansion of the molecular orbital coefficients:
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cnµ = c0nµ +
∑
p

Rnpc
0
pµ +

1

2

∑
p,q

RnpRpqc
0
qµ (6)

Using this expression, the band energy H decomposes in ascending order into H = H0 +

H1 +H2, with:

H0 =
∑
n,µ,ν

ωnc
0
nµc

0
nνhµν (7)

H1 =
∑
n,µ,ν

ωn

(
c0nµ
∑
p

Rnpc
0
pν + c0nν

∑
p

Rnpc
0
pµ

)
hµν (8)

H2 =
∑
n,µ,ν

ωn

(
1

2
c0nµ
∑
pq

RnpRpqc
0
qν +

∑
pq

RnpRnqc
0
pµc

0
qν +

1

2
c0nν
∑
pq

RnpRpqc
0
qµ

)
hµν . (9)

We define hnq = hqn =
∑

µ,ν c
0
nµc

0
qνhµν to get:

H0 =
∑
n

ωnhnn (10)

H1 = 2
∑
n

ωn
∑
p

Rnphnp (11)

H2 =
∑
n

ωn
∑
pq

RnpRpqhnq +
∑
pq

RnpRnqhpq. (12)

We obtain a series of similar expressions for the expansion of qA by substituting hnq for WA
nq.

We define the Coulomb energy for a given pair of atom A,B as GAB = qAγABqB. The second

order expansion of GAB with respect to the matrix element Rpq is straightforward from the

second order expansion of qA.

1.1 First order derivatives

The first order derivative of H1 with respect to Rax reads:
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∂H1

∂Rax

=
∑
n,p

ωnhnp
∂Rnp

∂Rax

. (13)

Using Rnp = −Rpn, the derivatives of Rnp reads:

∂Rnp

∂Rax

= δnaδpx − δpaδnx, (14)

and since the matrix h is symmetric, we obtain:

∂H1

∂Rax

= 2
∑
p

ωahapδpx − ωxhxpδpa (15)

= 2(ωa − ωx)hax. (16)

When both orbitals a and x have the same weight, for example when they are both occupied

or both empty, this expression vanishes.

There is a similar expression for the first order derivative of qA with respect to Rax. We

use it to obtain the first order derivative of the Coulomb energy G1:

∂G1

∂Rax

=
1

2

∑
AB

2(ωa − ωx)SA,axγABqB + 2(ωa − ωx)SB,axγABqA (17)

= (ωa − ωx)
∑
AB

γAB(qBSA,ax + qASB,ax) (18)

= 2(ωa − ωx)
∑
AB

γABqBSA,ax (19)

1.2 Second order derivatives

We proceed in the same way to get the second order derivatives with respect to Rax and Rby.
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∂2H2

∂Rax∂Rby

=
∑
n,p,q

ωnhnq

(
∂Rnp

∂Rby

∂Rpq

∂Rax

+
∂Rnp

∂Rax

∂Rpq

∂Rby

)
+
∑
n,p,q

ωnhpq

(
∂Rnp

∂Rby

∂Rnq

∂Rax

+
∂Rnp

∂Rax

∂Rnq

∂Rby

)
(20)

=
∑
n,p,q

(δnbδpy − δpbδny)(δpaδqx − δpxδqa)ωnhnq

+
∑
n,p,q

(δnaδpx − δpaδnx)(δpbδqy − δqbδpy)ωnhnq

+
∑
n,p,q

(δnbδpy − δpbδny)(δnaδqx − δqaδnx)ωnhpq

+
∑
n,p,q

(δnaδpx − δpaδnx)(δnbδqy − δqbδny)ωnhpq

Each sum generates only 4 terms and we obtain a structure characteristic of 1-body

operator. After reorganization of the different terms, the second order derivatives reads:

∂2H2

∂Rax∂Rby

= δabhxy(ωa − ωx + ωb − ωy) (21)

+ δayhby(−ωa + ωx + ωb − ωy)

+ δbxhay(ωa − ωx − ωb + ωy)

+ δxyhab(−ωa + ωx − ωb + ωy)

We obtain a similar expression for the derivatives of the atomic charge qA at second order,

by substituting h for WA in the above expression.

The second order derivatives of the Coulomb energy G reads:

∂2G2

∂Rax∂Rby

=
1

2

∑
AB

(
∂2qA

∂Rax∂Rby

γABqB + qAγAB
∂2qB

∂Rax∂Rby

)
(22)

+
1

2

∑
AB

(
∂qA
∂Rax

γAB
∂qB
∂Rby

+
∂qA
∂Rby

γAB
∂qB
∂Rax

)

To simplify the notation, we introduce the quantities:
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Kxy =
1

2

∑
AB

(SA,xyγABqB + qAγABSB,xy) (23)

Lax,by =
1

2

∑
AB

(SA,axγABSB,by + SA,byγABSB,ax) (24)

=
∑
AB

SA,axγABSB,by

We finally express the second order derivatives of the Coulomb energy G as:

∂2G2

∂Rax∂Rby

= δabKxy(ωa − ωx + ωb − ωy) (25)

+ δayKby(−ωa + ωx + ωb − ωy)

+ δbxKay(ωa − ωx − ωb + ωy)

+ δxyKab(−ωa + ωx − ωb + ωy)

+ 4(ωa − ωx)(ωb − ωy)Lax,by

The second order derivative of the Coulomb energy is thus quite simple to evaluate once

the summations have been performed to obtain Kxy and Lax,by. In contrast to standard SCF

calculations, the computation of the second order derivatives is usually not the bottleneck

of the algorithm. Moreover, the matrices SA, ax are made of the elements of the DFTB

overlap matrix whatever the index A and the memory requirement is limited.
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2 ACSF parameters

We remind below the expression of the ACSF4 used to described the atom environment and

our choice of parameters taken from Weinreich et al. 5 . In the following formulas rij = ri−rj.

g1,i =
∑
j

fc (rij) (26)

g2,i =
∑
j

fc (rij) e
−η(rij−rs)2 (27)

g3,i =
∑
j

fc (rij) cos (κrij) (28)

g4,i = 21−ζ
∑
j,k

(
1 + λ

rij · rik
rijrik

)ζ
e−η(r

2
ij+r

2
ik+r

2
jk)fc (rij) fc (rik) fc (rjk) (29)

In the above expressions, the cutoff function fc is defined as:

fc(r) =
1

2

(
cos

πr

rc
+ 1

)
(30)

with the cutoff parameter is rc = 6 Å.

The corresponding parameters we used for g2, g3 and g4 are listed in table 1, 2 and 3,

respectively. The parameter values were simply taken from the work of Behler4, without

any optimization. For two chemical species, Si and C here, the total number of parameters

is 120.
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Table 1: Parameters of g2 functions.

n° η [a−1
0 ] rs [a0]

1 0.400 0.000
2 0.100 0.000
3 0.050 0.000
4 0.020 0.000
5 0.001 0.000
6 0.050 1.000
7 0.100 1.000
8 0.050 2.000
9 0.100 2.000

Table 2: Parameters of g3 functions.

n° κ [a−1
0 ]

1 0.050
2 0.200
3 0.500
4 1.000
5 2.000

Table 3: Parameters of g4 functions. Each line provides two functions, corresponding to
λ = +1 and λ = −1.

n° η [a−1
0 ] λ ζ

1, 2 0.003 ±1 1
3, 4 0.008 ±1 1
5, 6 0.020 ±1 1
7, 8 0.050 ±1 1
9, 10 0.100 ±1 1
11, 12 0.003 ±1 2
13, 14 0.008 ±1 2
15, 16 0.020 ±1 2
17, 18 0.050 ±1 2
19, 20 0.100 ±1 2
21, 22 0.003 ±1 8
23, 24 0.008 ±1 8
25, 26 0.020 ±1 8
27, 28 0.050 ±1 8
29, 30 0.100 ±1 8
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3 Timings

Because ML-DFTB offers the possibility to use directly approximate atomic charges, one of

its compelling advantage is to bypass the SCC procedure, and thus to improve tremendously

computation times. In the following we display some preliminary measurements.

As stated earlier, the ML-DFTB method presented is at the state of proof of concept. Our

code works the following way : Our Python code — using ASE framework6 — is launched,

reads the atomic positions, uses them to predict the charges, and writes them as an input file

to DFTB+. The later is then run and instead of performing a SCC calculation performs a

single hamiltonian diagonalization, then exports eigenvalues, eigenvectors, all the matrix and

matrix derivatives implied in the calculation into files. Our code reads those files, and com-

pute the energy and forces of the ML-DFTB model. In term of timings, this implementation

is clearly sub-optimal. Meanwhile improvements are already quite significant.

The extra time for ML charge evaluation through the NN is of the order of 15% of the

orbital calculation including both Hamiltonian matrix computation and diagonalization. The

computational times of one diagonalization for ML and SCC-DFTB are comparable; they also

evolve similarly with system size. However the ML-DFTB requires a single diagonalization

whatever the system.

Performing single processor computation on the same machine, we compute the timings

shown in figure 1 (a) for DFT, SCC-DFTB, and ML-DFT. Since ML-DFTB bypasses SCC

iterations, the present time improvement is already quite significant (about a factor of 10).

Figure 1 (b) underlines more significantly the expected benefits of the ML-DFTB in

term of SCC cycles gain. It shows the behavior observed in our computations with DFTB+7

while producing the reference calculations to parametrize the ML-DFTB method. As semi-

conductor SiC clusters exhibit typical behavior with respect to SCC convergence in DFTB

and SCF convergence in DFT. As expected, convergence is fairly easy for the smallest systems

and the number of iterations grows linearly with system size. For systems where SCC

convergence is more difficult than SiC, for instance most metals, the expected benefit of a
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ML-DFTB approach increases.
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Figure 1: Computational informations for a few cluster used to test our ML model. (a)
Actual computation timings; the DFT timings are done with BigDFT8, the SCC-DFTB
with DFTB+, and the ML-DFTB with our prototypical implementation of ML-DFTB. (b)
Number of self-consistent charge cycles required to reach convergency for the same set of
clusters.
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