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Abstract

We investigate the family of cross-classified sampling designs across an arbitrary number of

dimensions. We introduce a variance decomposition that enables the derivation of general

asymptotic properties for these designs and the development of straightforward and asymptot-

ically unbiased variance estimators. Additionally, we demonstrate the suitability of weighted

bootstrap techniques for CCS, given the availability of a weighted bootstrap technique in each

dimension. Our conclusions are supported by an extensive simulation study. Finally, we apply

the proposed methods to a French longitudinal survey conducted among children.

1 Introduction

Multistage sampling designs are commonly used in household and health surveys. In case of two-

stage sampling, the population units are grouped into large blocks (e.g. municipalities or counties),

called Primary Sampling Units (PSUs), which are sampled at the first stage. At the second stage,

a list of population units is obtained inside the selected PSUs, and a sample of these units is drawn.

A detailed treatment of multistage sampling may be found in Cochran (1977), Särndal et al. (1992)

and Fuller (2011). In some situations, a population unit k is more easily represented as a D-uple

vector (k1, . . . , kD). For example, in the ELFE maternity survey (Juillard et al., 2017), a sample is

obtained by selecting a sample of maternity units (k1), a sample of days (unit k2), and by crossing

the two samples. In this case, a population unit is therefore given by a day-maternity couple (k1, k2).
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In such situations, Ohlsson (1996) introduced the two-dimensional cross-classified sampling (CCS)

design, under which independent samples S1 and S2 are selected in each dimension. By taking the

Cartesian product of S1 and S2, the final sample S = S1×S2 is naturally obtained. Other examples

of cross-classified sampling designs include consumer price index surveys (Dalén and Ohlsson, 1995)

and business surveys (Skinner, 2015). To produce reliable estimators with associated confidence

intervals, some basic statistical properties are needed for cross-classified sampling designs, including

the consistency and the asymptotic normality of Horvitz-Thompson estimators. It is also desirable

to provide (at least approximately) unbiased variance estimators. Thereupon, it would also be of

both theoretical and practical interest to derive appropriate bootstrap methods for cross-classified

sampling. With the notable exception of Skinner (2015), who proposed a bootstrap algorithm for

with-replacement sampling designs in each dimension, this last topic has not been studied in the

literature.

In this work, we extend cross-classified sampling to an arbitrary number of dimensions. Under some

mild conditions, we prove the consistency and the asymptotic normality of the Horvitz-Thompson

(HT)-estimator. Using the Hoeffding-Sobol decomposition (Hoeffding, 1948), we generalize the

variance formula given in Ohlsson (1996) and prove that the variance of the HT-estimator can

be decomposed into a sum of multiple terms with different orders of magnitude. By identifying

the leading terms in this variance decomposition, we obtain simple, consistent variance estimators.

This decomposition is also used to derive bootstrap methods suitable for cross-classified sampling.

The article is structured as follows. In Section 2, we introduce our notations and outline our main

assumptions. Section 3 utilizes the Hoeffding-Sobol decomposition to derive a comprehensive vari-

ance decomposition and establish the consistency and asymptotic normality of the HT-estimator.

We also present straightforward and consistent variance estimators, which are exemplified in Sec-

tion 4. Section 5 introduces and examines a weighted bootstrap method, while its application is

illustrated in Section 6. Section 7 presents the results of a simulation study. In Section 8, we apply

the proposed methods to the ELFE survey. The proofs are provided in the Appendix.
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2 Multi-dimensional cross-classified sampling

2.1 Notation

Suppose that we are interested in a finite population U =
∏D

d=1 Ud which can be seen as the

cartesian product of D finite populations of respective sizes Nd, d = 1, . . . , D. The size of the

product population U is therefore N =
∏D

d=1Nd. For each unit k = (k1, . . . , kD) ∈ U , a variable of

interest y takes the value yk. We are interested in estimating the population total

Y =
∑
k∈U

yk. (2.1)

For computations considered in the following sections, it is convenient to introduce some notations

for sub-totals. Let I ⊆ {1, . . . , D} denote a subset of dimensions, and let UI =
∏

d∈I Ud be the

product population associated to these dimensions. For any k′ ∈ UI , we let

Yk′ =
∑
l∈U

∀d∈I, ld=k′d

yl (2.2)

denote the sub-total of y when the set of coordinates in UI remains fixed and equal to k′.

For d ∈ {1, . . . , D}, we let pd(·) denote a sampling design used in the population Ud. Under

a D-dimensional cross-classified sampling design, D independent samples Sd are selected in the

populations Ud, d = 1, . . . , D, and their cartesian product S :=
∏D

d=1 Sd is the overall sample.

Therefore, the resulting sampling design p(·) is such that

∀d ∈ {1, . . . , D},∀sd ∈ P(Ud), p

(
D∏

d=1

sd

)
=

D∏
d=1

pd(sd). (2.3)

In the particular case when D = 2, we obtain the usual two-dimensional cross-classified design

introduced by Ohlsson (1996). It is somewhat similar to a two-stage sampling design where each

unit k1 in U1 would be a PSU, while U2 would be the sub-population of SSUs for any k1. The main

difference is that, due to the independence in the selection of S1 and S2, the same subsample of

SSUs is used inside any PSU: in other words, the cross-classified design does not verify the so-called

independence property for two-stage sampling (Särndal et al., 1992, pages 134-135). However, the

invariance property is satisfied, namely the sampling design used in a given dimension does not

depend on the outcome of the sampling performed in another dimension, see Särndal et al. (1992,

Section 4.3.1) and Juillard et al. (2017).
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In the population Ud, we let δdk denote the sample membership indicator of the unit k in the

sample Sd. We let πd
k denote the probability that k is selected in Sd, then nd =

∑
k∈Ud

πd
k denote

the expected size of the sample Sd, and πd
kl denote the probability that units k and l are jointly

selected in Sd. We will assume in the following that these probabilities are all strictly positive.

Finally we also use the notation

∆d
kl = Cov(δdk, δ

d
l ) = πd

kl − πd
kπ

d
l for any k, l ∈ Ud. (2.4)

2.2 Estimation

We consider weighted total estimators as:

Ŷ =
∑
k∈S

yk

D∏
d=1

wd
kd
(Sd), (2.5)

where {wd
k(Sd)}k∈Ud

is a set of estimation weights available for each dimension d ∈ {1, . . . , D}. We

suppose that {wd
k(Sd)}k∈Ud

depends only on the sample Sd, and not on the samples selected in the

other dimensions. When there is no risk of confusion, we simplify the notation as wd
k(Sd) ≡ wd

k.

We also suppose that for any d ∈ {1, . . . , D} and k ∈ Ud, w
d
k = 0 if k /∈ Sd. This implies that

each unit k ∈ U has an associated weight wk =
∏D

d=1w
d
kd

that can be decomposed as a product of

independent weights, leading to the following compact expression:

Ŷ =
∑
k∈U

ykwk. (2.6)

In the important specific case when wd
k = {πd

k}−1δdk for k ∈ Ud, we obtain the Horvitz-Thompson

(HT) estimator

Ŷπ =
∑
k∈S

yk∏D
d=1 π

d
kd

=
∑
k∈U

yk

D∏
d=1

δdkd
πd
kd

. (2.7)

We may further introduce for k ∈ U the quantities δk =
∏D

d=1 δ
d
kd

and πk =
∏D

d=1 π
d
kd
, leading to

the compact expression

Ŷπ =
∑
k∈S

yk
πk

=
∑
k∈U

yk
δk
πk

. (2.8)

We will also use the notation πkl =
∏D

d=1 π
d
kdld

for any k, l ∈ U .

2.3 Assumptions

In this paper, we consider the following assumptions:
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H1. There exists some constant α such that

1

N

∑
k∈U

(yk)
2 ≤ α. (2.9)

H2. For any d = 1, . . . , D, we have nd → ∞ and Nd → ∞, and there exists some constant

fd ∈ [0, 1] such that
nd

Nd
→ fd. (2.10)

H3. For any d = 1, . . . , D, there exists some constant λd > 0 such that

∀k ∈ Ud, πd
k ≥ λd

nd

Nd
. (2.11)

H4. For every d = 1, . . . , D, there exists a constant γd such that

∀k ̸= l ∈ Ud, |∆d
k,l| ≤ γd

nd

N2
d

. (2.12)

The assumption (H1) pertains to the variable of interest by positing that it possesses a finite moment

of order 2. Assumptions (H2)-(H4) are associated with the sampling design. The asymptotic

framework is delineated in (H2), wherein it is explicitly assumed that the sample size nd → ∞

across all dimensions. This assumption is imperative for achieving the consistency of the Horvitz-

Thompson estimator, as described in Section 3.2. Furthermore, (H3) presupposes that within each

dimension d, the first-order inclusion probabilities maintain a lower bound of order nd/Nd. On the

other hand, assumption (H4) addresses the second-order inclusion probabilities. The parameter

|∆d
k,l| can be interpreted as a gauge of interdependence in the selection of units k, l ∈ Ud within the

sample Sd. These quantities assume a value of 0 if the units are independently selected in Sd, a

concept akin to Poisson sampling. Notably, this assumption holds true for simple random sampling

and rejective sampling (Hájek, 1964). In summary, assumptions (H1)-(H4) adhere to conventional

standards. Specifically, in the realm of two-dimensional cross-classified sampling, they align with

assumptions (H1)-(H3) outlined in Juillard et al. (2017).

3 Properties of total estimators

3.1 Hoeffding-Sobol variance decomposition of the CCS

From equation (2.5), we can derive the following general variance formula:

Vp(Ŷ ) =
∑
k,l∈U

ykyl

[
D∏

d=1

Ep(w
d
kd
wd
ld
)−

D∏
d=1

Ep(w
d
kd
)Ep(w

d
ld
)

]
. (3.1)
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The proof is provided in Appendix A.1. However, the unbiased variance estimator derived from

equation (3.1) may not be practical in many sampling designs, as illustrated by Ohlsson (1996).

To explore the statistical properties of estimators and propose simpler variance estimators, we

adopt an alternative variance decomposition approach, extending Ohlsson’s approach for the two-

dimensional case. We express Ŷ as a sum of uncorrelated components, as outlined in Proposition

1, with its proof given in Appendix A.2. This decomposition, inspired by the works of Hoeffding

(1948), is commonly known as the Hoeffding-Sobol or functional ANOVA decomposition.

Proposition 1. We express Ŷ as:

Ŷ =
∑

I⊆{1,...,D}

Ŷ I , (3.2)

where for any subset I ⊆ {1, . . . , D}:

Ŷ I =
∑

I′∈P(I)

(−1)|I|−|I′|Ep

{
Ŷ |(Sd)d∈I′

}
(3.3)

=
∑
k∈U

yk
∏
d∈I

{
wd
kd

− Ep(w
d
kd
)
}∏

d/∈I

Ep(w
d
kd
). (3.4)

Additionally, the components {Ŷ I}I⊆{1,...,D} are uncorrelated, and

Vp(Ŷ ) =
∑

I⊆{1,...,D}

Vp(Ŷ
I), (3.5)

where for any I ̸= ∅:

Vp(Ŷ
I) =

∑
k,l∈U

ykyl
∏
d∈I

Covp(w
d
kd
, wd

ld
)
∏
d/∈I

Ep(w
d
kd
)Ep(w

d
ld
). (3.6)

From Proposition 1, we derive an unbiased variance estimator for Ŷ , as summarized in Corollary

1, with its proof provided in Appendix A.3.

Corollary 1. Assume that the set of weights is adapted to the sampling design, such that for any

d ∈ {1, . . . , D}:

∀k ∈ Ud, Ep(w
d
k) = 1. (3.7)

Additionally, assume that for any d ∈ {1, . . . , D} and for any pair of units k, l ∈ Ud, Ĉov
d
(wd

k, w
d
l )

serves as an unbiased estimator of Covp(w
d
k, w

d
l ) constructed from Sd, and that Ĉov

d
(wd

k, w
d
l ) = 0

when either k or l is not in Sd. Consequently, Vp(Ŷ ) can be estimated unbiasedly as follows

V̂p(Ŷ ) =
∑

I⊆{1,...,D}

V̂p(Ŷ
I), (3.8)
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where

V̂p(Ŷ
I) =

∑
k,l∈S

ykyl
∏
d∈I

Ĉov
d
(wd

kd
, wd

ld
)
∏
d/∈I

1

πd
kd,ld

. (3.9)

3.2 Properties of the Horvitz-Thompson estimator

We now delve into the HT-estimator, a widely used method in practical scenarios. In this case, the

variance formula (3.1) simplifies to

Vp(Ŷπ) =
∑
k,l∈U

ykyl
πkπl

(πkl − πkπl). (3.10)

By using Proposition 1 and Corollary 1, we derive an alternative variance decomposition for Ŷπ

alongside an unbiased variance estimator, succinctly presented in Corollary 2. The proof is expli-

cated in Appendix B.1.

Corollary 2. The variance of the HT-estimator can be expressed as:

Vp(Ŷπ) =
∑

I⊆{1,...,D}

Vp(Ŷ
I
π ), (3.11)

where for any I ⊆ {1, . . . , D}

Ŷ I
π =

∑
k∈U

yk
∏
d∈I

(
δdkd
πd
kd

− 1

)
, (3.12)

with the convention that Ŷ ∅
π = Y . Moreover, if I ̸= ∅, we have

Vp(Ŷ
I
π ) =

∑
k′,l′∈UI

Yk′

πk′

Yl′

πl′
∆k′l′ , (3.13)

where ∆k′l′ =
∏

d∈I ∆
d
k′dl

′
d
and πk′ =

∏
d∈I π

d
k′d

for any k′, l′ ∈ UI . This variance is estimated

unbiasedly by

V̂p(Ŷ
I
π ) =

∑
k,l∈S

ykyl
πkl

∏
d∈I

∆d
kd,ld

πd
kd
πd
ld

. (3.14)

The Hoeffding-Sobol decomposition allows us to express the HT-estimator as the sum of 2D uncor-

related terms, as presented in (3.12), leading to the unbiased variance estimator detailed in (3.14).

In the case of D = 2, this decomposition simplifies to:

Ŷπ = Ŷ ∅
π + Ŷ {1}

π + Ŷ {2}
π + Ŷ {1,2}

π , (3.15)
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with

Ŷ {1}
π =

∑
k∈U

yk

(
δ
(1)
k1

π
(1)
k1

− 1

)
,

Ŷ {2}
π =

∑
k∈U

yk

(
δ
(2)
k2

π
(2)
k2

− 1

)
, (3.16)

Ŷ {1,2}
π =

∑
k∈U

yk

(
δ
(1)
k1

π
(1)
k1

− 1

)(
δ
(2)
k2

π
(2)
k2

− 1

)
.

This decomposition mirrors the one proposed in Ohlsson (1996), and Corollary 2 extends his theo-

rem 3.1 to any number of dimensions. This case is further explored in Section 4, focusing particularly

on variance estimation for specific sampling designs.

It is important to specify the orders of magnitude of the terms in the decomposition (3.11). Propo-

sition 2 addresses this, with the proof provided in Appendix B.2.

Proposition 2. Under assumptions (H1), (H3), and (H4), for any non-empty subset I of 1, . . . , D:

Vp(Ŷ
I
π ) = O

(
N2∏
d∈I nd

)
. (3.17)

Proposition 2 yields significant implications. Firstly, it indicates that the dominant terms in the

Hoeffding-Sobol variance decomposition correspond to subsets I of size 1, while other terms are of

negligible order under assumption (H2). Thus, it is feasible to obtain an approximately unbiased

variance estimator by focusing solely on the D terms in (3.14) associated with singletons. This

leads to the simplified variance estimator:

V̂ SIMPL(Ŷπ) =
∑
k,l∈S

ykyl
πkl

(
D∑

d=1

∆d
kd,ld

πd
kd
πd
ld

)
. (3.18)

However, this simplified variance estimator neglects the (non-negative) terms of higher order in the

Hoeffding-Sobol decomposition, resulting in negative bias if sample sizes nd are moderately large.

Secondly, assumption (H2) must be retained for the HT-estimator to remain consistent. In other

words, if the sample size nd in some dimension d is bounded, the variance of N−1Ŷ d
π does not

converge to zero, rendering the Horvitz-Thompson estimator inconsistent. Weak consistency and

asymptotic normality of the HT-estimator are established in Proposition 3, with the proof provided

in Appendix B.3.
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Proposition 3. Suppose that assumptions (H1)-(H4) hold. Then

Vp(N
−1Ŷπ) = O

(
n−1
m

)
, (3.19)

where nm = min
d=1,...,D

nd. Additionally, suppose that:

H5. There exists some constant C > 0 such that

Vp(Ŷπ) ≥ CN2n−1
m . (3.20)

H6. For any d = 1, . . . , D:

Ŷ
{d}
π√

Vp

(
Ŷ

{d}
π

) −→L N (0, 1), (3.21)

where −→L denotes convergence in distribution.

H7. For any d = 1, . . . , D, there exists some constant γd ≥ 0 such that

Vp(Ŷ
{d}
π )

Vp(Ŷπ)
−→ (γd)

2. (3.22)

Then
Ŷπ − Y√
Vp(Ŷπ)

−→L N (0, 1). (3.23)

Assumption (H5) posits that the variance of the HT-estimator is non-vanishing, following the typical

order of magnitude O(N2n−1
m ). Proposition 3 establishes that if the HT-estimator is asymptotically

normally distributed in each dimension, as stated in (H6), then it is also asymptotically normally

distributed under CCS. This generalizes Theorem 1 in Juillard et al. (2017) to an arbitrary number

of dimensions.

3.3 Plug-in variance estimation

Another viable variance estimator arises from the decomposition in equation (3.11). For any term

Vp(Ŷ
I
π ) of the variance decomposition, a plug-in estimator based on the expression in (3.13) is

obtained:

V̂ PLUG(Ŷ I
π ) =

∑
k′,l′∈SI

Ŷk′

πk′

Ŷl′

πl′

∆k′l′

πk′l′
, (3.24)
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where each k′ ∈ SI in the partial sum Yk′ is replaced with the unbiased estimator given by:

Ŷk′ =
∑
l∈S

∀d∈I, ld=k′d

yl∏
d/∈I πld

. (3.25)

This estimator employs a Horvitz-Thompson-like variance estimator, leading to the plug-in variance

estimator:

V̂ PLUG(Ŷπ) =
∑

I⊆{1,...,D}

V̂ PLUG(Ŷ I
π ). (3.26)

Following the result obtained in Proposition 2, this estimator may be further simplified by restricting

the sum in (3.26) to the D terms associated with singletons. This yields the second simplified

variance estimator:

V̂ SIMPL2(Ŷπ) =
D∑

d=1

∑
kd,ld∈Sd

Ŷkd
πd
kd

Ŷld
πd
ld

∆d
kd,ld

πd
kd,ld

. (3.27)

By construction, this approximation considers only first-order variance terms, simplifying higher-

order interactions within these variance terms. Proposition 4 reveals that the bias of the plug-in

estimators can be expressed in terms of the Vp(Ŷ
I
π ), with the proof provided in Appendix B.4.

Proposition 4. For every non-empty subset I of {1, . . . , D}, we have

Ep

[
V̂ PLUG(Ŷ I

π )
]
= Vp(Ŷ

I
π ) +

∑
I′⊋I

Vp(Ŷ
I′
π ). (3.28)

It follows from Proposition 2 that the second term on the right-hand side of (3.28) is asymptotically

negligible under assumptions (H1)-(H4). Thus, V̂ PLUG(Ŷ I
π ) is asymptotically unbiased for Vp(Ŷ

I
π ).

Likewise, V̂ PLUG(Ŷπ) is asymptotically unbiased for Vp(Ŷπ). Equation (3.28) indicates that the

plug-in variance estimator overestimates in particular the variance contribution associated with

singletons, which constitutes the major part of the variance. If the sample sizes nd are moderately

large, the plug-in variance estimator is therefore expected to be conservative.

4 Illustrations of the simplified estimations

In this section, we demonstrate the proposed variance estimators in the two-dimensional scenario.

The general formulas for the case D = 2 are initially presented in Section 4.1. We delve into the

scenario of simple random sampling in each dimension in Section 4.2, and the scenario of Poisson

sampling in each dimension in Section 4.3.
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4.1 General case

Expanding upon the specific Hoeffding-Sobol decomposition in the case D = 2, as derived in

equation (3.15), we derive the variance decomposition:

Vp

(
Ŷπ

)
= Vp

(
Ŷ {1}
π

)
+ Vp

(
Ŷ {2}
π

)
+ Vp

(
Ŷ {1,2}
π

)
, (4.1)

where

Vp

(
Ŷ {1}
π

)
=

∑
k1,l1∈U1

Yk1•

π
(1)
k1

Yl1•

π
(1)
l1

∆
(1)
k1l1

with Yk1• =
∑
k2∈U2

yk1k2 ,

Vp

(
Ŷ {2}
π

)
=

∑
k2,l2∈U2

Y•k2

π
(2)
k2

Y•l2

π
(2)
l2

∆
(2)
k2l2

with Y•k2 =
∑
k1∈U1

yk1k2 , (4.2)

Vp

(
Ŷ {1,2}
π

)
=

∑
k1,l1∈U1

∑
k2,l2∈U2

yk1k2

π
(1)
k1

π
(2)
k2

yl1l2

π
(1)
l1

π
(2)
l2

∆
(1)
k1l1

∆
(2)
k2l2

,

as described in Ohlsson (1996, Theorem 3.1). Utilizing equation (3.14), the corresponding unbiased

variance estimator is:

V̂p

(
Ŷπ

)
= V̂p

(
Ŷ {1}
π

)
+ V̂p

(
Ŷ {2}
π

)
+ V̂p

(
Ŷ {1,2}
π

)
, (4.3)

where

V̂p

(
Ŷ {1}
π

)
=

∑
k1,l1∈S1

∆
(1)
k1l1

π
(1)
k1l1

π
(1)
k1

π
(1)
l1

∑
k2,l2∈S2

yk1k2yl1l2

π
(2)
k2l2

,

V̂p

(
Ŷ {2}
π

)
=

∑
k2,l2∈S2

∆
(2)
k2l2

π
(2)
k2l2

π
(2)
k2

π
(2)
l2

∑
k1,l1∈S1

yk1k2yl1l2

π
(1)
k1l1

, (4.4)

V̂p

(
Ŷ {1,2}
π

)
=

∑
k1,l1∈S1

∑
k2,l2∈S2

yk1k2yl1l2

π
(1)
k1l1

π
(2)
k2l2

∆
(1)
k1l1

π
(1)
k1

π
(1)
l1

∆
(2)
k2l2

π
(2)
k2

π
(2)
l2

.

The first simplified variance estimator provided in (3.18) can be reformulated as:

V̂ SIMPL
(
Ŷπ

)
= V̂p

(
Ŷ {1}
π

)
+ V̂p

(
Ŷ {2}
π

)
. (4.5)

The second simplified variance estimator provided in (3.27) can be reformulated as:

V̂ SIMPL2
(
Ŷπ

)
= V̂ PLUG

(
Ŷ {1}
π

)
+ V̂ PLUG

(
Ŷ {2}
π

)
, (4.6)

where

V̂ PLUG
(
Ŷ {1}
π

)
=

∑
k1,l1∈S1

Ŷk1•

π
(1)
k1

Ŷl1•

π
(1)
l1

∆
(1)
k1l1

π
(1)
k1l1

with Ŷk1• =
∑
k2∈S2

yk1k2

π
(2)
k2

,

V̂ PLUG
(
Ŷ {2}
π

)
=

∑
k2,l2∈S2

Ŷ•k2

π
(2)
k2

Ŷ•l2

π
(2)
l2

∆
(2)
k2l2

π
(2)
k2l2

with Ŷ•k2 =
∑
k1∈S1

yk1k2

π
(1)
k1

. (4.7)
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4.2 Simple random sampling

We examine the scenario where simple random sampling of size nd is employed in each dimension

d = 1, 2. The sampling fraction in dimension d is denoted as fd = nd/Nd. The Horvitz-Thompson

estimator can be expressed as:

Ŷπ =
N1N2

n1n2

∑
k1∈S1

∑
k2∈S2

yk1k2 (4.8)

By employing equation (4.1), the Hoeffding-Sobol variance decomposition becomes

Vp(Ŷπ) = N2
1N

2
2

[
(1− f1)

S2
1

n1
+ (1− f2)

S2
2

n2
+ (1− f1)(1− f2)

S2
12

n1n2

]
(4.9)

where

S2
1 =

1

N1 − 1

∑
k1∈U1

(Y k1• − Y ••)
2 with Y k1• =

1

N2

∑
k2∈U2

yk1k2 ,

S2
2 =

1

N2 − 1

∑
k2∈U2

(Y •k2 − Y ••)
2 with Y •k2 =

1

N1

∑
k1∈U1

yk1k2 , (4.10)

S2
12 =

1

N1 − 1

1

N2 − 1

∑
k1∈U1

∑
k2∈U2

(yk1k2 − Y k1• − Y •k2 + Y ••)
2,

and where Y •• = N−1Y is the population mean. This expression matches that found in Ohlsson

(1996, Example 1.1) and Skinner (2015, Theorem 2.1).

Appling equation (4.3), we derive a term-by-term unbiased estimator. As indicated by Skinner

(2015), this process involves substituting each term in (4.10) with the following unbiased estimators:

Ŝ2
1 =

1

n1 − 1

∑
k1∈S1

(yk1• − y••)
2 − (1− f2)

Ŝ2
12

n2
,

Ŝ2
2 =

1

n2 − 1

∑
k2∈S2

(y•k2 − y••)
2 − (1− f1)

Ŝ2
12

n1
, (4.11)

Ŝ2
12 =

1

n1 − 1

1

n2 − 1

∑
k1∈S1

∑
k2∈S2

(yk1k2 − yk1• − y•k2 + y••)
2,

where

yk1• =
1

n2

∑
k2∈S2

yk1k2 and y•k2 =
1

n1

∑
k1∈S1

yk1k2 (4.12)

represent the unbiased estimators of the partial means Y k1• and Y •k2 , respectively, with y•• de-

noting the sample mean. It is worth noting that both Ŝ2
1 and Ŝ2

2 incorporate correction terms for

unbiasedness, which become negligible with sufficiently large sample sizes.

12



The first proposed variance estimator V̂ SIMPL(Ŷπ), provided in (3.18), is obtained by eliminating

the estimator of the interaction term in (4.9), resulting in:

V̂ SIMPL(Ŷπ) = N2
1N

2
2

[
(1− f1)

Ŝ2
1

n1
+ (1− f2)

Ŝ2
2

n2

]
. (4.13)

It is important to note that this estimator still incorporates correction terms within Ŝ2
1 and Ŝ2

2 ,

necessitating the computation of Ŝ2
12. On the other hand, the second proposed variance estimator

V̂ SIMPL2(Ŷ π) not only eliminates the interaction term Ŝ2
12 but also these correction terms, yielding:

V̂ SIMPL2(Ŷπ) = N2
1N

2
2

[
(1− f1)

Ŝ2,PLUG
1

n1
+ (1− f2)

Ŝ2,PLUG
2

n2

]
(4.14)

where

Ŝ2,PLUG
1 =

1

n1 − 1

∑
k1∈S1

(yk1• − y••)
2,

Ŝ2,PLUG
2 =

1

n2 − 1

∑
k2∈S2

(y•k2 − y••)
2, (4.15)

represent the plug-in estimators of S2
1 and S2

2 , respectively.

4.3 Poisson sampling

We now consider the scenario where Poisson sampling is applied independently in each dimension

d = 1, 2. The HT-estimator takes the form:

Ŷπ =
∑
k1∈S1

∑
k2∈S2

yk1k2

π
(1)
k1

π
(2)
k2

. (4.16)

By employing equation (4.1), the Hoeffding-Sobol variance decomposition becomes:

Vp(Ŷπ) =
∑
k1∈U1

(
1− π

(1)
k1

π
(1)
k1

)
Y 2
k1• +

∑
k2∈U2

(
1− π

(2)
k2

π
(2)
k2

)
Y 2
•k2

+
∑
k1∈U1

∑
k2∈U2

(
1− π

(1)
k1

π
(1)
k1

)(
1− π

(2)
k2

π
(2)
k2

)
y2k1k2 , (4.17)

where Yk1• and Y•k2 are defined in equation (4.2). A similar variance decomposition is presented

in Example 3.1 of Ohlsson (1996).
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By utilizing equation (4.3), the variance is estimated without bias by substituting each term in

(4.17) with an unbiased counterpart, resulting in the variance estimator:

V̂p(Ŷπ) =
∑
k1∈S1

1

π
(1)
k1

(
1− π

(1)
k1

π
(1)
k1

)Ŷ 2
k1• −

∑
k2∈S2

1

π
(2)
k2

(
1− π

(2)
k2

π
(2)
k2

)
y2k1k2


+
∑
k2∈S2

1

π
(2)
k2

(
1− π

(2)
k2

π
(2)
k2

)Ŷ 2
•k2 −

∑
k1∈S1

1

π
(1)
k1

(
1− π

(1)
k1

π
(1)
k1

)
y2k1k2

 (4.18)

+
∑
k1∈S1

∑
k2∈S2

(
1− π

(1)
k1

π
(1)
k1

)(
1− π

(2)
k2

π
(2)
k2

)
y2k1k2

π
(1)
k1

π
(2)
k2

,

where Ŷk1• and Ŷ•k2 are defined in equation (4.7). It is worth noting that the two first terms in the

right-hand side of (4.18) incorporate correction terms for unbiasedness, which become negligible

with sufficiently large sample sizes.

The first proposed variance estimator V̂ SIMPL(Ŷπ), presented in (3.18), is derived by eliminating

the third interaction term in (4.18), yielding:

V̂ SIMPL(Ŷπ) =
∑
k1∈S1

1

π
(1)
k1

(
1− π

(1)
k1

π
(1)
k1

)Ŷ 2
k1• −

∑
k2∈S2

1

π
(2)
k2

(
1− π

(2)
k2

π
(2)
k2

)
y2k1k2


+
∑
k2∈S2

1

π
(2)
k2

(
1− π

(2)
k2

π
(2)
k2

)Ŷ 2
•k2 −

∑
k1∈S1

1

π
(1)
k1

(
1− π

(1)
k1

π
(1)
k1

)
y2k1k2

 . (4.19)

The second proposed variance estimator V̂ SIMPL2(Ŷπ) further removes the correction terms, re-

sulting in:

V̂ SIMPL2(Ŷπ) =
∑
k1∈S1

(
1− π

(1)
k1

π
(1)
k1

)
Ŷ 2
k1•

π
(1)
k1

+
∑
k2∈S2

(
1− π

(2)
k2

π
(2)
k2

)
Ŷ 2
•k2

π
(2)
k2

. (4.20)

5 Weighted bootstrap method for CCS

We now introduce a weighted bootstrap method for CSS, assuming that for each dimension d ∈

1, . . . , D, a weighted bootstrap method tailored to the weights (wd
kd
)kd∈Ud is available. Specifically,

we consider a set of weights (wd∗
kd
)kd∈Sd

for each d ∈ 1, . . . , D that satisfies the first and second-order

moment constraints outlined by Beaumont and Patak (2012):

∀kd ∈ Sd, E∗(w
d∗
kd
) = wd

kd
, (5.1)

∀kd, ld ∈ Sd, Cov∗(w
d∗
kd
, wd∗

ld
) = Ĉov

d
(wd

kd
, wd

ld
), (5.2)
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where E∗(·), V∗(·) and Cov∗(·, ·) denote the (bootstrap) expectation, variance and covariance, con-

ditioned on the original sample S.

A natural bootstrap version for CSS of the weighted estimator in (2.5) is:

Ŷ ∗ =
∑
k∈S

yk

D∏
d=1

wd∗
kd

(5.3)

where the weights are simulated independently in each dimension d ∈ 1, . . . , D. Applying Proposi-

tion 1 conditionally on the original sample S, we obtain the Hoeffding-Sobol decomposition:

Ŷ ∗ =
∑

I⊆{1,...,D}

Ŷ I∗, (5.4)

with Ŷ I∗ =
∑
k∈S

yk
∏
d∈I

(wd∗
kd

− wd
kd
)
∏
d/∈I

wd
kd

for any nonempty I ⊆ {1, . . . , D}.

By applying equation (3.6), we obtain:

V∗(Ŷ
I∗) =

∑
k,l∈S

ykyl
∏
d∈I

Cov∗(w
d∗
kd
, wd∗

ld
)
∏
d/∈I

E∗(w
d∗
kd
)E∗(w

d∗
ld
)

=
∑
k,l∈S

ykyl
∏
d∈I

Ĉovp(w
d
kd
, wd

ld
)
∏
d/∈I

wd
kd
wd
ld
. (5.5)

The last line in (5.5) follows from equations (5.1) and (5.3).

In the case of Horvitz-Thompson estimation, for any kd, ld ∈ Sd, we have:

wd
kd

=
1

πd
kd

and Ĉov
d
(wd

kd
, wd

ld
) =

∆d
kdld

πd
kd,ld

1

πd
kd
πd
ld

.

For the bootstrap version Ŷ ∗
π of the HT-estimator, equations (5.4) and (5.5) lead to:

Ŷ ∗
π =

∑
I⊆{1,...,D}

Ŷ I∗
π (5.6)

and

V∗(Ŷ
I∗
π ) =

∑
k,l∈S

ykyl
∏
d∈I

∆d
kdld

πd
kd,ld

1

πd
kd
πd
ld

∏
d/∈I

1

πd
kd

πd
ld

(5.7)

=
∑

k′,l′∈SI

Ŷk′

πk′

Ŷl′

πl′

∆k′l′

πk′l′
. (5.8)

This corresponds to the plug-in variance estimator for Ŷ I
π given in (3.24). Therefore, V∗(Ŷ

∗
π )

equals the plug-in variance estimator V̂ PLUG(Ŷπ) as defined in (3.26), and is also asymptotically
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unbiased by Proposition 4. This is a very important result. It indicates that if we have bootstrap

procedures that satisfy conditions (5.1) and (5.3) in each dimension, then under our conditions

(H1)-(H4), it suffices to independently apply these bootstrap procedures in each dimension to

obtain an asymptotically unbiased bootstrap variance estimator for CCS. In the following section,

we illustrate this result for two bootstrap procedures in the case of simple random sampling in each

dimension.

6 Case study: simple random sampling in each dimension

In this section, we focus on the particularly significant case of CCS in dimension D = 2, where

simple random sampling is employed in each dimension. We investigate the application of the

pseudo-population bootstrap in Section 6.1, and the utilization of the rescaled bootstrap is examined

in Section 6.2.

6.1 Pseudo-Population Bootstrap method

We introduce a pseudo-population bootstrap approach tailored for simple random sampling without

replacement in each dimension, drawing inspiration from the method proposed by Gross (1980).

For ease of exposition, let us assume that both N2/n2 and N1/n1 are integers. Once S1 and S2 are

sampled, the methodology involves constructing a pseudo-population U∗
d by replicating each unit in

Sd for Nd/nd times for each d = 1, 2. Subsequently, simple random sampling without replacement

is applied in each pseudo-population to generate the bootstrap sample S∗
d . Consequently, the

bootstrap estimator is given by:

Ŷ ∗
π =

N1N2

n1n2

∑
k1∈S∗

1

∑
k2∈S∗

2

yk1k2 . (6.1)

We can easily check that E∗(Ŷ
∗
π ) = Ŷπ. Furthermore, the bootstrap variance is

V∗(Ŷ
∗
π ) = N2

1N
2
2

[
(1− f1)

S2∗
1

n1
+ (1− f2)

S2∗
2

n2
+ (1− f1)(1− f2)

S2∗
12

n1n2

]
(6.2)

with

S2∗
1 =

N1(n1 − 1)

n1(N1 − 1)

[
Ŝ2
1 + (1− f2)

Ŝ2
12

n2

]
,

S2∗
2 =

N2(n2 − 1)

n2(N2 − 1)

[
Ŝ2
2 + (1− f1)

Ŝ2
12

n1

]
, (6.3)

S2∗
12 =

N1(n1 − 1)

n1(N1 − 1)

N2(n2 − 1)

n2(N2 − 1)
Ŝ2
12.
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Under our asymptotic framework where n1, n2 → ∞, the bootstrap variance asymptotically con-

verges to the unbiased variance estimator of Vp(Ŷπ), as illustrated in equation (4.11). However,

when n1 → ∞ and n2 is bounded, the component S2
1 tends to be overestimated, while the compo-

nents S2
2 and S2

12 tend to be underestimated. When n2 → ∞ and n1 is bounded, the component

S2
2 tends to be overestimated whereas the components S2

1 and S2
12 tend to be underestimated.

6.2 Rescaled bootstrap method

We propose a rescaled bootstrap method tailored for simple random sampling without replacement

in each dimension, drawing inspiration from the approach proposed in Rao et al. (1992). The

Horvitz-Thompson estimator employs weights of the form wk1k2 = w
(1)
k1

w
(2)
k2

for each unit (k1, k2) ∈

U , where w
(1)
k1

= 1/f1 and w
(2)
k2

= 1/f2. The method proposed in Rao et al. (1992) involves

constructing bootstrap weights wd∗
kd

for d = 1, 2 by multiplying the original weights by an adjustment

factor ad∗kd , resulting in wd∗
kd

= ad∗kdw
d
kd
. These adjustment factors are determined by sampling

multiplicities (m∗
kd
)kd∈Sd

from a multinomial distribution M
(
n∗
d;

1
nd
, . . . , 1

nd

)
, leading to:

ad∗kd = 1 +

√
n∗
d(1− fd)

nd − 1

(
ndm

d∗
kd

n∗
d

− 1

)
for any kd ∈ Sd, (6.4)

where n∗
d represents the resampling size, commonly chosen as n∗

d = nd − 1.

The rescaled bootstrap for CCS involves constructing bootstrap weights w∗
k1k2

= w
(1∗)
k1

w
(2∗)
k2

by

employing the rescaled bootstrap in each dimension. Performing straightforward algebra yields:

V∗(Ŷ
∗
π ) = N2

1N
2
2

[
(1− f1)

S2∗
1

n1
+ (1− f2)

S2∗
2

n2
+ (1− f1)(1− f2)

S2∗
12

n1n2

]
, (6.5)

with

S2∗
1 = Ŝ2

1 + (1− f2)
Ŝ2
12

n2
,

S2∗
2 = Ŝ2

2 + (1− f1)
Ŝ2
12

n1
, (6.6)

S2∗
12 = Ŝ2

12.

While the second-order moment condition is met in each dimension, the method by Rao and Wu

does not ensure that the bootstrap variance estimator is unbiased for CCS. However, it does ensure

that under our asymptotic framework where n1, n2 → ∞, the bootstrap variance estimator con-

verges asymptotically to the unbiased variance estimator of Vp(Ŷπ). Additionally, if n1 (respectively,
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n2) is bounded, then the component S2 (respectively, S1) tends to be overestimated, rendering our

proposed adaptation of the Rao-Wu-Yue bootstrap a conservative approach.

7 Simulation study

In this section, we conduct a simulation study in the D = 2 dimensional case, inspired by the setup

outlined in Juillard et al. (2017). Our code to realize these simulations is accessible on github in

the following link: https://github.com/Jean-Rubin/CrossClassifiedSampling. Our objective

is to assess the performance of the proposed variance estimators for estimating both a total and a

ratio. The underlying generation model we consider is:

yk1k2 = µ+ σ1Uk1 + σ2Vk2 + σ12Wk1k2 , (7.1)

where the Uk1 , Vk2 ,Wk1k2 are independent standard normal variables.

7.1 Variance estimation for a total

In this simulation study, we generate data according to model (7.1) with the following parameters:

N1 = N2 = 1000, µ = 200, and σ1 = σ2 = 5. The parameter σ12 varies in {5, 10, 50} to examine

the impact of interaction variance.

We perform T = 10, 000 iterations of sample selection using CCS with simple random sampling

in each dimension, with varying sample sizes n1 and n2 chosen from {5, 10, 100, 500}. For each

iteration, we estimate the total Y , and the estimator for the tth sample is denoted as Ŷ (t). We assess

the performance of the Unbiased variance estimator (see equation 4.11), the simplified variance

estimator V̂ SIMPL(Ŷπ) (Simpl) given in equation (4.13), and the simplified variance estimator

V̂ SIMPL2(Ŷπ) (Simpl2 ) given in equation (4.14). We also compute the bootstrap variance estimator

V̂
(t)
Gross associated to the pseudo-population bootstrap (Gross), V̂

(t)
RaoWu associated to the rescaled

bootstrap (RaoWu), and V̂
(t)
Skinner associated to a bootstrap procedure for with-replacement sampling

in each dimension proposed by Skinner (2015) (Skinner). We use B = 1, 000 bootstrap resamples

for each estimator. The bootstrap variance estimator V̂ (t) is computed using the formula:

V̂ (t) =
1

B − 1

B∑
b=1

(
Ŷ (b∗)(t) − 1

B

B∑
b=1

Ŷ (b∗)(t)

)2

. (7.2)

18

https://github.com/Jean-Rubin/CrossClassifiedSampling


To evaluate these estimators, we compute the Monte-Carlo relative bias (RB) and relative stability

(RS) as follows:

RB(V̂ ) = 100×
1
T

∑T
t=1 V̂

(t) − V

V
,

RS(V̂ ) = 100×

√
1
T

∑T
t=1(V̂

(t) − V )2

V
,

where V is an approximation of the true variance of Ŷ , computed from an independent run of

100, 000 simulations. Additionally, confidence intervals for the bootstrap methods are computed

using the reverse percentile method. More precisely, assume that the bootstrap estimates are

reordered as Ŷ (1∗)(t) ≤ Ŷ (2∗)(t) ≤ · · · ≤ Ŷ (B∗)(t). Then the reverse percentile confidence interval is

obtained by considering (Ŷ ∗ − Ŷ ) as an approximation of the distribution of Ŷ − Y , which leads

to:

CIREV,(t)
α (Y ) =

[
2Ŷ (t) − Ŷ (U∗)(t), 2Ŷ (t) − Ŷ (L∗)(t)

]
. (7.3)

For CI
REV,(t)
α (Y ) to have the coverage level α, the values of L and U are given by L = ⌊1−α

2 B⌋

and U = ⌊1+α
2 B⌋. This comprehensive evaluation allows us to assess the accuracy, stability, and

coverage of the proposed variance estimators under various conditions.

The simulation results are presented in Table 1. As anticipated, the relative bias of the two pro-

posed simplified variance estimators approaches zero as both sample sizes increase. However, the

first simplified variance estimator exhibits negative bias when both sample sizes are small or when

σ12 is large, as the dropped variance component in these scenarios is non-negligible. Similarly, in

these situations, the second simplified variance estimator displays positive bias, consistent with

the heuristic reasoning outlined in Section 3.3. All three analytic variance estimators demonstrate

similar levels of stability.

Turning to the bootstrap methods, Skinner’s approach is conservative across all cases, as expected

given its design for with-replacement sampling. As anticipated, the relative bias of both the Gross

bootstrap and the Rao-Wu-Yue bootstrap variance estimators diminishes as both sample sizes

increase. The bias of these two bootstrap variance estimators increases with σ12, aligning with the

formulation of the bootstrap variance outlined in equations (6.2) and (6.5). Overall, the bootstrap

variance estimator exhibits smaller bias and greater stability under Gross’s method, particularly

for moderate sample sizes. While the coverage rates of the bootstrap confidence intervals are well
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Ŷ
π
in

p
er
ce
n
ta
ge

R
B

R
S

C
I 9

5
%

σ
1
2

n
1

n
2

U
n
b
ia
se
d

S
im

p
l

S
im

p
l2

G
ro
ss

R
ao

W
u

S
k
in
n
er

U
n
b
ia
se
d

S
im

p
l

S
im

p
l2

G
ro
ss

R
a
oW

u
S
k
in
n
er

G
ro
ss

R
a
oW

u
S
k
in
n
er

5
5

5
2.
2

−
8.
6

9
.4

−
7
.2

17
.5

1
8
.1

55
.3

56
.2

55
.9

44
.8

57
.6

58
.4

9
1
.1

9
4
.2

9
4
.2

10
10

1.
2

−
4.
3

4
.7

−
1
.7

8
.7

1
0
.2

34
.5

3
5
.1

3
5
.0

31
.4

3
6
.0

3
7
.1

93
.4

94
.5

9
4
.9

10
10

0
0.
6

0.
2

2
.2

−
6
.6

1
.8

5
.6

4
7.
8

47
.6

4
7
.5

44
.2

48
.0

49
.1

9
1
.6

9
3
.0

9
3
.0

10
0

10
0

−
0.
1

−
0.
6

0
.3

−
0
.2

0
.7

1
1
.9

10
.1

10
.1

1
0
.2

10
.8

1
1
.2

1
7
.0

95
.1

94
.9

9
6
.0

50
0

50
0

−
0.
9

−
0.
9

−
0
.8

−
0
.9

−
0.
8

98
.5

3.
2

3
.2

3
.2

5
.4

5
.4

99
.1

9
5
.1

94
.8

9
9
.5

10
5

5
−
0.
3

−
27

.8
27

.3
17

.7
55

.9
5
6
.3

63
.5

7
1
.0

6
9
.1

53
.5

86
.2

85
.7

9
4
.7

9
6
.9

9
6
.8

10
10

−
0.
7

−
16

.5
14

.6
15

.7
31

.1
3
1
.9

38
.5

42
.1

4
0
.6

37
.9

4
9
.8

5
0
.3

9
5
.6

9
6
.9

9
7
.1

10
10

0
−
0.
3

−
4.
4

3
.0

−
3
.1

6
.2

8
.7

43
.5

43
.1

43
.0

3
8
.7

4
4
.3

4
4
.3

92
.3

93
.3

9
4
.0

10
0

10
0

−
0.
4

−
2.
0

1
.7

2
.2

3
.1

14
.8

1
0.
1

10
.2

10
.3

11
.2

11
.5

1
9
.4

9
5
.2

9
5
.0

9
6
.2

50
0

50
0

−
0.
1

−
0.
1

0
.1

0
.5

0
.3

10
0
.9

3.
2

3
.0

2
.9

6
.3

5
.1

1
02

.4
9
5
.1

94
.7

9
9
.4

20
5

5
−
0.
3

−
60

.9
60

.8
66

.8
12

1
.0

12
2
.5

82
.5

1
09

.1
10

0
.5

94
.6

1
46

.3
1
49

.0
9
7
.5

9
8
.9

9
8
.9

10
10

1.
0

−
45

.9
44

.5
67

.1
89

.8
9
2
.2

49
.3

6
8
.1

6
5
.4

80
.9

10
2
.6

10
5
.4

98
.2

99
.0

9
8
.8

10
10

0
0.
7

−
10

.9
12

.3
13

.1
24

.0
28

.7
43
.2

44
.7

43
.8

41
.3

4
9
.4

52
.3

9
5
.1

9
5
.8

9
6
.0

10
0

10
0

−
0.
1

−
6.
2

6
.1

11
.4

12
.2

25
.6

10
.1

11
.8

11
.8

16
.0

16
.7

2
8
.6

9
6
.0

9
6
.3

9
7
.2

50
0

50
0

−
0.
5

−
1.
2

0
.2

0
.9

1
.1

10
3
.6

3.
2

3
.4

3
.2

5
.6

5
.7

1
04

.2
9
5
.1

95
.1

9
9
.6

20



maintained when the variance estimators are approximately unbiased, they tend to be conservative

when the variance estimators are conservative, as one would expect.

7.2 Variance estimation for a ratio

In the second population, the values for three variables of interest are generated according to the

model

zk1k2 = σ1Uk1 + σ2Vk2 + σ12Wk1k2 , (7.4)

xk1k2 = µx + αzk1,k2 + (1− α)(σ′
1U

′
k1 + σ′

2V
′
k2 + σ′

12W
′
k1k2) (7.5)

yk1k2 = µy + βzk1,k2 + (1− β)(σ′′
1U

′′
k1 + σ′′

2V
′′
k2 + σ′′

12W
′′
k1k2). (7.6)

The variables Uk1 , U
′
k1
, U ′′

k1
, Vk2 , V

′
k2
, V ′′

k2
, andWk1k2 ,W

′
k1k2

,W ′′
k1k2

, are independent standard normal

variables. The parameter α in equation (7.5) is used to control the correlation between variables

x and z. Similarly, the parameter β in equation (7.5) is used to control the correlation between

variables y and z. Thus, high values of α and β lead to high correlations between x and y. We

used µx = 100, µy = 300, and σ1 = σ2 = σ12 = σ′
1 = σ′′

1 = 5, σ′
2 = σ′′

2 = 10, σ′
12 = σ′′

12 = 15. Finally

we considered α ∈ {0.1, 0.5, 0.8} and β = 0.5.

A Monte-carlo procedure similar to the one in the previous section is then applied to the substi-

tution estimator R̂ = Ŷ /X̂ of the ratio R = Y/X. For each sample t ∈ {1, . . . , T}, we produce

bootstrap estimations R̂(b∗)(t) = Ŷ (b∗)(t)/X̂(b∗)(t) from the bootstrap versions (Ŷ (b∗)(t), X̂(b∗)(t)) of

(Ŷ (t), X̂(t)). We obtain a bootstrap variance estimator, and a confidence interval by means of the

reverse percentile bootstrap. For the analytic variance estimators, linearized variance estimators

are obtained by replacing the variable yk1k2 by the linearized variable νk1k2 = (yk1k2 − R̂xk1k2)/X̂

in the three possible variance estimators.

The simulation results are presented in Table 2. The results are very similar to those obtained for

total estimation. We have compiled in Table 3 the Monte-carlo mean values for the dispersions

S2
1,η, S

2
2,η and S2

12,η associated with the variable ηk1k2 = yk1k2 −Rxk1k2 . Results show that S2
12,η is

comparatively larger as α decreases, and as for the estimation of a total, the bias of the variance

estimators is larger in this situation.
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Table 3: Monte Carlo mean value for the population dispersions S2
1,η, S

2
2,η and S2

12,η

α S2
1,η S2

2,η S2
12,η

0.1 192 760 1, 696

0.5 88 276 586

0.8 105 151 227

8 Application to the ELFE survey

ELFE is a French longitudinal survey that tracks children from birth to adulthood (Pirus et al.,

2010; Charles et al., 2020). It commenced in France in 2011, with a survey of babies born in mater-

nity wards, excluding the most premature infants. The sample was selected using two-dimensional

cross-classified sampling, achieved by combining the population of 544 maternity wards with the

population of 365 days. The population of maternity wards was divided into 5 strata of equal

size based on the number of births in 2008. Similarly, the population of days was divided into 4

strata, each representing a season. The sampling design can be viewed as stratified simple random

sampling in each dimension (Juillard et al., 2017). All babies born in the selected maternity wards

on the designated days were surveyed, resulting in approximately 18, 000 children after adjusting

for unit non-response due to parental refusal to participate.

In this application, we are interested in the sub-population of maternity wards that hosted be-

tween 1, 010 and 1, 418 births in 2018. It represents our population U1 in the first dimension, of

size N1 = 109. The responding maternity wards in U1 are seen as coming from a simple random

sample, corresponding to a sample S1 of size n1 = 62. The population U2 in the second dimension

is that of all days, of size N2 = 365. The sample of days selected for ELFE is seen as coming from

a simple random sample, corresponding to a sample S2 of size n2 = 25. Thus, we obtain a sample

S = S1 × S2 of 1, 550 maternity wards × days.

We are interested in estimating the total number of births, the total number and percentage of twin

births, the total number and percentage of births according to the marital status of the mother

(married or remarried; divorced, single, or widowed; civil solidarity pact), and the average birth

weight of the babies. We are also interested in variables related to the mother: we estimate the

23



average weight gain between the beginning and the end of pregnancy, and the average BMI at the

end of pregnancy. For a total Y , we use the Horvitz-Thompson estimator Ŷπ given in equation

(2.8). For a ratio R = Y 1/Y 2, we use the substitution estimator R̂π = Ŷ 1
π /Ŷ

2
π .

We first consider analytic variance estimators. For the estimator of the total Ŷπ, we consider the

Unbiased variance estimator (see equation 4.11), the simplified variance estimator V̂ SIMPL(Ŷπ)

(Simpl) given in equation (4.13), and the simplified variance estimator V̂ SIMPL2(Ŷπ) (Simpl2 )

given in equation (4.14). For the substitution estimator R̂π = Ŷ 1
π /Ŷ

2
π , we use linearization variance

estimators obtained by replacing in the three previous estimators the variable of interest yk1k2 with

the linearized variable ek1k2 = {Ŷ 2
π }−1{y2k1k2 − R̂πy

1
k1k2

}. We also consider two bootstrap variance

estimators for both Ŷπ and R̂π. The first procedure is the pseudo-population bootstrap (see Section

6.1), with the variant proposed by Booth et al. (1994) to take into account the fact that N1/n1

and N2/n2 are not integers. The second procedure is the rescaled bootstrap (see Section 6.2). The

results are presented in terms of coefficients of variation. The analytic and the bootstrap variance

estimators are also plugged into normality-based confidence intervals, with a nominal one-tailed

error rate of 2.5 %. For both bootstrap procedures, we also use a confidence interval based on the

reverse percentile method (see equation 7.3).

The findings are presented in Table 4 concerning the estimation of counts for variables. It is observed

that, in general, the various methods for estimating variance yield similar results, with the exception

being the estimation of twin counts. Once again, this scenario demonstrates a notable disparity

in the interaction term, with Ŝ2
12 = 4.8 10−2, Ŝ2

1 = 4.4 10−4, and Ŝ2
2 = 8.2 10−4. Notably, the

variance estimator Simpl exhibits a negative bias in this case. Conversely, the variance estimator

Simpl2 displays a positive bias, albeit less pronounced than the bootstrap variance estimators.

These observations extend to the estimation of ratios, as evidenced in Table 5.

9 Conclusion

In this paper, we investigated CSS designs across an arbitrary number of dimensions. We estab-

lished the weak consistency and asymptotic normality of the HT-estimator under mild conditions.

Specifically, we highlighted that these asymptotic properties necessitate the sample size to approach

infinity in each dimension, presenting a significant limitation of CSS designs compared to multi-
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Table 4: Estimations of the numbers for count variables, with estimated coefficient of variations

and confidence intervals

Birth Twins Marital status

Married/remarried Divorced/single Civil solidarity

/widowed pact

Ŷπ 49 487 975 21 766 513 27 20

Unbiased ĈV 10.5% 27.7% 11.6% 10.6% 26.0%

ICnorm [39 291, 59 683] [446, 1 504] [16 807, 26 725] [21 559, 32 857] [252, 774]

Simpl ĈV 10.4% 23.7% 11.4% 10.4% 21.8%

ICnorm [39 366, 59 608] [523, 1 427] [16 888, 26 644] [21 641, 32 775] [293, 733]

Simpl2 ĈV 10.6% 31.2% 11.8% 10.7% 29.5%

ICnorm [39 216, 59 758] [379, 1 571] [16 727, 26 805] [21 477, 32 939] [216, 810]

Gross ĈV 10.6% 35.2% 11.9% 10.9% 32.8%

ICnorm [39 203, 59 771] [302, 1 648] [16 694, 26 838] [21 382, 33 034] [183, 843]

ICrev [39 580, 60 166] [205, 1 540] [16 710, 26 874] [21 510, 33 086] [154, 821]

Rao-Wu ĈV 10.6% 34.1% 11.9% 10.8% 33.2%

ICnorm [39 248, 59 726] [324, 1 626] [16 701, 26 831] [21 447, 32 969] [179, 847]

ICrev [39 635, 59 822] [249, 1 525] [16 816, 26 841] [21 594, 33 009] [140, 801]
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stage sampling designs, where only the number of PSUs needs to approach infinity to ensure these

properties (Chauvet and Vallée, 2020).

Additionally, we delved into the intricate matter of variance estimation for CSS (Juillard et al.,

2017). We derived the Hoeffding-Sobol decomposition of the HT-estimator and proposed two

straightforward variance estimators by focusing on the leading terms in this decomposition. The-

oretical and empirical analyses demonstrate the consistency of these estimators as sample sizes

increase. Our empirical findings indicate that the plug-in variance estimator tends to be conserva-

tive with smaller sample sizes, exhibiting a moderate positive bias as long as interaction dispersion

remains moderate. Therefore, if an analytic variance estimator is preferred, we recommend its use.

Furthermore, we explored bootstrap variance estimation, an area which is little addressed in the

literature concerning CSS. By employing a conditional Hoeffding-Sobol decomposition, we estab-

lished that weighted bootstrap techniques are applicable for CSS, provided a weighted bootstrap

technique is available for the HT-estimator in each dimension. This greatly facilitates the imple-

mentation of simple bootstrap procedures for CSS. Particularly, we proposed adaptations of the

population bootstrap and the rescaled bootstrap for simple random sampling in each dimension.

Empirical results validate the asymptotic unbiasedness of both bootstrap techniques as sample sizes

increase. Additionally, they suggest that the population bootstrap yields variance estimators that

are less biased and more stable with smaller sample sizes compared to the rescaled bootstrap.
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A Proofs for Section 3.1

A.1 Proof of equation (3.1)

From equation (2.6), a straightforward computation leads to the result:

Vp(Ŷ ) =
∑
k,l∈U

Covp

(
yk

D∏
d=1

wd
kd
, yl

D∏
d=1

wd
ld

)
(A.1)

=
∑
k,l∈U

ykyl

[
Ep

(
D∏

d=1

wd
kd
wd
ld

)
− Ep

(
D∏

d=1

wd
kd

)
Ep

(
D∏

d=1

wd
ld

)]
(A.2)

=
∑
k,l∈U

ykyl

[
D∏

d=1

Ep(w
d
kd
wd
ld
)−

D∏
d=1

Ep(w
d
kd
)Ep(w

d
ld
)

]
(A.3)

where the last line follows from the independence of the weights in each dimension.

A.2 Proof of Proposition 1

Equations (3.2) as well as (3.5) in the first part of the proposition are general properties of the

Hoeffding-Sobol decomposition applied to Ŷ seen as a function of the independent variables (Sd)
D
d=1,

the general formula corresponding to (3.3). It remains to check if the equation (3.4) is true in our

case by computing for each I ⊆ {1, . . . , D} the associated Ŷ I starting from the equation (3.3)

Ŷ I =
∑

I′∈P(I)

(−1)|I|−|I′|Ep(Ŷ |(Sd)d∈I′) (A.4)

=
∑

I′∈P(I)

(−1)|I|−|I′|
∑
k∈U

yk

D∏
d=1

[
(wd

kd
− Ep(w

d
kd
))1(d∈I′) + Ep(w

d
kd
)
]

(A.5)

=
∑
k∈U

yk
∑

I′∈P(I)

(−1)|I|−|I′|
∑

I′′⊆{1,...,D}

∏
d∈I′′

(wd
kd

− Ep(w
d
kd
))1(d∈I′)

∏
d/∈I′′

Ep(w
d
kd
). (A.6)

By observing that for any I ′′ ⊆ {1, . . . , D},
∏

d∈I′′ 1(d∈I′) = 1(I′′⊂I′) and that
∑

I′∈P(I)(−1)|I|−|I′|1(I′′⊆I′) =

1(I′′=I), one can conclude by rearranging the sum that

Ŷ I =
∑
k∈U

yk
∑

I′′⊆{1,...,D}

∏
d∈I′′

(wd
kd

− Ep(w
d
kd
))
∏
d/∈I′′

Ep(w
d
kd
)
∑

I′∈P(I)

(−1)|I|−|I′|1(I′′⊆I′) (A.7)

=
∑
k∈U

yk
∏
d∈I

(wd
kd

− Ep(w
d
kd
))
∏
d/∈I

Ep(w
d
kd
), (A.8)
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from which we can deduce the value of Vp(Ŷ
I) for I ̸= ∅:

Vp(Ŷ
I) =

∑
k,l∈U

ykylCovp

(∏
d∈I

(wd
kd

− Ep(w
d
kd
)),
∏
d∈I

(wd
ld
− Ep(w

d
ld
))

)∏
d/∈I

Ep(w
d
kd
)Ep(w

d
ld
) (A.9)

=
∑
k,l∈U

ykylEp

(∏
d∈I

(wd
kd

− Ep(w
d
kd
))(wd

ld
− Ep(w

d
ld
))

)∏
d/∈I

Ep(w
d
kd
)Ep(w

d
ld
) (A.10)

=
∑
k,l∈U

ykyl
∏
d∈I

Covp(w
d
kd
, wd

ld
)
∏
d/∈I

Ep(w
d
kd
)Ep(w

d
ld
). (A.11)

where the last line follows from the independence of the weights in each dimension.

A.3 Proof of Corollary 1

It suffices to show that for every non-empty subset I ⊆ {1, . . . , D}, Vp(Ŷ
I) is unbiasedly esti-

mated by V̂p(Ŷ
I). It is possible to rewrite the sum over U by introducing the sample membership

indicators. We then obtain

Ep(V̂p(Ŷ
I)) =

∑
k,l∈U

ykylEp

[∏
d∈I

Ĉov
d
(wd

kd
, wd

ld
)
∏
d/∈I

δdkdδ
d
ld

πd
kd,ld

]
(A.12)

=
∑
k,l∈U

ykyl
∏
d∈I

Ep

[
Ĉov

d
(wd

kd
, wd

ld
)
]∏
d/∈I

Ep(δ
d
kd
δdld)

πd
kd,ld

(A.13)

=
∑
k,l∈U

ykyl
∏
d∈I

Covp(w
d
kd
, wd

ld
) (A.14)

= Vp(Ŷ
I). (A.15)

where the second line follows from the fact that for a fixed k and l ∈ U , each Ĉov
d
(wd

kd
, wd

ld
) and

δdkdδ
d
ld

are built from the sample Sd only and are thus all independent from each other as long as

they correspond to different dimensions.

B Proofs for Section 3.2

B.1 Proof of Corollary 2

Equation (3.12) is a direct consequence of equation (3.4), applied for wd
kd

= δdkd/π
d
kd
. Similarly,

equation (3.13) follows from equation (3.6). Finally, equation (3.14) follows by applying equation

(3.9) with

Ĉov
d
(wd

k, w
d
l ) =

∆d
kdld

πd
kd,ld

δdkdδ
d
ld

πd
kd
πd
ld

. (B.1)
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B.2 Proof of Proposition 2

Let us introduce the partition UI ×UI =
⋃

I′∈P(I) PI′ for a given non-empty I ⊆ {1, . . . , D}, where

we defined for each I ′ ∈ P(I), the set PI′ by

PI′ = {k′, l′ ∈ UI , ∀d ∈ I, (k′d ̸= l′d ⇔ d ∈ I ′)} (B.2)

furthermore, note that we can identify every element k ∈ U with a couple (k1,k2) ∈ UI ×UIc where

we introduced UIc =
∏

d/∈I Ud. More precisely, the coordinates of k1 are given by the coordinates

of k associated to the dimensions in I and the coordinates of k2 are given by the coordinates of

k associated to the dimensions that are not in I. We will therefore denote by yk1k2 the quantity

yk. This splitting allows us for example to rewrite the subtotal Yk′ in the form Yk′ =
∑

l′∈UIc
yk′l′ .

Now let us fix some subset I ′ ∈ P(I). We can verify using the Cauchy-Schwarz inequality that

∑
k′∈UI

Y 2
k′ =

∑
k′∈UI

 ∑
l′∈UIc

yk′l′

2

≤

(∏
d/∈I

Nd

) ∑
k′∈UI

∑
l′∈UIc

y2k′l′ ≤ α
N2∏
d∈I Nd

(B.3)

by using the assumption (H1).

Now we can similarly identify an element k′ ∈ UI with a couple (k′
1,k

′
2) ∈ UI′ × UI\I′ . We will

therefore denote by Yk′
1k

′
2
the subtotal Yk′ . Thus, using again the Cauchy-Scharz inequality, it is

now easy to verify that ∑
(k′,l′)∈PI′

Yk′Yl′ ≤
∑

k′′,l′′∈UI′
m′′∈UI\I′

Yk′′m′′Yl′′m′′ (B.4)

=
∑

m′′∈UI\I′

 ∑
k′′∈UI′

Yk′′m′′

2

(B.5)

≤

(∏
d∈I′

Nd

) ∑
m′′∈UI\I′

∑
k′′∈UI′

Y 2
k′′m′′ (B.6)

≤ α
N2∏

d∈I\I′ Nd
. (B.7)

Furthermore we know by construction of PI′ that for any (k′, l′) ∈ PI′ , k
′
d ̸= l′d if and only if d ∈ I ′

and thus using assumption (H3)-(H4) we get that

∀(k′, l′) ∈ PI′ , ∀d ∈ I ′,

∣∣∣∣∣∆
d
k′d,l

′
d

πd
k′d
πd
l′d

∣∣∣∣∣ ≤ γd
λ2
d

1

nd
. (B.8)

On the other hand, when d /∈ I ′, we have that k′d = l′d and thus

∀(k′, l′) ∈ PI′ , ∀d /∈ I ′,

∣∣∣∣∣∆
d
k′d,l

′
d

πd
k′d
πd
l′d

∣∣∣∣∣ = 1− πd
k′d

πd
k′d

≤ 1

λd

Nd

nd
. (B.9)
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From there, we can build an upper bound of the sum

∑
(k′,l′)∈PI′

Yk′Yl′
∏
d∈I

∆d
k′dl

′
d

πd
k′d
πd
l′d

=
∑

(k′,l′)∈PI′

Yk′Yl′
∏
d∈I′

∆d
k′dl

′
d

πd
k′d
πd
l′d

∏
d∈I\I′

∆d
k′d,l

′
d

πd
k′d
πd
l′d

(B.10)

= O

 N2∏
d∈I\I′ Nd

∏
d∈I′

1

nd

∏
d∈I\I′

Nd

nd

 (B.11)

= O

(
N2∏
d∈I nd

)
. (B.12)

Now, we can finally conclude that

Vp(Ŷ
I) =

∑
I′∈P(I)

 ∑
(k′,l′)∈PI′

Yk′Yl′
∏
d∈I

∆d
k′dl

′
d

πd
k′d
πd
l′d

 = O

(
N2∏
d∈I nd

)
. (B.13)

B.3 Proof of Proposition 3

We can write

Ŷπ − Y =
D∑

d=1

Ŷ {d}
π +∆,where ∆ =

∑
I⊂{1,...,D}
Card(I)≥2

Ŷ I
π .

We obtain

Vp(Ŷπ) =
D∑

d=1

Vp(Ŷ
{d}
π ) + Vp(∆). (B.14)

It follows from Proposition 2 that

Vp

(
N−1Ŷ {d}

π

)
= O(n−1

m ) and Vp(N
−1∆) = o(n−1

m ). (B.15)

Therefore, we obtain (3.19). Note that from equations (B.14) and (B.15), the constants in assump-

tion (H7) are such that
∑D

d=1(γd)
2 = 1.

From equation (B.14), we also obtain

Ŷπ − Y√
Vp(Ŷπ)

=

D∑
d=1

γd
Ŷ

{d}
π√

Vp(Ŷ
{d}
π )︸ ︷︷ ︸

∆1

+

D∑
d=1


√√√√Vp(Ŷ

{d}
π )

Vp(Ŷπ)
− γd

 Ŷ
{d}
π√

Vp(Ŷ
{d}
π )︸ ︷︷ ︸

∆2

+
∆√

Vp(Ŷπ)︸ ︷︷ ︸
∆3

. (B.16)

By using assumption (H5) and the right-hand side of (B.14), we have ∆3 −→Pr 0, where −→Pr

stands for the convergence in probability. Also, by using Assumptions (H6) and (H7) and the

Slutsky theorem, we obtain that ∆2 −→Pr 0. Finally, since the variables Ŷ
{d}
π are independent,

we obtain from assumption (H6) by standard arguments that ∆1 −→ N (0, 1), which completes the

proof.
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B.4 Proof of Proposition 4

Let us fix a non-empty subset I ⊆ {1, . . . , D}. We can write using the definitions of V̂ PLUG(Ŷ I
π )

Ep

[
V̂ PLUG(Ŷ I

π )
]
=

∑
k′,l′∈UI

Ep(Ŷk′ Ŷl′δk′δl′)

πk′πl′

∆k′l′

πk′l′
(B.17)

=
∑

k′,l′∈UI

Ep(Ŷk′ Ŷl′)Ep(δk′δl′)

πk′πl′

∆k′l′

πk′l′
(B.18)

=
∑

k′,l′∈UI

Ep(Ŷk′ Ŷl′)

πk′πl′
∆k′l′ (B.19)

Where the line (B.18) follows from the fact that δk′ and δl′ are functions of (Sd)d∈I whereas Ŷk′

and Ŷl′ are functions of (Sd)d/∈I , and are therefore independent. We can then similarly expand the

sum by replacing Ŷk′ and Ŷl′ by their definitions in (3.25):

Ep

[
V̂ PLUG(Ŷ I

π )
]
=

∑
k′,l′∈UI

∑
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d
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=
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k,l∈U
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∏
d∈I
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kdld

∏
d/∈I

πd
kdld

. (B.21)

Now we can furthermore observe that for any k, l ∈ U , we have the following identity∏
d/∈I

πd
kdld

=
∏
d/∈I

(∆d
kdld

+ πd
kd
πd
ld
) =

∑
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∆d
kdld

∏
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πd
kd
πd
ld

(B.22)

which can then be substituted in the previous result to give

Ep

[
V̂ PLUG(Ŷ I
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]
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=
∑
I′⊆Ic
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k,l∈U
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d∈I∪I′ π

d
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yl∏
d∈I∪I′ π

d
ld

∏
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∆d
kdld

(B.24)

Finally we can note that {I ∪ I ′, I ′ ⊆ Ic} =
{
I ′, I ⊆ I ′ ⊆ {1, . . . , D}

}
. From this observation, we

can make a change of variable and conclude

Ep

[
V̂ PLUG(Ŷ I

π )
]
=
∑
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∑
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d∈I′ π
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=
∑
I′⊇I

∑
k′′,l′′∈UI′
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Pirus, C., Bois, C., Dufourg, M.-N., Lanoë, J.-L., Vandentorren, S., Leridon, H., Depledge, R., and

the Elfe team (2010). Constructing a cohort: Experience with the french elfe project. Population,

65:637–670.

Rao, J., Wu, C., and Yue, K. (1992). Some recent work on resampling methods for complex surveys.

Survey methodology, 18(2):209–217.

Särndal, C.-E., Swensson, B., and Wretman, J. (1992). Model Assisted Survey Sampling. Springer

New York.

Skinner, C. (2015). Cross-classified sampling: some estimation theory. Statistics & Probability

Letters, 104:163–168.

34


	Introduction
	Multi-dimensional cross-classified sampling
	Notation
	Estimation
	Assumptions

	Properties of total estimators
	Hoeffding-Sobol variance decomposition of the CCS
	Properties of the Horvitz-Thompson estimator
	Plug-in variance estimation

	Illustrations of the simplified estimations
	General case
	Simple random sampling
	Poisson sampling

	Weighted bootstrap method for CCS
	Case study: simple random sampling in each dimension
	Pseudo-Population Bootstrap method
	Rescaled bootstrap method

	Simulation study
	Variance estimation for a total
	Variance estimation for a ratio

	Application to the ELFE survey
	Conclusion
	Proofs for Section 3.1
	Proof of equation (3.1)
	Proof of Proposition 1
	Proof of Corollary 1

	Proofs for Section 3.2
	Proof of Corollary 2
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4


