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Résumé. Il a été prouvé que le test de la médiane de Mood est plus puissant que les
tests de Student et de Wilcoxon-Mann-Whitney dans le cas des distributions à queues lour-
des pour des données univariées. L’extension multivariée du test de la médiane, pour des
données multidimensionnelles, s’est également montrée plus efficace que les tests Hotelling
T 2 et Wilcoxon-Mann-Whitney dans les cas des distributions à queues lourdes. En se basant
sur ces postulats, dans ce travail, nous construisons un test de la médiane basé sur les rangs
spatiaux pour données fonctionnelles et obtenons des résultats asymptotiques. Ensuite, nous
le comparons avec plusieurs tests concurrents en utilisant des données fonctionnelles simulées
et réelles: comme dans les cas univariés et multivariés, nos résultats montrent que le test
proposé est plus adapté aux distributions à queues lourdes.
Mots-clés. Distributions à queues lourdes, Données fonctionnelles, Espace de Hilbert séparable,
Test de localisation pour deux échantillons,. . .

Abstract. The Mood median test has been proven to be more powerful than the Student
t-test and the Wilcoxon-Mann-Whitney test in heavy-tailed cases for univariate data. The
multivariate extension of the median test, for multidimensional data, was shown to be more
efficient than the Hotelling T 2 and the Wilcoxon-Mann-Whitney tests for high dimensions
and in very heavy-tailed cases. Based on these postulates, in this work, we construct a me-
dian type test based on spatial ranks for functional data and we obtain asymptotic results.
Then, we compare the proposed functional test with a wide range of competing tests using
simulated and real functional data: as in the univariate and multivariate cases, our results
show that the proposed test is more adapted to heavy-tailed distributions.
Keywords. Functional data, Heavy-tailed Distributions, Separable Hilbert space, Two-
sample location test, . . .

1 Introduction

Statistical hypothesis testing plays a fundamental role in statistics. In nonparametric statis-
tics, tests of hypotheses are known as nonparametric or distribution-free tests. In this setting,
it is not necessary to assume hypotheses on the shape of the distribution and estimate its
parameters. These tests can be used to verify that two or more datasets come from identical
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populations. Here, we will focus on this type of tests to solve the two-sample location prob-
lem.
For univariate data, Wilcoxon (1945) and Mann and Whitney (1947) proposed nonparametric
tests based on ranks. Each of them defined their own test statistic which leads to the same
test named Wilcoxon-Mann-Whitney. This test is more powerful than the Student’s t-test for
various non-Gaussian distributions (Blair and Higgins, 1980). Another nonparametric test
designed by Mood (1950) and is called the median test. Another version of this test based
on ranks was presented in Van der Vaart (1998). It is asymptotically optimal in the case of
a double exponential distribution. Nowadays, the median test is not often used because it is
less powerful than the Wilcoxon-Mann-Whitney test when applied to Gaussian distributions
(Mood, 1954). However, when dealing with symmetrical distributions with heavy-tails, this
test is more efficient than the Wilcoxon-Mann-Whitney one (Capéraà and Cutsem, 1988).
For multivariate data, several versions of the Hotelling, Wilcoxon-Mann-Whitney and median
tests have been studied (Puri and Sen, 1971; Chakraborty and Chaudhuri, 1999; Oja, 2010).
The extension of univariate two-sample Mood test has the best efficiency compared to the
Hotelling test in heavy-tailed cases and for high dimensions (Oja and Randles , 2004).
Currently, the development of the sensoring and computing tools allows us to work with
huge datasets. So, we have more and more access to data of functional type (Ramsay and
Silverman, 2005). The main particularity of such data is the infinite dimension of the data
space such as Banach and Hilbert spaces. Appropriate statistical tools are necessary to han-
dle these types of data. Two-sample tests for functional data have also been proposed by
several authors using either parametric or nonparametric techniques, such as in the univari-
ate and multivariate settings. To decide whether two samples of curves are issued from the
same distribution, Horváth et al. (2013) proposed two test statistics for testing the equality
of mean functions. One of them is the same as the Hotelling statistic in finite dimensional
space. Moreover, Cuevas et al. (2004) introduced an analog of the classical one-way analysis
of variance (ANOVA) problem for functional data. In addition, in a nonparametric setting,
Chakraborty and Chaudhuri (2015) proposed a Wilcoxon-Mann-Whitney test based on spa-
tial ranks.
In this work, we propose a median test statistic based on spatial ranks in Banach space and
especially in separable Hilbert space. We study the asymptotic behavior of the proposed test
statistic under the null hypothesis and under some shrinking location shift models. Then, we
implement the test using its asymptotic distribution on the one hand and using the random
permutation method on the other hand. To illustrate our theoretical results, we compare the
performance of the proposed test with various other tests using simulated and real functional
datasets.

2 Construction of the test

2.1 Introduction of the median test statistics

First we recall what median tests look like in the univariate case.
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2.1.1 Univariate case

Let X and Y be two R-valued random variables. We consider X1, . . . , Xm and Y1, . . . , Yn two
independent random samples of X and Y with distribution functions F and Fθ respectively,
such that ∀x ∈ R;Fθ(x) = F (x− θ). The constant θ is called the translation parameter.
The median test statistic based on ranks for testing the hypothesis

H0 : θ = 0 against H1 : θ ̸= 0

is defined as

TMo =
1

n

n∑
i=1

1{Ri>0},

where Ri = 1 + (
∑m

j=1 1{Yi>Xj} +
∑n

k=1 1{Yi>Yk} − N+1
2

) is the centered rank of Yi when
X1, . . . , Xm and Y1, . . . , Yn are ordered together in the same sample of size N = n + m.
To make things easier afterwards, we introduce a test statistic which counts the number of
the observations Y1, . . . , Yn that are greater than the median of the observations X1, . . . , Xm

instead of the global median. In other words, in the univariate case it is equal to

TMED =
1

n

n∑
i=1

1{F̂m(Yi)>
1
2
},

where F̂m(x) = 1/m
∑m

j=1 1{Xj≤x} is the empirical distribution function of X1, . . . , Xm. This
statistic is inspired from the work of Koul and Staudte (1972).
Our goal here is to construct an extension of these tests in infinite dimensional space.

2.1.2 Functional case

Now, let X and Y be two independant random elements in a Banach space χ. We denote
by χ∗ its dual space, i.e., the space of the linear continuous functions on χ with values in R,
and χ∗∗ its bidual space, i.e., the space of the linear continuous functions on χ∗ with values
in R. We denote by ∥.∥χ (resp. ∥.∥χ∗) a norm on χ (resp. on χ∗). Moreover, we consider
X1, . . . , Xm and Y1, . . . , Yn independent random samples of X and Y from two probability
measures P and Q on χ. We suppose that P and Q differ by a shift ∆ ∈ χ.
Then, we want to test

H0 : ∆ = 0 against H1 : ∆ ̸= 0.

To construct our test statistics, we suppose that :

- The space χ is smooth, i.e., the norm function ∥.∥χ is Gateaux differentiable at each
x ̸= 0, x ∈ χ. We denote by SGNx ∈ χ∗ its Gateaux derivative.

- The space χ∗ is smooth, i.e, the norm function ∥.∥χ∗ is Gateaux differentiable at each
y ̸= 0, y ∈ χ∗. We denote by SGN∗

y ∈ χ∗∗ its Gateaux derivative.
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1. TMED in the functional case: the test statistic TMED becomes

MED =
1

n

n∑
i=1

SGN∗ 1
m

m∑
j=1

SGN{Yi−Xj}


=

1

n

n∑
i=1

SGN∗
Fm(Yi))

, (1)

where Fm(y) = 1/m
∑m

j=1 SGN{y−Xj} is the empirical spatial distribution associated
to the iid observations X1, . . . , Xm (Chakraborty and Chaudhuri, 2014). Remark that,
in the univariate case, the empirical spatial distribution is equal to 2F̂m(y) − 1 where
F̂m is the empirical distribution function of X1, . . . , Xm.

2. TMo in the functional case: the test statistic TMo becomes

Mo =
1

n

n∑
i=1

SGN∗ n∑
k=1

SGNYi−Yk
+

m∑
j=1

SGNYi−Xj


.

Remark: When the space χ is assumed to be an Hilbert one, the sign function become
simpler (Chakraborty and Chaudhuri, 2015) so that SGNx = x

∥x∥χ . Thus, the MED statistic

(1) can be rewrited as:

MED =
1

n

n∑
i=1

m∑
j=1

Yi −Xj

∥Yi −Xj∥χ∥∥∥∥∥
m∑
j=1

Yi −Xj

∥Yi −Xj∥χ

∥∥∥∥∥
χ

,

and the statistic Mo becomes

Mo =
1

n

n∑
i=1

n∑
k=1,k ̸=i

Yi − Yk

∥Yi − Yk∥χ
+

m∑
j=1

Yi −Xj

∥Yi −Xj∥χ∥∥∥∥∥
n∑

k=1,k ̸=i

Yi − Yk

∥Yi − Yk∥χ
+

m∑
j=1

Yi −Xj

∥Yi −Xj∥χ

∥∥∥∥∥
χ

.

2.2 Asymptotic distribution of the proposed test statistic

In this subsection, we study the asymptotic normality of MED. First, we introduce the
following notations which will be used later :

• We denote by G(m,C) the distribution of a Gaussian random element in a separable
Banach space χ with mean m ∈ χ and covariance C, where C : χ∗ × χ∗ → R is a
symmetric nonnegative definite continuous bilinear function.
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• For all x, y ∈ χ, we define

FX(y) = E
[
SGN{y−X}

∣∣y] , (2)

FY (x) = E
[
SGN{Y−x}

∣∣x] . (3)

These two functions are also used in Chakraborty and Chaudhuri (2015) to prove the
theorem of the asymptotic normality of the Wilcoxon-Mann-Whitney test statistic.
Moreover, we define

µ = E
[
SGN∗

{FX(Y )}
]

and
µ̃ = E

[
SGN∗

{FY (X)}
]
.

• Let Γ1,Γ2 : χ∗∗∗ × χ∗∗∗ → R be the symmetric positive definite continuous bilinear
operators defined as :

Γ1(f, g) = E
[
f
(
SGN∗

{FX(Y )}
)
g
(
SGN∗

{FX(Y )}
)]

− f(µ)g(µ) (4)

and
Γ2(f, g) = E

[
f
(
SGN∗

{FY (X)}
)
g
(
SGN∗

{FY (X)}
)]

− f(µ̃)g(µ̃), (5)

where f, g ∈ χ∗∗∗.

For our next theorem, we shall also consider the following assumptions:

Assumption 1 We assume that the norm in χ∗ is twice Gateaux differentiable at every
x ̸= 0.

Assumption 2 From Assumption 1, we suppose that the Hessian of the function g : x 7→
E
[
∥FX(Y ) + x∥χ∗

∣∣∣X1, . . . , Xm

]
, x ∈ χ∗, denoted by Jx : χ∗ → χ∗∗, exists for all x ∈ χ∗ and

there is a constant c > 0 such that
∥J0∥ ≤ c.

Hence, using the previous notations and assumptions, the asymptotic normality of MED is
given by the following theorem.

Theorem 1 (Asymptotic Gaussianity of MED)
Let N = m + n and m/N → λ ∈ (0, 1) as m,n → ∞. Assume that the bidual χ∗∗ space
is a separable and type 2 Banach space. Then, under assumptions (1) and (2), for any two
probability measures P and Q on χ,

(mn/N)1/2(MED− µ) converges weakly to G (0, λΓ1 + (1− λ)Γ2)

as m,n → ∞.

See Smida et al (2022) for the proof of Theorem 1 and more mathematical details.
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2.3 Computing the significance

In this subsection, we propose two methods to compute the significance of the MED test
statistic: the first one is based on Theorem 1 and the second one is based on Monte-Carlo
simulations.

• Method 1: using the asymptotic distribution The significance of the test based
on the MED statistic can rely on Theorem 1. Since µ = 0 under H0, we shall reject
the null hypothesis if

∥∥(mn/N)1/2MED
∥∥ > qα where qα denotes the (1−α) quantile of

the limiting distribution ∥G (0, λΓ1 + (1− λ)Γ2)∥ and α is the asymptotic size of the
test. Thus, we need to derive the covariance operators Γ1 and Γ2 and the norm of the
asymptotic distribution given by Theorem 1.

• Method 2: using random permutations The method based on the asymptotic
distribution suffers two limitations: the need to estimate the covariance operators Γ1

and Γ2 and the distance to the asymptotic distribution when m and n are quite small,
which is often the case when comparing two samples of functions. Consequently, we
may consider a test procedure based on Monte-Carlo simulations allowing to give an
approximation of the null distribution (Dwass, 1957).

2.4 Asymptotic power under shrinking location shifts

In this section, we give the asymptotic distribution of the test statistic MED under appro-
priate sequences of shrinking location shifts. In order to do that, we suppose that Y is
distributed as X +∆N , where

∆N = δ
(mn

N

)−1/2

(6)

for some nonzero fixed δ ∈ χ and N is the total size of the two samples. In order to derive
the distribution of the median statistic under these alternative hypotheses, we need two more
assumptions.

Assumption 3 We assume that the norm in χ is twice Gateaux differentiable at every y ̸= 0.
In addition, we suppose that the Hessian of the map y 7−→ E[∥y + Y − Z∥χ|Y ], at y ∈ χ,
denoted by J̃y : χ → χ∗, exists where Z is an independent copy of Y .

Assumption 4 Since we have assumed that the norm in χ∗ is twice Gateaux differentiable
at every x ̸= 0 (Assumption 1), we suppose here that the Hessian of the function u 7→
E

[∥∥u+ E
[
SGN{Y−Z}

∣∣Y ]∥∥
χ∗

]
, denoted by Hu : χ∗ → χ∗∗, exists where Z is an independent

copy of Y .

Thus, we obtain the following theorem.
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Theorem 2 Let N = m + n and m/N → λ ∈ (0, 1) as m,n → ∞. Suppose that χ∗∗ is a
separable and type 2 Banach space. Assume that the distributions of X and Y are nonatomic.
Then, under assumptions (1), (2), (3) and (4) and under the sequence of shrinking location
shifts defined as (6),

(mn/N)1/2MED converges weakly to G
(
H0(J̃0(δ)), λΓ1 + (1− λ)Γ2

)
as m,n → ∞.

See Smida et al (2022) for the proof of Theorem 2.

3 Applications

In this section, we aim to compare the power of the two proposed median statistics with
those of the tests of WMW (Chakraborty and Chaudhuri, 2015), CFF (Cuevas et al., 2004)
and HKR1 and HKR2 (Horváth et al., 2013).

3.1 Simulation study

We set the separable Hilbert space χ = L2[0, 1]. Now, let us consider the decomposition

X =
∞∑
k=1

Zkek,

where for all k ⩾ 0, ek =
√
2sin(t/σk) is an orthonormal basis of χ, σk = ((k − 0.5)π)−1 and

the Zk’s are independent random variables which correspond to the projection of X on the
Karhunen-Loève basis. We have considered four scenarios: Zk/σk ∽ N (0, 1), Zk/σk ∽ t(5),
Zk/σk ∽ C(0, 1) and Zk/σk ∽ Dexp(0, 1).

3.1.1 Finite-size powers

Assume that Y is distributed as X + ∆ and under the alternative hypotheses H1 : ∆ ̸= 0.
Three choices are considered, namely : ∆1(t) = c, ∆2(t) = ct and ∆3(t) = ct(1 − t) where
c > 0 for all t ∈ [0, 1]. Before computing the powers of the tests, we have derived the size
of each of test, i.e. the probability of rejecting the null hypothesis when it is true. We have
chosen 1000 random simulations of (X, Y ). For each simulated dataset, all test statistics and
their critical values are derived in the same way as described in subsection 2.3:

• To apply the asymptotic method: critical values of the test statistic MED are derived
as described above. Similarly, those of WMW, HKR1 and CFF are calculated using
their associated asymptotic theorems.
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• To apply the permutation procedure: we have used 999 random permutations. The
hypothesis H0 is rejected if pvalue < α, where α is the significance level which is chosen
equal to 0.05.

Results: Using the asymptotic method and when the sample sizes are small, the sizes of
all the tests are different from the 5% nominal level whatever the distribution. However, the
ones obtained using the permutation method are close to 5%: this is not surprising since the
asymptotic method is more adapted for large sample sizes.

Because of these results, we decided to first focus on simulations with limited sample sizes,
using the permutation method to derive the corresponding statistical power of the different
tests. We set m = n = 10 and each sample curve is observed at 100 equidistant points on
[0, 1].

Results: With ∆3, the test using Mo statistic outperforms the test based on WMW
against heavy-tailed distributions t(5), C(0, 1) and Dexp(0, 1) for large values of c and it has
a similar power against N (0, 1) distribution. We also remark that the power of the test based
on MED is very similar to the one based on WMW or Mo for small values of the shift c and
for all the distributions. We also deduce that the tests based on spatial ranks MED, Mo and
WMW performs better than the mean-based ones CFF, HKR1 and HKR2 in all heavy-tailed
distributions cases.

3.1.2 Asymptotic powers

In this subsection, we compare the asymptotic powers of the tests based on MED and WMW
since their asymptotic distributions are known under the sequence of shrinking location shifts.
To do so, recall that Y is distributed as X +∆N , where ∆N is given by (6). We have consid-
ered three choices of δ ∈ χ, namely δ1(t) = c, δ2(t) = ct and δ3(t) = ct(1− t), where t ∈ [0, 1]
and c > 0. For evaluating the asymptotic powers of these tests, we have used 1000 sample
functions from the different distributions described as above.

Results:

• Both tests achieve the 5% nominal level asymptotically using different location shift
models and different types of distributions and their asymptotic powers are equal when
c = 0.

• Under δ1(t) and δ3(t), our test based on MED and the one based on WMW have
similar asymptotic powers in the case of the Gaussian distribution. However, our test
outperforms the WMW one with t(5) distribution and even more powerful with C(0, 1)
and Dexp(0, 1) which are more heavy-tailed.
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3.2 Application to real data

In this subsection, we compare the two median tests based on MED and Mo with those based
on WMW, CFF, HKR1 and HKR2 using numerous datasets analysed by Chakraborty and
Chaudhuri (2015). One of this datasets is available in the R package fda and contains the
heights of 39 boys and 54 girls measured at 31 time points from age 1 to 18.

Results: All the p-values based on 999 random permutations and the asymptotic method
are 0 up to two decimal places and are similar to the ones given by Chakraborty and Chaud-
huri (2015). These p-values exhibit a strong difference between the two distributions.

So, we decided to evaluate the proportion of rejection of the null hypothesis to compare
the behaviour of the different statistics when the level α is equal to 0.05. We have randomly
chosen 20% subsamples of the 2 classes from the complete dataset and this subsampling was
repeated 100 times.

Results: Our tests based on Mo and MED statistics have the highest rate of rejection of
the null hypothesis, close to the one WMW of Chakraborty and Chaudhuri (2015) and much
larger than the tests proposed by Cuevas et al. (2004) and Horváth et al. (2013).

4 Discussion

We show that the proposed median tests have good performance compared to the Wilcoxon-
Mann-Whitney test proposed by Chakraborty and Chaudhuri (2015), the ANOVA test of
Cuevas et al. (2004) and the mean-based tests of Horváth et al. (2013). Moreover, when the
distribution of the processes is heavy-tailed, the median test is as powerful as the WMW test
for moderate sample size and asymptotically more powerful than any other test. For more
mathematical details and other real data examples, see Smida et al (2022). In addition, R
codes of all the tests used here are available in the R package proposed by Smida et al (2023).
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Horváth, L., Kokoszka, P., and Reeder, R. (2013). Estimation of the mean of function time
series and a two-sample problem. Journal of the Royal Statistical Society. Series B. 75,
103–122.

Koul, H.L. and Staudte, R. G. (1972). Weak Convergence of Weighted Empirical Cumulatives
Based on Ranks. Ann. Math. Statist. 43, 832–841.

Mann, H. B., Whitney D.R. (1947). On a test of whether one of two random variables is
stochastically larger than the order. Ann. Math. Statist. 18, 50–60.

Mood, A. M. (1950). Introduction to the Theory of Statistics. McGraw-Hi1l series in proba-
bility and statistics, New York.

Mood, A. M. (1954). On the asymptotic efficiency of certain nonparametric two-sample tests.
Ann. Math. Statist 25, 514–522.

Oja, H. (2010). Multivariate Nonparametric Methods with R. Springer, New York.

Oja, R. and Randles, H. R. (2004). Multivariate nonparametric tests. Statistical Science. 19,
598–605.

Puri, M. L. and Sen, P. K. (1971). Nonparametric Methods in Multivariate Analysis. John
Wiley & Sons, Inc, New York-London-Syndney.

Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis (Second edition).
Springer-Verlag New York.

Smida, Z., Cucala, L., Gannoun, A. and Durif, G. (2022). A median test for functional data.
Journal of Nonparametric Statistics. 34, 520–553.

Smida, Z., Durif, G. and Cucala, L. (2023). funStatTest: Statistical Testing for Functional
Data. https://CRAN.R-project.org/package=funStatTest.

Van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge University Press.

Wilcoxon, F. (1945). Individual comparaisons by ranking methods. Biometrics., 1, 80–83.

10

https://CRAN.R-project.org/package=funStatTest

	Introduction
	Construction of the test
	Introduction of the median test statistics
	Univariate case
	Functional case

	Asymptotic distribution of the proposed test statistic
	Computing the significance
	Asymptotic power under shrinking location shifts

	Applications
	Simulation study
	Finite-size powers
	Asymptotic powers

	Application to real data

	Discussion

