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Abstract

In predictive maintenance, the complexity of the data
often requires the use of Deep Learning models. These
models, called “black boxes”, have proved their worth
in predicting the Remaining Useful Life (RUL) of in-
dustrial machines . However, the inherent opacity of
these models requires the incorporation of post-hoc ex-
planation methods to enhance transparency. The qual-
ity of the explanations provided is then assessed us-
ing so-called evaluation metrics. Modeling is a whole
process that includes an important data preprocessing
phase, with parameter selection such as time window,
smoothing parameter, or rectified RUL when dealing
with multivariate time series dataset. We propose to
analyze the impact of these preprocessing methods on
the quality of explanations provided by the local post-
hoc models LIME, KernelSHAP, and L2X, utilizing six
evaluation metrics: stability, consistency, congruence,
selectivity, completeness, and acumen. This analysis
will be based on NASA’s Commercial Modular Aero-
Propulsion System Simulation (C-MAPSS) dataset with
the LSTM model. Our findings reveal that the choice of
specific pre-processing parameters can significantly im-
prove predictive performance. Furthermore, the quality
of explanations depends on the selection of explicabil-
ity methods. In addition, a factorial analysis of the eval-
uation metrics reveals that they do not all point in the
same direction. Indeed, understanding the nuanced re-
lationships between evaluation metrics is essential for a
comprehensive and accurate assessment of explainabil-
ity methods.

Introduction and Background

Remaining useful life (RUL) is the key parameter for as-
sessing tool degradation and ensuring the performance of
industrial asset health management (PHM). Artificial intel-
ligence (AI) techniques, and in particular the deep learning
approach (Son and Oh 2022), have proven their worth in pre-
dicting remaining useful life (Ferreira and Gongalves 2022).
Despite their power, these methods are often regarded as
“black boxes” due to their complex internal structures and
lack of transparency. To boost confidence in Al adoption
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and address the interpretability challenge, eXplainable Al
(XAI) has been presented as a solution to this problem, un-
der the aegis of the US Defense Advanced Research Projects
Agency (DARPA) (Gunning and Aha 2019). Various XAI
techniques have been developed and classified into distinct
categories (Molnar 2022) depending on the method used
to generate explanations, the type of explanation, and the
scope of the explanation technique. The explanation meth-
ods could be intrinsic or post-hoc, depending on whether the
explanation mechanism operates during or after the learning
phase; agnostic or specific, based on their applicability to
Al models; global, cohort, or local, based on the scope of
the explanation to be provided for a single prediction from
the Al system, focus on a subspace in the decision space, or
the entire set of predictions. Cyrus (Cyras et al. 2020) distin-
guishe three types of explanations : attributive (e.g. logical
inference attribution, feature importance association), con-
trastive (e.g. counterfactuals) and actionable (e.g. guidelines
towards a desired outcome, realizable actions).

Several publications support the idea that XAls are es-
sential for providing an accurate and comprehensible model
for estimating RUL (Nor, Pedapait, and Muhammad 2021).
However, one might question the reliability of these XAI
methods. We might also ask how the quality of these expla-
nations can be assessed, and whether it is possible to com-
pare the results of two XAI methods. Various approaches
have been proposed for evaluating the effectiveness of eX-
plainable AI (XAI) methods (Coroama and Groza 2022).
These approaches include human-based qualitative methods
as well as quantitative approaches aimed at quantitatively
evaluating some of the properties that an explanation must
satisfy. For quantitative evaluation, some methods focus on
examining the relationship between data and explanations
(Honegger 2018a), while others are based on the relation
between data, predictions, and explanations (Solis-Martin,
Galan-Péez, and Borrego-Diaz 2023).

In the realm of RUL prediction, Long Short-Term Mem-
ory (LSTM) models are widely adopted as the analysis
model. Proposed by (Hochreiter and Schmidhuber 1997),
LSTM has showcased its effectiveness in providing valu-
able short- and long-term information (Vollert and Theissler
2021). It stands out as a powerful model for processing tem-
poral data with complex structures, effectively addressing
the challenge of optimizing backpropagation gradients to



adjust network weights. However, implementing such mod-
els involves various phases, among which the preprocess-
ing phase is of great importance. In multivariate time series,
this phase includes several critical steps, such as windowing,
smoothing parameter tuning, and data truncation.

This study aims to verify whether the quality of explana-
tions provided by XAI models can be influenced by this pre-
processing phase adapted to multivariate time series. First,
we fit a one-layer LSTM model, then we apply various XAI
methods, and we compare its performance based on six se-
lected evaluation metrics to assess the quality of the expla-
nations. Then, we study how variations in preprocessing pa-
rameters (smoothing «, time window T'W, rectified RUL
RU L¢qr1y) influence explanation quality and identify opti-
mal parameter combinations that result in high-quality ex-
planations. Finally, we use a factorial approach to explore
the relationships between the six evaluation metrics and as-
certain their concordance in evaluating explanations.

Materials and Methods
Notations We will use the following notations:
* N : number of observations (number of Engines)

* X = (2})(ien,ter) the set of observations with i the En-
gine and ¢ the time

¢ Y, : the RUL observed at time ¢
¢ f: the prediction function of the analysis model

* ¢ = {€} sen) : feature importance, meaning explanation
for Engine ¢

e p: Spearman’s rank correlation coefficient

eXplainable Artificial Intelligence (XAI)

In the context of RUL prediction, we are particularly inter-
ested in those parts of the Engine responsible for the degra-
dation of the service life of a given Engine. Thus, in our
analysis, for comparison purposes, we will focus on three
approaches: LIME (Local Interpretable Model-Agnostic
Explanations) (Ribeiro, Singh, and Guestrin 2016), Ker-
nelSHAP (Lundberg and Lee 2017) and L2X (Chen et al.
2018), which are considered perturbation-based local expla-
nation methods. All three approaches are post-hoc, local,
and “’surrogate” models. Indeed, it is based on a transparent
model to explain the prediction of an observation by a ”black
box” model. We denote (z, y) an observation in (X, y), and
g the learning function of the surrogate model (e.g. linear
regression).

For LIME approach, the main idea is to create a set of ob-
servations from x (denoted X}) by the distribution h, train
the linear model g on this sample with a sparsity constraint,
and then use the regression coefficients phi; as the effect
of the different variables involved in the prediction. To ex-
plain a result, they rely on three phases: sampling, learn-
ing and explanation extraction. KerneISHAP uses game the-
ory to assign a SHAP value, to each feature, describing
its contribution to the final prediction. For simplicity, we
will write SHAP referring to KernelSHAP. L.2X attempts to

find the subset of features most informative regarding cor-
responding prediction for this instance. The subset is deter-
mined by a feature selector, through variational approxima-
tion, uniquely optimized to maximize the mutual informa-
tion M I (Latham and Roudi 2009) between features and the
corresponding prediction.

The explanation is generated by perturbing the features.
In the context of this study, given that we are dealing with
time series, we adopt the perturbation approach proposed by
(Solis-Martin, Galan-Paez, and Borrego-Diaz 2023), which
is more appropriate with time series.

The quality of the explanations generated by these post-
hoc methods is assessed by XAl evaluation metrics that ver-
ify certain properties that these explanations must respect,
such as robustness, stability, fidelity, representativeness, etc.
These metrics are briefly presented below.

XAI evaluation metrics

Doshi and al. (Doshi-Velez and Kim 2017) have outlined
three categories of evaluation approaches for XAl models:

* Human-grounded Evaluation: encompassing methods
based on general human assessment;

* Application-grounded Evaluation: involves approaches
relying on human assessment specific to a particular ap-
plication, with a predominant emphasis on expert opin-
ions within the relevant domain;

* Functionally-grounded Evaluation: pertains to ap-
proaches utilizing mathematical functions to evaluate the
quality of post-hoc models quantitatively.

This work will focus on “Functionally-grounded Evalua-
tion” and elaborate on six available evaluation metrics. Each
of these metrics evaluates a specific property (Nauta et al.
2023). Thus, they could complement each other in evaluat-
ing an XAl method. We consider three types of metrics :

1. Without perturbation: which includes no disturbance to
the dataset in its calculation process.

o Stability : It evaluates the robustness of an XAI
method. According to this metric (Honegger 2018b), if
two observations are similar regarding X, they should
be similar regarding the explanations € : so we should
have

pi=p(XXi, E;) pi>0VieN (D

where: X X; = {d(x;,20),...,d(x;,2,)} and E; =
{d (e, €0),-..,d(€,€,)}. The greater the stability of
the XAI model, the more intuitive the interpretation.

2. Perturbation of irrelevant variables: which consists in
perturbing the most important variables in the calculation
process.

* Coherence: evaluates the coherence property of an
XAI method by calculating the difference between the
prediction error p¢ with real data and the prediction
error after perturbation of unimportant features ac-
cording to the XAI method ei. It is given by a; =
|p. — €i|. When the model indexes unimportant vari-
ables as unimportant, a perturbation of unimportant



variables should not significantly affect prediction er-
rors. As a result, there should be a minimal difference
between prediction errors. Therefore, the smaller «, the
better the consistency of the explainability approach.

* Congruence: This metric corresponds to the standard
deviation of coherence given by :

§ = Z(al_a)z

N @)

where @ = + 3" ;. It assesses the variability of co-
herence; hence, it should be minimized.

* Completeness: assesses the representativeness. Given
by v, = ;—, it evaluates the ratio between the initial
prediction error and the error following a perturbation

in the initial data. The closer it is to 1, the better the
quality of the explainer.

3. Perturbation of the most important variables: in which
the least important variables are perturbed.

e Acumen: (Solis-Martin, Galdn-P4dez, and Borrego-
Diaz 2023) evaluates the robustness of an XAl method.
It is used to check whether the importance of the vari-
able according to the XAI model does not depend on
its arrangement (rank) in the data. Indeed, according to
the author, if a variable is important according to an
XAI model, it must remain so after perturbation. It is
calculated as follows :

Pa(fi)
EfiEI N (3)

w=1-

Where 7 is a subset of the M variables before pertur-
bation; p, (f;) returns the variable rank f; in terms of
importance after perturbation.

* Selectivity: measures the selectivity property of an
XAI method. Unlike the previous metrics, which are
based on the disturbance of the unimportant variables
in the explainability model, this metric is based on the
disturbance of the most important variables. It is calcu-
lated as follows:

(a) Order the variables according to their importance
given by an explainability method;

(b) Introduce a perturbation into the data by substituting
random variables for the most important variables,
then calculate the prediction error for each perturba-
tion within the regression framework.

Experimentation
Data Overview

In the area of predictive maintenance, the main problem
is the lack of real data, especially when it comes to RUL
prediction. Thus, the leading works (Solis-Martin, Galan-
Péez, and Borrego-Diaz 2023), (Baptista, Goebel, and Hen-
riques 2022) carried out in this field are based on NASA’s C-
MAPSS dataset (Saxena et al. 2008). These simulated data
provide a comparative framework for the results obtained by

the various studies. Our experiment uses the FD004 subset
of the C-MAPSS dataset. This simulated dataset consists of
an aircraft turbine Engine life cycle. It contains 21 sensors, 6
operational conditions characterized by Mach number, alti-
tude, and Engine ambient temperature, and 2 failure modes.
In the training set, the failure amplifies until the system fails;
in the test set, the time series ends just before the system
fails. The aim is to predict the number of operational cycles
remaining before failure in the test set. We retained 14 of the
21 sensors, excluding those that showed no variation.

Preprocessing Approach

In our previous work (Youness and Aalah 2023), we studied
in detail the roles and functionalities of features during the
preprocessing stages. We used feature clustering as part of
the pre-processing pipeline and conducted an in-depth anal-
ysis to assess its various aspects and impact on model perfor-
mance. In this study time-series preprocessing is conducted
in three phases: exponential smoothing, time window, and
rectified RUL, which can affect the interpretability of XAI
models.

First, we normalized the sensor readings for each opera-
tional condition using the min-max normalization technique,
which assigns values between [-1,1].

Subsequently, an exponential smoothing process is ap-
plied to produce an accurate RUL estimate despite noise in
the data. Exponential smoothing assigns different weights to
historical observations based on their recency. The choice
of the smoothing parameter « in exponential smoothing de-
termines the level of emphasis on recent observations. The
fitted values used the smoothing parameter o according to
the following equation:

Ger1e = oy + (1 — @)Pp—1 “4)

Setting « close to 1 indicates fast learning, meaning that
forecasts are based on the most recent values, while a value
close to 0 indicates slow learning.

After reducing noise by exponential smoothing, a fixed-
length sliding time window T'W is applied to convert the
multivariate time series dataset. Longer time windows can
indeed have a significant impact on the performance of a
model. Still, they may also introduce challenges such as in-
creased computational complexity and potential delays in
adapting to rapidly changing patterns. This parameter needs
to be adjusted.

In an addition step, a rectified RUL value, denoted
RU Legriy , is set. This value sets a threshold for the RUL,
defining the system as healthy” until it reaches this prede-
fined point. This will allow the model to focus on learning
from the RU L1y cycle, regardless of the Engine’s previ-
ous lifetime.

Our study analyzes the influence of smoothing param-
eter «, time window T'W, and rectified remaining RUL
RU L¢gr1y on model performance and the quality of expla-
nations provided by XAI methods.

Experimental setting

We have employed the following experimental design to
evaluate the impact of these three preprocessing parameter
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Figure 1: Flowchart for a triplet of preprocessing parameters (o, TW, RU Legriy)

choices. Based on the values used in the literature (Vollert
and Theissler 2021), we have selected the following possi-
ble values for each parameter.

o =1[0.1,0.2,0.3,0.5]
TW = [20,25, 30, 35, 40, 60]
RU Leayiy = [100, 120, 130, 140, 150]

In total, we have 120 trials. In each trial, our approach con-
sists of training LSTM model with a single layer considering
(o, TW, RU Leqz1y) in the preprocessing step. Then we :

1. Evaluate model performance using RMSE, and S-score;

2. Generate an explanation of predictions using a local ap-
proach: LIME, KernelSHAP and L2X ;

3. Evaluate the quality of the results of these XAI methods
via 6 evaluation metrics: stability, coherence, complete-
ness, congruence, selectivity and acumen.

The flowchart illustrates the steps of our proposed work
(Figure 1). The hyperparameters for the LSTM model in-
clude one hidden layer with 64 nodes, a dropout rate of 0.2,
a batch size of 120, training for 20 epochs with a learning
rate of 0.001, and utilizing the Adam optimizer.

Results and discussion
Best preprocessing parameters

The results indicate that the parameters leading to the best
model correspond to o = 0.5, TW = 40, and RU Legriy=
100, as illustrated in Table 1.

a TW  RULeariy RMSE R?  S-score
0.10 60 100 9.84 0.88  731.43
0.50 40 100 10.14 0.90 50647
0.10 25 120 10.38 0.87 119534
050 30 120 10.40 0.89  688.00
020 35 150 10.48 090  579.74

Table 1: Top 5 Performance Models by RMSE, R? and S-
score according to preprocessing parameters

Figure 2 shows that the weakest performance occurs when
TW is set at 60. A similar examination is carried out for the
smoothing parameter a.. The results show that the most fa-
vorable models in terms of RMSE and S-score are obtained

01 02 03 04 05 01 02 03 04
alpha apha

g
8
8
8
35

100 110 120 130 140 150 100 10 120 130 140 150
rul_early rul_early

Figure 2: Performance Models by RMSE and S-score when
varying one Preprocessing Parameter (e.g. the time window
TW) and fixing the two others (e.g. o and rectified RUL:
a = 0.5, RU L¢gyy = 100)

when « is set to 0.5, while the least favorable model is as-
sociated with o = 0.2. In rectified RUL, the highest perfor-
mance is observed when RU L,y is set to 100. The anal-
ysis indicates the model achieves optimal performance with
an RMSE equal to 10.14 and S-Score equal to 506.47, us-
ing the Optimal Preprocessing Parameters (OPP): a = 0.5,
TW = 40, and RU L4y = 100. This performance stands
out favorably compared to literature benchmarks in the con-
text of RUL prediction using the C-MAPSS FD004 dataset,
as illustrated in Table 2.

Authors Approach RMSE (std) S-score(std)
(Wang et al. 2022) B-LSTM 16.24 5220
(Qin et al. 2022) SD-TemCapsNet 16.49 804
(Youness and Aalah 2023) FC+LSTM 16.14(0.96) 1299(255)

(Cao 2023) DCNN-BiLSTM 13.77 -
(Arunan et al. 2024) ChangePoint-LSTM 18.69 -

(Wahid et al. 2024) TCRSCANet 16.23 1107

(Proposed method) OPP+LSTM 10.14 506

Table 2: Comparison of different approaches using FD004
(OPP = Optimal Preprocessing Parameters)

Given the Optimal Preprocessing Parameters associated
with the best model, we proceed to analyze the explanation



of its predictions using LIME, KernelSHAP, and L2X.

Prediction explanation for Engine 20 with LIME,
KernelSHAP, and L2X

To study whether an XAI method can lead to different ex-
planations. We explain the prediction related to Engine 20
with the three XAl approaches. According to LIME, the sen-
sors with the most significant influence on RUL prediction
for Engine 20 are T50, Ps30, W31, and T24. KernelSHAP,
on the other hand, identifies BPR, htBleed, W31, and W32
as the critical sensors determining the RUL prediction for
Engine 20. Lastly, L2X points out that the key sensors con-
tributing to the RUL prediction for Engine 20 are T30, T50,
and NRc (Figure 3). We, therefore, obtain an explanation
that differs according to the XAI method used. This under-
lines the importance of evaluating explanations’ quality and
helps determine which approach offers the most insightful
explanation.

T50 BPR T30

Ps30) htBleed! T50

w31, w31 NRc|

24 | w32 | ntsleed] |
BPR Ne| ] w31 ]
w32 Ps30 w32,

P30 NRc Ne
000 002 004 006 008 000 002 004 006 008 000 002 004 006 008
LIME

Figure 3: Features importance in the prediction of the RUL
of Engine 20 according to LIME, KernelSHAP and L2X

Such evaluations assist in selecting the most suitable ap-
proach for interpreting a model’s predictions. In this re-
search, we opt for 6 evaluation metrics that will enable us
to compare the quality of explanations obtained using the
three approaches: LIME, KernelSHAP, and L2X.

Evaluation metric analysis for LIME,
KernelSHAP, and L2X

Stability remains consistent across the three XAI models
when we evaluate the quality of explanations based on the
six metrics presented in Table 3. In most instances, LIME
and KernelSHAP provide the same quality explanations on
completeness, coherence, and congruence. However, Ker-
nelSHAP remains the best, providing superior explanations,
especially on additional metrics such as selectivity and acu-
men. Subsequently, we delve into the dynamics of these
metrics, considering preprocessing parameter choices while
keeping one parameter constant.

Quality of the explanation based on preprocessing
parameters

The analysis of the quality of explanations based on the pre-
processing parameters shows that for some metrics, there

XAI methods
Metrics LIME KernelSHAP L2X
Stability 1 1.00 1.00 1.00
Coherence | 0.17 0.17 0.41
Completeness T 0.83 0.83 0.58
Congruence | 0.20 0.21 0.37
Selectivity 1 0.65 0.68 0.57
Acumen T 0.08 0.41 0.03

Table 3: Quality of Explanations Provided by LIME, Ker-
nelSHAP, and L2X According to Six Metrics with Optimal
Preprocessing Parameters
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Figure 4: Quality of explanations for the three approaches
(LIME, KernelSHAP, and L2X) depending on «

is minimal variation when the smoothing parameters o and
rectified RUL (RU Le¢gr1y) change. This is particularly no-
ticeable in the case of stability. Examination of Figures 4,
5, and 6 reveals consistent values for LIME and L2X, while
for KernelSHAP, the shape of the boxplot remains identi-
cal across different « values and for 4 out of 5 scenarios of
rectified RUL.

KernelSHAP exhibits the greatest metric variation of
the three XAI methods, characterized by a larger variance
around the mean. Regardless of the preprocessing parameter
value, LIME and kernelSHAP consistently deliver better av-
erage explanation quality. This distinction is particularly ev-
ident when assessing the acumen metric. Conversely, for the
completeness metric, the variation in quality is less signif-
icant across all three approaches, with completeness values
often concentrated around the mean. This analysis clearly
shows that the three pre-processing parameters exert vary-
ing effects on the quality of the explanations provided by
the three XAI methods considered. Moreover, the percep-
tion of this variation in explanation quality varies according
to the different evaluation measures. It is, therefore, essential
to examine the relationships between the different evaluation
measures.

Relation between evaluation metrics

Once we have defined the metrics, we can classify them ac-
cording to their interpretation. In the case of acumen, sta-
bility, completeness, and selectivity, a higher value means a
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Figure 5: Explanation’s quality of LIME, KernelSHAP and
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Figure 6: Explanation’s quality of LIME, KernelSHAP and
L2X depending on RU Ly

better quality explanation. Conversely, values close to 0 are
considered preferable for coherence and congruence.

However, empirical analysis of the relationship between
metrics using the Principal Component Analysis (PCA)
(Smith 2002) approach reveals a distinct grouping structure
for these six metrics (Figure 7). A significant positive cor-
relation is observed between coherence and congruence in
all three XAl methods. In essence, models with high coher-
ence values also tend to have high congruence values, which
is consistent with the definition of these measures. Notably,
coherence and congruence stand in direct contrast to com-
pleteness and acumen. Moreover, selectivity does not exhibit
a consistent relationship across the three approaches. This
indicates that selectivity is not intrinsically correlated with
the other parameters. In addition, stability, which should
be aligned with comprehensiveness and acumen, sometimes
clashes with them. This is unexpected since, by definition,
stability is supposed to reach high values when the quality
of the explanation is comparable to acumen and complete-
ness.

KernelSHAP

UME 12x

Figure 7: Relationships between evaluation metrics by XAI
method in 3D view

Conclusion and future works

The present study highlights the significance of preprocess-
ing parameter choices in improving predictive performance
and explanation quality. We have conducted an in-depth
analysis of the impact of certain time series preprocessing
procedures, such as the time window, the smoothing param-
eter, and the rectified RUL, on the explanatory effective-
ness of three XAI methods, namely LIME, KernelSHAP,
and L2X. This analysis brought attention to the nuanced re-
lationships between different evaluation metrics, shedding
light on the complexity of assessing the quality of explana-
tions. It revealed that explanation quality is not sensitive to
all preprocessing parameters. For some parameters, expla-
nation quality can vary. This variation is not captured by all
the evaluation metrics used. So, even though there is a wide
range of metrics, each evaluation metric has its specificity
and enables a specific property to be evaluated.

As an empirical result, analyzing the relationships be-
tween metrics reveals a notable contradiction. Contrary to
the expected definitions, parameters that are presumed to
have a positive relationship display negative relationships
instead. This contradiction raises the question of these pa-
rameters’ real significance and importance in the evaluation
process.

Therefore, future efforts will be directed toward a com-
prehensive analysis of these parameters, incorporating addi-
tional evaluation measures such as fidelity, identity, separa-
bility, etc. Another approach could be to merge these quan-
titative measures into a standardized synthetic indicator ca-
pable of evaluating explanations with greater reliability. It
should be noted that this study was based on a single type of
model architecture (LSTM) and a single C-MAPSS dataset
(FDO0O04). 1t is, therefore, necessary to explore a wider range
of datasets and model architectures to validate the applica-
bility of the results and improve generalization. In addition,
a human evaluation of the explanations would be an effective
way of assessing the quality of the explanations.
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