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Abstract

In this article we propose a reduced model of the input-output behaviour of
an arterial compartment, including the short systolic phase where wave phe-
nomena are predominant. The objective is to provide basis for model-based
signal processing methods for the estimation from non-invasive measure-
ments and the interpretation of the characteristics of these waves. Due to
phenomena such that peaking and steepening, the considered pressure pulse
waves behave more like solitons generated by a Korteweg de Vries (KdV)
model than like linear waves. So we start with a quasi-1D Navier-Stokes
equation taking into account radial acceleration of the wall : the radial
acceleration term being supposed small, a multiscale singular perturbation
technique is used to separate the fast wave propagation phenomena taking
place in a boundary layer in time and space described by a KdV equa-
tion from the slow phenomena represented by a parabolic equation leading
to two-elements windkessel models. Some particular solutions of the KdV
equation, the 2 and 3-soliton solutions, seem to be good candidates to match
the observed pressure pulse waves. Some very promising preliminary com-
parisons of numerical results obtained along this line with real pressure data
are shown.

keywords: Modelisation, Korteweg-de Vries equation, windkessel model,
solitons, pulsatile flow, arterial compartment.

1 Introduction

Reduced mathematical models of the cardiovascular system.
The cardiovascular system can be seen as consisting of the heart, a complex
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double chamber pump, pumping the blood into vessels organized into vas-
cular compartments forming a closed circulation loop. This point of view
is useful for building models of the whole system as interconnection of sim-
pler subsystem models. Such reduced mathematical models are usually a
set of coupled ordinary differential equations, each of them representing the
input-output behaviour of a subsystem: conservation law of the blood quan-
tity for short time-intervals and specific behaviour laws. They can be used
for understanding the global hydraulic behaviour of the system during a
heartbeat. They can also be used to study the short-term control by the
autonomous nervous system [16, 14, 12].

Windkessel models of the input impedances of vascular com-
partments. Input-output models of vascular compartments are 0D models
(differential equations with no space variable) used in the above-mentioned
models of the cardiovascular system. Also called windkessel models, they
have been intensively studied because they can be useful to define global
characteristics of vascular compartments with a small number of parame-
ters having a physiological meaning. The first results of this type go back
to Stephen Hales [5] who measured blood pressure in a horse by inserting a
tube into a blood vessel, allowing the blood to rise up the tube. Measuring
the heart rate and the capacity of the left ventricle, he was able to estimate
the output of the heart per minute, and then the resistance to flow of blood
in the vessels, the ratio of the pressure over the flow. Considering the dy-
namical behaviour of pressure, led Otto Frank in 1899 [4] to propose the
original two-element windkessel model to represent the seemingly exponen-
tial decay of pressure in the ascending aorta during diastole, when the input
flow is zero. The time constant of this exponential decay is the product
of the two elements of the model: the peripheral resistance, Rp, and the
total arterial compliance, C. This model is analog to an electrical circuit, a
two-port network with a parallel resistor Rp and a parallel input capacitor

C. The input impedance is given by Zin =
Rp

1+jωRpC
. Since these first re-

sults, windkessel models with three or four elements have been introduced to
represent more precisely the high-frequency behaviours of input impedances
when it became possible to measure them [20]. The main observation leading
to the three-element windkessel model is that the input impedance at high
frequencies is close to a constant resistance Rc (constant modulus and zero
degrees phase angle) that can be interpreted as the characteristic impedance
of the compartment. The two-element model is then corrected as follows:
Zin = Rc +

Rp

1+jωRpC
. But now, for low frequencies Zin is close to Rc + Rp

instead of Rp, an error corrected by adding a fourth element, an inertance

L in parallel with Rc, so that Zin = jωRcL
Rc+jωL +

Rp

1+jωRpC
. Usually L is inter-

preted as the total inertance of the arterial system. Good estimations from
aortic pressure and flow measurements, of the input impedance of the entire
systemic tree, and in particular of the total arterial compliance have been
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obtained using this four-element windkessel model [20].

Windkessel models and linear transmission line concepts. The
linear transmission line theory is underlying the developments of windkessel
models. The arterial systemic compartment can be seen as a multi-port net-
work coupling the heart to the extremities of the arterial tree through series
of vessel bifurcations. When modelling the aorta input impedance, three
situations are considered [20]: for very low frequencies, the input impedance
is close to the equivalent resistance Rp of the very distal parts of the arterial
tree (arterioles and small arteries); for low frequencies the input impedance
decreases due to the distributed compliance C and inertance L. Remark that

1√
LC

is the wave velocity. Finally, for medium to high frequencies (above

two times the heart rate), reflections in the proximal aorta can be neglected,
so that, as in the case of a reflectionless line, the input impedance equals the
characteristic impedance of the ascending aorta (a constant resistance for
high frequencies). This reflectionless property does not seem to be limited
to high frequencies. As noticed in [21]: ” Indeed, Milnor [11] remarked that
the properties of the aortic tree in the normal young animal are those of
an almost perfect diffuser (i.e., it generates far fewer reflections than the
best man-made distribution network)”. We will come back on this property
later. Estimating ascending aortic pressure from a distal pressure waveform
is of particular interest in the case of a non-invasive distal measurement, for
example for a distal pressure measured at the finger. Having in mind the
linear transmission line concepts, the problem is to estimate an input-output
transfer function between proximal and distal pressures. Several methods
have been proposed ([6], [19]) but some important limitations appear when
0D models are used to represent the relations between distant signals [10].
This is not surprising because rational transfer functions have been used
but the transmission line, in this case, behaves like a delay-line: an infinite
dimensional system. We will propose a solution for this problem, based on
some kind of nonlinear transmission line concepts.

Multiscale modelling of the cardiovascular system. Windkessel
models are also used as models of the loads of the heart or of the arteries
in some multiscale computations where they appear as boundary condi-
tions of partial differential equations (PDE) when distributed models of the
heart [1, 18] or of vessels [17] are used. In the case of vessel modelling, the
question arises of the consistency of the lumped models with models taking
into account one, two or three space variables to represent, apparently, the
same vessels. It is discussed in [9] in the 1D case: a series of well chosen
windkessel-like models can be used as a semi-discrete approximation of the
linearized flow equations, while a single windkessel model can be used when
it is possible to neglect the variations in space of pressure and flow (hypoth-
esis (9) in [9]), a limitation that is not surprising for 0D models and seems
valid after the pressure pulse wave has propagated through the arterial tree.
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So windkessel models appear as low frequency approximations of the input
impedances of the downstream compartments loading the studied element
(heart or vessel). In [13], as a result of a direct spectral analysis of the
linearized flow equations, the number of elements of the windkessel model
is chosen in relation with the order of this low frequency approximation.
These theoretical results are an explanation of the good experimental re-
sults reported for example in [20]. Remark that if one is interested by the
transmission line transfer function, the approximation by a long series of
winkessel models provided by this PDE approach is not a reduced model.

Reduced models of the arterial compartments based on nonlin-
ear waves and windkessel models. In this article we propose reduced
models of the input-output behaviour of vascular compartments, including
the short systolic phase (about 100 ms) where wave phenomena are pre-
dominant. The long-term objective is to provide model-based signal pro-
cessing methods for the estimation and interpretation of the characteristics
of these waves (shape, velocity), in order to assess the compartment function
and the heart-compartment adaptation. As we have seen above, the PDE
discretization approach leads to high order models for the Pressure Wave
Transfer Function (PWTF). In what follow, the main idea to circumvent
this problem will be to explicitly use a propagation delay, for example the
Pulse Transit Time (PTT) that, in practice can be measured directly. A
close look to the waves of interest leads to the hypothesis that they are in-
deed nonlinear waves. For example, during the travel of a pressure pulse
from the heart towards a finger, it is easy to observe an increase of the pulse
amplitude and a decrease of its width (peaking and steepening phenomena),
at the opposite of what would be expected of linear weakly damped waves.
Comparing the shapes of such pressure pulse wave, when it is close to the
heart and when at the finger, it seems possible to interpret the downstream
shape as a deformation of the upstream one due to higher velocities for
higher peaks during the travel: this is particularly striking for the dichrotic
wave. All these qualitative phenomena leads to consider the pulse wave
as a solitary wave, for example generated by a Korteweg de Vries model
for the flow. After this systolic phase a windkessel model will be able to
represent the waveless phenomena as in [21]. These remarks are not new,
but we want here to precise the corresponding computations, in particular
the type of solitary waves, in order to be able to propose signal processing
techniques. In a first part a quasi-1D Navier-Stokes equation is studied that
takes into account a radial acceleration. The radial and axial acceleration
terms being supposed very small and small respectively, a multiscale sin-
gular perturbation technique is used to isolate the fast wave propagation
phenomena taking place in a boundary layer in time (and space) and the
slow phenomena represented by a parabolic system similar to those studied
for example in [12] or [9] and leading to two-elements windkessel models.
For the hyperbolic system in the boundary layer, the situation is similar to
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those leading to Korteweg de Vries equation when a direction of the soli-
tary waves is chosen, which corresponds to the matching condition of the
linear case. For example, using various asymptotic methods, Yomosa and
Demiray [23, 3] studied the motion of weakly nonlinear pressure waves in a
thin nonlinear elastic tube filled with an incompressible fluid. They proved
that, when viscosity of blood is neglected, the dynamics are governed by
the Korteweg-de Vries equation. We adapt this technique in the second
part. In a third part we study particular solutions of the Korteweg-de Vries
equation, namely the 2 and 3-soliton solutions that seem to be good candi-
dates to match the observed pressure pulse waves. Finally we show the first
comparisons of numerical results obtained along this line with real pressure
data.

2 Asymptotic expansion of a quasi 1D model of
flow : quasistatic approximation and KdV cor-
rector.

In this section, we suppose that for normal space and time scales, the wind-
kessel model predomines but, for small time and small space scales, there
appears a boundary layer where the windkessel model is no more conve-
nient. This ansatz is used in singular perturbation computations to develop
a corrector of the motion of the fluid in this boundary layer.
The idea of a boundary layer where a corrector of the motion of the fluid
satisfies a KdV equation is a conjecture to represent the wave phenomena
rather fast when compared to the windkessel effect. We derive formally the
equations satisfied by this corrector. We still need to prove that the solutions
converge (in a sense to be defined) to the solutions of equations (1), (2), (3)
and (4).
We suppose that the arteries can be identified with an elastic tube, and
blood flow is supposed to be an incompressible fluid.
Thus, we consider a one dimensional elastic tube of mean radius R0. The
Navier Stokes equation can read as

AT +QZ = 0, (1)

QT +

(
Q2

A

)
Z

+
A

ρ
PZ + ν

Q

A
= 0. (2)

where, A(T,Z) = πR2(T,Z) is the cross-sectional area of the vessel, Q(T,Z)
is the blood flow and P (T,Z) is the blood pressure. Moreover ρ is the blood
density and ν a coefficient of viscosity of blood.
Furthermore, the motion of the wall satisfies, (see for example [23])

ρwh0R0

A0
ATT = (P − Pe)−

h0
R0

σ (3)
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where, ρw is the wall density, Pe is the pressure outside the tube, h0 denotes
the mean thickness of the wall. Moreover, σ is the extending stress in the
tangential direction.

Remark 2.1 Usually the term ρwh0R0

A0
ATT is neglected because ATT is small.

♢

This system is completed by a model of the local compliance of the
vessels, a state equation

σ = E
∆A

2A0
. (4)

where ∆A = A− A0, with A0 the cross-sectional area at rest, and E is the
coefficient of elasticity.

First of all, we rewrite system (1)-(4) in non dimensional variables.

Let

Z = Lz, T =
L

c0
t

where L is the typical wave length of the waves propagating in the tube,

c0 =
√

Eh0
2ρR0

, with R0 the means radius of the tube. The velocity c0 is the

typical Moens-Korteweg velocity of a wave propagating in an elastic tube,

when all nonlinear terms are neglected. We suppose that ϵ =
(
R0
L

)2/5
<< 1.

(For the arteries considered here, ϵ < 0, 1.)

Let us rescale pressure, blood flow and cross-sectional area by,

P − P0 = ρc20p,

Q = A0c0q,

A = A0(1 + a),

where A0 and P0 are the constant cross sectional area and the pressure at
rest, (P0 = Pe the external pressure) and Q0 = 0. Thus, we get the following
system,

at + qz = 0,

qt +

(
q2

1 + a

)
z

+ (1 + a)pz = − νL

A0c0

q

1 + a
,

ρwh0R0

ρL2
att + a = p.

By hypothesis,

ρwh0R0

ρL2
=

ρw
ρ

h0
R0

R2
0

L2
= O(ϵ5) = λϵ5
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Thus, we get,

at + qz = 0, (5)

qt +

(
q2

1 + a

)
z

+ (1 + a)pz = −η
q

1 + a
, (6)

λϵ5att + a = p. (7)

We suppose that the solutions admit an asymptotic expansion in terms
of ϵ,

a(t, z) =
∑
k≥1

ϵkak(
t− z

ϵ2
,
z

ϵ
, t, z),

p(t, z) =
∑
k≥1

ϵkpk(
t− z

ϵ2
,
z

ϵ
, t, z),

q(t, z) =
∑
k≥1

ϵkqk(
t− z

ϵ2
,
z

ϵ
, t, z).

We perform the following change of variables,

τ1 =
t− z

ϵ2
, ξ1 =

z

ϵ
, τ2 = t, ξ2 = z.

Remark 2.2 This change of variables implies that we consider only waves
moving from left to right. If we keep both directions, we get a Boussinesq
type model as for example in [15]. The validity of the approximations will
be done a posteriori when comparing measured and computed data.

Remark also that we have chosen ϵ =
(
R0
L

)2/5
instead of ϵ = R0

L as commonly
done [2] so that the acceleration term in (7) does not disappear in the sequel.

♢

Thus equations (5)-(7) become (at the second order of ϵ),

ϵ[a1τ1 − q1τ1 ] + ϵ2[a2τ1 + q1ξ1 − q2τ1 ] = 0, (8)

ϵ[q1τ1 − p1τ1 ] + ϵ2[q2τ1 − 2q1q1τ1 + p1ξ1 − p2τ1 − a1p1τ1 ] = 0, (9)

ϵ[a1 − p1] + ϵ2[λa1τ1τ1 + a2 − p2 = 0. (10)

Thus, we get with (8)-(10),

a1 = q1, (11)

q1 = p1, (12)

2q1ξ1 − 3q1q1τ1 − λq1τ1τ1τ1 = 0. (13)
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In fast times, and in a boundary layer, q1 is solution of a Korteweg-de Vries
equation. In initial variables, we have the following KdV equation for the
fast blood flow, Q1(T,Z) = A0c0q

1( c0T−Z
Lϵ2

, Z
Lϵ), with (11)-(13)

Q1
Z + d0Q

1
T + d1Q

1Q1
T + d2Q

1
TTT = 0, (14)

with

d0 =
1

c0

d1 = −3

2

1

A0c20
,

d2 = −ρwh0R0

2ρc30
.

Remark 2.3 The blood pressure, P 1, and the cross sectional area ∆A1 are
also solutions of Korteweg-de Vries equations with some other parameters
in the same boundary layer. ♢

Remark 2.4 Usually, with the available measurements (e.g. given by a
FINAPRES sensor), we get the pressure as a function of time defined at a
particular point, for example the finger. Thus, it is useful to get, not a time-
evolution equation as usual, but a space-evolution equation as obtained in
(14). ♢

The equation (14) describes rather fast travelling waves (3-10 m/s). After
these waves have gone across the compartment there is still a slowly varying
flow that will appear as some kind of parabolic flow well approximated by
a windkessel model.

Indeed for large time or space, we neglect acceleration of blood flow, that
is

AT +QZ = 0, (15)

A0

ρ
PZ + ν

Q

A
= 0, (16)

∆P − h0E

2A0ρ0
∆A = 0 (17)

We get with (15)-(17) the following parabolic equation in Q,

QT − A0h0E

2ρνR0
QZZ = 0 (18)

A low frequency approximation of (18) gives a 2 or 3 -element windkessel
system, see for example [12, 13, 9].
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Figure 1: A 2-soliton solution at different positions

3 Modelling of pulsatile and non pulsatile blood
flows.

After studying different pressure pulse waves measurements, an experimen-
tal finding was that the pulses can be approximated by 2-soliton or 3-soliton
solutions of KdV. Roughly speaking a n-soliton, solution of the Korteweg-de
Vries equation, see e.g. [8, 22], will have n components of different heights
travelling with different velocities while interacting. See figure 1 for an ex-
ample of a 2-soliton solution of KdV.

In the next two subsections, we give the analytical expression of these soliton
solutions we will use in the sequel.

3.1 The 2-soliton pressure model

We know the analytical expression of a 2-soliton solution, see for example
[22].

We first consider the following a-dimensioned KdV equation

yτ + 6yyξ + yξξξ = 0. (19)

Then a 2-soliton solution of (19) can be written,

y(τ, ξ) = 2
a21f1 + a22f2 + (a1 − a2)

2f1f2 + 2
(
a1−a2
a1+a2

)2
(a22f

2
1 f2 + a21f1f

2
2 )(

1 + f1 + f2 +
(
a1−a2
a1+a2

)2
f1f2

)2

(20)
with

fj(τ, ξ) = exp(−aj(ξ − sj − a2jτ)), (aj , sj) ∈ R2 and a1 ≥ a2.

We perform the following change of variables,

ξ = T − d0Z, τ = d2Z, Q
1(T,Z) =

6d2
d1

y(ξ, τ).
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Therefore, Q1 is a solution of the blood flow KdV equation (14), and we
have

Q1(T,Z) =
12d2
d1

a21f1 + a22f2 + (a1 − a2)
2f1f2 + 2

(
a1−a2
a1+a2

)2
(a22f

2
1 f2 + a21f1f

2
2 )(

1 + f1 + f2 +
(
a1−a2
a1+a2

)2
f1f2

)2

(21)

with fj(T,Z) = exp(−aj(T − sj − Z(d0 + a2jd2))) (aj , sj) ∈ R+ × R. (22)

3.2 The 3-soliton pressure model

Following [22, pp 580], a 3-soliton solution of (19) is written y(τ, ξ) =
2(ln detA)ξξ, with A defined by

A =

 1 + f1 2 a1
a1+a2

f1 2 a1
a1+a3

f1
2 a2
a1+a2

f2 1 + f2 2 a2
a2+a3

f2
2 a3
a1+a3

f3 2 a3
a2+a3

f3 1 + f3


and fj(τ, ξ) = exp(−aj(ξ − sj − a2jτ)).

Using the general formula,

y(τ, ξ) = 2
(detA)ξξ detA− (detA)2ξ

detA2
.

The blood flow Q1 solution of (14) is then given by

Q1(T,Z) =
12d2
d1

y(T − d0Z, d2Z).

3.3 Identifiability of KdV coefficients.

Lemma 3.1. If y0 is the initial data of a n-soliton then ηy0 is the initial
data of a n-soliton (same n) if and only if η = 1.

Proof: We prove this result in the 3 first cases, n=1, n=2 and n=3.

• Case n=1

In that case, we have, y0(x) = sech2(x−s0), and thus, ηy0 is a 1-soliton
if and only if η = 1.

• Case n=2

In this subsection, we use the 2-soliton parameters of subsection 3.1.

We look at the equivalent in time in +∞ and in −∞ of S a 2-soliton.
By using Lamb formulae, [8], we get the following equivalents, by
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letting a1 and a2 the 2 parameters of S (see formula (20)) with a2 < a1
and s2 the initial time delay of the first component of the soliton.

S = 8
a21 − a22

(a1 − a2)2
a22e

2(a2ξ+s2) (+∞) (23)

S = 8
a21 − a22

(a1 − a2)2
a22e

−2(a2ξ+s2) (−∞) (24)

As ηS is supposed to be a 2-soliton it must have the same equivalent
in time in +∞ and in −∞ . Thus if we take b1 and b2 the 2 parameters
of ηS with 0 < b2 < b1 and r2 the time delay, we get

8η
a21 − a22

(a1 − a2)2
a22e

2(a2ξ+s2) = 8
b21 − b22

(b1 − b2)2
b22e

2(b2ξ+r2)

8η
a21 − a22

(a1 − a2)2
a22e

−2(a2ξ+s2) = 8
b21 − b22

(b1 − b2)2
b22e

−2(b2ξ+r2)

We immediately deduce that b2 = a2, and r2 = s2 and we obtain the
following equation,

η
a1 + a2
a1 − a2

=
b1 + a2
b1 − a2

By using the first conserved quantity of the KdV solution (see Lamb
[8]), for the 2-soliton solutions S and ηS, namely,∫ +∞

−∞
S(t, z)dt = C

we get,

η(a1 + a2) = b1 + a2

thus

a1 = b1, η = 1

and we have exactly the same soliton.

• Case n=3

In a first time, we rewrite the problem in the following form,

y0 = ∂2 ln(det(A1))
∂x2 and ηy0 = ∂2 ln(det(A2))

∂x2 , where A1 and A2 are 3 × 3
matrices of the following form,

11



Ai =


1 +

mi
1(0)

2ai1
f i
1

mi
2(0)

ai1+ai2
f i
2

mi
3(0)

ai1+ai3
f i
3

mi
1(0)

ai1+ai2
f i
1 1 +

mi
2(0)

2ai2
f i
2

mi
3(0)

ai2+ai3
f i
3

mi
1(0)

ai1+ai3
f i
1

mi
2(0)

ai2+ai3
f i
2 1 +

mi
3(0)

2ai3
f i
3

 (25)

with f i
j(τ, ξ) = exp(−aij(ξ − sij − (aij)

2τ)).

Then, we want to know if there exist η, A1 and A2 in that form such
that

det(A1)
η = det(A2) (26)

We easily deduce from (25) that det(A2) has at most 7 different expo-
nential terms, that is

f2
1 , f

2
2 , f

2
3 , f

2
1 f

2
2 , f

2
1 f

2
3 , f

2
2 f

2
3 , f

2
1 f

2
2 f

2
3 .

When we look at the equivalent series of (detA1)
η in +∞, we deduce

that necessary, η ∈ N∗.

Suppose in a first time that η ≥ 2, then, det(A1)
η has at least 8

different exponential terms, (with a11 > a12 > a13)

f1
1 , f

1
2 , f

1
3 , f

1
1 f

1
2 f

1
3 , f

1
1 f

1
3 , f

1
1 f

1
2 , (f

1
1 f

1
3 )

2, (f1
1 f

1
2 f

1
3 )

2.

Which is impossible, thus η = 1 and that ends the proof.

Theorem 3.2. Suppose that for Z = 0 the pressure P0(T ) = P 1(T, 0) is
known and is the initial data of a n-soliton (n known). Then for any other
position Z ̸= 0 P 1(T,Z) is well defined and d1 is identified as soon as we
know the parameters d0 and d2.

Proof: Thanks to Lemma 3.1, there exists one and only one η such
that ηP0(T ) is the initial data of a n-soliton solution of the normalized KdV
equation. But once the initial data of a KdV solution is known, this solution
is unique and well known thanks to the inverse scattering method, see for
example Lamb [8].

Remark 3.3 As d0 = (ρd1)
1/3, and ρ is the density of the blood, we can

expect this parameter constant for each patient, thus only d2 needs to be
known in theorem 3.2 ♢

Remark 3.4 The identifiability of the other parameters (the soliton ones)
will be made in a forthcoming article [7]. ♢
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3.4 Windkessel models and soliton correctors.

Following (2), we decompose blood pressure in a pulsatile and non pulsatile
wave, i.e., a wave depending on time and space and a component depending
only on time

P − P0 = P 1(T,Z) + P̂ 1(T ). (27)

We already know the wave model, we still have to precise the windkessel
model. We take a 2-element windkessel model. Let C be the compliance of
the arterial tree and let R the resistance of the peripheral systemic circula-
tion. Thus, we get (see [21]), with Qin the inflow from the left ventricule.

P̂ 1(T )− P∞ = (P0 − P∞)e−
T
RC + e−

T
RC

∫ T

T0

Qin(t)

C
e

t
RC dt. (28)

We then need to identify the parameters coming from windkessel and
soliton models.

3.5 Identifiability of pulsatile and non pulsatile blood pres-
sure shapes and models.

In a first time we identify the parameters of the windkessel model, it is
commonly believed that the pulsatile component is minimal during the last
two-thirds of diastole, thus we can determine P∞ and τ = RC from late
diastolic shape.

We still have to determine the instant of onset and of offset of the dis-
atole. With these 2 times, we have identified all the parameters of the
windkessel component.

Thus, P 1 = P − P0 − P̂ 1 is a 2 or 3 soliton and we can identify the
parameters thanks to section 3.3.

4 Comparison of real pressure waves and windkessel-
solitons representations.

4.1 A 2-soliton shape.

In figure 2, the 2-soliton is well adapted to represent the pressure pulse.

For the patient of figure 3, we don’t need to correct the 2-soliton solution
with a windkessel part. The heart rate is rather high after a tilt test, thus
the windkessel effect doesn’t appear.

4.2 A 3-soliton shape.

With a 3-soliton we obtain figures 4.
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Figure 2: Pressure obtained with a FINAPRES sensor and superposed with
a 2-soliton model
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Figure 3: Pressure obtained with a FINAPRES sensor and superposed with
a 2-soliton model after a tilt test
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Figure 4: 3-soliton model tuned with FINAPRES pressure (a). Estimated
pressure at the catheter level compared with the measurement (b)

In 4(a), we have superposed a 3-soliton solution to a FINAPRES output.
Then we have superposed the same soliton at L = −0.4m with a radial pres-
sure obtained with the same patient at the same time by using a catheter,
figure 4(b).

4.3 A 2-windkessel-3-soliton shape.

With a 3-soliton we obtain the figures 5.

The figures 5 are obtained in the same way as figures 4.

Obviously, in figure 5, there is a windkessel part in the pressure pulse.
In figure 6, we have superposed the pulse pressure measured at the end of
finger, with a “3-soliton+windkessel” solution. The result obtained is better
than in figure 5 but there is 4 more parameters to identify in that case.

5 Conclusion

In this article we have proposed a reduced model of the input-output be-
haviour of an arterial compartment, including the short systolic phase where
wave phenomena are predominant. We believe that this model may serve as
a basis for model-based signal processing methods for pressure estimation
from non-invasive measurements and interpretation of the characteristics of
pressure waves. The explicit use in the reduced model of nonlinear wave
characteristics, among which some propagation delays, seems promising.
Phenomena, such that peaking and steepening, are well taken into account
by the soliton description. A first attempt is done here to separate the fast
wave propagation phenomena taking place in a boundary layer in time and
space described by a KdV equation from the slow windkessel effect repre-
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Figure 5: 3-soliton model tuned with FINAPRES pressure (a). Estimated
pressure at the catheter level compared with the measurement (b).
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Figure 6: 3-soliton +windkessel representation of the pressure at the finger
level
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sented by a parabolic equation leading to windkessel models. It relies on the
hypothesis that radial and axial acceleration terms are small. A heuristic
multiscale singular perturbation technique is used to derive the model. Giv-
ing more solid basis to this technique will be the topics of further research. It
is already possible to observe that 2 and 3-soliton descriptions of the waves
combined with two-element windkessel models active outside a boundary
layer, in the diastolic phase, lead to good experimental results to represent
pressure pulse waves. The close form formulae of these nonlinear models of
propagation in conjunction with windkessel models are rather easy to use to
represent wave shapes at the input and output of an arterial compartment.
Some very promising preliminary comparisons of numerical results obtained
along this line with real pressure data have been shown.

Acknowledgment : The authors would like to thank Y. Papelier and
hospital Béclère (Clamart) for providing us data obtained by simultaneously
measuring FINAPRES output and catheterized radial pressure.
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