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2)Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000,

91405 Orsay, France.

(Dated: 15 May 2024)

A bipartite system is defined as two microscopic entities able to exchange energy.

When excited by light, the complete optical response functions at first (polarizabili-

ties) and second orders (first hyperpolarizabilities) of such a system are determined

using the diagrammatic theory of optics. The generality of the method is ensured by

the free choice of light-matter and matter-matter interaction Hamiltonians and by the

arbitrary number of quanta involved in the energy exchange. In the dipolar approxi-

mation, the optical response functions of the system (i.e., of the interacting entities)

are linked to the responses of the interaction-free entities by transfer matrices. These

universal matrices identically modify the optical response functions at all orders in

the electromagnetic field, allowing the implementation of matter-matter interactions

in higher-order processes like stimulated or spontaneous Raman scattering and four

wave mixing. This formalism is then applied to various composite systems: dimers,

multimers and lattices of nanoparticles and molecules, dense molecular layers, and

substrate-induced image dipoles.

a)Electronic mail: t.noblet@uliege.be
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I. INTRODUCTION

Sum-Frequency Generation (SFG) is often employed as a vibrational or electronic spec-

troscopy dedicated to extracting information on molecules at an interface, typically a molec-

ular monolayer on a substrate. Such a system may look simple but it actually falls into the

category of composite systems. Even if the molecular contributions to SFG constitute of

course the signals of interest, such a system encompasses other contributions, some of them

rather obvious (e.g., the substrate or a liquid environment) and some less easy to detect (e.g.,

neighboring molecules in the monolayer or an optical window1). History of infrared-visible

Sum-Frequency Generation spectroscopy shows that, most of the times, the experimental

response of complex systems may not be modeled using the response functions of single

objects.2 As the contributions of the other components of the system interfere to produce

the measured SFG intensity, instead of simply adding up as is the case for linear optical

processes, it is not straightforward to subtract the undesired signals to focus on the sought-

after ones, and sometimes even impossible to unambiguously assign their origins. Repre-

sentative examples include interference of vibrationally resonant SFG with a nonresonant

signal from the substrate,3–5 discrimination between surface and bulk SFG contributions,6,7

influence of molecular density and packing on the vibrational response,8,9 and modification

of the molecular response due to interaction with nanoparticles.10 Experimental strategies

have been elaborated to minimize these issues (e.g., background suppression,11 heterodyne

spectroscopy,12 phase rotation13) or, conversely, to benefit from them.14–17

In this context, we would like to emphasize the pivotal role played by Yuen-Ron Shen in

nonlinear optics and surface science. He has initiated many breakthroughs in a wide range

of scientific fields, and opened tracks ultimately followed by many groups in the world. Just

in the first half of his career, Y.R. Shen had already investigated the origins of the separation

between molecular resonant and substrate nonresonant SFG contributions,3 the existence

of interaction contributions in the nonlinear response,18 the theory of higher-order nonlin-

ear processes (like four wave mixing,19,20 stimulated Raman and Brillouin scatterings,21,22

Coherent Stokes Raman Scattering23), the importance of higher-order multipolar terms in

the nonlinear response24 and their influence on the surface vs. bulk response ratio,25,26 the

dipole-dipole coupling in a molecular monolayer and its influence on the optical response,27

and the local field effects and their potential enhancement properties.28 Given the diversity
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of these optical processes and their spectroscopic applications, they have been supported by

specific theoretical frames and mathematical formalisms, sometimes with few or only indirect

connections between them. It is however possible to merge all of them into a single com-

mon approach establishing rules for the determination of the optical responses of composite

systems at all orders in the electromagnetic fields and of the multipolar expansion.

In this perspective, we have established a diagrammatic theory of linear and nonlinear

optics dedicated to composite systems, whose foundations and principles have been devel-

oped in a first paper.29 As recalled below, response functions of single objects are represented

by loops in Feynman diagrams. We have then introduced interactions between these loops,

assimilating any composite system to a collection of sub-units connected by vector bosons.

In a second paper, a first application was provided in details for the iconic, but rather sim-

ple, molecule-nanoparticle system.30 In a third paper, we have also illustrated the versatility

of the method by expanding it beyond the electric dipolar coupling, up to magnetic and

quadrupolar terms of the multipolar expansion.31 To complete the construction of this the-

oretical approach, here we aim at proving its exhaustiveness. In a first step, we describe

the generic first- and second-order response functions, unrestricted in terms of interaction

Hamiltonians and number of vector bosons. These functions encompass all the possible

optical responses of bipartite systems. In a second step, we consider the example of dipole-

dipole interactions to show that the response function of any sub-unit (e.g., a molecule or a

nanoparticle) coupled with a given partner (of same or different nature) is related to its bare

response function (i.e., when not coupled with the partner) through universal transfer ma-

trices. In other words, these matrices transform the response functions of isolated objects

into their dressed counterparts, taking into account the interactions within the bipartite

system. These transfer matrices appear to be universal indeed as they identically modify

all response functions at higher orders, accounting also for third-order nonlinear optics and

beyond. Applications to various systems like molecular monolayers, dimers and lattices of

particles, and functionalized substrates show that this structured approach allows to recover

and extend, under a unifying formalism, most of the results elaborated in the literature in

diverse fields of chemical physics.
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II. BIPARTITE DIAGRAMS FOR LINEAR AND NONLINEAR

RESPONSES

A. Complete enumeration of 2-loop diagrams

We define a bipartite system as composed of two entities (or subsystems) interacting

with light and with each other. In the following, one is considered as the entity of interest,

therefore referred to as the “main”, while the other one is seen as its “partner”. In the

previous papers establishing the diagrammatic theory of linear and nonlinear optics,29,30 the

main was supposed to be a molecule, and the partner some inorganic entity (typically a

nanoparticle). Here we address the general frame where the main and the partner refer to

any kind of entity: molecule, nanostructure, or even a solid substrate. Various examples are

provided in Part VI. Each entity is then described by fermion propagators (associated to

electronic, vibrational or rotational states, according to the properties we aim to account for)

whose interactions with light involve photons, hence considered as the inputs and outputs

of the system. At first order in the electromagnetic field, the response function is a usual

polarizability α(ω) where ω is the frequency of incoming and outgoing photons. The generic

response function at second-order is the hyperpolarizability β(ω1, ω2) representing the Sum-

Frequency Generation (SFG) process: two incoming light beams (ω1, ω2) generate an output

at ω3 = ω1 + ω2. Under minimal modifications, it may also account for other second-

order processes like Second Harmonic Generation (SHG, for ω1 = ω2), Difference-Frequency

Generation (DFG, for negative ω2), and optical rectification (for ω3 = 0).32,33 Furthermore,

in the specific context of composite systems, the interactions between the two subunits are

taken into account: they are driven by one or more interaction Hamiltonians Hint defining

the coupling constants which connect the fermion propagators of each entity (see the detailed

discussion in Ref. 31).

We refer the reader to the original papers (Ref. 29 and 30) that establish the Feynman-

Matsubara formalism used for the calculation of optical response functions and provide the

twelve Feynman rules to follow in order to draw and calculate the associated loop diagrams.

We recall that the diagrams are straightforwardly calculated using imaginary frequencies,

while real frequencies and transition linewidths are recovered at the end of the calculation by

analytic continuity. In order to access the complete response function of a composite system,
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FIG. 1. Feynman diagrams generating the optical response functions of the bipartite system

{main+partner}: (A−D) at first order (linear polarizability); (E−H) at second order (first hy-

perpolarizability). The wavy lines represent photons (light), the dashed lines depict interaction

bosons, and the plain lines are fermion propagators. The symbol “(...)” indicates an arbitrary

number of interaction processes. As detailed in the text, the complete set of diagrams (for given

interaction Hamiltonians) is obtained by frequency filling and vertex permutation. In this instance,

diagrams (E−H) illustrate only one of the possibilities to assign the photon frequencies to the wavy

lines.

all possible and topologically distinct diagrams must be drawn and their contributions added

up.

In a diagram, each subsystem is represented by a closed loop, in which a Matsubara

frequency circulates. Such a loop consists in a sequence of fermion propagators connected

by vertices representing as many interaction points (with light or with the other entity).

When the two subsystems do not interact with each other, their bare response functions are

called α
main/part
0 (ıω) and β

main/part
0 (ıω1, ıω2). Figure 1 gives the complete list of diagrams that

it is possible to draw for a bipartite system, representing the first-order [polarizability α(ıω)]

and second-order [first hyperpolarizability β(ıω1, ıω2)] response functions of the composite

system. At this stage, the natures of the interactions between the main and the partner

are arbitrary. As a consequence, the energy exchanged between them is also arbitrary and
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is represented by virtual bosons connecting the loops and conveying imaginary frequencies.

Without any approximation, Figure 1 describes the full and complete optical response of the

system, which derives from the sum of all the possible ways to fill these generic diagrams with

Matsubara frequencies, quantum states labels, coupling constants and photon frequencies.

Especially, the number of matter-matter vertices (i.e., connecting the two loops) runs from

1 to infinity, and all the possibilities of vertex sequencing (i.e., the order in which they

connect to each loop) must be considered. It is worth noting that, for the second-order

response, considering all the vertex sequencing possibilities includes permutations of the

three photon frequencies ω1, ω2 and ω3. This is the first difference between the diagrams

representing first- and second-order response functions. The second and most important

difference lies in the description of the optical process itself. Following Feynman rule #5,

the constitutive relationship ıω3 = ıω1 + ıω2 must appear once, and only once, in the whole

second-order diagram (i.e., at only one vertex) in order to comply with the order of the

nonlinear process. The corresponding “nonlinear vertex” may belong to the main or the

partner loop, thus unambiguously ascribing the nonlinear process to one of the subsystems,

whether the photon vertices are located on this loop or not. The diagrams of Figure 1 (E, F,

G, H) may be assigned to the nonlinear response of the main (resp. the partner) inside the

bipartite system, depending on which loop the nonlinear vertex is set on. They are therefore

straightforwardly related to the nonlinear response βmain
0 (resp. βpart

0 ) of the same entity

when considered alone. In the following, we assume that the nonlinear vertex is set on the

main loop, unless otherwise noted. On the contrary, there is no such nonlinear vertex as for

the first-order response and, as we will see in Part IV, it is not possible to unambiguously

ascribe the linear response function of the system to one of its subsystems.

Explicit enumeration and, all the more, calculation of all these diagrams is an impossible

task. However, it is possible to simplify and classify them through their splitting into

elementary response functions. We explain below the hypotheses which lead to such a

simplification and allow to completely skip the actual calculation process.

B. Essential hypotheses

Considering the infinite number of diagrams to add up and, for each diagram, the variable

number of Matsubara frequencies over which a sum has to be performed, we introduce a few
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hypotheses in order to simplify the diagrams:

• Light-matter interaction involves, in principle, a slightly different phase retardation for

the electromagnetic wave at each subsystem because of the spatial separation between

the main and the partner. In the diagrams, each loop should thus be assigned the

phase factor deduced from the propagation of incoming and outgoing light beams at

the location of the corresponding entity (e.g., eık(ωi)·Rmain where k is the wavevector

of light and Rmain the position of the main). Of course, only the relative positions

of the entities will contribute to a global phase shift attributed to the diagram in

the end. For instance, these global phase shifts are all different for the diagrams in

Fig. 1. However, they are usually neglected in interacting systems, even if they may

become important for large systems,34 when they are at the origin of specific effects

like a chiral response31,35 or of specific properties related to phase matching in some

processes described by the second-order response function.1,36,37 We do not take these

phases into account in the following, but they can be explicitly reintroduced at the

end of the diagrammatic calculation.31

• As defined in the frame of the multipolar expansion of the electric potential energy, the

usual optical response functions (i.e., α, β and γ) are often considered at the dipolar

level of approximation. Even though other quadrupolar and magnetic response func-

tions are diagrammatically computable and sometimes emerge as the leading ones,31

we focus here on the dipolar description of light-matter interactions. Hence, the opti-

cal transition associated to any vertex making the junction between one photon and

two fermion propagators is driven by the dipole moment pmain/part of the entity.

• The fact that the dipolar interaction between the two entities is necessarily involved

ensures the existence of at least one interaction Hamiltonian mediated by real bosons

(more precisely, vector photons in this case). These vector photons (represented by

dashed lines in the diagrams) can only convey the imaginary frequencies associated

with the input and output photons (e.g., ıω1, ıω2 and ıω3 for second-order diagrams)

and are not assigned a Matsubara frequency30 (in Part III B, the role of bosonic loops

driven by Matsubara frequencies will be discussed). Here again, the dipole-dipole cou-

pling constitutes a first approximation of matter-matter electromagnetic interactions:

other higher multipolar contributions may be added under a similar formalism, as has
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been described in a previous paper.31 In the following parts, all interaction vertices

and coupling constants will then be described in terms of electric dipoles and electric

fields. The interaction Hamiltonian corresponds in this case to the classical dipolar

energy transfer between the main and the partner: ⟨Hint⟩ = −pmain ·E(ω,R), where

R is the relative position between the two dipoles, and E(ω,R) = −W ee(ıω,R)ppart

is the electric field created by the partner at the main. Defining R̂ = R/|R|, the

coupling matrix W ee is given by38,39

W ee
lh (0,R) =

δlh − 3R̂lR̂h

4πε0|R|3
, (1)

in the electrostatic approximation, and

W ee
lh (ıω,R) =

eıω|R|/c

4πε0|R|3

[
δlh

(
1− ı

ω|R|
c

− ω2|R|2

c2

)
− R̂lR̂h

(
3− 3ı

ω|R|
c

− ω2|R|2

c2

)]
(2)

when the electrodynamic terms are included. In the following, W ee will be noted W

for simplicity.

• In this framework, the two entities are qualified as “uncoupled” when they are not

coupled through the interaction Hamiltonian Hint while being still considered in pres-

ence of each other. For instance, the bare linear polarizability αmain
0 of the main

corresponds to its linear response function computed in presence of its partner (i.e.,

taking into account the influence of the partner on the quantum states of the main)

but without including the dipole-dipole coupling between the two (Hint = 0). In other

words, the quantum states of each subsystem are supposed to take into account the

existence of the other entity, but not through the interaction Hamiltonians involved

in the diagrams. As an illustration, let us consider a molecule covalently bound to a

nanoparticle. The states of the molecule engaged in the composite system are mod-

ified (compared with those of the same isolated molecule) because the molecule and

the nanoparticle share part of their electron densities in the covalent bond. Within

the bare response functions αmol
0 and βmol

0 of the adsorbed molecule, the chemical hy-

bridization is taken into account whereas its dipolar coupling with the nanoparticle is

not. In the diagrammatric computation of the “coupled” entities, we then consider the

effect of Hint on their optical response functions but not on their quantum states: the
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response functions of the “coupled”-molecule (αmol, βmol) are obtained by summing

over the same quantum states as those of the bare response functions (αmol
0 , βmol

0 ).

• Last, the multiple successive exchanges of bosons between the two subsystems imply

that some fermion propagators convey identical frequencies on the same loop. On

a mathematical point of view, the response function of the whole system therefore

admits poles whose multiplicities correspond to the numbers of redundant frequencies

conveyed on the two loops, respectively. As explained in the Supplementary Material

of Ref. 30 and in the next Part, it is then possible to split each loop into elementary

loops, provided that the temperature is assumed to vanish. We consider that it is the

case in the following.

C. Simplification of the diagrams

The previous hypotheses have dramatic consequences as they allow us to apply the

rules for diagram splitting and factorization (first elaborated in Ref. 30 and detailed in

Appendix A). It is worth noting that only the skeletons of the diagrams have been drawn in

Figure 1. Their frequency filling (consisting in assigning a frequency to every input/output

photon, then to all fermion and boson propagators) follows from the Feynman rule #5 (i.e.,

energy conservation at each vertex and uniqueness of the nonlinear vertex).

In the case of first-order diagrams (Fig. 1, A−D), loop splitting leads to two topological

subfamilies, depending on the locations of the input and output photons. Within diagrams

(A) and (D), the two photons interact with the same loop, implying an even number V

of vector bosons. As a result, the two loops exhibit V and (V + 2) vertices, respectively.

Within diagrams (B) and (C), each photon interacts with a single loop, implying an odd

number V of vector bosons. Both loops thus exhibit (V + 1) vertices. In all cases, the two

loops encompass an even number of vertices and can be split into products of bare α0(ıω)

functions (Fig. 7A).

In the case of second-order diagrams (Fig. 1, E−H), the splitting is conditioned by the

location of the nonlinear vertex. On the one hand, the loop which hosts the nonlinear inter-

action necessarily follows the structure of Figure 7B and splits into a product of (i) several

α0 functions (depending on the number of vector bosons) and (ii) a single β0 function. On

the other hand, the second loop splits into a product of α0 functions. Two examples of a
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FIG. 2. Example of diagram splitting. The diagrams (A) and (C) share a common skeleton

(number of vertices, light-matter interactions) but differ according to their frequency filling. The

orange and purple lines link the propagators carrying identical frequencies (i.e., zero frequencies,

here) and materialize the lines along which the loops can be split (see Appendix A). Each sector

on the original loops generates a polarizability response function α0 if it contains two vertices,

or leads to the hyperpolarizability β0 if it contains three vertices. The simplified diagrams (B)

and (D), obtained after splitting, account for different optical processes. Note that each diagram

admits three versions according to the value of ωi, for i = 1, 2 or 3.

second-order response function are provided in Figure 2 to illustrate the splitting procedure.

We note that the natures of the various αmain
0 , αpart

0 and βmain
0 response functions involved

in these diagrams depend on the natures of their vertices, defined by the corresponding

light-matter and matter-matter Hamiltonians. For processes mixing electric dipole (e) and

higher-order multipolar interactions [e.g., magnetic (m) and electric quadrupolar (Q)], dif-

ferent kinds of response functions (e.g., αem
0 or αQe

0 ) must be considered.31 Here again we

restrict ourselves to dipolar approximation and assume that α0 = αee
0 for all occurrences.

After the loop splitting, the original diagrams in Fig. 1 (A−D) have transformed into

linear chains made of the bare polarizabilities of the main and the partner, hence connected

by the exchange of bosons. Those in Fig. 1 (E−H) have transformed into three connected

chains (each made of alternating αmain
0 and αpart

0 functions linked by vector bosons) meeting
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at the main loop through βmain
0 (ıω1, ıω2). As an important consequence, there is no need to

write down or even calculate the diagrams: their expression can be directly read by following

the energy flux on their drawing, translating into matrix products, from right to left (see

Ref. 30 and 31, and the next Parts). The number of possible sequences is countable because

boson exchanges may only occur between the main and the partner, not between an entity

and itself.

III. SECOND-ORDER RESPONSE: SFG HYPERPOLARIZABILITY

After diagram splitting, the second-order response functions are paradoxically the easiest

to understand because the “propagation” of the input (ıω1, ıω2) and output (ıω3) frequencies

can be separately tracked on the diagrams. From the structure of the partner loop, we know

that the three paths followed by the energy flow at each frequency are distinct and meet at

the hyperpolarizability loop βmain
0 . Once split, each diagram then consists in a combination

of elementary processes which can be gathered in three families, as pictured in Figure 3.

We describe them using an incoming photon as an example (for the outgoing photon ıω3,

the logical sequences are reversed). The first family, P part
n (where the superscript indicates

which entity interacts with the photon), accounts for partner-mediated interactions between

light and the main entity: one photon interacts with the partner and its energy is transferred

to the main, where it takes part in the SFG process. The complexity of such a mechanism,

indexed by n, corresponds to the number of round-trip energy exchanges between the main

and the partner. For the second family, Mmain
n , the photon directly interacts with the main,

then a back and forth energy exchange with the partner happens before the photon takes

part in the SFG process, involving a total of (n+ 1) round-trip exchanges between the two

subsystems. In this process, the photon does not interact with the partner. As for the third

family, Cn, the physics is quite different from the two previous ones because it involves closed

circuits of energy exchange between the main and its partner [with (n + 1) back and forth

steps], without any correlation with the SFG process itself. For this reason, we separate

below the study of the in-line processes (belonging to the families Pn and Mn) from the

circular ones (Cn).

In Fig. 2 (B), for example, frequency ıω1 follows a P part
1 process while frequency ıω2

undergoes an Mmain
0 process. In addition, one of the three frequencies is involved in a C0
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FIG. 3. The three families of subprocesses arising from the splitting of a generic bipartite diagram.

The first member of each family (P part
0 , Mmain

0 , C0), i.e., corresponding to the lowest complexity

n = 0, is drawn in blue. The other members (P part
n , Mmain

n , Cn) involve in addition a periodic

pattern (in orange) repeated n times, identical for the three families.

process. The diagram of Fig. 2 (D) consists for its part in a combination of P part
1 processes

for ıω1, M
main
0 processes for ıω3 and C0 processes for one of the three frequencies. We

note that, if the nonlinear vertex is set on the partner loop in Fig. 1, the roles of the

main and the partner are swapped, so the associated split diagrams encompass the partner

hyperpolarizability βpart
0 modified by the symmetric processes Pmain

n and Mpart
n , whereas Cn

processes do not change.

A. In-line processes Pn and Mn

As we see in Fig. 3, P part
0 and Mmain

0 are the building blocks of the three families of

subprocesses. For incoming beams (ıω1, ıω2), the vertex sequence in P part,in
0 involves a first

interaction with the partner (via αpart
0 ) followed by an energy transfer to the main (via W ).

Recalling that the corresponding matrices are introduced from right to left,29,30 we get

P part,in
0 (ω1,2) = −W (ıω1,2)α

part
0 (ıω1,2). (3)

Conversely, for the outgoing beam ıω3, the energy is first transferred from the main to the

partner (via W ), followed by radiation of the partner at ıω3 (via αpart
0 ). We have thus

P part,out
0 (ω3) = −αpart

0 (ıω3)W (ıω3). (4)
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The corresponding P part
0 -modified response functions can be written

βmain
ijk (ıω1, ıω2) =

∑
j′

[
βmain
0 (ıω1, ıω2)

]
ij′k

[
P part,in
0 (ω1)

]
j′j

for ω1, (5)

βmain
ijk (ıω1, ıω2) =

∑
k′

[
βmain
0 (ıω1, ıω2)

]
ijk′

[
P part,in
0 (ω2)

]
k′k

for ω2, (6)

βmain
ijk (ıω1, ıω2) =

∑
i′

[
P part,out
0 (ω3)

]
ii′

[
βmain
0 (ıω1, ıω2)

]
i′jk

for ω3. (7)

In other words, a tensor contraction between the P0 matrices and the corresponding index

of the hyperpolarizability tensor is performed. In these equations, the calculated hyperpo-

larizability β is attributed to the main entity because it is the place where the nonlinear

process (characterized by ıω3 = ıω1 + ıω2) precisely happens. In terms of classical physics,

P part
0 (ω1) and P part

0 (ω2) reflect the fact that light interacts with the partner instead of in-

teracting with the main, and creates a local dipole radiating an electric field which is used

by the main to participate in the nonlinear process. When P part
0 (ω3) is involved, the output

of the nonlinear process is a dipole located at the main, radiating this time an electric field

to the partner which, in turn, converts it into the source dipole of SFG radiation.

In a similar way, the matrices describing the Mmain
0 processes are

Mmain,in
0 (ω1,2) = P part,in

0 (ω1,2)P
main,in
0 (ω1,2) (8)

Mmain,out
0 (ω3) = Pmain,out

0 (ω3)P
part,out
0 (ω3). (9)

In the case where all the matrices Pmain,in
0 involved in the chains (resp. Pmain,out

0 , P part,in
0 ,

P part,out
0 ) are identical (i.e., for a single interaction Hamiltonian, chosen here as the dipole-

dipole Hamiltonian), the generic processes are given, for all n ⩾ 0, by

P part,in
n (ω1,2) =

[
P part,in

0 (ω1,2)P
main,in
0 (ω1,2)

]n
P part,in

0 (ω1,2) (10)

P part,out
n (ω3) = P part,out

0 (ω3)
[
Pmain,out

0 (ω3)P
part,out
0 (ω3)

]n
(11)

Mmain,in
n (ω1,2) =

[
P part,in

0 (ω1,2)P
main,in
0 (ω1,2)

]n+1

(12)

Mmain,out
n (ω3) =

[
Pmain,out

0 (ω3)P
part,out
0 (ω3)

]n+1

. (13)

All these processes have their classical interpretation for which the energy flows between the

subsystems through successive conversions from electric fields into dipoles (via polarizabili-
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ties α0) and from dipoles into radiated electric fields (via matrices W ).

The complete second-order response function βmain of the main (when coupled to the

partner) is obtained by adding up the contributions of all these processes, for n running

from zero to infinity. We get

βmain
ijk =

∑
i′j′k′

[
Λmain,out(ω3)

]
ii′

[
βmain
0 (ıω1, ıω2)

]
i′j′k′

[
Λmain,in(ω1)

]
j′j

[
Λmain,in(ω2)

]
k′k

(14)

with

Λmain,in(ω1,2) = 1+
∞∑
n=0

[
P part,in

n (ω1,2) +Mmain,in
n (ω1,2)

]
, (15)

Λmain,out(ω3) = 1+
∞∑
n=0

[
P part,out

n (ω3) +Mmain,out
n (ω3)

]
. (16)

At this stage, we have not taken the circular processes Cn into account (see Part III B), but

we have included all the processes in line with one of the three light-matter interactions.

Given Eqs. (10)−(13), the Λ matrices can be actually expressed as geometric series of

matrices:

Λmain,in(ω1,2) =
∞∑
n=0

[
Mmain,in

0 (ω1,2)
]n [

1+ P part,in
0 (ω1,2)

]
, (17)

Λmain,out(ω3) =
[
1+ P part,out

0 (ω3)
] ∞∑
n=0

[
Mmain,out

0 (ω3)
]n

, (18)

whose common ratios are Mmain,in
0 = W αpart

0 W αmain
0 and Mmain,out

0 = αmain
0 W αpart

0 W ,

respectively. It is known that such matrix series converge when the modulus of the highest

eigenvalue of their common ratio is smaller than unity. As a rule of thumb, the order of

magnitude of the polarizability is given by 4πε0d
3, where d is the characteristic size of the

entity. Besides, the order of magnitude ofW follows 1/4πε0|R|3, where the interdistance |R|

is evaluated from center to center and is consequently bigger than dmain + dpart. Henceforth,

for non-resonant polarizabilities:

sup |M0| ∼
(

dmain,part

dmain + dpart

)6

< 1, (19)

and the series are convergent. Of course, one may argue that convergence is not ensured
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anymore when one of the polarizabilities becomes resonant. For example, this is indeed the

case for molecules at vibrational or electronic resonances, metallic nanoparticle at surface

plasmon resonance, or quantum dot at excitonic resonance. However, the polarizabilities

involved in the equations are calculated at imaginary frequencies (ıω1, ıω2 or ıω3) and do

not exhibit any resonance on the imaginary axis. Consequently, we consider these series as

convergent for all kinds of system. The Λ matrices therefore become

Λmain,in(ω1,2) =
[
1− P part,in

0 (ω1,2)P
main,in
0 (ω1,2)

]−1 [
1+ P part,in

0 (ω1,2)
]
, (20)

Λmain,out(ω3) =
[
1+ P part,out

0 (ω3)
] [

1− Pmain,out
0 (ω3)P

part,out
0 (ω3)

]−1

. (21)

In the particular case of a homo-dimer, hence made of identical main and partner, we have

(1−M0) = (1− P 2
0 ) = (1+ P0)(1− P0) and the Λ matrices simply read

Λdimer,in(ω1,2) =
[
1− P in

0 (ω1,2)
]−1

, (22)

Λdimer,out(ω3) =
[
1− P out

0 (ω3)
]−1

. (23)

B. Circular processes Cn

As shown in Figure 2, diagram splitting also generates circular processes of type Cn. For

the simpler case of C0, we have

C0(ωi) =
∑
j,k,h,l

Wjl(ıωi)[α
part
0 (ıωi)]lhWhk(ıωi)[α

main
0 (ıωi)]kj

= tr[P part
0 (ωi)P

main
0 (ωi)] = tr[Pmain

0 (ωi)P
part
0 (ωi)] = tr[M0(ωi)] (24)

for i = 1, 2, 3 and indifferently for M0 = Mpart
0 or Mmain

0 , where the trace operator accounts

for the circular property of the diagram. Process C0 introduces a multiplier which scales

any original diagram (i.e., representing βmain or βpart) by a universal quantity. In the same

way, the generic process Cn reads

Cn(ωi) = tr{[P part
0 (ωi)P

main
0 (ωi)]

n+1} = tr{[M0(ωi)]
n+1}. (25)

Through diagram splitting, more and more parallel Cn processes are generated (for each

of the three optical frequencies) as and when the amount of vector bosons increases. For
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example, we note that C1 is different from (C0)
2 because of the trace operator. Indeed, for

(C0)
2, the two M0 processes are associated to two distinct 2-loop closed diagrams and are

independent from each other while, for C1, the two M0 processes follow each other within

the same 4-loop closed diagrams. In the former case, each M0 operator loops over a single

polarization state [j → j as in Eq. (24) and k → k] whereas, in the latter case, one M0

transforms polarization j into k while the other one turns k back into j. Taking into account

all possible combinations of Cn processes (in addition to the in-line processes), the generic

hyperpolarizability tensor of the main entity coupled with its partner is eventually given by

βmain
ijk =

∑
i′j′k′

[
Λ̃main,out(ω3)

]
ii′

[
βmain
0 (ıω1, ıω2)

]
i′j′k′

[
Λ̃main,in(ω1)

]
j′j

[
Λ̃main,in(ω2)

]
k′k

, (26)

where

Λ̃main(ωi) = Λmain(ωi)
∞∏
n=0

∞∑
m=0

[Cn(ωi)]
m = Λmain(ωi)

∞∏
n=0

1

1− Cn(ωi)
(27)

for both “in” and “out” frequencies. In a concise notation, we can write Λ̃main(ωi) =

Λmain(ωi)L(ωi). Given that sup |M0| < 1, Eq. (19), the convergence of the infinite product

is ensured by Eq. (25), which implies that Cn → 0 when n → ∞.

Even if they seem independent of the other linear or nonlinear processes occurring in the

diagram, processes Cn exist only as companion processes of an in-line process because they

originate in the splitting of a common mother loop (as in Fig. 2) and do not stand alone.

This is coherent with the fact that they represent a scaling factor of the response function

defined by all the in-line processes. In Fig. 4A, this is illustrated in the simplest case of

a C0 process co-existing with the bare hyperpolarizability βmain
0 . The latter translates the

occurrence of SFG and implies the propagation of excited states within the system: in the

classical picture, oscillating dipoles are locally generated at the optical frequencies ω1, ω2

and ω3. But each dipole is not only involved in the SFG mechanism. The diagram of Fig. 4A

teaches us that the as-generated dipoles may participate in back and forth energy exchanges

between the main and the partner in parallel with SFG. Such a C0 process only requires the

prior excitation of oscillating dipoles within the system (carried out by the βmain
0 loop), and

is not topologically connected to the βmain
0 loop through vector bosons (there is no radiated

electric field between the two processes). This explains why it is possible to have an arbitrary
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ıωi
<
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ıωi
<
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αpart
0
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βmain0

ω1 ω3

ıω1 ıω3

0

ω2

ıων+ ıων+

ıων+ıων+

ıων+

ıωλ+

ıωλ+

W(ıωi) W(ıωi)

(A) Circular process in second-order response

ıωγ
<

< 0

<0

ıωγ
<

αmain0

αpart
0

ıων+

ıων+

ıωλ+

ıωλ+

W(ıωγ) W(ıωγ)

(i = 1, 2, 3)

2 fermion Matsubara frequencies 
3 optical frequencies

2 fermion Matsubara frequencies 
1 boson Matsubara frequency 
no optical frequency

(B) Dispersion energy

< <

FIG. 4. Interpretation of circular processes. (A) Split diagram associated to the response function

βmain(ıω1, ıω2) = C0(ωi)β
main
0 (ıω1, ıω2), with i = 1, 2 or 3. The dashed lines represent vector

bosons (real photons) conveying the optical frequency ωi. (B) Feynman diagram associated to

the dispersion energy. The dashed lines are virtual bosons described by an additional Matsubara

frequency ıωγ .

number of such processes implemented in a diagram. Higher-complexity Cn contributions

involve the same back and forth energy flux as C0, repeated n times with additional flips of

the polarization of light at each iteration.

Still, it is possible to draw a Feynman diagram representing something that looks like

the C0 process but without any in-line companion process (Fig. 4B). The calculation of this

diagram follows from the same Feynman rules as those established for the optical response

functions. We note that there are two interactions (Nv = 2) but no photons (Np = 0), with

the consequence that the value of the exchanged frequency is not dictated by an external

input. As explained in Part II B, this means that the vector bosons remain virtual and, in

line with the Feynman-Matsubara formalism, the frequencies conveyed by matrices W are
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boson Matsubara frequencies (instead of optical frequencies). Finally, the limit of vanishing

temperature is not required here because no diagram splitting is performed. The diagram

is calculated accordingly in Appendix B, and leads to

U = −kT
∑
γ

tr
[
αmain(ıωγ)W (ıωγ)α

part(ıωγ)W (ıωγ)
]
. (28)

The diagram represents this time an energy instead of a dimensionless scale factor. This

comes from the additional 1/b prefactor associated to the boson Matsubara frequency ıωγ.

A more usual formulation is obtained for vanishing temperature (Appendix B), allowing to

recover a continuous description40,41:

U = − ℏ
2π

∫ ∞

−∞
tr
[
αmain(ıω)W (ıω)αpart(ıω)W (ıω)

]
dω. (29)

The energy U is negative, corresponding to an attractive force. For W describing the elec-

tric dipolar Hamiltonian in the electrostatic [Eq. (1)] or electrodynamic form [Eq. (2)], we

recognize42 the definition of the interaction energy giving birth to the London component

of the van der Waals forces (i.e., the dispersion forces) as the attractive interaction between

instantaneous electric dipoles. In fact, Eq. (28) coincides with the discrete MacLachlan for-

mulation of the dispersion free energy at finite temperature,42,43 obtained through a direct

calculation of the interaction energy. Even so, our approach goes beyond MacLachlan’s,

allowing us to calculate the dispersion energies of various bipartite systems directly in imag-

inary frequencies and with the help of only one Feynman-Matsubara diagram (in the vein

of the work of Dzyaloshinskii et al.44). In particular, when the electrostatic version of W is

considered together with isotropic polarizabilities,45–47 the original London formula and the

|R|−6 law for the dispersion energy between two atoms are recovered.42,48 For long distances,

the electrodynamic version of W is required to account for retardation effects, and Eq. (29)

leads to the Casimir and Polder results with an |R|−7 dependence.45,47 Recent works aim

at estimating the relative amplitudes of long range dispersion energy derived from Eq. (29)

and dipolar energy transfer for macromolecules in solutions.49 This dipolar energy transfer

supposes that one of the molecules is established in a vibrational excited state, through

thermal activation for example, but not after excitation by light. It may be seen as the

thermally-induced counterpart of the P0 process. Finally, as explained in Part VI E, the
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same equations as above may be used to describe the dispersion forces between the main

entity and a dielectric substrate playing the role of the partner,45,46 which demonstrates the

versatility of our approach.

In this frame, we can now compare the C0 contribution to optical response functions

(Fig. 4A) with the dispersion energy (Fig. 4B). They encompass the same diagram (or

subdiagram) but do not represent the same quantities. From Eq. (29), we see that the

dimensionless circular energy transfer between the two subsystems at energy ℏω is integrated

over all Matsubara energies with a unit energy density to generate the dispersion energy.

In a C0 process, the Matsubara energy in the bosonic loop is not arbitrary anymore as

it is controlled by the main response function, resulting in an energy density δ(ω − ωi),

with i = 1, 2 or 3. We recover the essence of the circular energy transfer in Cn processes

as dimensionless quantities. The interpretation of the C0 process follows: it represents a

forced dispersion energy transfer between the two partners, driven by the optical response

functions, i.e., under excitation by light. In other words, C0 quantifies the dispersion energy

transfer between optically excited states.

IV. FIRST-ORDER POLARIZABILITY

A. Specificity of the first-order response

For the first-order response, there is only one frequency involved in the diagrams, hence

ascribed to the input and output photons, and to all vector bosons. As a consequence of

this indistinguishability and the absence of a nonlinear vertex, the optical process cannot

be unambiguously attributed to one of the two loops. The full first-order response of the

system is the sum of the four diagrams in Fig. 1 (A−D). While it is possible to associate

diagram (A) to the first-order response of the main and diagram (D) to that of the partner,

the assignments of diagrams (B) and (C) are a matter of perspective: it depends whether we

aim to describe how each entity influences the way (i) the incoming photon interacts with

the main (resp. the partner) or (ii) the outgoing photon is scattered by the main (resp. the

partner). For instance, if we group diagrams (A) and (B) in Figure 1, we get a description

of the partner-modified output response of the main (since the input photon is connected

to the main loop in both diagrams). Instead, if we group diagrams (B) and (D), we get a
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description of the main-modified input response of the partner (since the output photon is

connected to the partner loop). Henceforth, grouping the diagrams according to the lines

(A-B) and (C-D) in Fig. 1 ensures the uniqueness of the interaction of the incoming photon

with one of the entities, whereas grouping the diagrams according to the columns (A-C)

and (B-D) ensures the uniqueness of the entity responsible for the emission of the outgoing

photon. As a result, there are two ways to define a response function for the main entity

inside the bipartite system. We first introduce the “input” polarizability from diagrams

(A)+(C) as the response function of the system for which the outgoing photon is emitted by

the main, taking into account all the possible in-line modifications of the input side (hence

the name). After diagram splitting (we drop the ω-dependence and focus on the in-line

processes only), we obtain

αmain,in = α(A) +α(C)

= αmain
0

∞∑
n=0

[
Mmain,in

0

]n
+αmain

0

∞∑
n=0

[
Mmain,in

0

]n
P part,in

0

= αmain
0

∞∑
n=0

[
P part,in

0 Pmain,in
0

]n [
1+ P part,in

0

]
(30)

= αmain
0

[
1− P part,in

0 Pmain,in
0

]−1 [
1+ P part,in

0

]
. (31)

In the same way, from diagrams (A)+(B), we define the “output” polarizability of the main

entity in the system:

αmain,out =
[
1+ P part,out

0

] ∞∑
n=0

[
Pmain,out

0 P part,out
0

]n
αmain

0 (32)

=
[
1+ P part,out

0

] [
1− Pmain,out

0 P part,out
0

]−1

αmain
0 . (33)

In other words:

αmain,out = Λmain,outαmain
0 and αmain,in = αmain

0 Λmain,in (34)

and, for the complete polarizability of the bipartite system:

αsyst = αmain,in +αpart,in = αmain,out +αpart,out. (35)
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When the circular processes Cn are taken into account, Eq. (34) and (35) are still valid

provided that Λ is replaced by Λ̃ as in Eq. (27). In the dimer case, we note that all

diagrams on Fig. 1(A−D) appear twice (αmain,in = αpart,in and αmain,out = αpart,out), and

only one occurrence must be taken into account. It is easily checked that it becomes possible

to define this time a first order response function of the main, which coincides in fact with

the response function of the dimeric system because

αdimer = αmain,in = αmain
0 Λdimer,in = αmain,out = Λdimer,outαmain

0 . (36)

B. Self-consistent equivalence

In the literature, the equations above are usually determined thanks to a self-consistent

approach in the frame of the dipolar approximation of classical electromagnetism. For a

system excited by an electromagnetic wave described by the electric fieldE0, the response for

each subsystem consists in a dipole proportional to the local field Eloc: p
main = αmain

0 Emain
loc .

The local field is the sum of the external field E0 and the electric field −Wppart created by

the dipole of the other entity:

pmain = αmain
0 [E0 −Wppart] (37)

ppart = αpart
0 [E0 −Wpmain]. (38)

We deduce that:

pmain = αmain
0 [1−Wαpart

0 ]E0 +αmain
0 Wαpart

0 Wpmain (39)

and

pmain = [1− Pmain,out
0 P part,out

0 ]−1αmain
0 [1+ P part,in

0 ]E0. (40)

It is easy to check that

Pmain,out
0 P part,out

0 αmain
0 = αmain

0 P part,in
0 Pmain,in

0 , (41)
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leading to the equality

[1− Pmain,out
0 P part,out

0 ]−1αmain
0 = αmain

0 [1− P part,in
0 Pmain,in

0 ]−1. (42)

Given Eq. (40), it is eventually possible to write pmain = αmain,inE0 with αmain,in =

αmain
0 Λmain,in and to recover Eq. (31). In this description, the inclusion of the main en-

tity into the bipartite system leads to a modification of its polarizability into an equivalent

response function αmain,in taking the influence of the partner into account. We note that

Eq. (37) and (38) assume that only the input of the response function of each entity is

modified by the presence of the other subsystem, hence the equivalence with αmain,in.

Conversely, let us call αmain,out and αpart,out the classical response functions of the system

for which light interacts first with the main and the partner, respectively. The response

driven by αmain,out is the sum of (i) the bare response of the main and (ii) the part of the

system response initiated at the main and emitted at the partner:

αmain,outE0 = αmain
0 E0 −αpart,outWαmain

0 E0. (43)

It leads to the coupled equations

αmain,out = αmain
0 −αpart,outWαmain

0 , (44)

αpart,out = αpart
0 −αmain,outWαpart

0 , (45)

which resolve into

αmain,out = [1+ P part,out
0 ]αmain

0 [1− P part,in
0 Pmain,in

0 ]−1. (46)

With the help of Eq. (42), we recover Eq. (33).

There is indeed a full equivalence between the self-consistent classical approach and the

Feynman diagrammatic method (under convergence condition and restricted to the in-line

processes). Both approaches show the impossibility to unambiguously define the polariz-

ability of the main entity inside the bipartite system, except in the dimer case or when

matrices α0 and W commute. On the one hand, the diagrammatic method is cumulative as

all processes are enumerated then added up in order to produce the complete response, in
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the form of an infinite series which converges to an integrated form. On the other hand, the

self-consistent approach describes the interaction of the main with a partner (and vice versa)

for which the cumulative process has already been implicitly integrated. Their equivalence

is more easily seen in the dimer case: for identical main and partner, we have

pmain = αmainE0 = αmain
0 [E0 −W (αmainE0)], (47)

which directly gives the new polarizability of the main in the system,

αmain = [1+αmain
0 W ]−1αmain

0 , (48)

but also its cumulative form

αmain = [1−αmain
0 W +αmain

0 Wαmain
0 W −αmain

0 Wαmain
0 Wαmain

0 W + · · · ]αmain
0 (49)

by successive iterations. It is worth noting that the conjunction of Eqs. (48) and (49)

implicitly ensures the convergence condition sup |αmain
0 W | < 1 through the series expansion

(1+X)−1 =
∑

(−1)nXn.

Interestingly, Eq. (47) is equivalent to a Dyson equation50 for the first-order response

function: the effective (or dressed) response function, calculated by enumeration and sum of

the Feynman diagrams, is also obtained by the interaction of the bare main object with the

dressed version of itself. In some cases, this raises the problem of the convergence of the infi-

nite series leading to the effective response function, leading to renormalization procedures.

In the simple version presented here, the series are convergent and both approaches match.

When the partner differs from the main, we see from Eq. (17) and (18) that the concept of

dressed objects also applies, as the dressed main polarizability is obtained by the interaction

of the bare main polarizability with the dressed version of the partner polarizability (and

vice versa):

αmain,out = Λmain,outαmain
0 =

[
1−αpart,outW

]
αmain

0

αmain,in = αmain
0 Λmain,in = αmain

0

[
1−Wαpart,in

]
. (50)

The self-consistent procedure takes a simple form in the electric dipole regime whereas the
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Feynman diagram description applies in principle to all types of light-matter and matter-

matter interactions [(m) and (Q) types, for example]. Furthermore, the circular diagrams

Cn are not included in the self-consistent approach, even if they could be added in a second

step.

V. PROPERTIES OF THE TRANSFER MATRICES Λ

A. Universality of Λ matrices

The specific case of second-order optical response is representative of all nonlinear optics:

the transfer matrix Λ̃ is involved in the transformation of any bare response function into

its dressed counterpart, whatever the order of the nonlinear process. Considering f
(N)
0 as an

N th-order bare response function: f
(N)
0 is a rank-(N + 1) tensor, with f

(1)
0 = α0,f

(2)
0 = β0,

and so on. Tensor f
(N)
0 depends on N input frequencies {ωk}Nk=1 and each photon ωk can

interact with one of the entities (i) directly [Λ(ωk) = 1+ · · · ], (ii) through a Pn-type process

[Λ(ωk) = 1+
∑

Pn(ωk)+ · · · ], or (iii) through an Mn-type process [Λ(ωk) = 1+
∑

Pn(ωk)+∑
Mn(ωk)], with (iv) a possible Cn-type companion process [Λ̃(ωk) = L(ωk)Λ(ωk)]. It

is worth noting that the Cn(ωk) processes scale indeed all the optical response functions

as multipliers and their total contribution translates into a global renormalization factor

L(ωk) =
∏∞

n=1 [1− Cn(ωk)]
−1 [see Eq. (27)] for each optical frequency.

As the Λ̃(ωk) matrices gather all the processes which possibly affect the optical response

of the main when coupled with a partner, these matrices are universal in the frame of the

hypotheses listed in Part II B. For N ⩾ 2, the dressed response function f (N) relates to its

bare counterpart f
(N)
0 through:

f
(N)
i,j1···jN =

∑
i′j′1···j′N

Λ̃out
ii′ (ωN+1) f

(N)

0; i′,j′1···j′N

N∏
k=1

Λ̃in
j′kjk

(ωk) (51)

=

( ∑
i′j′1···j′N

Λout
ii′ (ωN+1) f

(N)

0; i′,j′1···j′N

N∏
k=1

Λin
j′kjk

(ωk)

)N+1∏
k=1

L(ωk),

where ωN+1 = ω1 + · · · + ωN is the output frequency. Some applications of this formula to

third-order optical processes are provided in Part VIG. This generalizes Eq. (26), which

indeed involves a contraction of the tensor quantifying the bare response function β0 with
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Λ̃ matrices evaluated at the photon frequencies, specifying the “in” and “out” formalism in

line with the input and output property of each photon. Moreover, as mentioned above, the

contribution of the Cn processes does not take part in the tensor structure: they translate

into a scaling factor
∏N+1

k=1 L(ωk) which has no equivalent in the literature. For that reason,

this factor is dropped in the following applications, but its physical meaning and relevance

will have to be examined in future works.

B. Dimers, multimers and infinite lattices

When the composite system is made of identical entities, the transfer matrices take

specific forms. According to Eq. (14), (22), (23) and (36), the Λ matrices and the response

functions are quite simple for a dimer. Generalization to arbitrary multimers is conceivable

by involving as many loops as the number of monomers in the diagrams. The difficulty lies

in the fact that the coefficients of the interaction matrix W (R) depend on the distance and

mutual orientations of the entities in the system. Describing a multimer as a finite collection

of N identical entities located at sites {si}Ni=1, all the loops in the diagram may now exchange

energy with the other loops in any sequence: sites si and sj interact through the coupling

matrix W si,sj . Defining Ri and Rj as the positions of sites si and sj, respectively, the

coefficients of W si,sj are obtained by replacing R by Ri,j = Ri − Rj in Eq. (2). The

diagram splitting is performed in the same way as in the dimer case because all bosons carry

the same energy whatever the associated value of W si,sj . However, even for the first-order

polarizability, counting and calculating the diagrams becomes an exhausting task this time

because, contrary to the dimer case, the symmetry between the entities is broken: they do

not play identical roles anymore in the system and cannot be interchanged. This also makes

the self-consistent approach hardly tractable in the general case,51 even if averaging over

the positions and symmetry simplifications may help.52 This is why the nearest neighbor

approximation is commonly used for multimers, as discussed in Part VC.

Paradoxically, the situation becomes simpler when the identical entities build up an

infinite 1D, 2D or 3D lattice instead of a finite multimer. The diagram encompasses in

principle an infinite number of identical loops, interacting by energy exchange in all possible

manners, i.e., involving any of the possible position-dependent coupling matrices W si,sj .

Given that such interactions only depend on the relative positions, we may fix the origin at
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one site si and set Ri = 0 without loss of generality. It becomes possible this way to draw

an equivalent diagram with only two loops (Fig. 6A): the main site is set at the origin and

the partner represents any of the infinite number of entities in the system (except the main

itself). The main interacts indifferently with any other entity in the lattice (all represented

by the partner), so interactions involve all possible matrices W 0,sj ≡ W sj covering all sites

{sj}j ̸=i, in all possible sequences and an arbitrary number of times. After loop splitting, the

response function of the system thus follows the tracks of the dimer: choosing for example

the “out” formulation in Eq. (36), we replace P out
0 by P

out,sj
0 = −α0W

sj for site sj in

Eq. (23), with W sj = W (Rj), to get

Λlattice,out =
∞∑
n=0

∑
s1,s2,··· ,
sn∈{s}

P out,s1
0 · · ·P out,sn

0 , (52)

where {s} stands for the set of all sites different from the main. Considering that the

matrices P
out,sj
0 do not commute, the generic term in the second sum corresponds to the

development of ( ∑
sj∈{s}

P
out,sj
0

)n

. (53)

Under the convergence hypothesis (i.e., sup |
∑

P
out,sj
0 | < 1), the matrix Λlattice,out becomes

Λlattice,out =
∞∑
n=0

( ∑
sj∈{s}

P
out,sj
0

)n

=

[
1−

∑
sj∈{s}

P
out,sj
0

]−1

=

[
1 +α0

∑
sj∈{s}

W sj

]−1

(54)

and we have, for the polarizability of a molecule inside the lattice,

αlattice = Λlattice,outα0 =

[
1 +α0

∑
sj∈{s}

W sj

]−1

α0. (55)

Similarly,

Λlattice,in =

[
1 +

( ∑
sj∈{s}

W sj
)
α0

]−1

. (56)

It is worth noting that these Λlattice(ω), like all Λ(ω) matrices, apply to all orders of optical

response functions. Hence, the expressions of Eq. (55) and (56) may be plugged, for example,

into Eq. (14) to determine the hyperpolarizability of the main inside the lattice. Applications
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range from molecular monolayers (Part. VID) to chains and lattices of nanoparticles in the

dipolar approximation.53,54

C. The nearest neighbor approximation

When finite multimers are considered, halfway between dimers and infinite lattices, the

task of drawing and counting the diagrams becomes possible when the nearest neighbor

approximation55 is enforced. In this scheme, each monomer can exchange energy with its two

nearest neighbors only, provided the definition of such nearest neighbors is not ambiguous

(e.g., in chains of entities). It relies on the fact that the coupling matrices W depend on a

high power of the inverse distances between entities (typically |R|−3), so that the influence

of the next-to-nearest neighbors can be neglected. We illustrate the way to handle Feynman

diagrams in this context for a generic trimer, before generalizing to a multimer.

1. Generic trimer

The generic trimer of distinct entities {1, 2, 3} is represented in Fig. 5A. Each entity

k = 1, 2, 3 is characterized by its bare response functions α
(k)
0 and β

(k)
0 . The nearest neighbor

approximation is acceptable when the distance D13 is “significantly bigger” than the two

others. In particular, the angle θ13 is supposed to remain close to zero, leading to some

additional screening of the interaction between monomers 1 and 3. In this frame, after

diagram splitting, the sequence of energy transfers in the Feynman diagrams can be counted

and sorted. They involve the two interaction matrices W 12 = W 21 ≡ W (R1 − R2) and

W 23 = W 32 ≡ W (R2−R3). An example is given in Fig. 5B and C for an incoming photon

interacting at entity 1 and an outgoing photon at entity 2. Considering the input part of the

response functions (we do not detail the “out” matrices, which follow the same derivation),

it is then possible to define four elementary processes P 1,2
0 , P 2,1

0 , P 3,2
0 and P 2,3

0 , following

the generic form P j,k
0 = −W jkα

(j)
0 (we drop the “in” supercripts for clarity).

Henceforth, solving the trimer problem consists in determining the three transfer matri-

ces Λ(k) associated with each entity: the response functions of the trimer are completely

determined from Eq. (34) [i.e., α(k),in = α
(k)
0 Λ(k),in] at first order, and Eq. (14) at second

order (provided the “out” contributions are calculated in the same way). As derived in
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FIG. 5. (A) Geometry of a generic trimer. (B, C) Two sequences of energy exchange involved in

matrix Λ(2),in showing the difference betweenM2,3
0 M2,1

0 P 1,2
0 andM2,1

0 M2,3
0 P 1,2

0 (cf. Appendix C).

Appendix C, the Λ(k),in matrices may be either explicitly calculated or determined as the

solutions of the linear system
Λ(1),in − P 2,1

0 Λ(2),in = 1

−P 1,2
0 Λ(1),in + Λ(2),in − P 3,2

0 Λ(3),in = 1

− P 2,3
0 Λ(2),in + Λ(3),in = 1

(57)

composed of equations with matrix variables and matrix coefficients.

2. Generic multimer

In a multimer involving N entities, each entity k interacts with its two neighbors (k− 1)

and (k + 1) analogously to the trimer case. Matrices Λ(k),in are therefore solutions of a

system of N linear equations with matrix coefficients P j,k
0 = −W jkα

(j)
0 :



Λ(1),in − P 2,1
0 Λ(2),in = 1

−P 1,2
0 Λ(1),in + Λ(2),in − P 3,2

0 Λ(3),in = 1

( · · · )

−PN−2,N−1
0 Λ(N−2),in + Λ(N−1),in − PN,N−1

0 Λ(N),in = 1

− PN−1,N
0 Λ(N−1),in + Λ(N),in = 1

. (58)

As shown in Part VI, the equations may substantially simplify according to the symmetries

characterizing the geometric distribution of the entities (which have consequences on W

coefficients) and their polarizabilities. The example of an N -multimer of identical molecules

28



adopting a linear structure is detailed in Part VIC.

VI. APPLICATIONS

In this Part, we show how the general equations of the linear and nonlinear response

functions in a bipartite system or an infinite lattice apply to various situations and cover a

wide range of systems. We do not include the circular processes Cn (and the normalization

they induce) in the analysis in order to stick to the previous descriptions found in the

literature.

A. Experimental data analysis

The present theoretical analysis provides a generic description of the response functions

of the bipartite system (or the infinite lattice), and of each entity inside it, in terms of their

bare response functions. It is interesting to note that the transformation from α0 to α

involves the same Λ matrices as the transformation of β0 into β. When the coupling has

major consequences on the system, as is the case for a dimer because coupling modifies the

intrinsic resonance energies of the monomers,34,56,57 these modifications appear identically

in both the first- and second-order response functions.8,58

There are essentially two ways to use the formulas in Eq. (26) and (34). The first one

consists in modeling the bipartite system (the relative positions and orientations of the

subsystems, and the bare response functions α0 and β0 for both) in order to calculate the

P0 and Λ̃ matrices. This way, it is possible to separately model the effect of interactions

on the first- and second-order response functions, and to compare it with experiments. The

second approach establishes an “all-experimental” analysis of data in bipartite systems, in

the same way as was described for doubly-resonant SFG.58,59 In this procedure, analysis

of SFG data requires to first record and analyze the first-order response of the system,

usually easier to measure (e.g., by absorption spectroscopy and Rayleigh scattering) than

the second-order. The matrices Λ̃main at frequencies ω1, ω2 and ω3 are then extracted from

αmain(ω) using Eq. (34). In a second step, plugging them into Eq. (26) allows to link βmain

to βmain
0 without the need to model the details of the system.

Even if the “all-experimental” procedure seems attractive, one should not forget that sev-
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eral issues need be tackled in order to implement it: (i) in the first-order response function,

we have seen that main and partner contributions are entangled in the complete αsyst func-

tion. Separation of αmain,out or αmain,in from αsyst requires a fine knowledge of the system and

the relative contributions of both subsystems. This point becomes easier when experimental

conditions make it possible to neglect (or quantify) the αpart
0 contribution in Fig. 1A; (ii) for

an oriented system, a polarization analysis is required in order to access several components

of αsyst and Λ̃main; (iii) knowledge of αmain
0 is required. Here, the bare response functions

of each subsystem may be approximated by the response functions of the isolated entities,

which can be measured or estimated by ab initio calculations; (iv) finally, contributions

to the SFG signal from βmain and βpart must be separated. In the literature, it is usually

assumed that the SFG outputs of the main and partner response functions are separable in

the experimental data. This is the essence of expressions like χ(2) = χ
(2)
mol + χ

(2)
sub, or rather

χ(2) = χ
(2)
mol + χ

(2)
NR, often encountered in SFG publications,60–62 where χ(2) functions repre-

sent macroscopic averages of the β in a {molecule + substrate} system, and “NR” stands

for non-resonant. As we have seen, it is indeed possible to define second order quantities

in the system which unambiguously describe the response of the main and the partner, re-

spectively, by setting the nonlinear vertex on either of them. However, experimentally, these

response functions coherently produce SFG photons adding up in phase within the measured

signal (i.e., interfering in the measured intensities ISFG ∝ |χ|2). When recorded together,

χ
(2)
mol and χ

(2)
NR cannot be straightforwardly separated. Usually, their separation is achieved

through the analysis of their resonances (i.e., by spectroscopic measurements), which are

supposed to belong to different ranges of the electromagnetic spectrum. Practically, for

IR-vis SFG, an infrared scan followed by curve fitting allows to separate the molecular re-

sponse, vibrationnally-resonant, from the substrate, typically free of resonance in this range

(hence the name “non-resonant”). Other methods like background-suppression11 techniques

directly lead to the main (molecular) response alone.
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B. Dimers of nanoparticles and molecules

1. Scalar polarizabilities: the case of nanospheres

As established in Parts III and IV, the relationships between the dressed and bare re-

sponse functions involve products of matrices. In the simplest case of isotropic nanoparticles

(i.e., nanospheres with radius a and dielectric function ε), the bare polarizability α0 = α01

is scalar and the relationships with its dressed counterparts transform into much simpler

equations. For instance, in the quasistatic approximation, we have

α0 = 4πε0a
3 ε− 1

ε+ 2
(59)

and size-dependent corrections to this formula exist.63 Considering a homodimer of such

nanoparticles, we can calculate the modifications of their optical responses as a function of

the gap between them. It is known that the general optical description of a dimer of par-

ticles requires an infinite multipolar analysis, far beyond the dipolar and even quadrupolar

and magnetic approximations.64 Here we focus on a dimer for which the interdistance is big

enough to neglect all higher order terms except the dipolar one. Considering the characteris-

tic size of the system, the complete electrodynamic description of W is required. The dimer

is defined by the center-to-center distance D along axis x̂ in a (x̂, ŷ, ẑ) frame, where D also

quantifies the distance between the dipoles associated with each sphere. In this frame, the

matrices W and Λdimer,in = Λdimer,out are also diagonal, with

Wxx =
eıωD/c

4πε0D3
[−2 + 2ıωD/c],

Wyy = Wzz =
eıωD/c

4πε0D3
[1− ıωD/c− ω2D2/c2]. (60)

From Eq. (23), we then obtain the diagonal relationships

αxx =
α0

1 + α0Wxx

=
α0

1− α0e
ıωD/c

2πε0D3

[
1− ıωD

c

] ,
αyy/zz =

α0

1 + α0Wzz

=
α0

1 +
α0e

ıωD/c

4πε0D3

[
1− ıωD

c
− ω2D2

c2

] , (61)
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where we recover the formulas from the literature.65,66 This may be extended to other particle

shapes (e.g., cubes, nanorods) following the methods described in the next Parts, provided

that the relative orientations of the particles are taken into account and their bare polariz-

abilities determined by either experiments, modeling or calculation.

In the same line, the polarizability of a binary system of spheres with different polariz-

abilities (e.g., different radii or materials) can be calculated from the general equations (20),

(21) and (35). Dealing with scalar polarizabilities and diagonal matrices, there is again

no difference between “in” and “out” quantities, and the polarizability of the system may

unambiguously be split into a distinct polarizability for each sphere:

αmain
xx =

1− αpart
0 Wxx

1− αmain
0 αpart

0 (Wxx)2
αmain
0 ,

αmain
yy/zz =

1− αpart
0 Wzz

1− αmain
0 αpart

0 (Wzz)2
αmain
0 , (62)

where Wxx and Wzz are still given by Eq. (60), or their electrostatic limits.53,67 Equation (62)

generalizes the results obtained by A. Pinchuk et al. in the case of a dimer of nanospheres.66

As for the SFG process, the bare hyperpolarizability of spheres vanishes for symmetry

reasons at the dipolar level of approximation but may be relevant at the quadrupolar (Q) and

magnetic (m) levels.68,69 The various contributions to the sphere hyperpolarizability inside

a dimer are then determined from Eq. (14) and involve, in the (x̂, ŷ, ẑ) frame, products of

functions involving the same denominators as in Eq. (61) evaluated at the three frequencies

ω1, ω2, ω3. However, its calculation requires a development beyond the dipolar coupling and

involves hybrid response functions like βQee
0 or βeem

0 , together with coupling constants of the

(em) or (Qe) types, to name a few.31

2. Diagonal polarizabilities: the case of molecules

Given their anisotropic microscopic structure, molecules do not exhibit scalar polariz-

abilities. However, depending on their symmetries, it is often possible to find a diagonal

representation of α0. It is then possible to generalize Eq. (61) and (62) to the cases of

molecular dimers, as soon as the bare polarizabilities of the two molecules are diagonal

within the same basis (x̂, ŷ, ẑ), with x̂ aligned with their intermolecular direction. On the

one hand, Eq. (61) can be used to describe a molecular homodimer, provided that α0 is
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replaced by the appropriate component among (α0)xx, (α0)yy and (α0)zz. It is worth noting

that the electrodynamic terms in W may be dropped in this case to keep the electrostatic

contribution only. On the other hand, Eq. (62) can be applied to a molecular heterodimer

by replacing αmain
0 and αpart

0 by their xx, yy and zz components.

Contrary to isotropic nanoparticles whose hyperpolarizabilities vanish at the dipolar level

due to centrosymmetry, the second-order response of a molecular binary system is dominated

by the dipolar contribution. Following Eq. (14), the hyperpolarizabilities are then given by

βijk = Λhomo
ii (ω3)Λ

homo
jj (ω1)Λ

homo
kk (ω2) · (β0)ijk (63)

and

βmain
ijk = Λhetero

ii (ω3)Λ
hetero
jj (ω1)Λ

hetero
kk (ω2) · (β0)ijk, (64)

for the homo- and the heterodimer cases, respectively, with

Λhomo
ii = [1 + (α0)iiWii]

−1

Λhetero
ii =

1− (αpart
0 )iiWii

1− (αmain
0 )ii(α

part
0 )ii(Wii)2

. (65)

3. Resonant polarizabilities: frequency shifts

When the entities involved in the dimer have a resonant polarizability, they may ab-

sorb light and show enhanced scattering properties for specific frequencies of light. This

is typically the case with molecular chromophores, plasmonic nanoparticles and semicon-

ductor quantum dots in the UV-visible range, or molecular vibration modes in the infrared

range. The existence of a coupling between the two entities usually induces a shift in these

resonance frequencies, as evidenced by optical spectroscopy.34,57,70 The amplitude of this

frequency shift is implicitly included in the previous equations, still it does not explicitly

show up.

To understand the origin of such frequency shifts, we consider a homodimer along the x̂

axis made of entities with a single optical resonance frequency ω0 (e.g., allowed molecular

electronic transition, surface plasmon resonance, electron-hole exciton). The bare optical
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polarizability α0(ıω) of each monomer flows from the general expression29

(α0)ij =
∑
m,n

ρ(ωm)

ℏ

(
pinm pjmn

ıω + ωnm

− pjnm pimn

ıω − ωnm

)
, (66)

where pinm is the transition dipole moment along i between states m and n, and the optical

resonances appear after analytic continuity from ıω ± ωnm to ω ± ωnm + ıΓnm. Upon the

common hypothesis of strong coupling,71 the exchange of virtual photons is supposed faster

than the dissipative processes,72 leading to neglect the widths of the optical transitions as

compared with the interaction frequencies. The monomer polarizability is then reduced to

its resonant contribution, with m as the ground state |g⟩ and n as the excited state |e⟩:

(α0)ij =
1

ℏ
pige p

j
eg

ω0 − ıω
. (67)

For a transition dipole moment aligned along x̂, ŷ or ẑ, we plug this value in Eq. (61) and

get, for the dimer:

αii =
(α0)ii

1 + (α0)iiWii

=
1

ℏ
pieg p

i
ge

ω0 +
pieg Wii p

i
ge

ℏ
− ıω

. (68)

The quantity pieg Wii p
i
ge ≡ ℏωint

ii is the dipole-dipole coupling constant between the excited

states of the two monomers, quantifying the possibility for a (g → e) excitation to jump from

one monomer to the other and become delocalized over the whole dimer.73 From Eq. (68),

we see that the optical resonance frequency is shifted by ωint
ii . In the electrostatic limit, from

Eq. (60), Wxx = −2/4πε0D
3 is negative, whereas Wzz = 1/4πε0D

3 is positive. Thus, the

resonance frequency is redshifted for longitudinal coupling (ω− = ω0−|ωint
xx |), and blueshifted

for transverse coupling (ω+ = ω0 + ωint
zz ). This behavior is well-known as a consequence

of plasmonic coupling between two nanostructures.51,74 For molecular chromophores, this

accounts for the ωint
xx -redshift of the resonance in J-type dimers and the ωint

zz -blueshift in

H-type dimers, both originating from excitonic coupling73,75,76 (2ℏωint
ii is then called the

Davydov splitting).

Most of the times, the molecules are not aligned and the matrices α0 differ for the main

and the partner. It is true for homodimers and, all the more, for heterodimers. In principle,
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the new resonance frequencies of the system are determined by finding the poles of the

inverse matrix in Eq. (20) or (21) and selecting those which do not match the roots of

1+P part
0 . However, it is more efficient to turn back to Eq. (17) or (18). Taking the example

of the “out” part of the response:

α(1),out =
[
1+ P

(2),out
0

] ∞∑
n=0

[
α

(1)
0 Wα

(2)
0 W

]n
α

(1)
0 , (69)

where the labels “1” and “2” stand for the main and the partner, respectively. Assuming

that the bare polarizabilities of both entities follow Eq. (67) with resonance frequencies ω1

and ω2, respectively, it is possible to determine the frequency shift ωint
12 through the explicit

expansion of the power series in Eq. (69). The derivation is performed in Appendix D. For a

generic dimer whose geometry is characterized by the three angles θ12 = ̂(p1,p2), θ1 = (̂p1, x̂)

and θ2 = (̂p2, x̂), an orientation factor is then introduced in the Davydov splitting,70,73,77

ℏωint
12 =

|p1| |p2|
4πε0D3

(cos θ12 − 3 cos θ1 cos θ2), (70)

and the two new resonance frequencies are given by

ω± =
ω1 + ω2

2
±

√
(ω1 − ω2)2 + 4(ωint

12 )
2

2
. (71)

Both transitions are optically allowed, as expected from the literature,77 except for a ho-

modimer with parallel molecules73 (in this case, only ω+ remains optically active, as above;

see Appendix D for details).

All these simple examples provide ready-to-use expressions for the frequency shifts in-

duced by the homo- or hetero-dimerization processes in molecular or nanoparticle systems.78

They also show that the resonance frequencies of binary systems, modified with respect to

those of the bare entities, show up indeed when the energy dispersion of the optical response

functions is analyzed, albeit buried into the Λ matrix description of the interaction. While

the dispersion properties are intrinsic to Λ, they are actually shared by the response func-

tions at all orders. It is easy to see that, for the outgoing component of the second-order
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response function, Eq. (69) transforms into

β
(1)
ijk =

∑
i′

([
1+ P 2,out

0

] ∞∑
n=0

[
α

(1)
0 Wα

(2)
0 W

]n)
ii′
(β

(1)
0 )i′jk. (72)

Introducing the β
(1)
0 response function in terms of dipolar transition moments,29,33 we may

apply the same procedure as in Eq. (D2) to recover an expression analogous to Eq. (D4)

in terms of β components. This proves that the resonance frequencies of the dimer, given

by Eq. (71), are the same at all orders of the linear and nonlinear response, whatever the

optical process. As we show below, this may be generalized to a multimeric system with an

arbitrary number of units.

C. Molecular excitons in linear multimers

Excitonic coupling in molecular aggregates is attracting a renewed interest because such

objects experience extreme delocalization of optical excitation,79 which can be strongly cou-

pled to cavity modes72,80 or surface plasmons,81 and show interesting charge transfer prop-

erties as organic semiconductors.82 As reported in the literature, it is possible to calculate

the electronic structure of a molecular aggregate composed of N identical monomers in the

nearest neighbor approximation in order to subsequently determine its optical response.55

However, within our approach, the knowledge of the electronic structure of the whole aggre-

gate is not required. Here we show that it is indeed possible to determine the optically active

electronic transitions involved in linear and nonlinear optics in such a multimer directly from

the diagrammatic theory.

We start from the results of Part VC2. When the N entities are identical (with a

diagonal polarizability α0) and aligned with a regular spacing D on axis x̂, all matrices

are diagonal and equations along x̂ and ẑ separate. In addition, “in” and “out” processes

are identical: matrices P j,k
0 are all equal to a single P0 with (P0)xx = −(α0)xxWxx and

(P0)zz = −(α0)zzWzz. Using Eq. (67) and setting again ωint
ii = pieg Wii p

i
ge/ℏ for i ∈ {x, z},

the matrix system in Eq. (58) transforms into two independent systems of linear equations
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for the xx and zz components of Λ(i), with the same structure:



(ω0 − ıω) Λ
(1)
ii + ωint

ii Λ
(2)
ii = (ω0 − ıω)

ωint
ii Λ

(1)
ii + (ω0 − ıω) Λ

(2)
ii + ωint

ii Λ
(3)
ii = (ω0 − ıω)

( · · · )

ωint
ii Λ

(N−2)
ii + (ω0 − ıω) Λ

(N−1)
ii + ωint

ii Λ
(N)
ii = (ω0 − ıω)

+ ωint
ii Λ

(N−1)
ii + (ω0 − ıω) Λ

(N)
ii = (ω0 − ıω)

. (73)

Such a system can be written as T
(N)
ii (Λ

(k)
ii )Nk=1 = (ω0 − ıω)1, where (Λ

(k)
ii )Nk=1 is the vector

of the Λ
(k)
ii components (i.e., the solutions of the system) and T

(N)
ii is a tridiagonal Toeplitz

matrix.83 In order to extract the new resonance frequencies ωk of the multimer, it is not

required to solve the system, but simply to look for the poles of the solutions (i.e., the values

of ıω which cancel their denominator). They are given by the roots of the determinant of

matrix T
(N)
ii :83

ωk = ω0 + 2ωint
ii cos

(
kπ

N + 1

)
(74)

with k ∈ {1, · · · , N}. We recover in this way the fact that the energy levels are regularly

spread on both sides of ω0 with a maximum shift of ±2ωint
ii , with a decreasing activity for

increasing k. For symmetry reasons, only half of them are optically active, for odd values

of k,55 as can be recovered by implementing the symmetry condition Λ
(k)
ii = Λ

(N+1−k)
ii in

Eq. (73). In line with the classical approaches reported in the literature, the diagrammatic

method thus enables us to describe the optical properties of multimers. For instance, consid-

ering the limit case of an infinite polymer (i.e., N → ∞), we find that there is only one mode

allowed at ω1 = ω0 + 2ωint
ii , giving rise to superradiance.76,79,84 It is interesting to compare

this result (for an infinite multimer in the nearest neighbor approximation) with the optical

response of an infinite 1D lattice, which takes all the site-to-site interactions into account.

From Eq. (55), we see that there is indeed only one optically active resonance frequency for

the system, satisfying 1 + (α0)ii
∑

s W
s
ii = 0. This is logical as all entities are now equiv-

alent in the system and share a common dressed polarizability. This leads to a resonance

at ω0 + ωint
ii

∑+∞
−∞ 1/|k|3 ≈ ω0 + 2.4ωint

ii , meaning that the nearest neighbor approximation

misses about 20% of the interaction as compared to the complete calculation.85
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(A) Lattice (B) Molecule + Nanoparticle

(C) Substrate-mediated self-interaction (D) Substrate-mediated main/partner interaction

(B) Dispersion free energy

(⋯)(⋯)(⋯)
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= Ws(ıωi, ⃗R s) = Ws(ıωi, ⃗R s,image) Γ(ω)
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vector boson

(⋯)
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image

⃗R image

part

main main
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partner ⃗R

= W(ıω, ⃗R image) Γ(ω)
vector boson

FIG. 6. Examples of bipartite and multipartite systems. (A) Lattice system; second-order re-

sponse. (B) {molecule + nanoparticle} system; second-order response. (C) Self-image in {main

+ substrate} system; first-order response. (D) P0 process in {molecule + partner + substrate}
system. The symbol “(...)” represents exchange of an infinite number of bosons. The values of the

coupling matrices are indicated on the panels.

D. Molecular monolayer

A typical case of a lattice geometry is a molecular monolayer adsorbed on a substrate.

Eq. (55) directly applies to provide the lattice-modified polarizability. Our matrix descrip-

tion allows to tackle the very general case, involving especially components of the response

functions parallel and perpendicular to the surface. In most practical cases, the lattice

geometry is simplified to extract single components. On a metal, for example, only the

z components of the response functions (i.e., perpendicular to the surface) are considered,

whereas the W s coupling matrix involves positions Rs limited by construction to the (x, y)

plane. In this case, (α0)zz is the only relevant component and Eq. (55) transforms into

αlattice
zz =

(α0)zz
1 + (α0)zz

∑
{s}W

s
zz

, (75)

where W s
zz is usually approximated in the literature by its electrostatic value W s

zz =

1/4πε0|Rs|3, allowing the explicit analytical or numerical computation of
∑

W s
zz for elemen-

tary lattices.86–88 In the case of vibrational spectroscopy, this model accounts for vibrational
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frequency shifts by delocalization of the vibrations inside a dense molecular monolayer of

adsorbates.34 For uniaxial molecules oriented along ẑ [i.e., (α0)zz = α0], we recover the

result of Ref. 89. Generalization to uniaxial tilted molecules follows straightforwardly by

defining θ as the molecular tilt angle with respect to the normal direction ẑ, and by using

(α0)zz = α0 cos
2 θ.9 These results identically represent the first-order response of an array of

nanoparticles on a metal, provided that the dipolar approximation is enforced. When the

molecular layer encompasses two different molecules (represented by two different polariz-

abilities) or an incomplete monolayer, several options exist to calculate the polarizability in

the lattice.34,90,91 According to the coherent potential approach,34 the loops are assigned an

effective polarizability as a weighted average of the two molecular polarizabilities (or of the

molecular polarizability and zero for an incomplete monolayer). This can be recovered in

our description [Eq. (52)] by introducing two families of interchangeable P0 processes cor-

responding to the weighted molecular Pmol,1
0 and Pmol,2

0 . As these two new operators share

common W s and differ only through their polarizabilities, the Λlattice matrices in Eq. (55)

and (56) are finally modified by replacing α0 by the weighted sum of the polarizabilities of

the two entities present in the lattice.

In the same way, the hyperpolarizability component βzzz is obtained from Eq. (14):

βlattice
zzz =

(β0)zzz
[1 + αzz

0 (ω1)WΣ] [1 + αzz
0 (ω2)WΣ] [1 + αzz

0 (ω3)WΣ]
. (76)

Here, (α0)zz is written as αzz
0 for legibility, and WΣ stands for

∑
{s}W

s
zz. Hence, Eq. (76)

coincides with the results of Refs. 8 and 9, and provides in addition a generalization to

incomplete or mixed monolayers and tilted molecules through the same modifications of the

Λ factors as in the first-order case.9 In these systems, the influence of the substrate is usually

important and should be taken into account as explained in Part VIF.

E. Molecule coupled with a nanoparticle

A molecule grafted onto a nanoparticle constitutes the archetype of a strongly asymmetric

bipartite system, this significant asymmetry allowing us to simplify the equations. On the

one hand, the molecular polarizability (αmol
0 ) can be considered as much smaller than the

nanoparticle polarizability (αNP
0 ). On the other hand, the long center-to-center distance
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between the two entities (given the size of the particle) implies that W remains smaller

than in the molecule-molecule systems. Consequently, Pmol,out
0 and Pmol,in

0 can be considered

small quantities as compared to 1. We deduce the following relations at the lowest order of

approximation:

Λmol,in ≈ 1+ P NP,in
0 and Λmol,out ≈ 1+ P NP,out

0 ,

ΛNP,in ≈ ΛNP,out ≈ 1. (77)

For the nanoparticle, αNP ≈ αNP
0 and βNP ≈ βNP

0 . In other words, the response functions

of the particle are unaffected by the dipole-dipole interaction with the molecule located

in its vicinity. This approximation is very convenient to model the optical properties of

decorated nanoparticles by use of simple models adapted to bare particles (e.g., quasistatic

or electrostatic approximation92). It also makes the “all-experimental” data analysis, as

desribed in Part VIA, rather straightforward in such systems. As for the molecule, we find

that its hyperpolarizability becomes

βmol
ijk =

∑
i′j′k′

[
1− αNP

0 W (ω3)
]
ii′

[
βmol
0

]
i′j′k′

[
1−WαNP

0 (ω1)
]
j′j

[
1−WαNP

0 (ω2)
]
k′k

, (78)

where the frequency arguments have been dropped in β functions for clarity. This re-

sult matches the original calculation of the modification of the molecular hyperpolariz-

ability by dipolar coupling with the nanoparticle, performed by classical local field93 and

diagrammatic30 methods. The P NP
0 processes describe the indirect excitation of the molecule

through the direct excitation of the nanoparticle followed by a transfer to the molecule

(Fig. 6B). The consequence is the well-known amplification of the molecular SFG signals by

surface plasmon resonances (for a plasmonic particle15) or excitons (in quantum dots17).

The next order of approximation in matrices Λ involves an additional energy exchange be-

tween the partner and the molecule (P NP,in
0 Pmol,in

0 and Pmol,out
0 P NP,out

0 ), so that the molecule

is the only place where the light-matter interaction takes place. It is reasonable to consider

that these processes are negligible when compared to the ones described by Eq. (78) because

the dominant optical process lies in the excitation of the nanoparticle by light combined

with a molecule-NP energy transfer—not in the dipolar feedback from the molecule to itself.

Moreover, discarding the higher order terms of Λ amounts to considering that, when several
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molecules are present (i.e., when the nanoparticle is decorated with molecules), there is no

nanoparticle-mediated dipole-dipole coupling between them: the individual responses of all

molecules simply add up in the system without interference from the particle.93 The direct

dipolar coupling between molecules at the surface of the particle may still contribute, and

should be treated in the same way as in Part VID. Finally, the simple expressions of the

Λ matrices in Eq. (77) and (78) allow to easily implement the magnetic and quadrupolar

contributions to the interaction Hamiltonians in such systems, as was done in Ref. 31.

F. Substrate as an additional partner

1. Diagrammatic description of the image dipoles

We examine here the systems in which the partner is a plane substrate (i.e., the surface

of a semi-infinite bulk). Such a partner looks different in nature from the previous examples

because its optical response does not take the form of a single dipole at a specific location.

However, the optical response of a bulk (considered as a polarizable dielectric medium) is

interpreted as the creation of a bulk density of elementary dipoles, which sum up to create

a macroscopic polarization from which the dielectric function and refractive index of the

bulk follow. The {main + substrate} system may require a fine-grained analysis at the

atomic scale in order to precisely model their interaction. Here, we limit ourselves to the

dipolar description of the system, which may be viewed as a coarse-grained approximation.

Essentially, we have94 P = ε0χE where E is the macroscopic field. P = N⟨p⟩ is the

macroscopic polarization, defined as the volume density of elementary dipoles, and χ = ε−1

is the susceptibility tensor, related to the first-order response function α, giving birth to the

elementary dipoles, through ε0χ = Nα (when local field effects are neglected). Local field

effects may be incorporated through the Clausius-Mossotti equation, for example.

The susceptibility tensor χ acts as a macroscopic response function for the substrate,

which could be represented by its own loop in the diagrams. Nevertheless, a substrate part-

ner cannot be handled in the same way as a point-like partner because its optical properties

mostly derive from a macroscopic integration of its microscopic properties. Instead, we will

include its effects through a new kind of vector bosons, embodying the influence of the

substrate on the main-main and main-partner interactions. In other words, the substrate
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is not associated to a loop but incorporated into the diagrams through substrate-mediated

vector bosons. This approach excludes the possibility of describing the direct light exci-

tation of the substrate, but it is actually not our will because it is easily described in a

classical point of view by reflectivity properties of the substrate and Fresnel coefficients for

the main.95–97 It is more interesting to focus on the diagrams where the substrate does not

interact directly with light, but only through dipolar energy exchange with the other entities

(main and partner), as described in Figure 6C and D. The substrate becomes in this case

an intermediate during an energy exchange between the main and a partner, or between

the main and itself. In the example of Fig. 6C, the presence of the substrate introduces

new vector bosons which can indeed be connected on the same loop, hence accounting for

a substrate-mediated self-interaction. On a mechanistic point of view, a first interaction

of light with the main generates a dipolar response which is transferred to the substrate,

then conveyed back to the main where it modifies its response function. Here, we recognize

the phenomenon classically known as the “image dipole”: the dipole initially created at the

main modifies the optical response of the system in the same way as would do its own image

created inside the substrate at the same distance from the surface. The reader may refer

to textbooks94 in order to review the power and limits of this description, which is not re-

stricted to the dipole case but may extend to a multipolar description. As the phenomenon

is easily modeled using simple electromagnetic analogs, we can directly implement it within

diagrams. The image, contrary to an ordinary partner, does not have a proper α0 response

function because its polarizability is proportional to the polarizability of the main. Noting ẑ

the axis perpendicular to the substrate surface in an (x̂, ŷ, ẑ) frame, the image reverses the

direction of dipoles parallel to x̂ and ŷ, but not along ẑ.94 When all matrices are expressed

in this frame, we have

αimage =
εsub − 1

εsub + 1


−1 0 0

0 −1 0

0 0 1

αmain,≡ Γαmain (79)

where εsub is the dielectric function of the substrate.

Recalling that the image dipole is not a real entity but a convenient construction mimick-

ing the dipolar behavior outside the substrate, it cannot interact directly with light. In the
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classical point of view, one of the entities composing the system (the main, for instance) in-

teracts with light, which results in the creation of its image dipole. This image then interacts

by dipolar coupling with all the entities, i.e., the main itself and all its partners. Thus, the

subsystems may directly exchange energy between themselves (as was the case in all previous

examples) or they may involve an intermediate step through the substrate, as represented

by the image. In the diagrammatic point of view, this means that two entities A and B can

interact through two kinds of vector bosons: (i) direct interactions are described by the cou-

pling matrix W , defining Hint = pA ·WpB and prohibiting self-interactions (A ̸= B), and

(ii) substrate-mediated interactions are described by WΓ, defining H′
int = pA ·WΓpB and

allowing self-interactions (when A = B). Matrix W is evaluated this time at the position

Rimage of the image, that is inside the substrate, and matrix Γ represents the “propagation”

of the initial dipole (vertex on the main loop) to its image, whose dipole moment reads

pimage
i =

∑
j Γijp

main
j . As all roundtrips through the substrate involve the same frequency,

the splitting of the main loop is recovered in the case of substrate-mediated interactions.

2. Self-interaction in {main + substrate} systems

Considering a {main + substrate} system, we can read the diagrams as usual by following

the energy exchanges to get,

αmain+image = αmain
0 −αmain

0 WΓαmain
0 +αmain

0 WΓαmain
0 WΓαmain

0 − (· · · ) (80)

= αmain
0

[
1 +WΓαmain

0

]−1
=

[
1 +αmain

0 WΓ
]−1

αmain
0 (81)

after summing all the diagrams (i.e., for an increasing number of substrate-modified vector

bosons). We recover the expected equality between “in” and “out” descriptions. As above,

the self-consistent calculation, i.e., interaction of the bare polarizability with the dressed

version of itself (αmain+image = α0 −α0WΓαmain+image), directly gives the same result. The

polarizability αmain+image is sometimes called the renormalized polarizability.98

A direct application follows in the modification of the polarizability of a spherical nanopar-

ticle (with radius a) located above a substrate (Fig. 6C) at a distance D/2. As in the case of

a dimer of particles, the calculations above apply in such a system as long as all higher multi-

polar orders can be neglected, that is for rather small particles (for which the quasistatic ap-
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proximation is enforced) and for rather long distances between the sphere and the substrate.

Using Eq. (1) for W (Eq. (2) is handled in the same way), we have Wxx = Wyy = 1/4πε0D
3

and Wzz = −2/4πε0D
3, so WΓ is diagonal. The polarizability of the sphere being isotropic

following Eq. (59), we obtain

αNP+substrate
xx =

α0

1− α0

4πε0D3

εsub − 1

εsub + 1

,

αNP+substrate
zz =

α0

1− 2α0

4πε0D3

εsub − 1

εsub + 1

, (82)

which matches the results of the literature.99 When a molecular layer is adsorbed on the

substrate, the dipolar coupling with the molecules does not modify the response function

of the particle (according to Part VIE) and we can use this polarizability to estimate the

modifications of the molecular response in the {molecule + NP + substrate} due to the

presence of the particle and its image.93 Of course, as this description does not include all

higher order multipolar terms, it cannot accurately describe the intense hot spot effects

in these systems as are used in SHINERS100 or SHINE-SFG101 experiments. Still, it may

account for the energy shifts in the resonant parts of the response functions of the subsystems

as a consequence of the presence of the nanoparticle image.

3. The {main + partner + substrate} systems

For {main + partner} systems, the presence of the substrate (i.e., of their images) opens

a second pathway to transfer energy from the main to the partner in a P0 process. As

sketched in Fig. 6D, this new process adds to the original ones. At first-order in P0:

αmain,out =
[
1−αpart

0 W (R)−αpart
0 W (Rimage)Γ

]
αmain

0

≡
[
1+ P part,out

0 + P part,out
0,img

]
αmain

0 , (83)

αmain,in = αmain
0

[
1−W (R)αpart

0 −W (Rimage)Γαpart
0

]
≡ αmain

0

[
1+ P part,in

0 + P part,in
0,img

]
, (84)

where Rimage = R − Dẑ is the vector linking the image to the partner. It is easy to see

that all bosons linking main and partner in a full diagram (Fig. 1) may be replaced, in a
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companion diagram, by an energy transfer through the image. As a consequence, the Λ

matrices are modified in the following way:

Λmain,in =
[
1− (P part,in

0 +P part,in
0,img )(Pmain,in

0 +Pmain,in
0,img )

]−1 [
1+ P part,in

0 +P part,in
0,img

]
, (85)

Λmain,out =
[
1+ P part,out

0 +P part,out
0,img

] [
1− (P part,in

0 +P part,out
0,img )(Pmain,out

0 +Pmain,out
0,img )

]−1

,

for a generic bipartite diagram [cf. Eq. (20) and (21)], and:

Λlattice,out =

[
1 +α0

(∑
{s}

W s(Rs) +W s,image(Rs,image)Γ
)]−1

Λlattice,in =

[
1 +

(∑
{s}

W s(Rs) +W s,image(Rs,image)Γ
)
α0

]−1

(86)

for a lattice on the substrate [cf. Eq. (54) and (56)]. As seen above, we could also include

the self-image of the main in Eq. (85) and (86). This contribution may induce an important

shift on the vibrational frequencies in a molecular layer.102 On the other hand, it has been

suggested to treat the main and its image as one object, which polarizability is directly ex-

tracted from experimental data.89 For a molecular lattice or a thin array of nanoparticles,103

the calculation of infinite sums involving W coefficients is more complicated, in comparison

with Part VID, due to the z component of Rs,image (whereas Rs is in-plane). For square

lattices, the summation may be performed as a function of the lattice parameters (i.e., lat-

tice constant, distance D between the dipoles and their images, dielectric function εsub) in

order to simulate the first-86,104 and second-order8,9,27 response functions, and to evaluate

the frequency shifts34,90 induced by molecular packing in such lattices. This is commonly

restricted to the z-components in the literature, but our matrix formalism makes it possible

to take all components into account, including those parallel to the surface.

G. Application to higher-order processes

Equation (51) gives the general procedure to implement the modifications of any bare

response function of a system when coupled with a partner, whatever the order of the optical

response. In the case of a four-wave mixing, which is a third-order process driven by the
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second hyperpolarizability γ(ıω1, ıω2, ıω3), Equation (51) leads to

γmain
ijkl =

∑
i′j′k′l′

[
Λmain,out(ω4)

]
ii′

[
γmain
0

]
i′j′k′l′

[
Λmain,in(ω1)

]
j′j

[
Λmain,in(ω2)

]
k′k

[
Λmain,in(ω3)

]
l′l
,

(87)

where ω4 = ω1 + ω2 + ω3 is the output frequency. This is the expected result for the IR-IR-

visible process when modified by the dipole-dipole coupling inside a molecular monolayer on

a substrate.8 The Λ matrix may also be introduced to account for the dressing of other third-

order response functions describing stimulated Raman scattering21 or coherent anti-Stokes

Raman scattering,32 for example.

Among higher-order processes, we may also cite spontaneous Raman scattering. In practi-

cal applications, the experimental intensities of spontaneous Raman processes are efficiently

modeled through an inelastic first-order polarizability αRaman(ωP , ωS) where ωP and ωS

stand for the pump and Stokes frequencies, respectively. However, such a quantity, where

the initial and final states differ, is not a response function per se and cannot be drawn as

a loop in a Feynman-Matsubara diagram. It is still possible to account for its modifications

in a bipartite system using the formalism developed here. After analytic continuity to real

frequencies, we identify the modified Raman polarizability in the bipartite system with

αRaman,main(ωP , ωS) = Λmain,out(ωS)α
Raman,main
0 (ωP , ωS)Λ

main,in(ωP ). (88)

Such a quantity efficiently describes the optical enhancement of the Raman process in Surface

Enhanced Raman Spectroscopy (SERS) due to the influence of a partner nanostructure.

In this particular case, one may simplify Λ as in Part VIE105 or use more sophisticated

models.106 We note that theΛ factor appears twice here, once per involved photon, leading to

the well-known intensity enhancement factor107,108 |f(ωP )f(ωS)|2 where f is a measure of the

leading contribution to Λ. It is interesting to compare this inelastic (Raman) polarizability

to the elastic (Rayleigh) case in Part IV, for which we have seen that the Λmatrix is involved

only once [Eq. (34)]. From a diagrammatic point of view, there is no paradox here as this

is due to the counting of the different diagrams. By definition, plugging all Pn and Mn

processes at the input (ωP ) and output (ωS) sequences of the Raman polarizability does not

generate identical diagrams. Conversely for the elastic polarizability, the input and output

processes are identical and they precisely involve the α0(ω) response function they modify.
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It is easy to see that plugging arbitrary numbers of Pn processes on the input and output

sides creates an infinite number of redundant diagrams, which must be discarded.

VII. CONCLUSION

In the same way that the many-body problem in solid-state physics is tackled by consider-

ing pair interactions among a large number of entities, bipartite systems may be considered

in optics as the elementary units of higher-complexity composite systems. Studying the

structural link between the bare response functions of two entities and the response func-

tion of their combination (through a given interaction Hamiltonian) is the first step towards

the understanding of the linear and nonlinear optical responses of large composite systems.

Even if such 2-body systems may look simple, their complexity lies in the number of vector

bosons they exchange, i.e., the number of pair interaction processes. Pushing the diagram-

matic theory of optics to its limits, we have demonstrated that, under soft hypotheses, any

bipartite system described by a 2-loop diagram and involving an arbitrary number of vec-

tor bosons can be analyzed through loop splitting into elementary processes. Focusing on

first- and second-order responses in the dipolar approximation, summing all the possible

elementary processes has led us to define universal transfer matrices Λ which can be used

to transform the bare response functions of the subsystems (when not coupled) into their

dressed analogs (when coupled). This description in terms of Λ matrices is operative at any

order, for example to quantify specific enhancements or resonance frequency shifts due to

the interaction between a main entity and its partner. They may be plugged “as is” in most

systems or limited to their first few terms for rapidly vanishing series. We have also shown

that generalization to multipartite systems is possible in the case of an infinite lattice of

partners and when the image dipoles are taken into account. This proves that the bipartite

case is indeed a way to tackle large composite systems. We have illustrated the fact that this

general theory, looking complex at first sight, is rather straightforwardly applied to stan-

dard systems like nanoparticle-nanoparticle, molecule-nanoparticle and molecule-molecule

dimers, or infinite lattices, in order to produce an extended and more general version of the

dressed response functions in these systems than usually provided.

The theory also produces a new kind of elementary circular processes which correct the

dressed response functions by a scale factor. To our knowledge, these Cn processes have
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never been described in the literature, although they share the same formal representation

as the coupling between instantaneous dipoles, well-known as London forces. While the

London process is independent of any excitation by light, the Cn processes only exist because

the system interacts with light, hence their interpretation as light-driven circular energy

exchanges. Their existence is postulated but hard to demonstrate because they cannot be

easily separated from the Λ contributions in experimental data.

In a broader perspective, we believe that additional theoretical considerations, numerical

computations and experimental results will challenge and improve the robustness of this

general theory. On the experimental side, it is possible to benchmark its predictions with

original and well-controlled systems by analyzing the modifications induced by the Λ ma-

trices, and to look for smart ways to test the relevance and the meaning of the Cn terms as

well as their potential competition with Λ contributions. On the theoretical side, we antici-

pate future developments and look forward to making this theory more operative and easily

factored at arbitrary temperature, to adapting it to more complex light-matter interactions

(at any order of a Mie theory, for example), and to implementing more subtle matter-matter

interactions accounting for the inner structure of the system.
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Appendix A: Rules for diagram splitting and factorization

Due to back and forth energy transfers between the main and the partner, the fermion

propagators associated to each loop may convey identical frequencies.30 Given that each

loop is assigned a fermion Matsubara frequency ων and that each propagator is assigned an

imaginary-time Green’s function

Gnn(ıων + ıω) =
1

ıων − (ωn − ıω)
(A1)

related to the quantum state |n⟩, any loop characterized by same-frequency propagators is

described by a product of as many same-frequency Green’s functions. In the simple case of
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a loop involving two same-frequency propagators associated to states n and m, the response

function encompasses the quantity
∑

n,mGnn(ıων+ıω)Gmm(ıων+ıω). In the limit of vanish-

ing temperature,30 this sum is dominated by the term for which n = m, hence characterized

by a double pole ων = ωn− ıω = ωm− ıω. Mathematically, the response function of the loop

is then factorized into a product of two elementary response functions (i.e., whose orders

are both smaller than that of the initial function) and, diagrammatically, the initial loop

splits into two child loops with a lower number of vertices. By mathematical induction, this

property extends to loops with an arbitrary number of same-frequency propagators, leading

to as many child loops. Figure 7 illustrates this process of loop splitting. The response

functions of odd order factorize into products of linear α functions, while those of even

order factorize into products of linear α functions with one β function. For n ⩾ 1:

f
(2n+1)
{ik}1⩽k⩽2n+2

({ıωj,−ıωj}nj=1, ıωn+1) = (−b)n αi1i2n+2(ıωn+1) ·
n∏

k=1

αi2k+1i2k(ıωk) (A2)

and, for n ⩾ 2:

f
(2n)
{ik}1⩽k⩽2n+1

({ıωj,−ıωj}n−1
j=1 , ıωn, ıωn+1) = (−b)n−1 βi1i2ni2n+1(ıωn, ıωn+1)·

n−1∏
k=1

αi2k+1i2k(ıωk)

(A3)

The splitting of a loop is then possible if, and only if, the associated response function

encompasses an alternated sequence of frequencies {ıωj,−ıωj} among its arguments, which

is always the case under the hypotheses of Part II B.

Appendix B: Calculation of diagram in Fig. 4B

Following the Feynman rules, the diagram of Fig. 4B leads to:

U = − 1

b3ℏ4
∑
γ

∑
λ,ν

∑
m,m′,n,n′

∑
i,i′,j,j′

pinmp
j
mnGnn(ıων)Gmm(ıων + ıωγ)Wjj′(ıωγ)

×pi
′

n′m′p
j′

m′n′Gm′m′(ıωλ)Gn′n′(ıωλ + ıωγ)Wi′i(ıωγ) (B1)

where levels {m,m′, n, n′} are the states associated to the four propagators, ωγ is a bosonic

Matsubara frequency (ıωγ = 2ıγπ/ℏb with γ ∈ Z), whereas ωλ and ων are fermionic Matsub-
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FIG. 7. Illustration of diagram splitting for (A) an odd-order response function and (B) an even-

order response function. Contrary to the previous figures, curvy and dashed lines represent here for

clarity the direction of the energy flux: curvy lines depict incoming photons/bosons, whereas dashed

lines represent outgoing photons/bosons. The double arrows indicate that all the permutations of

identical frequencies must be considered to recover the complete response functions of the child

loops.

ara frequencies [e.g., ıωλ = ı(2λ+ 1)π/ℏb with λ ∈ Z], {i, i′, j, j′} are photon polarizations.

When reorganizing the terms, we get

U = −1

b

∑
i,i′,j,j′

∑
γ

[
−1

bℏ2
∑
m,n

∑
ν

pinmp
j
mnGnn(ıων)Gmm(ıων + ıωγ)

]
Wjj′(ıωγ)

×

[
−1

bℏ2
∑
m′,n′

∑
λ

pi
′

n′m′p
j′

m′n′Gm′m′(ıωλ)Gn′n′(ıωλ + ıωγ)

]
Wi′i(ıωγ). (B2)

In the square brackets, we recognize29 the expression of the first-order polarizabilities α,

leading to

U = −1

b

∑
i,i′,j,j′

∑
γ

αmain
ij (ıωγ)Wjj′(ıωγ)α

part
j′i′ (ıωγ)Wi′i(ıωγ) (B3)
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or, equivalently,

U = −kT
∑
γ

tr
[
αmain(ıωγ)W (ıωγ)α

part(ıωγ)W (ıωγ)
]
. (B4)

Recalling that ıωγ = 2ıγπkT/ℏ, we see that Eq. (B4) converges towards an integral for

vanishing temperature as 2πkT/ℏ
∑

γ f(ıωγ) →
∫∞
−∞ f(ıω)dω, leading to

U = − ℏ
2π

∫ ∞

−∞
tr
[
αmain(ıω)W (ıω)αpart(ıω)W (ıω)

]
dω. (B5)

Appendix C: Derivation of trimer’s equations

In Part VC1, we consider the case of a trimer under the nearest neighbor approximation.

Only two interaction matrices are involved, W 12 = W 21 and W 23 = W 32, so we define the

four elementary processes P 1,2
0 = −W 12α

(1)
0 , P 2,1

0 = −W 12α
(2)
0 , P 2,3

0 = −W 23α
(2)
0 and

P 3,2
0 = −W 23α

(3)
0 (and conversely for the equivalent output quantities). For each process

P j,k
0 , the photon interacts first with entity j, which interacts in turn with entity k. Hence, the

back and forth processes M0 are defined accordingly: M 1,2
0 = P 2,1

0 P 1,2
0 , M 2,1

0 = P 1,2
0 P 2,1

0 ,

M 2,3
0 = P 3,2

0 P 2,3
0 and M 3,2

0 = P 2,3
0 P 3,2

0 . The input part of the response function of entity

k is modified by matrix Λ(k),in, which must be deduced from the diagrams. As summarized

in Part VA, the Λ(k),in matrix may be decomposed as a sum of 1, P
(k)
n -type and M

(k)
n -type

processes.

We start with the central entity 2. The P
(2)
n -type processes imply a photon interaction

with entities 1 or 3 and a transfer to entity 2 (hence matrix P 1,2
0 + P 3,2

0 ), followed by n

back-and-forth energy exchanges with either entity 1 or 3 (i.e., driven by matrix M 2,1
0 or

M 2,3
0 ). As for the M

(2)
n -type processes, they involve a series of (n + 1) M 2,1

0 and M 2,3
0

processes, i.e., a product of the corresponding matrices, in arbitrary order. Considering that

processes M 2,1
0 and M 2,3

0 do not commute, as illustrated in Fig. 5B and C, we deduce that

the Λ(2),in matrix may be written as

Λ(2),in = 1+
∞∑
n=0

[
P (2)

n +M (2)
n

]
=

∞∑
n=0

(
M 2,1

0 +M 2,3
0

)n
(1+ P 1,2

0 + P 3,2
0 )

=
[
1− (M 2,1

0 +M 2,3
0 )

]−1
(1+ P 1,2

0 + P 3,2
0 ). (C1)
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Considering now entity 1, matrix Λ(1),in groups all the processes involving energy transfers

towards entity 1 before it emits the outgoing photon. Besides the trivial process described

by matrix 1, all other processes imply as their last step an energy transfer from entity 2

through a P 2,1
0 process. In other words, we have

Λ(1),in = 1+ P 2,1
0 Λ(2),in (C2)

and

Λ(3),in = 1+ P 2,3
0 Λ(2),in. (C3)

To go further, we see that Λ(2),in may also be decomposed into a sum of three matrices,

namely 1 for the trivial process, P 1,2
0 Λ(1),in for all processes involving an energy transfer

from 1 to 2 (as their last step) and, symmetrically, P 3,2
0 Λ(3),in for the energy transfer from 3

to 2. This means that the Λ(k),in matrices are the solutions of the system given by Eq. (57).

Appendix D: Frequency shifts for heterodimers

Here, we aim to determine the values of the splitting frequency ωint
12 and frequency shifts

ω+/− in the case of a heterodimer made of entities (labeled as “1” and “2”) whose dipole

moments are not aligned. We assume that their bare polarizabilities exhibit single resonances

at ω1 and ω2, respectively:

(α
(1/2)
0 )ij =

1

ℏ
pi1/2 p

j
1/2

ω1/2 − ıω
. (D1)

In Eq. (69), the (ij) component of the nth term of the infinite sum thus reads

pi1
∑

k,l,m,q...z

(
1

ℏ

)2n+1
pk1W

klpl2
ω1 − ıω

pm2 W
mqpq1

ω2 − ıω

pr1W
rsps2

ω1 − ıω
(· · · ) p

y
2W

yzpz1
ω1 − ıω

pj1. (D2)

Quantity
∑

k,l p
k
1W

klpl2 =
∑

m,q p
m
2 W

mqpq1 = p1 ·Wp2 = ℏωint
12 is the dipolar coupling con-

stant between the states excited by p1 and p2. The generic term of the power series becomes

1

ℏ
pi1 p

j
1

ω1 − ıω

(ωint
12 )

2n

(ω1 − ıω)n(ω2 − ıω)n
= (α

(1)
0 )ij

(ωint
12 )

2n

(ω1 − ıω)n(ω2 − ıω)n
, (D3)
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so that

α(1),out =
[
1+ P

(2),out
0

]
α

(1)
0

∞∑
n=0

[
(ωint

12 )
2

(ω1 − ıω)(ω2 − ıω)

]n
=

[
1+ P

(2),out
0

]
α

(1)
0

(ω1 − ıω)(ω2 − ıω)

(ω1 − ıω)(ω2 − ıω)− (ωint
12 )

2
. (D4)

As ℏωint
12 = p1 ·Wp2 (and given the definitions of the angles in Part VIB 3), we have:

ℏωint
12 =

1

4πε0D3
[p1 · p2 − 3(p1 · x̂)(p2 · x̂)]

=
|p1| |p2|
4πε0D3

(cos θ12 − 3 cos θ1 cos θ2), (D5)

which amounts to introducing an orientation factor in the Davydov splitting.70,73,77 The two

poles of Eq. (D4) are found by solving the second-order equation cancelling the denominator.

For identical molecules (ω1 = ω2 = ω0), we get ω± = ω0 ± ωint
12 . Both modes are optically

active, except when the molecules adopt an identical geometry: in this case, ω− is also a

root of the numerator and only ω+ is optically active (as discussed for homodimers). For a

heterodimer, we obtain Eq. (71).
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