
HAL Id: hal-04578817
https://hal.science/hal-04578817

Submitted on 17 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A physically-based formulation for texture evolution
during dynamic recrystallization. A case study of ice

Thomas Chauve, Maurine Montagnat, Véronique Dansereau, Pierre Saramito,
Kévin Fourteau, Andréa Tommasi

To cite this version:
Thomas Chauve, Maurine Montagnat, Véronique Dansereau, Pierre Saramito, Kévin Fourteau, et al..
A physically-based formulation for texture evolution during dynamic recrystallization. A case study
of ice. Comptes Rendus. Mécanique, 2024, 352 (G1), pp.99-134. �10.5802/crmeca.243�. �hal-04578817�

https://hal.science/hal-04578817
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Comptes Rendus

Mécanique

Thomas Chauve, Maurine Montagnat, Véronique Dansereau, Pierre Saramito,
Kévin Fourteau and Andréa Tommasi

A physically-based formulation for texture evolution during dynamic
recrystallization. A case study of ice

Volume 1, issue 0 (0000), p. 000-000

https://doi.org/10.5802/crmeca.243

This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

C EN T R E
MER S ENN E

The Comptes Rendus. Mécanique are a member of the
Mersenne Center for open scientific publishing

www.centre-mersenne.org — e-ISSN : 1873-7234

https://doi.org/10.5802/crmeca.243
http://creativecommons.org/licenses/by/4.0/
https://www.centre-mersenne.org
https://www.centre-mersenne.org


Comptes Rendus. Mécanique
0000, Vol. 1, 0, p. 000-000

https://doi.org/10.5802/crmeca.243

Research article / Article de recherche

A physically-based formulation for texture
evolution during dynamic recrystallization.
A case study of ice

Une formulation basée sur la physique pour simuler
l’évolution de la texture pendant la recristallisation
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Abstract. Dynamic recrystallization can have a strong impact on texture development during the deforma-
tion of polycrystalline materials at high temperatures, particularly for materials with strong viscoplastic
anisotropy such as ice. Owing to this anisotropy, recrystallization is essential for ensuring strain compati-
bility, and the development of textures leads to anisotropic softening. Accurate prediction of the effect of
recrystallization on the texture evolution of ice is therefore crucial to adequately account for texture-induced
mechanical anisotropy in large-scale models of glacial ice flow. However, this prediction remains a challenge.

We propose a new formulation for modeling texture evolution due to dynamic recrystallization on the
basis of observations of the evolution of the microstructure and texture of ice deforming by dislocation
creep and dynamic recrystallization. This formulation relies on an orientation attractor that maximizes the
resolved shear stress on the easiest slip system in the crystal. It is implemented in the equation describing
the evolution of the crystal orientation with deformation and is coupled with an anisotropic viscoplastic
law that provides the mechanical response of the ice crystal. This set of equations, which is the core of
the R3iCe model is solved by a finite-element method with a semi-implicit scheme coded using the Rheolef
library. The resulting open-source software R3iCe is validated by comparison with laboratory creep data for
ice polycrystals under uniaxial compression, simple shear, and uniaxial tension. It correctly reproduces the
texture evolution and mechanical softening observed in the experiment during tertiary creep. Although the
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present formulation is too time-consuming for direct implementation in large-scale ice flow models, R3iCe
can be used to adjust the parameterization used to implement texture-induced anisotropy in these models.
The validation was performed for ice, but the R3iCe implementation is generic and applies to any material
whose behavior may be adequately described using an anisotropic flow law.

Résumé. La recristallisation dynamique peut avoir un impact important sur le développement des textures
pendant la déformation des matériaux polycristallins à haute température, en particulier pour les matériaux
présentant une forte anisotropie viscoplastique comme la glace. En raison de cette anisotropie, la recristalli-
sation est essentielle pour assurer la compatibilité des déformations et le développement des textures conduit
à un adoucissement anisotrope. Une prédiction précise de l’effet de la recristallisation sur l’évolution de la
texture de la glace est donc cruciale pour tenir compte de l’anisotropie mécanique induite par la texture dans
les modèles à grande échelle de l’écoulement de la glace. Pourtant, cette prédiction reste un défi.

Nous proposons une nouvelle formulation pour modéliser l’évolution de la texture due à la recristallisa-
tion dynamique, basée sur des observations de l’évolution de la microstructure et de la texture de la glace se
déformant par fluage de dislocations et recristallisation dynamique. Cette formulation repose sur un attrac-
teur d’orientation qui maximise la contrainte de cisaillement résolue sur le système de glissement le plus fa-
cile dans le cristal. Elle est mise en œuvre dans l’équation décrivant l’évolution de l’orientation du cristal avec
la déformation et couplée à une loi viscoplastique anisotrope qui fournit la réponse mécanique du cristal de
glace. Cet ensemble d’équations, qui constitue le cœur du modèle R3iCe, est résolu par une méthode d’élé-
ments finis avec un schéma semi-implicite codé à l’aide de la bibliothèque Rheolef. Le logiciel libre R3iCe
qui en résulte est validé par comparaison avec des données de fluage en laboratoire pour des polycristaux de
glace soumis à une compression uniaxiale, à un cisaillement simple et à une tension uniaxiale. Il reproduit
correctement l’évolution de la texture et l’adoucissement mécanique observés lors de l’expérience pendant le
fluage tertiaire. Bien que la formulation actuelle soit trop coûteuse en temps pour une mise en œuvre directe
dans des modèles d’écoulement de glace à grande échelle, R3iCe peut être utilisé pour ajuster la paramétri-
sation utilisée pour mettre en œuvre l’anisotropie induite par la texture dans ces modèles. La validation a été
effectuée pour la glace, mais l’implémentation de R3iCe est générique et s’applique à tout matériau dont le
comportement peut être décrit de manière adéquate à l’aide d’une loi d’écoulement anisotrope.

Keywords. dynamic recrystallization, texture, viscoplastic anisotropy, finite-element method, ice.

Mots-clés. recristallisation dynamique, texture, anisotropie viscoplastique, méthode des éléments finis,
glace.
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Notation

Table 1. Mathematical notations
a Scalar

a Vector

A Tensor

AD Deviatoric part of A AD = A− 1
di m(A) Tr (A) AD

i j = Ai j −
δi j

di m(A) Tr (A)

⊗ Tensorial (dyadic) product A = b⊗c Ai j = bi c j

Tr () Trace of a Tensor Tr (A) Ai i

di m() dimension of a tensor di m(A)

∇ ∇ operator
(
∂
∂x , ∂

∂y , ∂
∂z

)
∂
∂xi

. Scalar product a.b ai bi

: Double contracted product A : B Ai j Bi j

∥.∥ Norm ∥a∥ a2
i

An matrix product n times A×A · · ·×A︸ ︷︷ ︸
n
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1. Introduction

Dynamic recrystallization (DRX) is a mechanism by which local stress incompatibilities and local
strain heterogeneities are relaxed [1–3]. By local, we mean the scale of the grains that constitute
crystalline materials such as ice, metals, and most rocks. Dynamic recrystallization occurs in
plastically deformed materials at high temperatures. It is characterized by the nucleation of
new grains and grain boundary migration and can lead to the complete re-organisation of the
microstructure (grains shape and size) and drastic modification of the texture (crystallographic
orientations of grains) [2, 4–7]. These changes in the microstructure and texture may lead to
modification of the rheological behavior, i.e., the response of the material to imposed stresses or
strains.

Ice is a hexagonal crystalline material (Figure 1) that deforms on Earth at temperatures very
close to its melting point. In the ductile regime, its deformation is characterized by a strong
anisotropy, with dislocations gliding almost solely on the basal plane [8, 9]. Therefore, the
orientation of an ice crystal relative to the direction of solicitation strongly controls its viscosity.
Consequently, the distribution of crystallographic orientations in polycrystalline ice impacts the
mechanical response in the form of texture-induced viscoplastic anisotropy [10].

Microstructural evidence for recrystallization is systematically observed along deep ice cores,
where it is supposed to contribute variably to the measured texture, depending on the deforma-
tion conditions (temperature, impurities). To interpret texture evolution along ice cores, a model
has been proposed by De la Chapelle et al. 1998 [11]. This model states that DRX may either slow
down the strain-induced texture evolution (the so-called “continuous” dynamic recrystallization
regime) or drastically modify the texture, a final texture controlled by the stress state (the “dis-
continuous” dynamic recrystallization regime). Whether continuous or discontinuous DRX pre-
dominates depends on the temperature and strain conditions along the ice core [12, 13]. In deep
sections of ice sheets, along ice streams, and in glacier areas where temperature and strain are
high, DRX leads to highly anisotropic textures, particularly when simple shear is dominant (see
e.g. [14–17]). These textures result in strong viscoplastic anisotropy, which can either enhance
or slow down strain rates. For instance, the vertical cluster of c-axes usually observed along ice
cores will accelerate horizontal shearing but slow down vertical compaction [18–23]. To model
the deformation of an ice sheet, it is therefore essential to consider the effect of DRX on texture
evolution.

Dynamic recrystallization in ice has been extensively studied in the laboratory. These studies
allowed us to characterize the basic mechanisms at play, nucleation and grain-boundary migra-
tion, and the impact of strain heterogeneities on their kinetics (see e.g. [3, 24–31]). Kamb (1972)
[4] was a pioneer in performing several creep experiments in simple shear and compression to
characterize the effect of DRX on both texture evolution and macroscopic mechanical behavior.
He proposed that the strain rate acceleration, which is characteristic of the tertiary creep stage,
could result from the development of DRX textures favorable to the activation of basal slip. This
study is likely at the origin of the widely established belief that DRX favors “well-oriented” grains
relative to the imposed stress. Since then, work by Grennerat et al. 2012 [32] has revealed that the
strain field during deformation in polycrystalline ice is highly heterogeneous, with no simple re-
lationship between the intensity of the local strain and the Schmid factor, a parameter that quan-
tifies the orientation relationship between a crystal and the imposed macroscopic stress. More
recently, direct measures of the evolution of the strain field with DRX by Chauve et al. 2017 [33]
have illustrated the heterogeneity of the mechanical behavior at the grain scale and its impact on
DRX. They showed that DRX tends to homogenize the strain field in relation to local microstruc-
ture changes.
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Although this recent data show that DRX textures result from a complex interplay between
the imposed stress or strain states, the local microstructure, and the resulting redistribution of
stresses, it also corroborates the notion that the development of DRX textures is systematically
associated with marked strain softening that signs the onset of tertiary creep [22, 25, 27]. Further
texture evolution during tertiary creep results in a quasi-constant strain rate for bulk strains
higher than 10%; this “stationary” strain rate is independent of the initial texture and controlled
by the imposed stress [34–37]. This contrasts with the minimum strain rate observed at the onset
of secondary creep, which depends on the initial texture and can be described by the classical
Glen’s law (a Norton-Hoff type law), which nonlinearly relates the strain rate to the applied stress
(through an exponent of 3 and an Arhenius type of dependence to the temperature) [9, 38]. This
law does not hold in tertiary creep, but it has been adapted by modifying the stress exponent
to a value slightly higher than 3 and adding a strain-rate enhancement factor (the ratio between
the strain rate measured at tertiary creep and the minimum strain rate at secondary creep). This
enhancement factor, between 4 in compression and 8 in simple shear [22, 37] accounts for the
impact of the DRX texture on strain softening during tertiary creep.

Textures that develop in the ice during DRX are well characterized. Under uniaxial compres-
sion, the textures measured at tertiary creep are characterized by c-axes oriented within a girdle
at an angle between 30◦ and 50◦ to the compression axis depending on the experimental tem-
perature T and stress. These textures are stable, i.e., they evolve very slowly for strains higher
than 10% [4, 24, 27, 29, 30, 37, 39]. During simple shear, tertiary creep textures seem to evolve
with increasing strain from a two-maxima pattern, which is symmetric relative to the principal
finite stretching direction, toward a strongly clustered texture, characterized by c-axes aligned in
a direction perpendicular to the shear plane [25, 26, 31, 40, 41].

Texture development in ice deforming by dislocation creep has been successfully simulated
using approaches of variable complexity [18, 19, 42, 43]. However, these approaches fail to
reproduce the tertiary creep experimental textures, and the rare models simulating the effect of
dynamic recrystallization are rather unsatisfactory in terms of either texture patterns or kinetics
of texture evolution [44–48]. The discrepancies between models and observations result from the
use of a simplified, mean-field approach that does not enable DRX mechanisms to be properly
represented [44, 45], or from limitations in the deformation modeling frame despite the high
complexity of microstructure evolution [46]. In [47, 48], the simulated textures are very close to
the observed ones, but the kinetics of evolution are not. This discrepancy may result from the use
of a Sachs approximation for modeling the mechanical response of the polycrystal, which results
in a very soft mechanical response and incoherence in the grain rotation calculation [49].

In this work, we propose a new formulation to predict the impact of DRX on the texture evo-
lution of polycrystalline materials such as ice. This formulation couples a continuous transverse
isotropic (CTI) law, which models the anisotropic response of the ice crystal, to a crystal orien-
tation evolution equation that accounts for DRX. The contribution of DRX to texture evolution is
modeled by a physically based orientation attractor that maximizes the resolved shear stress on
the easiest slip system in the crystal (basal slip for ice). This set of equations, named CTI-RX, is
solved in a full-field model using the finite-element method (FEM).

In Section 2, we present the CTI-RX model: its equations for the CTI law (Section 2.1) and
the proposed formulation for the evolution of the c-axis (Section 2.2). The numerical scheme
designed to solve these equations is described in Section 3. Section 4 presents the calibration
and validation for cases without dynamic recrystallization. Section 5 evaluates the capability of
the model to reproduce the evolution of the texture and the mechanical response by comparing
the predictions with experimental data for tertiary creep of ice polycrystals subjected to uniaxial
compression, uniaxial tension, and simple shear.
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2. CTI-RX- a model for the ice single crystal behavior

2.1. Continuous transverse isotropic behavior

Following [50–54], we account for the viscoplastic anisotropy of the ice single crystal by modeling
its mechanical behavior using the continuous transverse isotropic (CTI) law. In this framework,
the viscoplastic response of the ice single crystal depends only on the orientation of the c-axis,
being isotopic in the basal plane (see Figure 1). This formulation is based on theoretical work by
Boehler (1987) [55], which has shown, through geometrical arguments, that the relation between
the deviatoric stress S and the deviatoric strain rate D in a transverse isotropic symmetry may be
described by a potential φS :

D =
(
∂φS

∂S

)D

(1)

where φS is expressed on the BC T I base, which is built from a combination of the following four
invariants:

BC T I =
[
Tr

(
S2) ,Tr

(
S3) ,Tr (MS),Tr

(
MS2)] , (2)

With M = e3 ⊗e3 where e3 is the direction of the plane of isotropy (Figure 1). The potential φS is
described below in the linear (φ(1)

S ) and nonlinear (φ(n)
S ) cases.

e3

Figure 1. The transverse isotropic geometry is fully described by one direction, e3, which
defines the plane of isotropy. For an ice single crystal, this direction corresponds to that of
the c-axis (i.e. the normal to the basal (0001) plane).

2.1.1. The linear CTI formulation

To obtain a linear CTI formulation, the potential, φ(1)
S , must be quadratic. It is therefore

constructed from the quadratic invariants taken from the BC T I base as:

φ(1)
S = δ1Tr

(
S2)+δ2Tr (MS)2 +δ3Tr

(
MS2) . (3)

Considering the following derivation rules,

∂Tr (MS)

∂S
= M,

∂Tr
(
S2

)
∂S

= 2S,
∂Tr

(
MS2

)
∂S

= MS+SM, (4)

the constitutive relation is given by

D =
(
∂φ(1)

S

∂S

)D

= 2δ1S+2δ2MD Tr (MS)+δ3(MS+SM)D . (5)

The three independent parameters δi in Equation (5) can be fitted from the experimental data as
detailed below.
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In the present implementation of the model, the anisotropy of the ice single crystal (or grain)
behavior is described using the following parameters, where g X indicates a tensor expressed in
the grain reference frame:

• ψ1 is the fluidity of the ice crystal subjected to shear on the basal plane:

g D13 = ψ1

2
g S13, g D23 = ψ1

2
g S23, (6)

• β is the ratio between the fluidity for shear parallel to the basal plane and that for shear
normal to the basal plane:

g D12 =βψ1

2
g S12, (7)

• γ is the ratio of the viscosity for compression (or traction) Along the c-axis ηc and for
compression (or traction) in any direction g er within the basal plane:

g S33 = 2ηc
g D33, γg Sr r = 2ηc

g Dr r (8)

For solicitations of similar amplitude in different directions, for instance along e3 or
perpendicular to e3 (i.e. along er) S = g S33 = g Sr r , in the linear case, the strain rates
are related by:

g Dr r = γg D33 (9)

Using the above constraints on single crystal behavior, identification gives (see Appendix A for
details):

δ1 = ψ1β

4
, δ2 = ψ1

2

(
β
γ+2

4γ−1
−1

)
, δ3 = ψ1

2

(
1−β)

(10)

The constitutive equation (5) can also be expressed in an inverse manner as follows:

S = 2α1D+2α2MD Tr (MD)+α3(MD+DM)D (11)

and in terms of the potential

φ(1)
D =α1Tr

(
D2)+α2Tr (MD)2 +α3Tr

(
MD2) (12)

with : α1 = η1
β , α2 = 2η1( γβ − 1), α3 = 2η1(1 − 1

β ) and η1 = 1
ψ1

(see [19] and appendix A for
details).

2.1.2. The non-linear CTI formulation

A non-linear potential φ(n)
D linking S to D

1
n is obtained by taking the linear potential φ̃(1)

D =
1

2η1
φ(1)

D to a higher order, k :

φ(n)
D = 1

k

(
φ̃(1)

D

)k
. (13)

This hypothesis limits the number of independent parameters to 3 instead of 7 in the general
case. A similar hypothesis was made in previous studies [19, 48, 56]. Using the chain rule for
deriving φn

D gives:

S = ∂φ(n)
D

∂D
=

(
φ̃(1)

D

)k−1 ∂φ̃(1)
D

∂D
(14)

k is further obtained by identification of the power exponent on Equation (14) in order to have
S ∼ D

1
n :

2(k −1)+2 = 1

n
=⇒ k = n +1

2n
(15)

Therefore, a non-linear CTI law can be written as:

φ(n)
D = 4n

n +1

(
α1tr

(
D2)+α2tr (MD)2 +α3tr

(
MD2)) n+1

2n , (16)

Leading to the constitutive equation:

S = η⋆n
(
2α1D+2α2MD Tr (MD)+α3(MD+DM)D)

, (17)
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with effective viscosity

η⋆n = 2ηn
(
α1tr

(
D2)+α2tr (MD)2 +α3tr

(
MD2)) 1−n

2n (18)

and αi parameters:

α1 = 1

2β
, α2 =

(
γ

β
−1

)
, α3 =

(
1− 1

β

)
. (19)

It is worth noting that β links g D12 to g S12 through

g D12 = ψn

2
β

n+1
2 g Sn

12. (20)

Therefore, β depends on non-linearity, i.e., on the value of n. A similar enhancement is obtained
for a linear behavior n = 1 and a non-linear behavior with n = 3 by setting βn=3 =

√
βn=1.

2.2. Evolution of crystal rotation in response to deformation and recrystallization

Deformation resulting from dislocation glide in the different slip plane results in a rotation of the
crystal whose rate is described as in [57, 58] by

∂c

∂t
= Wc−λ[

Dc− (
cT Dc

)
c
]

, (21)

where W(u) = ∇(u)−∇T (u)
2 and D(u) = ∇(u)+∇T (u)

2 are the spin- and strain-rate tensors. According
to Equation (21), the rotation of the c-axis is due to the bulk spin, Wc, and the viscoplastic spin
expressed by λ[Dc − (cT Dc)c]. λ is a parameter that depends on the plasticity model chosen
for the ice crystal. In this frame, we assume that deformation is only due to the contribution of
dislocations gliding on the basal plane, λ is set to 1. A value ofλ < 1 must match a plasticity model
that include prismatic and pyramidal slip [57, 58]. This assumption is well funded for ice and has
often been made in previous studies [45, 59–62].

To account for the impact of dynamic recrystallization on the evolution of the c-axis orienta-
tion, we add a new term to this equation based on the assumption that dynamic recrystallization
induces a local re-orientation of the c-axis, either through nucleation of a grain with a new orien-
tation or by migration of a grain boundary, and that this re-orientation leads to local softening.
This continuous description of the impact of DRX on the evolution of the c-axis orientation is
supported by experimental observations of DRX nucleation in ice. These observations show that
nucleation by bulging and polygonization results in progressive misorientation of the recrystal-
lized volumes relative to the parent grains, with misorientations occurring most often < 20◦ [33].

With the addition of the dynamic recrystallization term, the c-axis rotation is described as
follows:

∂c

∂t
= Wc−λ[

Dc− (
cTDc

)
c
]+ 1

ΓR X
(c0 −c) , (22)

where ΓR X is a parameter that controls the rate of rotation of the c-axis toward an attractor, c0,
which represents the “ideal” orientation produced by recrystallization and whose formulation
is described in Section 2.3. Therefore, the evolution of the c-axis orientation is controlled
by the balance between (i) the deformation-induced rotation and (ii) the rotation toward a
recrystallization-driven attractor, c0.

The meaning of ΓR X can be illustrated by considering the artificial case in which only dynamic
recrystallization contributes to the c-axis rotation. In this case, Equation (22) becomes

∂c

∂t
= 1

ΓR X
(c0 −c) , (23)
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The norm of ∂c
∂t can be interpreted as the rotation rate due only to dynamic recrystallization. This

rate increases as ∥c0 −c∥. Considering a constant c0, the solution for the c-axis rotation is:

c(t ) = (c(0)−c0)e
− t
ΓR X +c(0). (24)

In this case, c rotates towards c0 at a rate following an exponential decay with a characteristic time
ΓR X , such that 95% (99%) of the rotation is obtained after 4ΓR X (5ΓR X ). In the CTI-RX model, c0

is not constant but depends on the local diatoric stress tensor, S.

2.3. Formulation of the recrystallization attractor c0

The formulation of c0 stems from the assumption that a grain (or part of a grain) rotates toward,
or/and nucleates in, an orientation that facilitates local viscoplastic deformation (dislocation
glide). This assumption is supported by experimental observations that show that nucleation and
grain boundary migration occur in areas of high strain incompatibility and produce orientations
that tend to reduce this incompatibility [3, 33, 63]. Considering that the ice single crystal deforms
mainly by dislocation glide on the basal plane, the recrystallization-induced rotation should
maximize the resolved shear stress (RSS) on the basal plane. RSS for a dislocation with a Burgers
vector ai (Figure 1) gliding on the basal plane c in response to a diatoric stress S is given by

RSS(ai,c,S) = S :µ, (25)

with µ= 1
2

c⊗ai+ai⊗c
∥c∥.∥ai∥ .

In the CTI formulation, the orientation for the maximum RSS is the orientation where the
shear stress is maximum in the basal plane and the behavior is isotropic in this plane. Consid-
ering s1 > s2 > s3 as the eigenvalues and vi (i = 1− 3) as the corresponding eigenvectors of the
diatoric stress tensor S, the maximum resolved shear stress is ∥s1 − s3∥ and the associated orien-
tations are [64]:

c0 = 1

2
(v1 ±v3) (26)

Degenerated cases exist if at least two eigenvalues are equal:

• s1 = s2, the possible attractors c0 are the orientations at 45◦ from v3.
• s2 = s3, the possible attractors c0 are the orientations at 45◦ form v1.
• s1 = s2 = s3 = 0, the possible attractors c0 are all orientations.

In all other cases, there are two possible orientations for the attractor c0. To solve Equation (22)
we define c0 as which of the two solutions is closer to the actual c axis, in order to minimize the
path between c and c0. In practice, c0 is chosen so that the scalar product between c0 and c is
maximal.

2.4. Interpretation of the orientation evolution equation

Equation (22) can be interpreted in terms of the relative impact of deformation versus recrystal-
lization on the orientation of the c-axis. In the following section,we describe three end-member
cases.

For uniaxial compression along the y-axis (Figure 2(a)), the stable solution for the deformation
term (Wc − λ[Dc− (cTDc)c]) corresponds to c aligned with y (red dot, Figure 2(a)) [19]. For
recrystallization ( 1

ΓR X
(c0 − c)), the stable solutions are the orientations at 45◦ to the y-axis (blue

line, Figure 2(a)). When both deformation and recrystallization are active, the stable orientations
of the c-axis are located on a girdle between these two end-members (black line, Figure 2(a)). The
position of this girdle depends on the value of ΓR X (black arrows, Figure 2(a)). The higher is ΓR X

the closer is the girdle to the compression axis.
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For uniaxial tension along y, the stable solutions for the deformation term are all the orienta-
tions located in the xOz plane (red line, Figure 2(b)) [19]. When both deformation and recrys-
tallization are active, the stable orientations (black circle, Figure 2(b)) form a girdle between 45◦

and 90◦ to the y-axis depending on the value of ΓR X .
For simple shear parallel to the xOz plane (with ∂ux

∂y < 0, Figure 2(c)), there are four stable
solutions of the recrystallization term that are ±y and ±x (Figure 2(c), blue dots), and two for the
deformation term, ±y (Figure 2(c), red dots). The resulting stable orientations of the c-axis when
both deformation and recrystallization are active are located at ±y and between x and x+y (and
the symmetrical equivalent) (black dashed line dots, Figure 2(c)). This latter stable orientation,
whose exact position depends on the value of ΓR X , only exists for low ΓR X and vanishes for large
ΓR X (ΓR X →+∞).

Figure 2. Pole figure schematic representation of the stable orientations for the evolution
equation (eq. (22)) for various stress configurations S: (a) uniaxial compression along y, (b)
uniaxial tension along y and (c) simple shear in the xOz plane, ∂ux

∂y < 0 (upper hemisphere).

2.5. CTI-RX flow model description

The system of equations constituting the CTI-RX model is based on the approximation of an
incompressible fluid behavior, to which we added equations accounting for the single-crystal
anisotropic behavior and the effect of recrystallization on the evolution of the crystal orientation.
It is composed of

(1) The momentum equation under the Stokes assumption:

−∇.S+∇p = 0 (27)

(2) The non-linear CTI law:

S = η⋆n
(
2α1D+2α2MD Tr (MD)+α3(MD+DM)D)

η⋆n = 2ηn
(
α1tr (D2)+α2tr (MD)2 +α3tr

(
MD2)) 1−n

2n

(28)
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(3) The equation for the evolution of the c-axis:

∂c

∂t
= Wc−λ[

Dc− (
cTDc

)
c
]+ 1

ΓR X
(c0 −c) , (29)

With c0 = v1±v3
2 where vi are the eigenvectors of S and ∥c.c0∥ is maximum.

3. Numerical scheme and implementation

The CTI-RX equations (Section 2.5) are solved on a cuboid of polycrystalline ice deformed by
creep (stress boundary conditions) under either uniaxial compression, uniaxial tension, or sim-
ple shear (Figure 3). A full-field approach using FEM was chosen to describe the field of ori-
entations c at the element size. This implementation results in the R3iCe model (Rheology,
Recrystallization, Rheolef, in Continous Transverse Isotropic material). This design allows di-
rect comparisons of texture evolution and macroscopic mechanical behavior with data from lab-
oratory creep experiments [29–31].

bottom

top

left_bottom_back

left_bottom_front
x

y z

Fy

Fx

L

Figure 3. Schematic representation of the rectangular cubic simulation domain, with sur-
face and point boundaries labeled.

3.1. Numerical experiment setup

3.1.1. Uniaxial creep tests

In uniaxial creep, a zero vertical velocity (uy (bottom) = 0) condition is applied at the bottom
surface to simulate a fixed plateau, as in laboratory creep tests. To avoid the translation of
the sample, the position of one bottom corner is fully fixed (u(left_bottom_back) = (0,0,0)). To
avoid rotation around the y-axis, a zero-velocity condition along the x-axis is also applied on a
second summit (ux (left_bottom_front) = 0). The sample is deformed by uniaxial compression (or
tension) by applying a constant normal stress on the top surface (Fy (top) = F ). By convention,
F < 0 (F > 0) corresponds to compression (tension). This Neumann condition leads to a non-
uniform displacement over the surface as weaker elements deform faster. This may hinder direct
comparisons with laboratory experiments or other numerical models, in which homogeneous
displacement conditions are imposed on the surface to which compression is applied. This issue
has been addressed in Section 4.1.
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3.1.2. Simple shear creep tests

In the simple shear tests, forcing is applied as a constant tangential stress on the top boundary
(Fx (top) = F ) of the sample. Other boundary conditions are:

• u(bottom) = 0,
• uy = uz = 0 for the lateral surfaces (left, right, front, back) to avoid solid rotation,
• uy (top) = uz (top) = 0.

3.2. Characteristic Numbers and time

When adimensionalized with respect to the material viscosity ηn in Pa s
1
n , the vertical extent of

the cuboid L in meters (Figure 3) and the applied macroscopic stress Σ (in Pa), the system of
equations becomes:

−∇̃S̃+∇̃p̃ = 0 (30)

S̃ = η̃⋆n
(
2α1D̃+2α2MD Tr

(
MD̃

)+α3
(
MD̃+ D̃M

)D
)

η̃⋆n = 2
(
α1Tr

(
D̃

2
)
+α2Tr

(
MD̃

)2 +α3Tr
(
MD̃

2
)) 1−n

2n
(31)

∂c

∂t̃
= W̃ (ũ) .c−λ[

D̃ (ũ) .c− (
cT .D̃ (ũ) .c

)
.c

]+Mo (c0 −c) (32)

where the superscript (̃.) is used for all non-dimensional variables and operators.
The dimensionless number that arises when scaling the c-axis evolution equation is Mo :

Mo =
(ηn

Σ

)n 1

ΓR X
(33)

Mo is the ratio between the deformation characteristic time τ= (ηn
Σ )n and the recrystallization

characteristic time ΓR X , which controls the rate of rotation of c toward the attractor c0. This
dimensionless number quantifies the relative weight of the contributions of recrystallization
versus deformation to the rotation of the c-axis.

3.3. Numerical algorithm

Because the evolution of the c-axis orientation depends on the strain rate (D̃(ũ)) and the effective
viscosity η⋆ depends on both the strain rate and the orientation of the c-axis, the system of
coupled Equations (31) and (32) is non-linear. To solve this problem, we linearize the equation
describing the evolution of the c-axis using a second-order backward differentiation formula
(BDF2). The time discretization of the CTI-RX model results in the following system of equations:

−∇̃S̃
t+1 +∇̃p̃ t+1 = 0 (34)

S̃
t+1 = η̃⋆ t+1

n

(
2α1D̃

t+1 +2α2Mt+1D
Tr

(
Mt+1D̃

t+1
)
+α3

(
Mt+1D̃

t+1 + D̃
t+1

Mt+1
)D

)
η̃⋆ t+1

n = 2

(
α1Tr

((
D̃

t+1
)2

)
+α2Tr

(
Mt+1D̃

t+1
)2 +α3Tr

(
Mt+1

(
D̃

t+1
)2

)) 1−n
2n

(35)

3

2∆t̃

(
ct+1 − 4

3
ct + 1

3
ct−1

)
= W̃

(
ũt+1) .ct+1 −λ

[
D̃

(
ũt+1) .ct+1 −

(
ct+1T

.D̃
(
ũt+1) .ct+1

)
.ct+1

]
+Mo

(
c0

t+1 −ct+1) (36)

Finite elements and variational methods were used to solve the time-discretized problem on
a Lagrangian grid within the C++ environment Rheolef [65]. The domain is spatially discretize
using hexahedral finite elements (unless otherwise mentioned), and an initial c-axis orientation
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is prescribed for each element. The FE approximation for the tensorial mechanical parameter M
and the scalar mechanical parameter c is computed with polynomials of the order 0 (P0). The
FE approximation for the tensorial strain rate D̃, spin rate W̃ and stress S̃ fields is computed with
polynomials of order 1 (P1). The FE approximation for the displacement field is computed with
polynomials of the order 2 (P2).

The Rheolef problem_mixed solver is used to solve the displacement field ũ and the pressure
field p̃ under the incompressibility hypothesis for the linearized version of Equation (35), which
is obtained by fixing the apparent viscosity η⋆. A first fix loop is used to solve the non-linearity
associated with η⋆. This loop is nested in a second fix loop that solves the temporal evolution
of the c-axis orientation using Equation (36). In practice, it is recommended for numerical
efficiency to flatten the two nested fix loops.

?? 1 presents the numerical algorithm of two nested fix points implemented in R3iCe.
This algorithm is a semi-implicit solver for the coupled Equations (31) and (32). The simulated

orientation field c is thus consistent with the displacement field ũ and therefore with the diatoric
strain rate D̃ and the deviatoric stress S̃. This implementation of CTI-RX model is distributed as
the R3iCe code.

Algorithm 1 Numerical algorithm, based on two nested fix loops: one for solving the viscosity,
η⋆n , nested in a second one solving the temporal evolution of the orientation of c-axis.

1: Inputs:
ci ni t

2: Initialize:
c−1 ← ci ni t

c0 ← ci ni t

u0 ← 0
3: for t from 0 to N do ▷ Time evolution loop
4: kc ← 0
5: r esc ←+∞
6: ut+1,kc=0,knl=0 ← ut

7: ct+1,kc=0 ← ct

8: while r esc > tolc do ▷ Fix loop to solved (Equation (36))
9: knl ← 0

10: r esnl ←+∞
11: ut+1,kc ,knl=0 ← ut+1,kc

12: while r esnl > tolnl do ▷ Fix loop to solve non-linear CTI (Equation (31))
13: H⋆

n ← η⋆n (ut+1,kc ,knl ,ct+1,kc ) ▷ Equation (31)
14: find ut+1,kc ,knl+1 ← ut+1,kc ,knl+1(H⋆

n ,ct+1,kc ) ▷ problem_mixed solver on Equation (31)
15: r esnl ←∥S(η⋆n (ut+1,kc ,knl+1,ct+1,kc ),ut+1,kc ,knl+1,ct+1,kc )−S(H⋆

n ,ut+1,kc ,knl+1,ct+1,kc )∥
16: knl ← knl +1
17: end while
18: H⋆

n ← η⋆n (ut+1,kc ,knl ,ct+1,kc )
19: compute S ← S(H⋆

n ,ut+1,kc ,knl ) ▷ Equation (31)
20: find c0 ← c0(S) ▷ Equation (26)
21: compute ct+1,kc+1 ← ct+1,kc+1(c0,ut+1,kc ,knl ) ▷ Equation (36)
22: r esc ←∥S(η⋆n (ut+1,kc ,knl ,ct+1,kc+1),ut+1,kc ,knl+1,ct+1,kc+1)−S(H⋆

n ,ut+1,kc ,knl ,ct+1,kc )∥
23: kc ← kc +1
24: end while
25: ut+1 ← ut+1,kc ,knl

26: ct+1 ← ct+1,kc

27: end for
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Table 2. Parameters of the CTI law for the ice single crystal.

n γ β ηn

3 1 10−2 7.5 MPa.s1/3

3.4. CTI parameter values for the ice single crystal

As stated in Section 2, the values for the CTI parameters, γ, ηn ,n and β (Equations (17) and (19))
are defined on the basis of experimental data.

γ corresponds to the ratio of viscosities measured in compression and tension for an ice single
crystal that is well oriented for basal slip. Laboratory experiments have shown that this ratio is
very close to one. Therefore, in the present numerical simulations, we set γ = 1, as in previous
studies [50, 51].

The following Duval et al. (1983) [9] and previous modeling work based on the CTI law [20,
48, 51], we set n = 3. While experiments in ice single crystals that are well oriented for basal slip
are best fitted by n = 2, experiments on crystals that are poorly oriented for basal slip result in
n = 3 [9]. Moreover, a value of 3 must be imposed in the CTI formulation to recover n = 3 for the
polycrystal response.

β is linked to the ratio between the basal and non-basal shearing viscosities. The strong
viscoplastic anisotropy of ice is mainly carried by this parameter. In creep experiments at
1 MPa [9], the ratio between basal and non-basal shear viscosities is on the order of 104. This ratio
is related to β through Equation (20), β

n+1
2 = 104. For n = 3, β= 10−2 is a value that is consistent

with those considered in previous studies using the non-linear CTI formulation [20, 48, 51].
The viscosity ηn can be adjusted by comparison with either the experimental response of a

single crystal or that of isotropic polycrystals. Solving the CTI law for the uniaxial compression
creep of a single crystal oriented at 45◦ from the compression axis and of a polycrystal with
random orientations picked from a uniform texture results in a macroscopic strain rate of D̃ si m

sc =
1.7×10−2(ηn

Σ )n for the single crystal and D̃ si m
px = 5.3×10−5(ηn

Σ )n for the polycrystal. The viscosity
ηn is obtained by comparing the simulated values with the experimental data at 1 MPa [9] (Dexp

sc =
(2× 10−5,2× 10−4) s−1 for the single crystal, Dexp

px = (9× 10−8,3× 10−7) s−1 for the polycrystal).
ηsc

3 = (4.4,9.4) MPa s1/3 for the single crystal and η
px
3 = (5.6,8.4) MPa s1/3 for the polycrystal.

The value of 7.5 MPa s1/3 is taken for η3 in order to reproduce the experiment duration as
observed during uniaxial compression tests that are taken here as a reference (see Section 5.2).
The parameters of the CTI law for the ice single crystal are summarized in Table 2.

4. Validation of the CTI-based implementation for predicting viscoplastic response

In this section, we verify that the CTI law implemented in R3iCe correctly reproduces the me-
chanical response of an ice polycrystal deforming by dislocation creep only (no DRX). This is a
prerequisite for improving the CTI formulation with a representation of DRX. The mechanical
response of polycrystalline ice is known to be characterized by strong strain and stress hetero-
geneities, which are very likely precursors of dynamic recrystallization [32]. We first compare the
R3iCe predictions to those of the CraFT-EVP model [32], which has been shown to adequately
reproduce the heterogeneous strain fields observed in experiments [32, 66]. We then investigate
the reliability of a simplified mesh configuration for simulating the evolution of the texture and
its impact on the macroscopic mechanical response in a numerically efficient manner.
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4.1. Stress and strain field predictionscompared with CraFT-EVP

CraFT-EVP has been used to provide full-field predictions of the mechanical response of ice
during primary and secondary creep [32]. It is based on an elasto-viscoplastic formulation
proposed by Suquet et al. 2012 [67] and solved using CraFT software. The predictions of CraFT-
EVP for the mechanical response and strain fields were validated by direct comparisons with
mechanical tests on ice polycrystals that included strain field measurements by Digital Image
Correlation [32, 67]. The macroscopic strain fields predicted by CraFT-EVP agreed well with the
experimental observations at 1% strain (secondary creep, before any texture evolution owing to
DRX). With no texture evolution, CraFT-EVP and R3iCe both simulate a stationary secondary
creep.

Reproducing accurate stress fields in R3iCe is key because the recrystallization attractor c0

depends on the deviatoric stress S at the element scale (Section 2.3). Note that the Elasto-
ViscoPlastic (EVP) law implemented in CraFT-EVP [67] is based on a full description of crystal
plasticity, in which all possible slip systems contribute to the deformation as a function of
their critical resolved shear stress and crystal orientation, whereas the CTI law in R3iCe is a
simplified parameterization of viscoplastic anisotropy, which has been calibrated directly from
experimental data (Section 3.4). The objective of the comparison performed below is to verify
that the stress field predicted by R3iCe is, at minimum, statistically representative of a realistic
stress field. Since stress fields have never been measured in polycrystalline ice, the stress field
predicted by CraFT-EVP is here considered as a reference. R3iCe parameters were, of course,
not fitted to the CraFT-EVP viscoplastic response, so the two predictions can be considered
independent.

Figure 4(a-b) shows the polycrystal microstructure generated by a grain growth algorithm
using Neper [68] used for both CraFT-EVP and R3iCe simulations. In this configuration, grains
are defined as a group of connected elements that share the same initial orientation. CraFT-
EVP requires a regular cubic mesh, while the R3iCe polycrystalline microstructure used here was
meshed with a tetrahedral geometry. The resolution of CraFT-EVP simulations was reduced to
match the R3iCe one. Figure 5 shows the component εy y of the strain field and the component
σy y of the stress field on a x y section at z = 0, for a uniaxial compression creep test and after 1%
of macroscopic strain. The simulated strain fields do not perfectly compare between the CraFT-
EVP and R3iCe predictions although the overall patterns do not show a strong mismatch. The
locations of areas in compression (blue) and extension (red) are similarly prescribed (Figure 5(a)).
Significant differences between the responses of the models CraFT-EVP and R3iCe are restricted
to the first layers of grains close to the top surface. These differences result from the different
boundary conditions applied in the two models. In R3iCe, the Neumann boundary condition on
the top surface results in a constant force applied on each element that can lead to heterogeneous
displacement on this surface. As a result, some “weaker” grain deform faster, as represented by
the dark blue areas on Figure 5(a). In CraFT-EVP, periodic boundary conditions are imposed
because equations are solved with a fast Fourier transform-based method. The simulated stress
fields (Figure 5(b)) compare satisfactorily in terms of amplitude and global pattern, although the
precise stress localization shows more scattering. Some of this mismatch may also be explained
by the differences in boundary conditions between the two models.

Similarly, the distributions of predicted Von Mises equivalent stress and strain by the two mod-
els show some discrepancies (Figure 6). These discrepancies are stronger between the two con-
figurations in which grains are described by multiple elements (Figure 6) and where the impact of
the boundary conditions mentioned above is stronger. Distributions for all components of both
tensors

(
εi j ,σi j

)
are given in Appendix B.
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In R3iCe, the stress tensor at the element scale is used to predict the recrystallization attrac-
tor c0. The latter is based on the principal direction of the stress tensor v1 and v3 (Section 2.3).
Figure 7 shows the distribution of v1 and v3 orientations predicted using both CraFT-EVP (Fig-
ure 7(a)), and R3iCe with a configuration with several elements per grain (Figure 7(b)) and one
orientation per element (Figure 7(c)). All three configurations predict similar v1 and v3 orienta-
tion distributions and therefore similar c0 orientation distributions are expected.

In summary, if CraFT-EVP simulations are taken as a reference, the strain and stress fields at
secondary creep, prior to DRX activation, are qualitatively and statistically well predicted by the
CTI constitutive law implemented in R3iCe. In particular, the principal stress tensor directions
used in R3iCe to simulate the dynamic recrystallization impact on orientation evolution are
similarly predicted by the two models.

Figure 4. Microstructure generated via a grain growth using Neper meshed for (a) CraFT-
EVP microstructure with 265302 grid points (b) R3iCe with 262688 tetrahedral elements.
(c) Simplified microstructure in which orientations are defined at the element scale with a
hexahedral mesh of 2740 elements.

4.2. Stress and strain field prediction in the simplified mesh configuration

Resolving CTI-RX with sub-grain scale meshes is numerically very costly. In the following, we
test a microstructure representation composed of one orientation (or grain) per mesh element
(Figure 4(c)) in order to keep a statistically reasonable number of orientations on a mesh size
(∼ 2700 elements).

The distributions of the Von Mises equivalent stress and strain in these one-orientation-per-
mesh-element simulations are compared with those of the simulations with meshes at the sub-
grain scale using both the CraFT-EVP and R3iCe models (Figure 6). The distributions obtained in
this simplified microstructure representation compare well with those predicted using the CraFT-
EVP model, which is here considered as a reference. The fact that the CTI-RX fields predictions
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Figure 5. Comparison of predicted (a) strain (εy y ) (b) stress (σy y = Sy y + p) fields for the
grain microstructure using CraFT-EVP and R3iCe.

obtained with a sub-grain scale mesh depart slightly from the Craft-EVP predictions is attributed,
as mentioned before, to the discrepancy in the applied boundary conditions (periodic versus
Neumann applied on the top surface). Please note that this discrepancy is reduced by a larger
number of grains (orientations) in contact with the top surface in the simplified microstructure.

Figure 7 compares the distribution of the principal stress tensor directions v1 and v3 that are
used in the calculation of the dynamic recrystallization attractor in R3iCe. There is a superb cor-
respondence between the distributions predicted by CraFT-EVP and by R3iCe with the simplified
microstructure. In the following, all simulations were performed using one independent orien-
tation per element to have a large enough number of orientations while maintaining reasonable
computation times. We assume that this choice has a limited impact on the simulated stress
fields and therefore on the evaluation of the attractor c0 at the sample scale.

5. Texture evolution: comparison with experimental data

This section tests the ability of the R3iCe model to predict the evolution of the c-axes orientation
with and without dynamic recrystallization (Equation (32)). As mentioned in the introduction,
deformation experiments with no or very limited DRX are not possible because of the fast strain
rates and high temperature required. Deformation-only textures may only be sampled in deep ice
cores from the central parts of Greenland or Antarctica [11]. These textures were well reproduced
by uniaxial compression simulations performed using the mean-field ViscoPlastic Self Consistent
model [13, 43]. R3iCe prediction for texture evolution without recrystallization are therefore
compared with those of VPSC simulations extracted from [13]. In contrast, there is a large
experimental dataset in which the texture evolved in response to both deformation and DRX. We
use this dataset to constrain the predictions of R3iCe for the effect of DRX on texture evolution
and mechanical behavior under uniaxial compression, uniaxial tension, and simple shear.
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Figure 6. Kernel Density Estimation of the Von Mises equivalent strain (a) and stress (b)
fields simulated with CraFT-EVP (EVP, black line) and R3iCe (CTI, cyan line). The dashed
lines show the results obtained for simulations where grains are defined by multiple mesh
elements (grains microstructure) (Figure 4(a-b)). The full line shows a R3iCe simulation
where a single orientation is attributed per element (Figure 4(c)).

The laboratory creep experiments selected to validate the model are:

• Uniaxial compression experiments from Montagnat et al. 2015 [29] (Σ∼ 0.7 MPa,
T=−5◦ C)

• Uniaxial tension experiments from Jacka and Maccagnan 1984 [27] (Σ∼ 0.4 MPa,
T=−3◦ C)

• Torsion experiments from Journaux et al. 2019 [31] (Σmax ∼ 0.5 MPa, T=-7◦ C),

where Σ stands for the macroscopic applied stress and Σmax corresponds to the maximum stress
resulting from the applied torque.

The model predictions are also compared with strain-controlled uniaxial compression tests
under confining pressure performed by Qi et al. 2017 [30]. These conditions enabled us to reach
higher flow stresses without failure (Σ∼ (1.3,4.3) MPa, T=−10◦ C).

For each configuration, simulations using a configuration with one independent orientation
per element are performed, starting with initial orientations randomly selected in a uniform
texture. The parameters for all simulations are given in Table 3.

For all configurations, the simulated texture evolution is represented by (1) the evolution of the
eigenvalues ai of the second-order orientation tensor a(2) (a(2) = 1

N Σ
N
i=0ci ⊗ ci, with N being the

number of orientations), (2) pole figures representing the c-axes distribution at various strains,
and (3) the evolution with strain of the texture in a section extracted from the pole figure. These
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outputs are compared with the pole figures obtained during the experiments at three selected
strain values.

Figure 7. Distributions of the principal stress tensor directions v1 and v3 for uniaxial com-
pression on (a) CraFT-EVP simulation (b) R3iCe simulation with grains (c) R3iCe simulation
with one orientation per mesh element.

Table 3. Values of the numerical and physical parameters used in the model R3iCe.

References Model inputs Physical values

Stress Mo Σ (MPa) ΓR X (days) T (◦C )

without recrystallization Compression 0 1 +∞
Montagnat et al. 2015 [29] Compression 1.03×10−3 0.7 13.8 −5

Jacka et al. 1984 [27] Tension 1.86×10−2 0.4 4.1 −3

Journaux et al. 2019 [31] Simple Shear 1.06×10−3 0.5 36.8 −7

Qi et al. 2017 [30] Compression (1.34,20.8)×10−5 (1.3, 4.3) 4.6 −10
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The second-order orientation tensor a(2) is a statistical representation of texture ani-
sotropy [69]. The c-axes distribution lies within an ellipsoid whose axes are the eigenvalues of
a(2) with 1 ≥ a1 ≥ a2 ≥ a3 > 0.

The simulated strain-rate evolution provides an evaluation of the evolution of the enhance-
ment factor, which is the ratio between the maximum strain rate measured at the onset of DRX
and the minimum strain rate measured at secondary creep in the experiments, which is the start-
ing point of the simulations. In the simulation, this strain-rate enhancement results solely from
the evolution of the texture, whereas in the experiments, changes in the microstructure might
also contribute to it.

5.1. Texture evolution in the absence of recrystallization

To test the capability of R3iCe to predict texture evolution, we simulated uniaxial compression
under a 1 MPa deviatoric stress using one orientation per mesh element with initial orientations
randomly selected from a uniform texture.

Figure 8(a-c) presents the evolution with strain (i.e. time) of the eigenvalues (ai , i = 1,3) of the
second-order orientation tensor a(2), the strain rate, and the texture in the Z plane (perpendicular
to the compression direction). Figure 8(d) shows textures predicted at 22%, 40% and 60% total
strain. The strain-rate curve discontinuities (Figure 8(b)) are technical artifacts imposed by the
operating rules of the GRICAD clusters. The shared access restricts the simulation duration to 48
hours, which means that the code must be relaunched every 48 hours. To reduce the calculation
time, the convergence criterion is set tougher for the first step and relaxed for the following steps.
The steps observed at each restart reveal the convergence error during the simulation, which
appears to have a limited impact.

A strong cluster (single maximum of c-axes) texture develops as strain increases. This texture
evolution induces geometrical hardening of the polycrystal, which is expressed by a decrease in
the strain rate by a factor ∼ 1.5 between 20% and 60% total strain, when the texture is highly
clustered (a1 ≈ 0.71).

Similar cluster textures are observed along deep cold ice cores, for instance, along the Talos
Dome ice core [13] where a clustered texture with a1 ≈ 0.7 was measured at about 650 m depth,
where an accumulated strain of 60% is estimated. The simulated texture evolution with strain is
also in good agreement (although slightly weaker) with the one predicted by Montagnat et al. [13]
using the VPSC model when departing from an isotropic texture (see red dots in Figure 8(a)).

5.2. Uniaxial compression

The evolution with strain (i.e. time) of the eigenvalues (ai , i = 1,3) of the second-order orienta-
tion tensor a(2), the strain rate, and the texture in the Z plane (perpendicular to the conpression
direction) predicted for uniaxial compression with DRX under an imposed compressive stress of
0.7 MPa is shown in Figure 9. This is compared with experimental measurements from Montag-
nat et al. 2015 [29]. These latter were obtained from initially isotropic granular ice compressed
at −5◦C under a constant load with initial stresses of 0.7 and 0.8 MPa, and up to various strains
(from 2 to 17.8% bulk shortening).

Comparison of the c-axis pole figures shows good qualitative agreement between the simu-
lated and experimental textures (Figure 9(d-e)). Both are girdle textures that become more con-
centrated and show an evolution of the cone angle to the compression axis from 45◦ to 35◦ up
to ∼ 20% macroscopic strain and remain nearly constant thereafter (Figure 9(d)). There is also
good agreement between the predicted evolution of the texture eigenvalues and those measured
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Figure 8. Simulation of uniaxial compression along Y with no recrystallization ΓR X =+∞,
Mo = 0. a) Evolution with strain of the eigenvalues of the second-order orientation tensor
(a1 > a2 > a3). Red dots are predictions from the VPSC model taken from [13]; b) evolution
with strain of the macroscopic strain rate; c) evolution of the intensity of the texture with
the colatitude θ over a section defined on the Z plane (dashed blue lines in d)). Data at 22%,
40% and 60% macrostrain are shown. The white dashed lines define the angle at ±45◦ from
the compression axis Y ; d) textures presented as pole figures for 22% (i ), 40% (i i ), and 60%
(i i i ) macroscopic strain. All figures presenting texture data are color-coded using the same
colorbar, which is displayed on the right (scales in multiples of a uniform distribution).

at 7%, 12% and 17.8% (Figure 9(a)). This good agreement between the experimental and simu-
lated textures was obtained for a value of ΓR X = 13.8 days. During the experiments, 17.8% strain
was reached in 144 hours (∼ 6 days). In the model simulations, this strain is reached in a shorter
time (∼ 130 hours), but the tertiary creep (maximum strain-rate) regime is reached between 10 to
20% strain, similar to the experimental observations (see also [27, 37]).

The macroscopic response predicted by R3iCe shows a clear softening associated with the
development of the texture. A maximum enhancement factor (EF) of 4.7 is obtained at ∼ 19%
strain (black arrow, Figure 9), which corresponds to a girdle texture with a cone angle around
∼ 45◦ to the compression axis. This softening is followed by a slight hardening as the girdle texture
slowly evolves toward a cone angle at ∼ 35◦ to the compression axis.

The bulk strain associated with the maximum strain rate and the simulated enhancement
factor cannot be directly compared to that measured in Montagnat et al. 2015 [29] because
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these experiments were performed under constant load and the area of the sample section
evolved during the tests, whereas the model simulations were performed in a constant stress
configuration. The simulated strain rate may be corrected by assuming a constant sample volume
during the experiment, which leads to ε̇cor r

si m = ε̇si m × (1+ε)3. This corrected strain rate is plotted
in blue in Figure 9(b). This brings the maximum strain rate to ∼ 10% and the enhancement factor
to 3.0. These values are closer to the macroscopic response measured by Montagnat et al. [29],
which is characterized by an enhancement factor between 3.3 and 3.8.

Figure 9. Simulations for uniaxial compression creep along the Y direction with param-
eters from Table 3 and comparison with experimental data. a) Evolution with strain of the
eigenvalues of the second-order orientation tensor (a1 > a2 > a3). The blue dots corre-
spond to experimental values from [29]; b) simulated macroscopic strain rate (black) and
corrected simulated macroscopic strain rate (blue) to match the constant force boundary
conditions instead of the constant stress one used in the simulation. EF stands for En-
hancement Factor; c) evolution with strain of the intensity of the texture with the colati-
tude θ over a section defined on the Z plane (dashed blue lines in (d)). Data at 7%, 12%
and 17.8% macrostrain are shown. The white dashed lines define the angle at ±45◦ from
the compression axis Y ; d) simulated textures (pole figures) for 7% (i ), 12% (i i ), and 17.8%
(i i i ) macroscopic strains; e) measured textures for the same macroscopic strains [29]. All
figures presenting texture data are color-coded using the same color bar (scales in multi-
ples of a uniform distribution).

5.3. Uniaxial tension

Experimental creep tests performed under uniaxial tension are scarce. Jacka et al. 1984 [27] pre-
sented one experiment performed at −3◦ C, up to 9.3% octahedral shear strain that corresponds
to the definition given in Jacka et al. 1984 [70], to 13.1% axial strain. At this strain level, they did
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not attain the quasi-constant strain rate typically of tertiary creep. The texture obtained, mea-
sured using the classical manual Rigsby stage technique with one orientation per grain, is pre-
sented in Figure 10. The texture is characterized by a small circle girdle with a mean half angle
of 50.4◦ and a standard deviation of 15.3◦. Although tertiary creep was not reached in this exper-
iment, an enhancement factor of ∼ 3, similar to that observed in compression under the same
conditions, was measured.

The texture evolution and macroscopic response predicted by a simulation under uniaxial
tension creep are shown in Figure 11. The texture evolves with increasing strain toward a girdle
texture with a cone angle slightly around 45◦ to the extension direction. This texture appears to
stabilize at ∼ 5% axial strain. The distribution of the c-axis angle from the tension axis is given
in Figure 12 for the simulated texture at 13% strain. It is similar to the one measured by Jacka et
al. 1984 [27] (Figure 10). An enhancement factor of approximately 10 is simulated at 10% axial
strain.

Figure 10. Texture obtained after 9% of octahedral tension strain (about 13% axial strain)
performed at −3◦C with an octahedral stress of 0.4 MPa. The star ⋆ in the center of the
pole figure shows the direction of the tension axis. From Jacka et al. 1984 [27].

5.4. Simple shear

The simulated texture evolution in simple shear is compared with observations made by Jour-
naux et al. [31] for torsion experiments on isotropic granular ice performed at −7◦C, under a con-
stant torque corresponding to a maximum shear stress between 0.4 and 0.6 MPa.

The experimental textures are characterized by two submaxima, one almost perpendicular
to the shear plane, called M1, and the second one, M2, initially at a low angle to the shear
plane. Similar evolution was also observed in simple shear in [26, 41, 71]. As the shear strain
increases, M2 merges with M1 to form a highly concentrated cluster texture characterized by a
single maximum of c-axes normal to the shear plane. The simple shear simulations performed
here reproduce this evolution relatively well, as shown in Figure 13.

By accounting for dynamic recrystallization, the R3iCe model is able to reproduce the evolu-
tion of both M1 and M2 maxima with strain. At low shear strains (γ ∼ 0.2), M1 concentrates
normal to the shear plane, while M2 follows the principal extension direction (white dashed line,
Figure 13(c) bottom and Figure 13(d)). As strain increases, M2 rotates toward M1. At a shear
strain of 2, the texture is characterized by a slightly elongated single cluster normal to the shear
plane as M1 and M2 merge. The evolution of the eigenvalues of the second-order orientation
tensor, as observed in the experiments, is also well reproduced (Figure 13(a)).
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Figure 11. Simulations for uniaxial tension creep along the Y direction with parameters
from Table 3 and comparison with experimental data. a) Evolution with strain of the eigen-
values of the second-order orientation tensor (a1 > a2 > a3); b) simulated macroscopic
strain rate. EF stands for Enhancement Factor; c) evolution with strain of the intensity of
the texture with the colatitude θ over a section defined on the plane normal to Z (dashed
blue lines in d)). Data at 5%, 13% and 15% axial macroscopic strains are shown. The white
dashed lines define the angle at ±45◦ from the compression axis Y ; d) simulated textures
(represented as pole figures) for 5% (i ), 13% (i i ), and 15% (i i i ) axial macrostrain. All figures
presenting texture data are color-coded using the same color bar (scales in multiples of a
uniform distribution).

In both experiments and simulations, the strain rate increased rapidly up to γ= 0.3 while the
double-maxima texture develops (Figure 13(d)). It continues to increase, but at a progressively
slowing rate as the texture evolves toward a single maximum normal to the shear plane, up to
γ∼ 3 where is reaches a quasi-steady state. As explained in Section 5.2, the discontinuities in the
strain-rate curve (Figure 13(b)) are technical artifacts imposed by the operating rules of GRICAD
clusters.

In phase with Treverrow et al. 2012 [37], we define an enhancement factor for simple shear as
the ratio between the strain rate during secondary creep (here it corresponds to the beginning of
the run) and that obtained when the strongest simulated texture is reached. Using this definition,
we obtain an enhancement factor (EF ) of 6.7 that matches Treverrow et al. 2012 [37] data for a
similar applied shear stress.
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Figure 12. Distribution of the angle between the c-axis and the y-axis (tension axis) corre-
sponding to pole figure (ii) in Figure 11(d).

5.5. Testing the relative effects of deformation and recrystallization on texture evolution
under high stresses

The work of Qi et al. [30] provides some of the rare existing highly resolved textures obtained
for temperatures and types of samples similar to those of the experiments simulated above, but
under imposed displacement rates that induce higher stress conditions (see Table 3). The stress
values reported in Table 3 correspond to the flow stress, i.e., the nearly constant stress reached
after peak stress, at about 20% strain. To reach deviatoric stresses higher than 1 MPa without
failure, a confining pressure of 10 MPa was applied.

To test the sensitivity of the dynamic recrystallization formulation to the level of stress, we
performed simulations under creep conditions using the stress values from Qi et al. 2017 [30] ex-
periments. As CTI-RX equations are relating the deviatoric stress to the deviatoric strain and are
solved under the Stokes hypothesis (incompressibility), it is not necessary to numerically apply
the confining pressure. Although boundary conditions differ between the simulations (macro-
scopic constant stress) and experiments (macroscopic constant displacement rate), we assumed
the quasi-steady state behavior sampled by the flow stress measurements in the experiments to
be equivalent to the quasi-steady state part of the tertiary creep in the creep simulations [72]. The
stable textures expected at both stages can therefore be compared.

A comparison between the simulated and observed textures at different compressive flow
stresses is shown in Figure 14. The experimental observations are well reproduced. Both mea-
sured and simulated textures show a transition from a girdle texture to a weak single maximum
with increasing flow stress for a macroscopic strain of ∼ 20%. To correctly fit the experimental
data, a value of ΓR X of 4.6 days is used, which is lower than that used to reproduce the uncon-
fined compression creep tests of Montagnat et al. 2015 [29] (Table 3). This implies a higher con-
tribution of recrystallization compared with deformation at higher stresses.

6. Discussion

The CTI-RX model presented here enables the simulation of texture evolution in polycrystalline
ice, as shown in the simulations in compression, simple shear, and tension, including or not
dynamic recrystallization. Without recrystallization, the texture evolution predicted by the model
correctly reproduces the textures observed along deep ice cores where dynamic recrystallization
is assumed to have a low impact.
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Figure 13. Simulations for a simple shear creep test (shear plane normal to the Y -axis and
shear direction parallel to X , ∂ux

∂y < 0) with parameters from Table 3 and comparison with
experimental data from [31]. a) Evolution with strain of the eigenvalues of the second-order
orientation tensor (a1 > a2 > a3). The blue dots correspond to the experimental values from
Journaux et al. 2019 [31]; b) simulated macroscopic strain rate. EF stands for Enhancement
Factor; c) evolution with strain of the intensity of the texture with the colatitude θ over
a section defined on the Z plane (dashed blue lines in d)). Data at γ = 0.2, 0.42, and
1.96 are shown. The white dashed line follows the orientation of the principal extension
axis; d) simulated textures (pole figures, upper hemisphere) at γ= 0.2 (i ), γ= 0.42 (i i ) and
γ= 1.96 (i i i ); e) measured textures for the same macroscopic shear strains [31]. All figures
presenting texture data are color-coded using the same colorbar (scales in multiples of a
uniform distribution).

The novelty of the present model and its implementation is based on the simulation of the
evolution of the texture (orientations of c-axes) based on a new formulation that (i) introduces
an attractor controlled by the local stress field to reproduce the impact of DRX mechanisms, (ii)
is coupled with the continuous transverse isotropic (CTI) law to account for strain and stress field
heterogeneities at the crystal scale arising from the crystal viscoplastic anisotropy, and (iii) solves
these coupled equations using a semi-implicit numerical scheme in a full-field implementation
using FEM, ensuring consistency between texture evolution and mechanical behavior. The first
two ingredients are derived from experimentally based knowledge of dynamic recrystallization
processes.

Indeed, recent experimental observations have (i) clearly documented the role of the crys-
tal viscoplastic anisotropy in generating local stresses and strains markedly different from the
macroscopic ones [3, 32, 66] and (ii) revealed that the formation of new orientations (nucleation)
during dynamic recrystallization occurs through bulging (heterogeneous grain boundary migra-
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Figure 14. Simulation of the uniaxial compression creep test along Y at various stresses.
Comparison between R3iCe predictions and experiments by Qi et al. [30]. (a) Textures
from [30] obtained by EBSD for various strain rates leading to different quasi-steady state
compressive flow stresses at macroscopic strains of ∼ 0.2% (exact strain is indicated at the
top left of each pole figure). (b) Simulated textures obtained by creep under the same
compressive stresses and up to the same macroscopic strains as in (a).

tion) and polygonization (formation of new grains boundaries by organization of dislocations
within a grain) [3, 33, 63, 66, 73]. These two processes are controlled by the local strain and stress
fields and result in recrystallized orientations that are strongly related to, but slightly different
from, the parent grain orientations. The last important experimental observation is that the de-
velopment of recrystallization textures leads to a weakening of the polycrystal mechanical re-
sponse. All these observations justify the choice of a continuous formulation for the c-axis ori-
entation evolution (Equation (22)), with a targeted recrystallized orientation that is calculated to
maximize the local basal resolved shear stress (Equation (26)).

Comparison with tertiary creep experiments performed in compression [29, 37, 39], in simple
shear [31, 37, 41] and in tension [27] supports the fact that the R3iCe model can reproduce texture
evolution in conditions similar to those of laboratory experiments (T =−5 to −10◦C, S ∼ 1 MPa).
For this, a single parameter is adjusted: the recrystallization parameter ΓR X , which weights
the relative contribution of deformation and recrystallization to the rotation of the c-axes. As
expected, under similar stress conditions, a lower temperature requires a higher ΓR X value (and
therefore a lower weight of dynamic recrystallization) to correctly reproduce the experimental
texture evolution. A noticeable result is that the two-maxima texture measured in simple shear (in
natural and laboratory ice) is correctly reproduced here, together with the kinetics of its evolution
with strain toward a single-maximum cluster.

For all conditions simulated with R3iCe, we show that the CTI-RX model reproduces accurately
the softening at the transition from secondary to tertiary creep. The kinetics of the transition and
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the resulting enhancement factors, when departing from an isotropic texture, are also correctly
simulated, compared with experimental results performed under similar conditions [22, 27, 29,
36, 37]. Because the present model does not consider any softening mechanism associated with
dislocation interactions or grain boundary migration, this comparison seems to confirm that
texture-induced viscoplastic anisotropy explains most of the mechanical softening measured
during tertiary creep. Therefore, softening associated with dislocation annihilation and grain
boundary migration during dynamic recrystallization appears to play a secondary role.

Simulations at higher uniaxial compressive stresses (from 1 to 4 MPa) have been performed to
compare with the experiments of Qi et al. 2017 [30]. Contrary to the previously mentioned ex-
periments, these experiments were performed under a range of imposed strain-rate conditions,
which resulted in different flow stresses. A confining pressure of 10 MPa was applied to prevent
failure at the relatively high strain rates considered. The observation of more clustered textures at
higher flow stress implies that higher strain rates result in a larger impact of deformation relative
to DRX on texture evolution. R3iCe run under imposed stress without confining pressure can cor-
rectly represent texture clustering under stress. Indeed, experimental textures measured at 20%
strain are satisfactorily reproduced by R3iCe providing that ΓR X is given a relatively low value (4.6
days for T =−10◦C ) compared to the one determined for unconfined creep compression exper-
iments (13.8 days for T = −5◦C). This low value of ΓR X indicates that, in the simulations, a high
amount of recrystallization is necessary to reproduce the experimental textures and counterbal-
ance the impact of deformation on the c-axes rotation. We interpret this apparent contradiction
as due to the activation of brittle-ductile processes in the experiments. This assumption is based
on observations by Kalifa et al. [74], which performed triaxial tests under the same range of strain
rate (∼ 10−5 −104 s−1) than Qi et al. 2017 [30], but under variable confining pressure from 0 to
10 MPa. By careful observations made immediately after the peak stress, they estimated the den-
sity of cracks in the microstructure and revealed that micro-cracks were visible up to 10 MPa con-
fining pressure. Therefore, microcracking is also expected to have occurred in Qi et al. 2017[30]
experiments. Strong stress concentration occurs at crack tips, and Chauve et al. 2017 [73] have
recently shown that, for ice, this stress concentration can be released through DRX. The R3iCe for-
mulation does not account for microcracking or the effect of confining pressure. Therefore, the
enhancement of recrystallization due to the plastic energy available around the crack tips needs
to be reproduced by increasing the recrystallization rate (ΓR X ).

Recent models of texture evolution during dynamic recrystallization have been proposed by
Rathmann et al. 2021 [54] and Richard et al. 2021,2022 [47, 75], aiming to account for texture-
induced anisotropy of ice in large-scale models. Their formulation is based on an orientation
distribution function (ODF) evolution equation in which dynamic recrystallization is represented
by two terms: one term that accounts for the production of orientations based on a given
parameter, the deformability, that is calculated using the Sachs constant stress assumption, and
a second term that accounts for the diffusion of orientations. This approach is not intended to
predict the mechanical response evolution due to texture development, but the texture evolution
equation can be compared with that in the CTI-RX formulation. The deformability term can be
obtained from Equation (22) by assuming homogeneous stresses (Sachs model). The diffusive
term, which is necessary to reproduce the texture dispersion effect owing to recrystallization,
is spontaneously obtained in full-field approaches such as R3iCe, due to the heterogeneous
stress field. Although these models accurately predict steady-state textures for different strain
geometries, the predictions for transient texture evolution are less accurate than that from R3iCe.
This highlights the fundamental role of stress heterogeneities in texture evolution during the
transition between secondary and tertiary creep (from 1 to ∼ 15% strain).

The major strength of [47, 54, 75] formulations is their numerical efficiency, which makes
them suitable for large-scale modeling (glaciers, ice sheets), provided that transient behaviors
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are not of concern. In such a context, the R3iCe model could be a good candidate for providing
constraints to develop parameterizations for the temporal evolution, destined to inexpensive
formulations.

The CTI-RX model is not limited to the loading conditions prescribed here or to polycrystalline
ice. Its formulation is generic and can be extended to other polycrystalline materials, provided
that their single-crystal viscoplastic behavior can be adequately described using the continuous
transverse isotropic law defined in Equation (17). For instance, the versatility of the CTI-RX model
could enable the analysis of the mechanical behavior of materials such as e.g. magnesium and
quartz, which also show strong viscoplastic anisotropy with hexagonal symmetry.

7. Conclusions

In this paper, we present a new formulation, CTI-RX, to model the effect of dynamic recrystal-
lization on the texture evolution of polycrystalline materials, provided that their viscoplastic be-
havior can be described using a continuous transverse isotropic (CTI) law. This formulation is
validated in the context of polycrystalline ice.

The integration of an orientation attractor, denoted as c0 along with an anisotropic flow law
in full-field resolution allows for the accurate replication of texture evolution during dynamic
recrystallization in tertiary creep under compression, tension, and simple shear. For the latter, an
accurate reproduction of the two-maxima texture and its evolution with strain is obtained. This is
made possible by defining c0 such as to maximize the local resolved shear stress, thus providing
a physically based formulation for recrystallization-induced c-axes rotation. This formulation is
as simple as possible, given our knowledge of the mechanisms.

The R3iCe model is the result of the implementation of the CTI-RX formulation in a finite
element framework. In the model, the texture results from a balance between c-axis rotation due
to viscoplastic deformation and dynamic recrystallization, which is controlled by ΓR X , the only
tuning parameter of the model. The R3iCe model can therefore be used to constrain the impact
of experimental conditions, such as pressure and temperature, on the recrystallization kinetics.

Accurate reproduction of the textures in the R3iCe model leads to a good prediction of the
mechanical softening associated with dynamic recrystallization. This confirms that texture-
induced viscoplastic anisotropy may explain most of the mechanical softening observed during
tertiary creep and suggests that recovery and grain boundary migration play a secondary role in
this softening.

Under conditions of high stress, where confining pressure is required in the laboratory to pre-
vent failure, we propose that local fracturing at the crystal scale likely enhances dynamic recrys-
tallization processes and accelerates texture evolution with strain. This is consistent with the
lowerΓR X required to fit the texture measured during the confined compression experiments [30]
relative to that used to fit the low stress unconfined compression creep experiments [29], despite
the higher experimental temperature of the latter (−5◦ C vs. −10◦ C, cf. Table 3). These results
provide an additional illustration of the ability of the R3iCe model to help resolve open questions
about ice deformation behavior.

The computational cost of the R3iCe full-field model is not adapted for direct implementation
in large-scale flow modeling frameworks. The model is nonetheless highly valuable for constrain-
ing the parameterization required to properly account for texture evolution and its impact on the
mechanical response in complex or changing boundary conditions such as those prevailing at
the bottom of deep ice cores, ice streams, and glaciers.
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Appendix A. Demonstration of δi identification

A.1. Constitutive equation CTI and single crystal behavior

The constitutive equation is

D =
(
∂φ(1)

S

∂S

)D

= 2δ1S+2δ2MD Tr (MS)+δ3(MS+SM)D (A1)

Single crystal anisotropy can be described by three parameters derived from experimental
data:

ψ1 is the fluidity for parallel shearing to the basal plane:

g D13 = ψ1

2
g S13, g D23 = ψ1

2
g S23 (A2)

β is the viscosity ratio between shear parallel to the basal plane η and the viscosity for shear
within the basal plane:

g D12 =βψ1

2
g S12 (A3)

γ is the viscosity ratio between compression (or traction) Along the c axis ηc and compression
(or traction) in one direction g er within the basal plane:

g S33 = 2ηc
g D33, γg Sr r = 2ηc

g Dr r (A4)

The same compressive (or extensive) stress parallel and normal to the c-axis S = g S33 = g Sr r

results therefore in different strain rates:

g Dr r = γg D33 (A5)

A.2. δi identification

To identify the parameters (δ1,δ2,δ3) in the constitutive Equation (A1), we developed it and
compared it with the single crystal behavior.

Using c = (0,0,1)

M =


0 0 0

0 0 0

0 0 1

 , MD = 1

3


1 0 0

0 −1 0

0 0 2

 , Tr
(
Mg D

)= g D33 (A6)

(1) δ1 is given by applying stress

g S =


0 g S12 0

g S12 0 0

0 0 0


Then

Tr (MS) = 0, (MS+SM)D = 0 (A7)

The constitutive equation gives

g D12 = 2δ1
g S12 (A8)

Therefore:

δ1 = ψ1β

4
(A9)



Thomas Chauve et al. 31

(2) δ3 is given by applying stress

g S =


0 0 g S13

0 0 0
g S13 0 0


Then

Tr (MS) = 0, (MS+SM)D = S (A10)

The constitutive equation gives

g D13 = (2δ1 +δ3)g S13 (A11)

Therefore

δ3 = ψ1

2

(
1−β)

(A12)

(3) δ2 identification is less trivial and presented in more detail.

• First, uniaxial stress σ̃ is applied along the c-axis. The stress tensor is gσ = (
0 0 0
0 0 0
0 0 σ̃

)
and the associated deviatoric stress tensor is

g S =


− 1

3 σ̃ 0 0

0 − 1
3 σ̃ 0

0 0 2
3 σ̃


– Tr (Mg S) = 2σ̃

3

–
(
Mg S+ g SM

)D =


0 0 0

0 0 0

0 0 4
3 σ̃


D

=


− 4

9 σ̃ 0 0

0 − 4
9 σ̃ 0

0 0 8
9 σ̃


– using the constitutive equation, we obtain for g D33:

g D33 = δ1
4

3
σ̃+δ2

8

9
σ̃+δ3

8

9
σ̃

• Then a uniaxial stress σ̃ is applied normal to the c-axis, for instance in the direc-
tion 1. The stress tensor is

gσ=


σ̃ 0 0

0 0 0

0 0 0


and the associated diatoric stress tensor is

g S =


2
3 σ̃ 0 0

0 − 1
3 σ̃ 0

0 0 − 1
3 σ̃


– Tr (Mg S) =− σ̃

3

–
(
Mg S+ g SM

)D =


0 0 0

0 0 0

0 0 − 2
3 σ̃


D

=


2
9 σ̃ 0 0

0 2
9 σ̃ 0

0 0 4
9 σ̃


– using the constitutive equation, we obtain for g D11:

g D11 = δ1
4

3
σ̃+δ2

2

9
σ̃+δ3

2

9
σ̃
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• Finally from the grain behavior, we can write that γg D33 = g D11:

γ

(
4

3
δ1 + 8

9
δ2 + 8

9
δ3

)
= 4

3
δ1 + 2

9
δ2 + 2

9
δ3

• This gives:

δ2 = 6δ1
1−γ

4γ−1
−δ3

• and using δ1 and δ3 as defined above:

δ2 = ψ1

2

(
β
γ+2

4γ−1
−1

)

Appendix B. Strain and stress field comparisons

The Figures 1 and 2 show the probability distribution functions for all components of the strain
and stress tensors during uniaxial creep with c-axis evolution (Section 4.1).

Figure 1. Kernel Density Estimation of all components of the strain tensor predicted by an
elasto-viscoplastic (EVP) simulation using CraFT and the continuous transverse isotropic
(CTI) using R3iCe after 0.01 macroscopic strain. The dashed lines show the results for sim-
ulations where grains are well discretized. The full line shows the result for the simulation
with one orientation per element.
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Figure 2. Kernel Density Estimation of all components of the stress tensor predicted by an
elasto-viscoplastic (EVP) simulation using CraFT and the continuous transverse isotropic
(CTI) using R3iCe after 0.01 macroscopic strain. The dashed lines show the results for
simulations where grains are well discretize. The full line shows the result for the simulation
with one orientation per element.
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