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Abstract

Bacillus cereus is responsible for foodborne outbreaks worldwide. Among the pro-

duced toxins, cereulide induces nausea and vomiting after 30 min to 6 h following

the consumption of contaminated foods. Cereulide, a cyclodepsipeptide, is an ion-

ophore selective to K+ in solution. In electrospray, the selectivity is reduced as

[M + Li]+; [M + Na]+ and [M + NH4]
+ can also be detected without adding corre-

sponding salts. Two forms are possible for alkali-cationized ions: charge-solvated

(CS) that exclusively dissociates by releasing a bare alkali ion and protonated salt (PS),

yielding alkali product ions by covalent bond cleavages (CBC) promoted by mobile

proton. Based on a modified peptide cleavage nomenclature, the PS product ion

series (b, a, [b + H2O] and [b + CnH2nO] [n = 4, 5]) are produced by Na+/Li+/K+-

cationized cereulide species that specifically open at ester linkages followed by

proton mobilization promoting competitive ester CBC as evidenced under resonant

collision activation. What is more, unlike the sodiated or lithiated cereulide, which

regenerates little or no alkali cation, the potassiated forms lead to an abundant K+

regeneration. This occurs by splitting of (i) the potassiated CS forms with an appear-

ance threshold close to that of the PS first fragment ion generation and (ii) eight to
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four potassiated residue product ions from the PS forms. Since from Na+/Li+-

cationized cereulide, (i) the negligible Na+/Li+ regeneration results in a higher sensi-

bility than that of potassiated forms that abundantly releasing K+, and (ii) a better

sequence recovering, the use of Na+ (or Li+) should be more pertinent to sequence

isocereulides and other cyclodepsipeptides.

K E YWORD S

alkali, cereulide, cyclodepsipeptide, dissociation, electrospray

1 | INTRODUCTION

Bacillus cereus, a ubiquitous soil bacterium, is the first most fre-

quently found causative agent in foodborne outbreaks (FBOs) in

France1 and the first cause of FBOs due to bacterial toxins in

Europe.2 The bacterium is responsible for two types of food-

associated gastrointestinal diseases: a diarrheal syndrome, caused by

enterotoxins produced in the gut, and an emetic syndrome, caused

by preformed toxins. Symptoms are generally of short duration and

evolve towards spontaneous recovery, but fatal cases have been

reported.3–9 This study focused on one of these emetic toxins, cer-

eulide (Figure 1). This toxin is a thermo-stable, 1.2 kDa dodecadep-

sipeptide with three repeated motifs [(D)A-(L)OV-(L)V-(D)OL]3. Recently,

a review was published on its characterization, impacts, and associ-

ated public precautions.10 It is a potassium ion-selective ionophore

in solution. This property is attributed to the exact fitting of the K+

cation into the cavity created by the cyclic backbone of the dodeca-

depsipeptide in a hexagonal cylinder-like conformation11 and stabi-

lized by several lone pair electrons of heteroatoms as shown by

NMR.11–13

Mass spectrometry (MS) based on desorption processes is a par-

ticularly suitable tool for the analysis of cyclodepsipeptides. They

were first studied using desorption techniques such as (i) fast atom

bombardment (FAB) for analysis of cereulide11 and (ii) matrix-assisted

laser desorption ionization (MALDI) for fast and sensitive analysis of a

colony smear of Bacillus cereus isolated from foods.14,15 Cyclodepsi-

peptide desorption by electrospray (ESI) in positive mode competi-

tively yields protonated and sodiated species ([M + H]+ and [M

+ Na]+, respectively), depending on the desolvation voltage.16 Fur-

thermore, the relative abundances of ammonium and potassiated cer-

eulide depend non-linearly on the salt amount added into the

solution.17 This suggests a selectivity towards K+ compared to the

sodiated species.17 More recently,13 the ESI mass spectrum of cereu-

lide showed its cationized species by NH4
+, Na+, and K+ ions, present

in trace amounts in the solution and/or source. All these studies show

significant variability of the species desorbed in ESI, depending on the

experimental conditions, which may hide the natural selectivity of cer-

eulide for K+. Consequently, many precautions need to be taken to

ensure good reproducibility of mass spectra in order to guarantee

selectivity towards a particular cation and thus ensure the robustness

of the associated analytical results. Nevertheless, identification and

reliable quantification of cereulide are possible by ESI MS, as shown

by interlaboratory comparisons following the EN ISO18465 standard

using ammonium adduct ion18 instead of the potassiated cereulide

species.13,15,19,20

In the gas phase, small size alkali-cationized polyfunctional mole-

cules (e.g., amino acids and peptides21) can be characterized by two

possible competitive generic structures22,23: (i) a charge-solvated or

cation-solvated (CS) structure and/or (ii) a protonated salt

(PS) structure, the typical form generated by electrospray24–27 and

by MALDI.27 In the CS form, the alkali cation is solvated by hetero-

atom electron-lone pairs of the molecule in its canonical form

(i.e., without balanced apparent charges), yielding weak interactions

with alkali. In contrast, in the PS form, the alkali interacts with the

anionic site of a zwitterion form of the molecule, with a strong

ion/ion interaction. Note that the structure of some alkali-cationized

amino acids22,28–32 and peptides27,33,34 could be in zwitterion form in

competition with their canonical form. The latter, resulting in CS

form, is described for sodiated dipeptides and tripeptides (with G or

A as residues) yielding exclusively Na+ release.34 The PS structure,

with ion/ion interaction, differs from a hydrogen-bonded (HB) form

(two neutrals solvating proton, formally) of [M + NH4]
+ involving the

M structure only in canonical form, although the latter leads to a

mobile proton via the formation of [M + H]+. In PS, the mobile pro-

ton at the positive site of the zwitterion can competitively migrate to

various sites, resulting in a mixture of protomers.24–26 The existence

and distribution of the different CS and PS tautomer forms of

cationized molecules (Text S1) depend on the aggregate desolvation

voltage.35,36 This property specifically influences inter- and intra-

molecular interactions. In a recent review on dissociations of

cationized amino-acids and small peptides, Armentrout21 investigated

the CS/PS coexistence by mechanistic and energetic studies using

threshold collision-induced dissociation (TCID) measurements of

product ions with a homemade guided ion beam tandem mass spec-

trometer (GIBMS).

In the case of a collisionally activated PS form, the mobilized pro-

ton promotes covalent bond cleavages (CBC), resulting in the reten-

tion of the alkali cation either in the product ions or in the released

neutral salts.37 b series ions are exclusively cationized as (bi-H + Na)

for sodiated peptides with an acidic residue in the position i. The Na+

retention in product ions reflects the presence of salt.27 This behavior

contrasts with that of the CS forms that decompose exclusively by

regeneration of the naked alkali cation.25 This interpretation is an

alternative to the proposed mechanisms based on charge remote
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fragmentation-like from sodiated ionophore, as proposed by Crevelin

et al.38 and Demarque et al.,39 where herein (i) the charge does not

induce dissociations and (ii) the alkali is spectator to the dissociations.

As potassiated cereulide, [M + K]+, is implicitly considered as a

CS form,13,15,19,20,40 it should then decompose by regenerating the

bare alkali K+ cation under low-energy collision-induced dissociation

(CID) conditions.25,37 This contrasts with the published CID spectra

where K+ detection is omitted due to the commonly used m/z range

and where fragment ions are shifted by +38 m/z relative to those

from the [M + H]+ dissociations.13,19,20 This suggests K+ retention in

fragment ions, resulting from CBC processes. Marxen et al.13 consider

that these ions are formed first by the hydrolysis of ester bonds, fol-

lowed by consecutive CBC processes. This implies that the cationized

cereulide in a CS structure cannot be the source of these product

ions. In other words, how could the alkali cation lead, through “hydro-
lysis”, to the opening of the CS form of cereulide?

In order to lift the veil on CS versus PS ambiguity26,37 regarding

K+/Na+/Li+-cationized cereulide structures, energy-resolved mass

spectrometry (ERMS) breakdown curves41–43 based on non-resonant

collisional activation25 of the selected alkali-cationized cereulide were

explored using different high resolution tandem instruments. In

particular, the total ion current in absolute values of the set of product

ions related to the ERMS of each of the lithiated, sodiated, and potas-

siated cereulide species was compared to that related to the ERMS of

the ammonium adduct ion to estimate the extent of the bare alkali

cation discrimination resulting from their scattering at the highest

collision energies (ELab). The scattering effect at the highest ELab is all

the more pronounced as the m/z is low44,45 (Lesage et al, to be

published). To our knowledge, such an approach to evaluate the effect

of scattering on the detection of Li+, Na+, and K+ has never been per-

formed using commercial instruments.46,47 This study documents

(i) the driving force leading to the CBC responsible for the formation

of the most representative product ions of the cereulide sequences,

(ii) the double origin of K+ release, and (iii) the choice of the alkali-

cationized cereulide to sequence the cereulide with the highest

sensitivity.

2 | METHODS

2.1 | Chemicals and reagents

Standard synthetic cereulide was produced by Chiralix (Nijmegen, the

Netherlands). Cereulide standard was dissolved in methanol pur-

chased from Fisher Scientific (Illkirch-Graffenstaden, France). Potas-

sium chloride (KCl) and lithium chloride (LiCl) were purchased from

Merck (Darmstadt, Germany).

2.2 | Mass spectrometry

All the experiments were performed using various tandem instru-

ments based on high resolution analyzers, such as Time-of-Flight:

(i) TripleTOF 5600 (ABSciex, Darmstadt, Germany) and (ii) Impact HD

(Bruker Daltonics, Bremen, Germany), and very high-resolution

Fourier transform analyzers, such as Orbitrap: (i) Q Exactive (Thermo

Scientific, Bremen, Germany) and (ii) Orbitrap Elite (Thermo Scien-

tific, Courtaboeuf, France). Alkali-cationized cereulide species were

produced under ionization/desorption by ESI in positive mode using

direct ion injection through a syringe pump. For Qq/TOF Impact HD

instrument, KCl and LiCl were added for enhancing the correspond-

ing alkali-cationized cereulide, and two calibrations of the m/z scale

were used (Table S1). The first one, applied by default, does not

allow the detection of alkali cations, while the second one enables

detection of all but not lithium. Optimization of sodium detection

was achieved using sodiated PEG10, which exclusively released neu-

tral PEG and the naked Na+ ion without significant TIC decrease.25

However, this optimization suffers from discrimination in the ion

detection from m/z 200 to m/z 100. For this reason, the product

ion spectra of these alkali-cationized molecules were also recorded

using the default calibration mode. MS/MS experiments were per-

formed under non-resonant ion activation conditions with both the

Qq/TOF instruments, as well as in the HCD cell of both the

Qq/Orbitrap and LIT/Orbitrap instruments. Resonant ion excitation

for sequential MSn experiments was performed in the ion trap cell

using the LIT/Orbitrap mass spectrometer. To simplify the experi-

mental part of this article, all details on the optimized experimental

conditions are reported in Table S1. The ERMS breakdown curves

from non-resonant excitation experiments were constructed using

the relative abundance values of the precursor and product ions. To

show some bias from the relative abundance use, absolute values of

the abundance of these ions were also used for building the ERMS

breakdown curves.

2.3 | Annotations and nomenclature

1. The total ion current (TIC), based on the absolute ion abundances,

is used to show the scattering effect resulting in the partial loss of

the low m/z product ions occurring at the highest collision

energies.

F IGURE 1 Structure of cereulide.

LIUU ET AL. 3 of 14
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2. The total product ion current (TPIC) corresponds to the sum of

abundances of all the product ions. This simplifies in one profile,

the set of product ion profiles that constitute the ERMS break-

down curves when many product ions are generated by CBC

(i.e., for the PS form). This TPIC allows for better comparison with

TIC to highlight, at the highest collision energies, the loss of prod-

uct ions with low m/z ratios. TPIC* is used when the alkali cation

abundance was removed from TPIC.

3. The precursor ion current (PIC) corresponds to the abundance of

the survivor precursor ion.

4. Collisional spectra: the nomenclature used for product ion spectra

is consistent with IUPAC recommendations.48 However, IUPAC

recommends CID as a generic name for collisional excitation,

regardless of whether resonant or non-resonant excitation mode is

used. One commercial company has called the former CID and the

latter HCD (higher collision energy),49 which may confuse

the nomenclature based on that recommended by IUPAC, espe-

cially when tandem from other companies is used. This is why we

have used “resonant” and “non-resonant” here.
5. Collision energy (ELab): the eV unit is used as collision energy for the

Qq/TOF-based tandem instruments. For Orbitrap-based tandem

instrument, the normalized collision energy (NCE)50 in % is used

(Figures S3–S5). For various singular points of the different ion

profiles, a collision energy is defined as (i) the energy threshold for

the appearance of m/z product ions (ELab,Thre,m/z) and for TPIC*

(ELab,Thre,TPIC*), (ii) the collision energy to reach the apex for a par-

ticular monomodal profile of a product ion (ELab,apex,m/z) or for

TPIC* (ELab,apex,TPIC*), and (iii) the collision energy at the half-height

of the negative sigmoid for the survivor precursor ion (ELab,1/2,PIC)

or positive sigmoid for the latest-generation m/z product ions

(ELab,1/2,m/z) or for TPIC* (ELab,1/2,TPIC*). These characteristic colli-

sion energies must be converted in collision energies at the center

of mass (ECOM = ELab[mT/(M + mT)], mT = the gaseous target

mass as N2) to be compared to the characteristic energies involving

other alkali cations or other values for same system (or considered

as similar) provided from literature.

6. Residue annotation: the amino acid residues are annotated by the

one-letter code (alanine, A; valine, V; leucine, L). The α hydroxy alkyl

acid residues as the 2-hydroxy-3-methyl-butanoic acid or

2-hydroxyisovaleric acid (C5H8O2) and the 2-hydroxy-4-methyl-

pentanoic acid or 2-Hydroxyisocaproic acid (C6H10O2) are

annotated by one-letter code based on the amino acid residue code

considering that the amino group substituted by one hydroxyl group

is written as an O letter in superscript such as OV and OL, respec-

tively. Concerning the chirality annotation, dexter (D) and laevus

(L) are written in superscript and in parentheses such as (D)A, (L)V,(L)

OV, and (D)OL. Peptide cleavage nomenclature is detailed in Text S2.

3 | RESULTS AND DISCUSSION

Under the chosen ESI source conditions of the high resolution

Qq/Orbitrap instrument (Q Exactive, Thermo Scientific), the mass

spectrum of cereulide in methanol presents the adduct [M + NH4]
+

(m/z 1170, 38% of base peak), [M + Li]+ (m/z 1159, 4% of base peak),

[M + Na]+ (m/z 1175, as base peak), and [M + K]+ (m/z 1191, 25% of

base peak) ions (Figure S1). This adduct ion distribution differs from

what has been described in previous studies.13–17,40 These differences

were expected since the source and instrument parameters affect the

distribution of the desorbed molecular species (adduct ion or not) as

well as the aggregate desolvation conditions in the reduced pressure

zone.51–53

Tandem MS experiments (MS2), under low energy collisional con-

ditions, were performed using various instruments to explore respec-

tive cereulide ion structures (intact cyclic vs opened ring forms) and

consequently, to elucidate the origin of their respective product ions

(Figure 2).

Qq/TOF instruments (Impact HD and TripleTOF 5600) were

used to detect alkali cations (Figure 2). Product ions generated from

these instruments are reported in Table S2. The product ions

displayed in the collisional spectra (Figure 2B–D) of [M + Li]+,

[M + Na]+, and [M + K]+ are mainly characterized by m/z values

shifted by +6.01, +21.98, and +37.96 m/z, respectively, compared

to those of product ions of the second generation (through the for-

mation of [M + H]+ ions) from the dissociation of [M + NH4]
+.

These results demonstrate that alkali cations are retained on the

fragment ions produced by CID of alkali-cationized cereulide.

Finally, the [M + K]+ ion dissociation significantly regenerated the

bare K+ cation in contrast with lithiated and sodiated cereulide,

which does not release Li+ and no abundant Na+ ions (less than 1%

of base peak) under the non-resonant excitation conditions used

(i.e., a common value used as ELab = 94 eV; Figure 2). The detection

of these alkali cations from alkali-cationized cereulide has never

been reported in previous studies since their presence is often

overlooked.13,15,19,20,40 Yet their possible detection should be of

great help to describe the CS/PS structure(s) of alkali-cationized

cereulide.

3.1 | Coexistence of the CS and PS forms of alkali-
cationized cereulide

In order to determine the relative proportion of CS and PS forms

characterizing the alkali-cationized cereulide species according to the

alkali cation, their ERMS breakdown curves were studied. Recorded

with a particular instrument tuning and calibration allowing alkali

detection using Qq/TOF instrument, ERMS breakdown curves of the

[M + NH4]
+ (m/z 1170), [M + Li]+ (m/z 1159), [M + Na]+ (m/z

1175), and [M + K]+ (m/z 1191) were compared. Especially, (i) their

relative abundances (Figure 3) and (ii) their absolute abundances46

(Figure 4) were explored. The main characteristics of the PIC, TPIC,

or TPIC* and alkali cation profiles from ERMS with relative abun-

dance (Figure 3) are reported in Table S3.

Instead of the default calibration (Figure S2) where alkali cation

detection is systematically missed, the choice to use low m/z calibra-

tion (Figures 3 and 4) was motivated by the need to compare the
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breakdown profiles of the different product ions at low m/z ratios, for

example, m/z 72 and m/z 44 from the ammonium adduct ion

(detected in low relative abundance for [M + Li]+ and [M + Na]+ and

absent for [M + K]+) and alkali m/z 23 and m/z 39 ions for [M + Na]+

and for [M + K]+, respectively. Alkali cations are released from

[M + Na]+ at the highest collision energies, but from [M + K]+ at the

lowest. The abundance decrease at the highest energies is due to

enhancement of the low m/z product ion scattering (Figure 4), as

described in a recent study.46 To simplify the study of these break-

down profiles, each of the alkali cation profiles was compared to a

profile resulting from the absolute abundance sum of the other

numerous product ions (i.e., TPIC*; Figure 4B–D). In addition to the

F IGURE 2 Product ion spectra of
(A) [M + NH4]

+, m/z 1170
(ELab = 60 eV); (B) [M + Li]+, m/z 1159
(ELab = 94 eV); (C) [M + Na]+, m/z 1175
(ELab = 94 eV); and (D) [M + K]+, m/z
1191 (ELab = 94 eV). Each of the product
ion series is annotated with a common
label color in (B)–(D), respectively, shifted
by +6.01, +21.98, and +37.96 m/z from

those assigned to the same series
displayed in (A). The m/z scale calibration
was adapted to detect the K+ and Na+

ions and not for that of Li+ using a
Qq/TOF instrument (Impact HD, Bruker).

LIUU ET AL. 5 of 14
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alkali cation, the six most abundant product ions are detailed in

Figure 4F–H.

First, both K+ and Na+ cations were detected, but neither at the

same energy threshold value (ELab,Thre,39 = 64 eV and

ELab,Thre,23 = 102 eV, respectively; Tables 1 and S3) nor at a similar

abundance (Figures 3 and 4). Li+ was not detected as it is below the

detection m/z range. Second, alkali-cationized product ions are exclu-

sively generated by CBC processes from the PS form in contrast to

naked alkali cation regeneration, which can result from direct splitting

of the CS form (detailed vide infra; Text S1). However, alkali cation

regeneration cannot be excluded from PS forms if (i) a structural fac-

tor weakens the ion/ion interaction or/and (ii) the size of the alkali

cation does not allow for a strong ion/ion interaction.

3.1.1 | Retention of the alkali cation in product ions
from the sequential MS3 experiments

Interestingly, during consecutive dissociations of selected cationized

product ions from CID, alkali cation is retained as confirmed by colli-

sional spectra using sequential MS3 experiments performed in non-

resonant mode using HCD cell of the Orbitrap Elite instrument

(Figures S3 and S4). In fact, the cationized m/z 807 product ion (the

main ion species related to the loss of the tetra-residue unit), formed

from [M + K]+ (m/z 1191), consecutively dissociates to give rise

mainly to m/z 608 and m/z 423 (Figure S3C), with cation retention, as

observed in the MS2 experiment (Figure 2D). Their respective m/z

ratios are roughly shifted by (i) �32 m/z to m/z 576 and m/z 391 from

F IGURE 3 ERMS breakdown
curves of the ammonium adduct and
alkali-cationized cereulide
(0 eV < ELab < 150 eV): (A, E) [M
+ NH4]

+ (m/z 1170), (B, F) [M + Li]+

(m/z 1159), (C, G) [M + Na]+ (m/z
1175), and (D, H) [M + K]+ (m/z
1191). In (A)–(D), the profiles are
based on the relative abundances

corresponding to (i) the PIC (◼),
(ii) the TPIC or TPIC* (▲), and (iii) the
Na+ and K+ ions for cationized
molecules (●). In (E) and (F), detailed
profiles of the six main product ions
are reported. At the highest ELab
values, the lithiated and sodiated
cereulide species also dissociate into
the immonium m/z values (m/z 44 and
m/z 72 ions), non-reported being not
enough abundant. In (G) and (H),
detailed profiles of the seven main
product ions, including Na+ and K+,
are reported. In (H), to detail the
seven main fragment ion profiles, K+

relative abundance was limited to
15%. Experiments were performed
under non-resonant excitation
conditions using Qq/TOF (Impact HD,
Bruker), with the m/z scale calibration
adapted for K+ and Na+ detection
but not that of Li+.
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the product ion m/z 775 by consecutive dissociations of the lithiated

cereulide (Figure S3A) and (ii) �16 m/z to m/z 592 and m/z 407 from

dissociation of the selected sodiated product ion (m/z 791)

(Figure S3b). These product ion pairs are also observed in the respec-

tive MS2 collisional spectra (Figure 2B,C). In the same way, a similar

trend characterizes the fragment m/z 1087, m/z 1103, and m/z 1119

ions generated from the small size 72 u loss from [M + Li]+ (m/z

1159) (Figure S4A), [M + Na]+ (m/z 1175) (Figure S4B), and [M + K]+

(m/z 1191) (Figure S4C), respectively. All their respective product ions

resulting in consecutive dissociations produce alkali retention

(Figure S4) and correspond to the same losses of neutral residues as

those from the cleavages of cationized cereulide (Figure 2).

These experiments show that the structures of these selected

product ions are in the PS form (consecutive decompositions by

CBCs) rather than in CS. In addition, for lithiated and sodiated

selected product ions from these PS forms, the ion/ion interactions

are stronger than the covalent bonds activated by a free neighbored

positive charge related to the mobile proton.24–26 Consequently, this

highlights the stability of interaction between the alkali and the nega-

tive charge of zwitterion (related to the opened ring form), which is

preserved in the second-generation product ions with small neutral

residues released (i.e., consisting of one or two residues; Figures S3

and S4). As small as two lithiated or sodiated residue product ions are

detected, which is not the case for potassiated cereulide. Also, for the

latter, abundance is reduced for product ions with less than eight resi-

dues with a minimum of four residues (Figures 2D, S3C, and S4C),

which constitutes a product ion “cut-off.” This can suggest that the

potassiated protonated salt splitting is possible.

F IGURE 4 ERMS breakdown
curves of the ammonium adduct and
the alkali-cationized cereulide
(0 eV < ELab < 150 eV): (A, E) [M
+ NH4]

+ (m/z 1170), (B, F) [M + Li]+

(m/z 1159), (C, G) [M + Na]+ (m/z
1175), and (D, H) [M + K]+ (m/z
1191). In (A)–(D), the profiles are
based on the absolute abundances

which correspond to (i) the TIC (◊),
(ii) the PIC (◼), (iii) the TPIC or TPIC*
(▲), and (iv) the Na+ and K+

abundances (●). In (E)–(H), only
detailed profiles of main product ions,
including Na+ and K+, are reported.
In (H), to detail the main fragment ion
profiles, the K+ absolute abundance
was limited to 1 � 105

a.u. Experiments were performed
under non-resonant excitation
conditions using Qq/TOF (Impact HD,
Bruker), with the m/z scale calibration
adapted for K+ and Na+ detection
and not for that of Li+.
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3.1.2 | Possible double origin of the bare alkali
cation depending on the alkali size and residue number
in the product ions

Product ions above m/z 200 for [M + Li]+ and [M + Na]+ are simi-

lar in abundance but shifted by +16 m/z (Table S2). However, a

close examination at the abundance of the cationized tetra-peptide

unit reveals that fragment ions above m/z 410 from the collision

spectrum of [M + Na]+ are slightly higher than those of analogous

product ions from [M + Li]+ under non-resonant conditions

(Figure 2B,C; Table S2). In these conditions, this effect is most obvi-

ous for the analog fragment ions of [M + K]+ (Figure 2D; Table S2).

Moreover, it is also observed in sequential MS3 spectra of product

ions in non-resonant mode (Figures S3 and S4). Parent ion appears

to be more stable (relative abundance of [M + Li-384]+ < [M + Na-

384]+ < [M + K-384]+), which is a wrong interpretation as the

abundance of MS3 product ions is reduced due to the release of

bare alkali cation, not detected, which artificially increases the

abundance of the parent ions (Figure S3). It is the same trend for

[M + Li/Na/K-72]+ parent ions (Figure S4). This variation in abun-

dance is all the greater as the product ions are formed at the high-

est collision energies (i.e., via consecutive dissociations) and as the

involved cation changes from Li+ to Na+ and from Na+ to K+ as

confirmed by the evolution of TIC vs. ELab (Figure S5). In fact, the

TIC values decrease to 10% of the TIC apex, beyond NCE = 40%,

around NCE = 55% and NCE = 60% from dissociations of [M + K-

384]+, [M + Na-384]+, and [M + Li-384]+, respectively. Noteworthy

and contrary to what is observed under the highest collision energy

conditions for sodiated or lithiated cereulide, the formation of

potassiated peptide fragment ions smaller than the cationized tetra-

peptide unit species, resulting from consecutive dissociations, is hin-

dered (Figures S3 and S4; Table S2). A similar trend characterizes

dissociation of other potassiated cyclodepsipeptides compared to

the corresponding lithiated and sodiated molecules, which is the

case for instance of beauvericin,54,55 didemnin B,54 enniatins,54–57

aplidine,58 destruxins,59 isariins,60 isaridins,60 and valinomycin.57 This

was first explained by the possibility to release the alkali cation

from small size cationized product ion without more evidence.57

Nevertheless, this idea needs to be clarified to better account for

this behavior using our experimental results. This can be explained

by considering the possible effect of the proximity of the proton-

ated site on the salt bridge O�/K+ (vide infra) in potassiated frag-

ment ions consisting of only two or three peptide residues

(e.g., product ions as b3 and b2). This may weaken the ion/ion inter-

action or allow the transfer of the mobile proton to the alkoxide

site, thereby enhancing alkali cation release in addition to the split-

ting of the CS form (Figures 2, S3, and S4; Table S2). In summary,

these competitive reactions from the cationized bi-product ion con-

sist of (i) CBC of bi to the b(i-1) product ion (Eq. a) and

(ii) regeneration of the alkali cation by splitting of the bi product ion

(Eq. b) as reported in the equations below:

This behavior might be explained by considering the orbital

interactions according to Pearson's HSAB theory.61 Since K+ is more

polarizable than the “hard acid” Na+, the former is better considered

a “soft acid.” The alkoxide group must be considered a hard base

(see Text S4).62 As the orbital interactions between the “soft acid”
and “hard base” may not be favorable, therefore, the ion/ion inter-

action will be significantly weaker than that occurring with “hard
acid” (as Na+ or Li+). This model was also used by Banerjee et al.60

to explain the difference of dissociation orientation of cationized

isaridins according to the acidity hardness of cation (Li+ vs Na+ and

Na+ vs K+ [and Ag+]).60

Since the previous discussion shows that alkali cation regenera-

tion can take place from splitting of small cationized product ions

formed from cationized cereulide in PS form, its direct regeneration

by “desolvation” of cationized cereulide in CS form is also possible.

This direct process can be demonstrated by comparing the approxi-

mate threshold energy (ELab,Thre,m/z) of Na+ and K+ with those of

TABLE 1 Estimation of the cereulide/cation bond energy by energy threshold evaluation from alkali cation profiles extracted from ERMS of

cationized cereulide using Qq/TOF instrument (calibrated for low m/z ion detection) and comparison with corresponding values with the
12-crown-4-ether measured by GIBMS.63

M = Cereulide/alkali interaction M = 12-crown-4-ether63

ELab,Thre (eV) ECOM
a (eV) Bond energy (kJ/mol) Bond energy in eV (kJ/mol)

[M + K]+ (m/z 1191) 64 1.47 142 1.96 (189)

[M + Na]+ (m/z 1175) 102 2.37 229 2.61 (252)

[M + Li]+ (m/z 1159) 153b 3.61b 348b 3.85 (371)

aCalculated using the ECOM=ELab[mT/(M+mT)] relation (mT, the gaseous target mass as N2) from the ELab,Thre value estimated; this ECOM values considered

as an energy maximum for the bare alkali regeneration.
bThe measured bond energy increment (i.e., +1.24 eV) from the sodiated 12-crown-4-ether to the lithiated 12-crown-4-ether is used to the lithiated

cereulide for estimating the ELab,Thre to regenerate the bare Li+ ion.
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cationized molecules with same alkali exclusively shown to be in CS

form (Text S5). For this comparison, sodiated PEG10 was first cho-

sen25 using Qq/TOFMS, and for accurate binding, energy measure-

ments were determined for sodiated and potassiated crown ethers

using homemade GIBMS from Armentrout.63 The accurate determina-

tions are compared with those obtained from sodiated and potas-

siated cereulide species (Table 1).

To interpret the low abundance of the bare Na+ cation, charac-

terized by a high energy appearance threshold (ELab,Thre,23 = 102 eV,

i.e., ECOM = 2.37 eV roughly corresponding to an energy bond of

229 kJ/mol; Table 1) in comparison with sodiated crown-ether, it is

necessary to ensure that the low mass discrimination is neglectable

using the Qq/TOF instrument fine tuned for the low m/z ion detec-

tion. By considering that Li+ regeneration must be virtually absent in

this range of collision energies used (ELab,Thre,7 estimated as 153 eV;

Table 1) and the K+ detection is possible with a weak discrimination

(ELab,Thre,39 = 64 eV), a comparison of TIC profiles can provide deci-

sive information. To compare these different TICs, each of them was

normalized by its apex (reported in Figure S6). In this way, these TICs

can be compared to estimate the influence of the low m/z ion discrim-

ination on the detection of the bare Na+ ion according to the

calibration used.

As the series of product ions from [M + Na]+ and [M + Li]+ are

similar (Figure 2), it is possible to qualitatively estimate the discrimi-

nation on Na+ detection by considering that below ELab = 150 eV,

Li+ regeneration does not take place. The evolution profiles of the

normalized TIC (Figure S6A) from the dissociation of [M + Li]+ and

[M + Na]+ are similar when calibration used allows low mass detec-

tion. Given that the product ions related to the different three

(or two) residue series are weakly less abundant for [M + Na]+ at

high collision energies than for [M + Li]+, Na+ detection should not

suffer from significant high-energy discrimination independently to

the calibration. On the other hand, a similar comparison can be done

between the normalized TIC of [M + Na]+ and [M + NH4]
+. In this

case, using high mass calibration, the normalized TICs at the highest

collision energies are also similar (Figure S6B). This contrasts with

what is observed using a low-mass calibration (Figure 6A) since the

normalized TIC of [M + NH4]
+ becomes similar to that of [M + K]+

since they show the same increase beyond ELab = 120 eV. At the

highest energies, this reflects the formation of (i) the m/z 72 and m/z

44 product ions as the most abundant ions for [M + NH4]
+ and

(ii) the exclusive presence of the bare K+ ion from [M + K]+. This is

not the case of [M + Na]+ and [M + Li]+, which does not lead to the

formation of abundant low m/z fragment ions since these immonium

m/z 44 and m/z 72 species are detected in low abundances and also

the Na+ for the [M + Na]+.

Finally, comparing the rough experimental ELab,Thre values of

the Na+ and K+ appearance from the respective dissociation of

[M + Na]+ and [M + K]+, with the bond energies accurately mea-

sured from the release of these alkali cations from cationized

12-crown-4-ether should suggest that they can also result from the

splitting of the CS form by considering only the energy bonds.

3.2 | Selective ester cleavages of alkali-cationized
cereulide species based on gas phase acidity,
consequence of proton mobilization for promoting
dissociation of protonated salt

The collision spectra of alkali-cationized cereulide species show, as indi-

cated above, almost exclusively product ions with alkali retention

(Figure 2; Table S2). Moreover, these cationized product ions can be

classified into several series (Table S2), which are expected for peptides

with non-polar side chains. First, the expected series b and a are

observed. Second, the (b + H2O) series are also observed (Text S3).

Surprisingly, abundant *bV,(12-n) and *bA,(12-n) product ion series,

generated from the first-generation cationized fragment ions [M + K/

Na/Li-C4H8O]+ (m/z 1119, m/z 1103, and m/z 1087) (Tables S2 and

Figure S4) and [M + K/Na/Li-C5H10O]+ (m/z 1105 and m/z 1089 and

m/z 1073) (Table S2) were observed but have not been described in

previous studies.13,19,20 Yet they were present in the published colli-

sional spectrum of [M + K]+.13,19,20 The origin of *bV,(12-n) series is

confirmed from the sequential MS3 experiments on the m/z 1119

product ion from [M + K]+ (m/z 1191) (Figure S4C). Similar behavior

characterizes m/z 1103 from [M + Na]+ (m/z 1175) (Figure S4B) and

m/z 1087 from [M + Li] + (m/z 1159) (Figure S4A) until formation of

four-residue series (vide supra). MS3 spectra of *bA,(12-n) series are not

reported.

Analysis of the main product ions of the alkali-cationized cereu-

lide species (Table S2) is very informative because series of consecu-

tive (or competitive) neutral losses are observed and enable efficient

cereulide sequencing. They are initiated by a regioselective ring open-

ing at the ester linkage (i.e., A-OV or V-OL), followed by the competi-

tive loss of two amino acid residues (i.e., either A-(O)L or V-(O)V), giving

rise to the b(o)V,10 or b(o)L,10 product ions. This is followed by step-

wise consecutive losses of one residue per residue (or neutrals with a

larger number of residues). However, they result in the reinforcement

of both the b(o)V,(12-n) or b(o)L,(12-n) series with (12-n) as the even

number (favored ester bond cleavages), compared to the same series

with (12-n) as the odd number (amide bond cleavage). This means that

ester linkage cleavage is significantly preferred to amide bond cleav-

age. Additionally, the same trend characterizes the derivate series (b

(o)V,(12-n)-CO) (or (b(o)L,(12-n)-CO)), and (b(o)V,(12-n) + H2O) (or (b

(o)L,(12-n) + H2O)) although they are far less abundant than the b

(o)V,(12-n) or b(o)L,(12-n) series. Finally, the *b series, which were initi-

ated by the direct initial loss of C4H8O (or of C5H10O), were followed

only by the same neutral losses as for the b(o)V,(12-n) (or b(o)L,(12-n))

series. They present the same characteristics: the abundance of the

product ions suddenly increased when the n values were even num-

bers. This orientation suggests that the C4H8O neutral loss

(or C5H10O) is provided by the (O)V (or (O)L) residue, since the follow-

ing first losses are the A and (O)L-A (or V and (O)V-V) neutral residues.

On the other hand, the C2H4O loss is not observed as expected since

the amide linkage is involved in the alanine residue. Cationized aza-

nide is strongly unfavored, and thus, the loss of ethanimine is ruled

out (vide infra).
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Interestingly, the similar b, (b-CO) and (b + H2O) product ion

series (with a proton instead of the alkali cation) are displayed by the

collisional spectrum of [M + NH4]
+, via the intermediate [M + H]+

product ion (due to ammonia loss). This behavior indicates that the

bond cleavages are promoted by the charge, that is, the mobilizable

proton that catalyzes the intermediate [M + H]+ ion dissociations.

This initially occurs by an ester linkage cleavage. However, the con-

secutive cleavages yielding both the b(o)V,(12-n) and b(o)L,(12-n) series

are less oriented towards that of the ester bonds. This makes a signifi-

cant difference with the alkali-cationized species, although the ring

opening as initial cleavage is regioselective at the ester linkage for

both the ammonium and alkali adduct ions.

Like for the second-generation product ions from [M + NH4]
+

(via [M + H]+), the same cause should be associated with the

CBC-related cationized product ion formation. This means that a

mobilizable proton must emerge from the cationized cereulide with a

structure like the PS form to promote fragmentations, whereas the

alkali is spectator to the dissociations, explaining its retention in prod-

uct ions. However, from small size potassiated cereulide product ions

(as the four-residue product ions or smaller), the release of K+ is spec-

tacularly preferred to CBC.

In order to meet such requirements, two generic PS structures

could be considered:

i. From intact ring alkali intermediate with alkali cation/

deprotonated ester salt (i.e., ester enolate, Figure 5A) and/or

alkali cation/deprotonated amide salt (Figure 5B), species having

mobilized a proton either from the enolizable position of ester

and/or from the NH site of amide bond. However, the observed

exclusive alkali-cation retention on product ions suggests that

such intermediates must be rules out (Text S6).

ii. From the opened cereulide ring intermediate with alkali cation/

alkoxide salt (Figure 5C) and/or alkali cation/azanide derivate salt

(Figure 5D) at one end, with a formal “acylium” group at the

other end (vide infra). The latter (D) opened form with the termi-

nus azanide salt was unfavored since the gas phase acidity of

amine is very weak compared to the alcohol acidity (Table S4),

and thus, this form was not considered. This description is consis-

tent with the mechanism, herein considered as the landmark,

involving both formal acylium and sodium alkoxide ends for the

dissociations of sodium cyclodepsipeptide as proposed by

Gross's team,54 many years ago. Note that the C-terminus of the

b ion series is considered as an acylium group in analytical studies

to date.13,15,20,64,65 However, concerning the formal “acylium”
terminus, a detailed mechanistic study of the formation of

b product ion showed that the -CO-NH-CH(R)-CO+ terminus

was much less stable than an oxazolone terminus produced by

cyclization via nucleophilic CO attack on the acylium site. This

oxazolone structure was first proposed by Yalcin et al.66–68 and

then Polce et al.69 to rationalize the b product ion formation. In

addition, a complete study based on calculation of product ion of

protonated cyclopeptides demonstrated the stability of proton-

ated oxazolone as C-terminus of the b-ion series.70–72

To have the interactive groups close enough to form a C-O bond

giving rise concomitantly to formation of the oxazolone68,69,72

(i.e., the c0 form, Figure 6), a local conformational folding of the catio-

nized cereulide is required. The driving force behind oxazolone forma-

tion is sufficient polarization of the ester group by its proximity to the

alkali cation, which induces ring opening.

Concerning the ring opening by the amide bond cleavage, a

five-membered ring is formed where no mobile endocyclic

F IGURE 5 Possible salt structures of the cationized cereulide
based-enolic salt with ester (A) and amide (B) groups, alkoxide (C), and
azanide (D) derivate groups.

F IGURE 6 Five-membered b(c0 ) (pathway o, oxazolone form) and
six-membered b(d0 ) assisting ring opening (pathway p,
diketomorpholine form) for mobilization of proton.

10 of 14 LIUU ET AL.

 10969888c, 2024, 6, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/jm

s.5037 by L
aboratoire D

e Fougeres, W
iley O

nline L
ibrary on [16/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



proton (unlike protonated oxazolone) is available. Alternatively,

instead of forming a five-membered ring, it could be possible

to yield a six-membered ring with the NH group of the

neighboring peptide bond, and thus, it results in a protonated

2,5-diketomorpholine d0 (Figure 6) with a mobile endocyclic proton.

As the initial amide bond cleavage is not observed, this will not be

further discussed.

Alternatively, from the second form related to the alkali cation/

alkoxide salt c00 (associated with the cereulide ring opening concomi-

tantly with proton mobilization as the [pt+o] pathway; Figure 7),72

CBC can occur via the step q, yielding the b type product ion series

(i.e., the b[c00q] ion; Figure 7). These series exhibit exclusive alkali cation

salt retention (as experimentally observed) at the backbone end with a

diketomorpholine group at the other end (i.e., the b(o)V,(12-n) or b

(o)L,(12-n) ion). Alkali cation retention also takes place on all other

observed series.

Interestingly, the cleavages corresponding to the sodiated b

(o)V,(12-n) or b(o)L,(12-n) fragment ions with n = 6, 7, 8 are enhanced

compared to those of the potassiated cationized product ions with

the same sequence. The same behavior clearly characterizes the Na+/

K+ cationized *bV,(12-n) and *bA,(12-n) abundances with n = 6,

7, 8. Despite these alkali effects on product ion abundances, the colli-

sion spectra of alkali-cationized cereulide species exhibit several

almost complete series of cationized fragment ions that provide

unambiguous confirmation of the structure of this cyclodepsipeptide

through preferential ester linkage cleavages.

4 | CONCLUSION

In electrospray, cationization of cereulide yields two general forms:

charge-solvated (CS) and protonated salt (PS) forms. Their respective

form depends on the alkali size, that is, with K+, the population of CS

forms is larger than that of PS forms, and conversely with Na+, the CS

contribution becomes negligeable. This difference cannot unfortu-

nately be attributed to ionophore cereulide selectivity towards K+

since when the [M + Li]+, [M + Na]+, and [M + K]+ adduct ions are

desorbed from other types of compounds, very often the lithiated and

sodiated molecules drive more CBC processes than the potassium

ones. These alkali-cationized cereulide species dissociate by the same

pathways (formation of the b, a, (b + H2O), and unexpected *b ion

series) since the alkali cationized product ions are shifted by

+37.95 m/z, +21.98 m/z, and +6.01 m/z for [M + K]+, [M + Na]+,

and [M + Li]+, respectively, compared to the product ions (except the

*b series absent) of [M + NH4]
+ (via dissociations of the [M + H]+

intermediate product ion). The alkali-cationized cereulide structure is

an opened cyclodepsipeptide where the ester A-OV and V-OL linkages

have been selectively cleaved. This results in two opened structures

with a cation/alkoxide salt at one end (and an acylium at the other).

Based on this particular opened ring protonated salt, another proton

migration, which takes place from the protonated oxazolone interme-

diate, favorably promotes the rupture at ester linkages, yielding vari-

ous product ion series with alkali cation retention. In such processes,

the salt end group is spectator to the dissociation, explaining why K+/

F IGURE 7 Possible fragmentation
mechanisms of the alkali-cationized
cereulide from ring opening with the
alkali-cationized alkoxide salt at one end
and a terminus oxazolone c00 after
migration of its proton to amide linkage
inducing its cleavage into the product ion
b(c00q).
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Na+/Li+ promotes, through a proton mobilization, the same CBC ori-

entation, but may influence the relative abundances of resulting catio-

nized product ions without modifying the trends. Especially, it is

shown that from the four-residue cationized product ions, alkali cat-

ions of larger size as potassium are released by splitting from PS form

due to of the weakness of the ion/ion interaction force induced by

the proximity of the mobile proton to the salt group. This effect was

explained by using the Hard Soft Base Acid principle of Pearson based

on the orbital interaction. As the contribution of the protonated salt

form being major for lithiated and sodiated cereulide, their analytical

use is preferable to obtain a more complete and sensitive sequence, in

contrast to potassiated cereulide where the ion/ion interaction is

weakened as the size of the product ions is reduced.

In order to confirm the change of the alkali-cationized cereulide

conformation according to (i) the CS and PS structure and (ii) alkali

size, ion mobility spectrometry (IMS) combined with MS/MS would

need to be investigated. This IMS-based conformational change study

would need to be addressed according to the source conditions to

find out to what extent the conformation of potassiated cereulide, as

it exists in solution, could be preserved in the gas phase within the

charge-solvated form(s). Finally, the proposed alkali-cationized species

interpretation will be applied to other variant sequences (called isocer-

eulides) and other cyclodepsipeptides.
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