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Abstract

Modelling of the cutting process needs to move from 2D to 3D configura-
tions to get closer to industrial applications. This study introduces a predictive
3D finite element model of free orthogonal and oblique cutting with an Artificial
Neural Network (ANN)-based material flow law and experimental validation in
strictly the same conditions (cutting and geometrical). The flow law based on a
neural network allows simulating the cutting process based on data coming from
the material characterization tests without requiring any postulate concerning the
expression of the flow law. The developments are applied to the formation of
continuous chips for the titanium alloy Ti6Al4V and an unseen broad range of 36
cutting conditions is considered: 2 cutting edge inclinations, 3 uncut chip thick-
nesses and 6 cutting speeds. The predictive performance of the model (i.e., the
evaluation of the trends of fundamental variables with the absence of tuning of
both numerical parameters and model features when cutting conditions are sig-
nificantly modified) is high for the forces, mainly cutting and passive, and the
chip thickness ratio on all 36 cutting conditions. The accuracy of the main cut-
ting force is excellent: the average difference with the experiments is 4 %, within
the experimental dispersion. No significant degradation of the results is brought
by the apparition of the third, out-of-plane, force, which shows the ability of the
model to handle orthogonal and oblique cutting configurations.
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1. Introduction1

Selection of the tools and the cutting conditions in machining are still difficult2

to achieve because of the high level of complexity and the related nonlinear phe-3

nomena. Comprehension of the influence of the process parameters on the quality4

of a component and its optimization are also a challenge for the same reasons. In5

the frame of digital manufacturing and Industry 4.0, modelling the cutting process6

supports them, while remaining a challenging task. As highlighted by Arrazola et7

al. [1], most finite element (FE) models are developed in 2D (orthogonal cutting8

configuration usually) although industrial applications require 3D modelling.9

The behaviour of the machined material is one of the key aspects of a FE10

model [1, 2]. Research is very intense in this area, leading to a growing num-11

ber of constitutive material models ranging from empirical models to physical12

models, some including microstructure effects [2]. The empirical thermo-elasto-13

viscoplastic Johnson-Cook (JC) model [3] is still the most widely used to this14

day:15

σy =
(
A + B εpn) (

1 +C ln
.
εp

.
ε

p
0

) (
1 −

[
T − Troom

Tmelt − Troom

]m)
(1)

In this model, the flow stress, σy, is a function of the plastic strain, εp, the plastic16

strain rate, .
εp, and the temperature, T . It is composed of 3 terms describing inde-17

pendently the plastic, viscous and thermal aspects. One of the points in favour of18

its adoption is the rather limited number of parameters to be identified, 5: A, B,19

C, m and n. Here, .
ε

p
0 is the reference plastic strain rate, while Troom and Tmelt are20

respectively the ambient (room) and melting temperatures. More recent models21

developed on this basis, such as that of Calamaz et al. [4], increase this number of22

parameters (for the particular Calamaz model to 9). Other authors have also used23

Zerilli-Armstrong model to simulate cutting processes [5]. The best description24

(in theory) of the behaviour is obtained at the cost of a greater complexity of the25

identification process and a reduction of the link with the physical meaning of the26

model.27

One of the problems of modelling material behaviour for cutting simulation28

is the identification of parameters, especially as the experimental equipment does29

not allow the high levels of strain, strain rate and temperature of machining to be30
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achieved [2]. Inverse identification is an alternative, but the uniqueness of the so-31

lution is not always guaranteed [1, 2]. Early work by Özel and Altan [6] used the32

least squares method to identify the input parameters of a FE model in an inverse33

manner. Shrot and Bäker [7] then used the Levenberg-Marquardt algorithm for34

their identification of the material parameters. They showed that similar results35

(cutting forces and chip morphology) could be obtained by different sets of pa-36

rameters and thus highlighted the non-uniqueness of the solution of the inverse37

problem. In addition to the flow stress parameters, Klocke et al. [8] also identi-38

fied the damage parameters. In more recent work, such as Bosetti et al. [9] and39

Denkena et al. [10], the approach to the inverse identification problem is shifting40

from optimization to Artificial Intelligence (AI) based methods. The Downhill41

Simplex Algorithm (DSA) is adopted by Bergs et al. [11] and by Hardt et al. [12]42

for AISI 1045. Stampfer et al. [13] also chose DSA when treating AISI 414043

quenched at 3 different temperatures. In [14], Hardt et al. showed that Parti-44

cle Swarm Optimization (PSO) was more efficient in solving the inverse problem45

than DSA, even though the computational time is still significant. In order to re-46

duce the computational time, an Efficient Global Optimization algorithm (EGO)47

was recently introduced by Kugalur Palanisamy et al. [15]. They identified simul-48

taneously the parameters of the material constitutive model and the friction model49

for Ti6Al4V. The identified parameters showed good performance when applied50

to a different FE model [16]. Most of these works highlight the non-uniqueness51

of the identification and they all require the definition of the analytical expression52

of the constitutive model.53

ANN (Artificial Neural Network)-based material models have been introduced54

to avoid postulating or knowing the analytical expression of the material be-55

haviour. Gorji et al [17] recently reviewed the use of recurrent neural networks56

for material models, while Jamli and Farid [18] reviewed their application in FE57

simulation of material forming. When compared to classical analytical and em-58

prirical models, such as JC model, they proved to be more powerful to represent59

the experimental behaviour [19]. Use of these ANN-based models in FE simula-60

tion of forming processes also turned out to provide better results than the classical61

JC model [20] and to handle complex phenomena such as dynamic recrystallisa-62

tion [21]. No application of these ANN-based models in FE simulation of cutting63

currently exists.64

Lagrangian and Eulerian formulations are the most used for FE modelling of65

the cutting process. Combinations of formulations, such as Arbitrary Lagrangian-66

Eulerian (ALE) and Coupled Eulerian-Lagrangian (CEL), are increasingly being67

used to avoid (or reduce) mesh distortions [22]. The CEL formulation has recently68
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been successfully applied to the modelling of cutting (in 2D orthogonal configura-69

tion): it provides accurate results with realistic chip shape and no mesh distortion.70

The first 3D applications are found in recent works [23–27]. They cover orthog-71

onal (free) cutting or a simple 3D operation, while free oblique cutting has yet to72

be studied.73

Experimental validation of a model is a crucial step in modelling the cutting74

process. The experimental configuration should be as close as possible to the sim-75

ulation. For the validation of orthogonal cutting, a rotational motion usually gen-76

erates the cutting speed. This is often done in turning [28] or milling [23] and the77

diameter of the rotating workpiece must be large enough to reduce the influence78

of curvature on the results. Experimental configurations under strictly orthogonal79

cutting conditions are less often adopted, for example on broaching machines [29]80

or milling machines [30, 31]. If they remove the assumptions related to the rotary81

cutting motion, they generally allow lower cutting speeds (except on a dedicated82

machine, as in Afrasiabi et al. [32]). Free oblique cutting with a straight cutting83

edge has not yet been studied: all efforts have been concentrated on orthogonal84

cutting (mainly for validation of 2D FE models).85

This paper fills the gap in the oblique cutting literature by investigating both86

orthogonal and free oblique 3D cutting configurations, both experimentally and87

numerically. An ANN, introduced in Pantalé et al. [33], is implemented in a FE88

cutting model for the first time in place of the JC analytical law. A wide range of89

cutting speeds (6), uncut chip thicknesses (3) and cutting edge inclination angles90

(2) resulting in 36 different conditions are considered to demonstrate the predictive91

capability of the FE model for the fundamental variables. The developments are92

applied to the formation of continuous chips of the titanium alloy Ti6Al4V.93

2. Experimental setup94

A 3-axis GF Mikron VCE 600 Pro milling machine is used to perform dry or-95

thogonal and oblique cutting tests on Ti6Al4V (grade 5 annealed at 750 ◦C for 1 h96

followed by air cooling) with the same kinematics as a shaper. As shown in Fig-97

ure 1, the tungsten carbide tool (modified LCGN160602-0600-FG, CP500 from98

SECO) is fixed on a dedicated holder (modified CFHN-06 from SECO) and the99

sample to be cut is clamped in the spindle (no rotation is allowed during the test).100

The top of the sample has 3 ribs of 1 mm width (the width of the tool is 6 mm) and101

10 mm length. The test consists of removing the top layer (its height is the uncut102

chip thickness, h) of a rib at the prescribed cutting speed, vc. The cutting speed is103

provided by the feed rate, v f , of the machine (maximum value of 40 m/min). The104
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tool cutting edge inclination, λs, results from the relative angular orientation of105

the tool and the sample. Table 1 shows the cutting conditions: 6 cutting speeds, 3106

uncut chip thicknesses and 2 inclination angles, each repeated 3 times. An incli-107

nation angle of 6◦ is the typical value when turning Ti6Al4V, while cutting speeds108

and uncut chip thicknesses values in accordance with recommended ranges by109

SECO for the standard tool [34] are adopted.110

Tool

Tool holder

Dynamometer

Spindle Fixed

�c
Sample

Ribs

Figure 1: Experimental setup

Table 1: Cutting conditions of the study

Parameter Values

Cutting speed, vc (m/min) 5, 7.5, 10, 20, 30, 40
Uncut chip thickness, h (µm) 40, 60, 80
Cutting edge inclination, λs (◦) 0, 6
Width of the workpiece (mm) 1
Length of the workpiece (mm) 10
Width of the cutting edge (mm) 6 (1.1 in the model)
Cutting edge radius, rβ (µm) 20
Rake angle, γ0 (◦) 15
Clearance angle, α0 (◦) 2

Forces are measured with a 3-component Kistler 9257B dynamometer and111
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are amplified by a Kistler 5070A charge amplifier. Acquisition is performed at112

3 kHz using a Kistler 5697A2 data acquisition system and DynoWare software.113

The recorded forces are then filtered with a second-order low-pass Bessel filter at114

750 Hz before calculating the average value of the steady state signal.115

All chips are collected and observed with a Dino Lite digital microscope116

AM7013MZT (5 MP, magnification 20× – 250×). Each chip is measured 3 times117

along its length in order to obtain an average value representative of the whole118

chip.119

3. Finite element model120

3.1. Modelling choices121

The main objectives of a predictive model are the accurate modelling of trends122

in results as conditions change and the good agreement of predicted values with123

experimental values (exact values are not expected due to experimental disper-124

sions of at least 10 % around the mean values). This type of model is intended to125

support future choices and developments without the need for experimental data.126

No assumptions are made about the geometry of the workpiece in the model (i.e.,127

its width is the same as in experiments), while keeping the calculation time rel-128

evant for industrial applications. The CEL formulation is adopted to model the129

dry orthogonal and free oblique cutting tests with Abaqus/Explicit 2020. The130

3D model is composed of a fixed Lagrangian tool and a Eulerian part (Figure 2).131

Chip formation occurs by plastic flow through the Eulerian domain without mesh132

distortion. The Eulerian formulation allows for chip formation without damage133

properties, by removing modelling assumptions. These two features contribute to134

the cutting models providing accurate results and realistic chips [22].135

As shown in Figure 3, the full width of the workpiece (1 mm), i.e., one rib136

in the experiments, is modelled. To allow for chip formation and lateral flow,137

the Eulerian domain is wider (it includes the volume in which the material can138

move). The volume above the initial part is also meshed with Eulerian elements139

for the same reasons. As in the experiments and to satisfy the assumption of140

an orthogonal and oblique free cut, the tool is wider than the workpiece (it is141

1.1 mm in the model and 6 mm in the experiments). It is very important to note142

that the models are the same for both inclination angles: they differ only in the143

rotation of the tool by 6◦ around the Y axis as in the experiments (Figure 3). This,144

together with the absence of assumptions when developing the models, contributes145

to make the models predictive: no input is changed when the cutting conditions146

are changed.147
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ℎ

Figure 2: Boundary conditions and schematic initial geometry of the model

According to a previous sensitivity study of the mesh in orthogonal cutting148

with the CEL formulation [24], the edge size of the elements is 5 µm in the149

plane parallel to the cutting speed. In the direction perpendicular to this plane,150

it is 5 µm in the areas close to the lateral boundaries of the Eulerian domain151

and 50 µm in the middle of the part. To reduce the computation time, the size152

of the model depends on the value of the uncut chip thickness. This results153

in a Eulerian domain (EC3D8RT 8-node 3D linear Eulerian elements, coupled154

mechanical-thermal behaviour and reduced integration) composed of 216 550 to155

273 350 nodes and a Lagrangian domain (C3D8T 8-node 3D linear Lagrangian156

elements, coupled mechanical-thermal behaviour) of 4650 nodes.157

The Ti6Al4V part is assumed to be thermo-elasto-viscoplastic (isotropic) and158

the inelastic thermal fraction is 0.9. The JC parameters set of Seo et al. [35]159

is adopted because the value of A corresponds to the value of the typical yield160

strength of Ti6Al4V and this set was found to provide the best results among the161

20 sets available in the literature [36]. The TiN coated tungsten carbide (WC) tool162

is assumed to have linear elasticity. The material properties are given in Table 2.163

According to the experimental results of Rech et al. [39], it is assumed that164

Coulomb friction occurs at the tool-piece interface and that the coefficients of165
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Lagrangian
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Figure 3: Configuration of the FE model for λs = 6◦

friction, µ, and heat partition, β, depend on the cutting speed. The limiting shear166

stress, τmax, is included and is given by:167

τmax =
yield stress
√

3
=

A
√

3
(2)

All the friction energy is converted into heat. Table 3 shows the friction coeffi-168

cients adopted in this study. Gap heat conductance based on the distance between169

the two surfaces is not available in Abaqus/Explicit 2020. It is therefore not in-170

cluded in the modelling.171

An ambient temperature of 293 K is imposed on the top and right surfaces172

of the tool and on the left and bottom surfaces of the workpiece (Figure 2). It173

is assumed that radiation and convection occur on the rake and clearance faces174

of the tool. The initial temperature of the tool and workpiece is set to the room175

temperature (293 K). The heat transfer coefficients are provided in Table 3.176
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Table 2: Materials properties [35, 37, 38]

Young’s modulus, E (GPa) Ti6Al4V 113.8†

WC 650
Poisson’s ratio, ν Ti6Al4V 0.34

WC 0.2
Density, ρ (kg/m3) Ti6Al4V 4430

WC 14 850
Conductivity, k (W/m K) Ti6Al4V 6.3†

WC 100
Expansion, α (1/K) Ti6Al4V 8.6E−6†

WC 5E−6
Specific heat, cp (J/kg K) Ti6Al4V 531†

WC 202

JC flow stress A (MPa) 997.9
B (MPa) 653.1
C 0.0198
m 0.7
n 0.45.
ε0 (1/s) 1
Troom (K) 293
Tmelt (K) 1873

†: Dependence on the temperature, value provided at 293 K

3.2. Material model of Ti6Al4V177

In the numerical simulations presented in Section 4, a thermo-elasto-viscoplastic178

material model for Ti6Al4V is employed, which utilizes a flow criterion based on179

an Artificial Neural Network (ANN) identified for the material. This ANN is im-180

plemented in the Abaqus/Explicit code through a Fortran VUHARD subroutine,181

as proposed by Pantalé et al. [20, 33], to compute the flow stress σy as a func-182

tion of the plastic strain εp, the plastic strain rate, .
εp, and the temperature T . The183

approach replaces the analytical formulation of the flow law, typically based on184

Johnson-Cook or Zerilli-Armstrong type models, with a multi-layer ANN serving185

as a universal approximator. This enables the direct identification of the neu-186

ral network parameters from experimental data without postulating a behavioral187

model, simplifying the procedure and providing greater flexibility in model defi-188

nition.189
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Table 3: Friction and heat transfer coefficients [13, 37, 39]

Cutting speed, vc (m/min) µ β

5 0.24 1
7.5 0.22 0.89
10 0.21 0.80
20 0.19 0.63
30 0.18 0.55
40 0.17 0.50

Limiting shear stress, τmax (MPa) 576
Convection, U (W/m2 K) 50
Radiation, ϵ 0.3

In contrast to the classic approach, which involves conducting experiments on190

a material, postulating an analytical form for the flow law, and identifying the191

parameters that best fit the experimental data, the use of ANN allows for direct192

identification of the law from experimental data without the need to postulate the193

analytical form of the flow law. This method also enables the computation of the194

three derivatives of the flow stress σy with respect to the three input variables of195

the model, which is necessary for implementing the model as a flow law in the196

form of a VUHARD subroutine in the FEM code Abaqus/Explicit. The same197

network architecture and identified trained parameters are used to compute the198

flow stress σy and the derivatives in a one-step procedure [20, 33].199

In order to verify the influence of the neural network complexity on the nu-200

merical results of the simulation and on the computation time, several ANN ar-201

chitectures (i.e. hyperparameters of the ANN) are tested afterwards (in 3.4). The202

chosen global architecture has 2 hidden layers with a variable number of neurons203

for the first hidden layer (ζ = 9 to 17) and 7 neurons for the second hidden layer, 3204

inputs (the plastic strain, εp, the plastic strain rate, .
εp, and the temperature, T ) and205

one output (the yield strength, σy). The global architecture of this type of ANN is206

given in Figure 4 for 9 neurons in the first hidden layer. According to Pantalé et207

al. [33], this ANN is referred to as ANN 3-9-7-1-sig, as it has 3 inputs, 9 neurons208

in the first hidden layer, 7 neurons in the second hidden layer, 1 output and a sig-209

moid activation function. The selection of an architecture with two hidden layers210

was made based on the conclusions drawn in Pantalé et al. [33]. Additionally,211
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the decision to use the sigmoid activation function was guided by the findings in212

Pantalé [40], who identified the most efficient and accurate activation functions213

for finite element simulations in thermomechanical forming.214

Hidden layer 1 Hidden layer 2Entry layer Output layer

Figure 4: Architecture of the ANN 3-9-7-1-sig used for the flow law

In a preliminary phase, after having selected the global architecture of the neu-215

ral network, it is necessary to proceed to its training from some inputs. The inputs216

for this application were generated from the Johnson-Cook flow law expression217

reported in Equation (1) and the identified parameters reported in Table 2. This218

approach was chosen to demonstrate the ability of the neural network flow law to219

replace a classically formulated flow law such as Johnson-Cook’s for the simu-220

lation of metal cutting. In future developments, experimental tests on a Gleeble221

thermomechanical simulator associated with Taylor impact tests or Hopkinson222

bar tests will be used to generate this network training data. The training data,223

presented in the form of a data table containing the plastic strain εp, the plastic224

strain rate .
εp, the temperature T and the flow stress σy, is processed by a learn-225

ing algorithm, developed at LGP, in Python, using the Tensorflow library [41].226

One hour of training on a Dell XPS13 7390 laptop running Ubuntu 20.04 64 bits227

with 16 GiB of Ram and an Intel 4-core i7-10510U processor allow obtaining the228

converged parameters of the ANN model.229

Once this learning phase is completed, the neural network parameters result-230

ing from the learning process are used directly by a Python program, in charge231

of automatically generating the Fortran source code of the VUHARD subroutine232
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in order to compute the flow stress σy and its three derivatives, required for the233

explicit Abaqus FEM code.234

The main advantage of this approach (the use of an ANN), after the learning235

phase, is that, for example, the output σy of the network is now linked to the inputs236

εp, .
εp, and T by the equations (3) to (7) for a two hidden layers neural network237

with a sigmoid activation function as proposed previously.238

Thus, in the VUHARD subroutine, the computation of the flow stress σy from239

the 3 input variables εp, .
εp, and T is performed using the following procedure.240

The first step is to scale the input data to the interval [0, 1] using the following241

equation:242

−→x =


x1 =

εp−[εp]min
[εp]max−[εp]min

x2 =
ln(

.
εp)−[ln(

.
εp)]min

[ln(
.
εp)]max−[ln(

.
εp)]min

x3 =
T−[T ]min

[T ]max−[T ]min

(3)

where quantities [ ]min and [ ]max are the boundaries of the range of the corre-243

sponding field during the training phase. Corresponding values, for the proposed244

case, are given in Appendix A. According to the architecture of the network,245

the outputs of the neurons of the first hidden layer −→y1 are given by the following246

equation:247

−→y1 = sig
(
w1 ·
−→x +
−→
b1

)
(4)

where, w1 and
−→
b1 are the weights and biases associated with the first hidden layer248

and sig() is the sigmoid activation function defined by the equation (5) :249

sig(x) =
1

1 + e−x (5)

Then, the output of the neurons of the second hidden layer is given by the250

equation (6) :251

−→y2 = sig
(
w2 ·
−→y1 +
−→
b2

)
(6)

where, w2 and
−→
b2 are the weights and biases associated with the second hidden252

layer. Finally, the σy output of the ANN is thus given by the equation (7) :253

σy = ([σy]max − [σy]min)
(
−→wT
·
−→y2 + b

)
+ [σy]min (7)

where, −→w and b are the weights and the bias associated with the output layer.254
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On the other hand, the three derivatives of the yield stress σy with respect to255

the three input variables εp, .
εp, and T are given by the equation (8):256 
∂σy/∂εp = s′1

[σy]max−[σy]min
[εp]max−[εp]min

∂σy/∂
.
εp = s′2

[σy]max−[σy]min

[[
.
εp]max−[

.
εp]min].

εp

∂σy/∂T = s′3
[σy]max−[σy]min
[T ]max−[T ]min

(8)

where s′i is the ith component of the vector −→s ′ defined by the equation (9):257

−→s ′ = wT
1 ·

wT
2 ·

 −→w ◦ e−
−→y2[

1 + e−
−→y2
]2

 ◦
 e−

−→y1[
1 + e−

−→y1
]2


 (9)

and ◦ is the elements-wise product, known as the Hadamard product. In equa-258

tions (3) to (9), quantities w1, w2, −→w ,
−→
b1,
−→
b2 and b are evaluated by the training259

procedure of the ANN. Corresponding values for an ANN containing 9 neurons260

in the first hidden layer and 7 neurons in the second hidden layer are reported in261

Appendix A. The set of equations (3) to (9), together with the network parame-262

ters identified in the learning phase, is automatically translated into a VUHARD263

Fortran subroutine used by the FEM code Abaqus to simulate the cutting model.264

Because of the large number of identified parameters for all the ANN models265

(from 114 to 202 for 9 and 17 neurons for the first hidden layer, respectively), the266

other 4 sets of ANN parameters used in this publication can be found in [42].267

3.3. Sensitivity study of the results to mass scaling268

FE modelling of the cutting process is very expensive in terms of CPU time269

due to the coupling of many nonlinear phenomena and the large amount of tiny270

finite elements. Mass scaling (MS) is introduced into the model to reduce the CPU271

computation time while checking that it does not influence the results (forces and272

energies) via a mass scaling sensitivity study. MS factors, MSf , ranging from273

1E6 (theoretical CPU time scale of
√

MSf = 1000) to 1 (no scale) were used for274

a cutting condition (λs = 0◦, vc = 30 m/min and h = 60 µm). The same signal275

processing procedure is applied to the numerical forces as to the experimental276

forces (cf. 2): they are filtered with a second-order low-pass Bessel filter at 750 Hz277

before calculating the steady state average value. Table 4 gives the results of the278

model with MS normalized (F̂i) by those of the model without MS:279

F̂i =
Fi with MS

Fi without MS
(10)
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with i = c for the cutting force and i = f for the feed force. As expected, the280

real speed-up does not increase linearly with the MSf , but it remains significant.281

A MSf of 1E6 leads to an unstable computation and a MSf of 1E5 leads to erratic282

force evolutions. These results are confirmed by high values of the ratio of the283

kinetic (KE) to the internal (IE) energies (it should not exceed a few % [43, 44]).284

A value of MSf of 1E3 is chosen as it offers a good balance between reducing the285

computation time and the impact on the forces, while keeping the KE
IE below 1 %.286

To provide an order of magnitude of CPU computation time, between 10 h and287

50 h (depending on the value of h) are required on 4 cores of an Intel i7-5700HQ288

CPU at 2.7–3.5 GHz.

Table 4: MS sensitivity study (selected MS factor, MSf , in bold, F̂c: normalized cutting force, F̂f :
normalized feed force, KE: kinetic energy, IE: internal energy)

MSf CPU scaling Speed-up F̂c F̂f
KE
IE (%)

1 1 1 1 1 2.3E−4
1E2 10 9 1.006 0.982 2.2E−2
1E3 32 21 1.008 0.940 2.2E−1
1E4 100 61 1.012 0.921 2.4
1E5 316 173 Erratic Erratic 22
1E6 1000 207 Unstable Unstable 58

289

3.4. Sensitivity study of the results to the number of neurons290

The number of neurons in the hidden layers may influence the results. A291

sensitivity study on the number of neurons of the first hidden layer, ζ, is performed292

in order to select the ANN offering the best balance between CPU computation293

time and quality of the results. The results of the study are provided in Table 5.294

F̌i corresponds to the results of the model with ANN normalized by those of the295

model with the built-in JC model:296

F̌i =
Fi with ANN

Fi with JC
(11)

They show no influence on the numerical results for the forces compared to the297

built-in Johnson-Cook model, only the computation time is influenced by the num-298

ber of neurons in the first hidden layer and increases with it. This increase in com-299

putation time is not only due to the increasing complexity of the neural network300
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with the number of neurons, but also to the need to go through a VUHARD user301

subroutine. A first hidden layer of 9 neurons is therefore selected as it leads to the302

smallest increase in CPU computation time, without influence on the final result.303

Table 5: Sensitivity of the forces to the number of neurons of the first layer, ζ (selection in bold,
F̌c: normalized cutting force, F̌f : normalized feed force)

ζ Time increase (%) F̌c F̌f

Built-in 0 1.000 1.000
9 6 1.000 0.999
11 6 1.001 1.000
13 7 1.000 0.998
15 8 1.001 1.001
17 10 1.000 1.000

4. Experimental and numerical results304

An example of the temporal evolution of the numerical and experimental305

forces is plotted for the 3 directions in Figure 5 at λs = 6◦, vc = 10 m/min and306

h = 40 m/min. The FE models are calculated up to a few microseconds after the307

stationary state is reached. Then, a linear extrapolation (dashed line between the308

last two markers in Figure 5) is used to provide numerical values for the same309

time range as the experimental values. The average and standard deviation (2σ)310

are calculated from the 3 experimental values. The resulting dispersion is shown311

in Figure 5 around the average values of each force. Steady state takes longer to312

be reached for the experiments than for the numerical model, in particular for the313

cutting force. The dispersion around the evolution of the average force is greater314

for the feed force than for the cutting force, while the average value of the feed315

force is 46 % of the average value of the cutting force. The numerical cutting force316

is very close to the experimental average cutting force; it is only 4 % higher. This317

difference, ∆ j, is calculated by :318

∆ j =

∣∣∣ j(sim) − j(exp)
∣∣∣

j(exp) × 100 (12)

where j is the cutting force, the feed force, the passive force or the chip thick-319

ness. j(sim) is the average value from the simulation, while j(exp) is the average320
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experimental value.321

The numerical feed force is underestimated by the model, but is within the322

95 % experimental confidence interval. The numerical passive force difference is323

also underestimated and is not within the narrower experimental dispersion. The324

difference between the average values of the experimental and numerical feed and325

passive forces is 25 %. A less well modelled feed force than the cutting force is326

typical of FE models of the cutting process and the difference with the experi-327

mental value is similar to other studies for a narrower range of cutting conditions328

[32, 45–48]. Hardt and Bergs [27] also obtained larger differences for feed and329

passive force than for cutting force. The difference for passive force was higher330

than for feed force, which is the opposite observation of this work.331
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Figure 5: Temporal evolutions of experimental (E) and numerical (N) forces at λs = 6◦,
vc = 10 m/min and h = 40 µm with dispersion around average experimental values (linear ex-
trapolation of numerical values in dashed)

Numerical chips at vc = 10 m/min and h = 40 µm for λs = 0◦ and λs = 6◦332
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are provided in Figures 6 and 7. Due to the absence of heat gap generation in333

the model, temperatures in the tool increase mainly by the heat generated by fric-334

tion. They are therefore underestimated: maximal temperature in the tool is under335

400 K (and all temperatures in the tools are in the blue colours with the scale of336

Figure 6). When the inclination of the cutting edge is 0◦, both sides of the chip337

are identical and a symmetry plane can be drawn in the middle of the workpiece338

(Figure 7 (a)). On the other hand, for an inclination of the cutting edge of 6◦, the339

chip is no longer aligned with the workpiece. The chip bends to one side due to340

the orientation of the tool and symmetry is lost in both the geometry and the ther-341

mal and mechanical fields, as shown in figure 7 (b). This produces helical chips342

for the inclination angle of 6◦ as in the experiments. Figure 8 shows the variation343

of the chip thickness across its width: it is thicker in the middle (i.e., the body of344

the chip) than on its sides. This underlines the importance of 3D modelling, even345

for the orthogonal cutting configuration as highlighted earlier [24]. The 3D mod-346

elling also allows reproducing the lateral flow that occurs in the experiments for347

both values of cutting edge inclination (Figure 6), unlike a 2D model [23–25]. Al-348

though this leads to higher computation times, future cutting models should be in349

3D, even when orthogonal cutting is considered. In this case, it is recommended350

to take advantage of the symmetry of the configuration to reduce the computa-351

tion time. This simplification has not been included in this study to avoid any352

difference in the FE models between the 2 inclinations of the cutting edge.353

Average values of the experimental forces and their dispersion are shown in354

Figures 9 to 13 together with the average numerical values. Passive force values355

are of course only plotted for λs = 6◦ as they are equal to zero when λs = 0◦.356

The increase in cutting force with uncut chip thickness is clearly observed in357

Figures 9 and 10 for both experimental and numerical results at the 2 inclination358

angles, as well as the decrease in force with increasing cutting speed. This shows359

that temperature softening dominates strain rate hardening for Ti6Al4V and is360

accurately modelled. Increasing the inclination angle from 0◦ to 6◦ slightly re-361

duces the cutting force; this is well captured by the model. For cutting speeds of362

20–40 m/min and an inclination angle of 0◦, Fc is almost constant with cutting363

speed for uncut chip thicknesses of 40 µm and 60 µm, while it decreases slightly364

for 80 µm; this small stabilization is less marked for the model.365

An increase in the deviation around the average value with the cutting speed366

is noted for values above 10 m/min. All numerical values are within 95 % con-367

fidence of the experiments (35 of the 36 conditions are within 68 % confidence).368

The average difference with the experiments is 4 %, which is remarkable, also369

considering the wide range of cutting conditions considered and the absence of370
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Figure 6: Temperature contours (in K) of the numerical chip after 1.5 ms at vc = 10 m/min,
h = 40 µm and (a) λs = 0◦, (b) λs = 6◦
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Figure 7: Temperature contours (in K) of the back of the numerical chip (tool is removed) after
1.5 ms at vc = 10 m/min, h = 40 µm and (a) λs = 0◦, (b) λs = 6◦
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Figure 8: Temperature contours (in K) of the top of the numerical chip after 1.5 ms at
vc = 10 m/min, h = 40 µm and λs = 0◦
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Figure 9: Comparison of experimental and numerical cutting forces at the cutting edge inclination
of 0◦ for the 3 uncut chip thicknesses and the 6 cutting speeds
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Figure 10: Comparison of experimental and numerical cutting forces at the cutting edge inclination
of 6◦ for the 3 uncut chip thicknesses and the 6 cutting speeds

model tuning. This underlines the predictive ability and accuracy of the FE model371

for both inclination angles.372

Figures 11 and 12 show the results for the feed force, where the two clearest373

trends for the experiments are its decrease with the inclination angle and its in-374

crease with the uncut chip thickness (even though it is lower than expected). For375

80 µm, Ff decreases overall with vc in the experiments. For 40 µm and 60 µm, the376

force decreases at lower vc, then increases for 0◦, while a decrease is observed at377

all vc for 6◦ (the experimental dispersion is high for both inclination angles, but the378

average trend with cutting speed is clear at 6◦, not at 0◦). For the numerical values,379

the overall trend is the same for the 3 uncut chip thicknesses and the two inclina-380

tion angles: a decrease for the lowest values of vc and then an increase. It should381

be noted that the numerical model does not correctly handle the trends of the feed382

forces: as Figure 12 clearly shows, the numerical forces have an overall increas-383

ing trend with the cutting speed, while their average value mainly decreases when384

the uncut chip thickness increases. The differences between the average numeri-385

cal and experimental values increase with the uncut chip thickness: the forces are386
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Figure 11: Comparison of experimental and numerical feed forces at the cutting edge inclination
of 0◦ for the 3 uncut chip thicknesses and the 6 cutting speeds

closer at 40 µm than at 80 µm. The numerical values are generally not within the387

95 % confidence interval (they do not clearly change with the cutting conditions).388

Coupled with the differences in trends, this shows that Ff is less well modelled389

(the average difference is 39 %) than Fc as usual in FE modelling of the cutting390

process and even more so in 3D [27]. The influence of the uncut chip thickness391

on the feed force should therefore be improved. The parameters of the material392

model are known to have an impact on the forces (and on the chip morphology)393

[15, 36]. The friction model should also be improved to strengthen the results394

[27].395

The passive force is non-zero for the inclination angle of 6◦ (Figure 13). Like396

the cutting force, it increases with the uncut chip thickness and decreases with397

the cutting speed. The comparison with experiments is broadly the same as for398

Fc, except for a greater difference in the magnitude of Fp (the average difference399

is 26 %, but it is small in absolute terms – less than 5 N). Most of the numerical400

values do not fall within the experimental 95 % confidence interval. A lower mag-401

nitude of the passive force from the simulation than from the experiments with402
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Figure 12: Comparison of experimental and numerical feed forces at the cutting edge inclination
of 6◦ for the 3 uncut chip thicknesses and the 6 cutting speeds

the correct trends when the cutting conditions change was also observed by Hardt403

and Bergs [27]. The differences were mainly attributed to differences in cutting404

edge radius, friction modelling and material model. In this work, the impact of405

the cutting edge radius can be neglected as it is the same in the model as in the406

experiments.407

As far as the chip morphology is concerned, all chips are continuous. For both408

the simulation and the experiments, the chip thickness ratio, λh :409

λh =
h′

h
(13)

with h the uncut chip thickness and h′ the chip thickness, is almost independent of410

the uncut chip thickness (Figures 14 and 15). It is slightly reduced from λs = 0◦ to411

λs = 6◦, which means that the chip thickness decreases with the inclination angle.412

This influence is underestimated by the model: the reduction of λh is smaller than413

in the experiments. The average difference between the experimental and numeri-414

cal λh is 17 % over the whole range of cutting conditions. The chip thickness ratio415
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Figure 13: Comparison of experimental and numerical passive forces at the cutting edge inclina-
tion of 6◦ for the 3 uncut chip thicknesses and the 6 cutting speeds

decreases with cutting speed due to the reduction in friction, which is correctly ac-416

counted for by the model. As with the feed force, the results should be improved417

by more complex friction models and a set of material parameters for which the418

identification includes forces and chip thickness: [15].419

The differences calculated according to the equation (12) are presented in Ta-420

ble 6 to provide a quantitative overview of the results. The cutting force is the best421

modelled quantity as observed in the literature. This result was to be expected422

as the parameter set of the material model was selected mainly due to its good423

approximation of the cutting force [36]. As this selection was made with a 2D424

model, the results show the ability of the model to correctly handle the third (pas-425

sive) force. Based on the average differences, the performance of the model is very426

close for the cutting and feed forces for both cutting edge inclinations, although427

a small degradation (1 % and 2 %, respectively) is noted for 6◦. This degradation428

is more important (7 %) for the chip thickness ratio and must be linked to the dif-429

ference in passive force. Indeed, the chip thickness and out-of-plane force models430

are deeply linked. Improving the friction at the tool-workpiece interface should431
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Figure 14: Comparison of experimental and numerical chip thickness ratios at the cutting edge
inclination of 0◦ for the 3 uncut chip thicknesses and the 6 cutting speeds

be a key point. It should be noted that the chip thickness is very well modelled un-432

der certain cutting conditions with a minimum difference of 2 %. The difference433

is larger for the feed force than for the passive force, a trend opposite to that of434

Hardt and Bergs [27]. The average and range (min – max) of the differences are435

larger for the feed force. The smaller range of the passive force confirms a shift436

for all cutting conditions, similar to the results of Hardt and Bergs [27]. Again,437

the friction modelling should be the first aspect of the model to be improved in438

future developments.439

5. Conclusions440

An experimental and numerical study of the orthogonal and oblique free cut-441

ting of Ti6Al4V was carried out for a wide range of cutting conditions using an442

ANN-based flow law. The following main conclusions are drawn:443

• The experimental study was carried out with the same set-up in free or-444

thogonal and free oblique cutting for the titanium alloy Ti6Al4V (the only445
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Figure 15: Comparison of experimental and numerical chip thickness ratios at the cutting edge
inclination of 6◦ for the 3 uncut chip thicknesses and the 6 cutting speeds

Table 6: Synthetic quantitative overview of the results: differences between the experimental and
the numerical results (average difference for each cutting edge inclination, and maximal, minimal
and average differences for all the conditions) for the cutting force, ∆Fc, the feed force, ∆Ff , the
passive force, ∆Fp, and the chip thickness ratio, ∆λh

Difference ∆Fc (%) ∆Ff (%) ∆Fp (%) ∆λh (%)
Average λs = 0◦ 3 38 – 14
Average λs = 6◦ 4 40 26 21
Max. global 10 60 29 38
Min. global 1 10 19 2
Average global 4 39 26 17

change is the cutting edge inclination). This is a reference to evaluate the446

performance of the FE 3D model introducing an ANN-based flow law de-447

veloped under the same conditions. An unpreviously seen wide range of448
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cutting conditions, 36, is considered, including 2 cutting edge inclinations.449

• A major novelty of this work is the accurate evaluation of the fundamental450

variables and their trends in 3D, without the need to adjust the numerical451

parameters and the model characteristics when the cutting conditions and452

the inclination angle are changed significantly. The mere fact of changing453

the inclination angle from free orthogonal cutting to oblique cutting while454

maintaining the quality of the results has no equivalent in the current litera-455

ture, especially since no studies (experimental or numerical) on free oblique456

cutting are available.457

• Taking into account the material’s flow law by means of a neural network458

makes it possible to overcome the limitations of conventional flow laws and459

to reduce the approximations associated with the establishment of an analyt-460

ical formulation of the flow law as conventionally adopted. The numerical461

model is then able to better reproduce the real behaviour of the material and462

to take into account thermomechanical transformations which are sources463

of non-linearities, difficult to take into account with an analytical flow law464

model. Current work, using a Gleeble thermomechanical simulator, on the465

behaviour of a modified carbon alloy AISI P20 shows the advantages of466

this approach compared to models in the literature such as Johnson-Cook,467

Zerilli-Armstrong [5] or Hansel-Spittel [49], insofar as one is then able to468

better reproduce more complex material behaviours.469

• The cutting force is the best modelled quantity with an average difference470

of 4 % with the experiments. Chip thickness ratio and passive force show471

a larger deviation from the experiments (17 % and 26 %, respectively), but472

their trends as the cutting conditions change are accurate. This is in line with473

the expected results provided by a predictive model. The deviation for feed474

force is higher (39 %), and opposite trends compared to the experimental475

reference are observed. The lack of influence of uncut chip thickness on476

friction in the model seems to be one of the aspects to be included as a477

priority in future work. The model is found to handle the occurrence of the478

third force, out of plane, well without significant degradation of the results.479

• The predictive capabilities of the model make it suitable for the development480

of straight-edged tools, for example. This work also demonstrates the ability481

to model material behaviour with ANN and opens up possibilities in this482

promising direction.483
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[36] F. Ducobu, E. Rivière-Lorphèvre, E. Filippi, On the importance of the choice618

of the parameters of the Johnson-Cook constitutive model and their influence619

on the results of a Ti6Al4V orthogonal cutting model, International Journal620

of Mechanical Sciences 122 (2017) 143–155.621

[37] GRANTA EduPack 2020, Granta Design Limited, 2020.622
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Appendix A. Coefficients of the ANN 3-9-7-1-sig660

In this appendix, we present the values obtained after the training phase of an661

ANN containing 9 neurons in the first hidden layer and 7 neurons in the second662

hidden layer. Conforming to [33], this one is referred ANN-3-9-7-1-sig. The663

training of the neural network was performed using a dataset containing 3430664

data points defined by:665

• 70 equidistant values for εp ∈ [0, 3], so that [εp]min = 0 and [εp]max = 3.666

• 7 plastic strain rates .
εp ∈ [1/s, 10/s, 50/s, 500/s, 5000/s, 50 000/s, 500 000/s],667

so that [ln( .
εp)]min = 0 and [ln( .

εp)]max = 13.12236.668

• 7 temperatures T ∈ [293 K, 400 K, 500 K, 700 K, 900 K, 1200 K, 1500 K], so669

that [T ]min = 293 K and [T ]max = 1500 K.670
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Stresses in the training dataset ranges from [σy]min = 171.4 MPa to [σy]max =671

2606.1 MPa. The results of the training process are given here after for the ANN672

quantities w1, w2, −→w ,
−→
b1,
−→
b2 and b. The weight matrix for the first hidden layer673

w1 is a 9 × 3 matrix:674

w1 =



−0.87229 −0.47675 −1.50771
−0.95762 −0.25619 1.65222
−10.61660 0.22003 −0.11539

3.67883 0.37146 −1.51069
−63.39468 0.15466 −0.95431

0.54807 0.25959 −5.44355
−1.33883 0.36089 −1.66735
−0.68125 1.02121 0.34242

0.08740 0.18764 −41.32542


The weight matrix for the second hidden layer w2 is a 7 × 9 matrix:675

wT
2 =



1.66285 −0.59645 −3.17333 0.20706 1.18760 2.01250 −0.82147
−0.26237 −2.50330 −1.45941 −1.59833 4.05169 −1.21146 1.05610
−0.12958 0.67119 −5.85989 −2.55061 4.85245 4.31876 3.24070
−2.12890 0.68296 0.71183 0.81706 −0.09405 0.34919 −1.41223

2.33631 −0.08089 14.65789 0.12531 23.66363 2.55872 2.15338
0.11567 1.77629 −1.80448 0.77825 −1.58254 1.90442 1.23152
1.49265 0.41821 −3.53803 −0.48705 −0.23671 0.75887 −0.37441
0.95990 0.69041 0.43870 0.28393 −1.40101 −0.64569 −0.38964
5.89937 −0.13015 2.99264 1.78534 −3.90189 1.17494 −3.78854


The weight vector for the output layer −→w is a 7 components vector:676

−→w =



0.34701
1.42079
−0.96564

0.62467
−0.56322

0.40960
−0.42810
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The biases of the first hidden layer
−→
b1 is a 9 components vector:677

−→
b1 =



2.57141
0.22673
−1.16985
−0.11246
−0.82210
−2.13264

0.78794
1.20434
−3.48681


The biases of the second hidden layer

−→
b2 is a 7 components vector:678

−→
b2 =



−0.36566
−1.14445
−0.79065
−0.50670

1.30136
0.04521
−0.29995


The bias of the output layer b is a scalar:679

b = 0.04213

The corresponding coefficients for the other networks identified during this680

work (ANN-3-11-7-1-sig, ANN-3-13-7-1-sig, ANN-3-15-7-1-sig and ANN-3-17-681

7-1-sig) can be found in [42].682
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