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Abstract 
The digitization of electrocardiogram paper records is an essential step to preserve and 

analyze cardiac data. This digitization process is not flawless as it involves several challenges, 

such as skew correction, binarization, and signal extraction. Various approaches have been 

proposed to address these challenges and recent studies have introduced innovative solutions, 

such as deep learning models and automation processes. Although existing approaches have 

shown promising results, there is a lack of common databases and metrics where authors could 

evaluate and compare their methods. Furthermore, the limited accessibility of code or software 

hinders the comparison process. Overall, while digitization of paper ECG recordings is 

important in advancing cardiology research, additional efforts are needed to standardize the 

evaluation process while improving code accessibility. This article provides a systematic 

review of this process. 
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Introduction  

The electrocardiogram (ECG) is a widely used technology, developed to measure the electrical activity of 

the heart. ECGs have been recorded for more than a century, using a myriad of different devices in medical 

centers throughout the world. Current medical standards require triplicate 12-lead 10-second ECGs for 

pharmacological evaluation, but other types of ECGs, including long-recordings from Holter or other single 

lead devices can be used for monitoring.  

However, the vast majority of these measures cannot be easily accessed nor used for automatic analyses, 

including application of modern machine learning (ML) techniques. One of the main reasons is related to 

the storage medium, which is very often a printer paper copy of an ECG, typically representing only a portion 

of thee acquired signal. Although paper prints may have some advantages, they come with numerous 

drawbacks [1], including deterioration of the medium from ink evaporation, blurring, folding, overwriting, 

etc. They need significant human resources to be stored, accessed, queried, read and annotated. Furthermore, 

automatic machine learning (ML) algorithms require numerical vectors, the raw waveform signals, to detect 

patterns and learn from them.  

Currently, only a small number of hospitals and medical centers in the world store ECG data as raw digital 

files (i.e., XML, binary proprietary formats), while others, especially in developing countries, continue to 

use paper scanned image files (such as JPG, PNG or PDF). Handling the raw digital files requires additional 

expensive hardware (usually sold as add-ons with the ECG devices), or trained personnel and time to 

manually copy and store them in local IT systems.  

Digital ECG files are valuable and allow clinicians and researchers to constitute larger datasets, which can 

be queried and automatically analyzed by modern algorithms, including powerful artificial intelligence (AI) 

models. Moreover, when coupled with other patient phenotype data, these datasets offer excellent 

opportunities for discovering and developing tools for predictive and personalized medicine. Unfortunately, 

many ECG datasets saved as paper prints or image scans, cannot be readily used in these types of analyses, 

although some authors have tried to use directly scanned ECGs for arrythmia classification with limited 

results[2], [3]. There is a real need in the field for tools that digitize paper ECGs and convert them in high 

quality raw-equivalent signals for subsequent analyses and use, especially in the context of AI applications. 

In this article we review the state-of-the-art of such tools and compare different aspects including 
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methodology, performance and accessibility. A systematic literature search with the keywords 

“electrocardiogram” AND “paper” AND “digitization” performed on February 16, 2023, yielded 85 results 

on Pubmed, ScienceDirect, Ieeexplore, ResearchGate and Google Scholar. 

Material and Methods 

Systematic Literature Review 

The systematic literature review method used here is composed of three different steps. The first step consists 

of identifying articles based on the search equation applied to articles’ abstracts and keywords. The second 

step is based in a novel approach, which computes similarities between papers based on co-citations and 

bibliographic coupling. This approach is implemented in a software called Connected Papers. We analyzed 

the inferred graph and applied a node connectivity filtering to remove weakly associated papers, while 

extending the selection of other relevant articles not detected by the first step. Finally, the third filtering step 

is based on expert evaluation with clear criteria of the different articles. Our systematic review approach is 

illustrated in Figure 1. 

More specifically, in the first step we defined the following search equation: 

𝐸𝐶𝐺	𝐴𝑁𝐷	𝑃𝑎𝑝𝑒𝑟	𝐴𝑁𝐷	𝐷𝑖𝑔𝑖𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛 then applied it on abstract and keyword sections of articles from five 

different bibliographic databases: PubMed, ScienceDirect, Ieeexplore, ResearchGate and Google Scholar. 

The PubMed query returned 20 articles, while the ScienceDirect query returned 32 articles. For the 

Ieeexplore and ResearchGate databases, we used the search equation without restriction on the abstract and 

the title. This yielded 28 articles for Ieeexplore and 26 articles for ResearchGate. Finally, for Google 

Scholar we applied the search equation only on the title as the search filters on this platform are limited and 

obtained 28 articles. Overall, after discarding duplicates, we obtained a list of 85 different articles. A filtering 

step based on the keywords of all articles (when they were available) with the equation 

𝐷𝑖𝑔𝑖𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛	𝑂𝑅	𝐴𝑛𝑎𝑙𝑜𝑔-𝑡𝑜-𝐷𝑖𝑔𝑖𝑡𝑎𝑙 allowed us to isolate 35 articles containing these keywords. This step 

was necessary to remove the false positive hits that were selected because the “digitization” keyword was 

only referred to, without being the real focus of the article.  

The second step is based on the “Connected Papers” approach. We hypothesized that some relevant articles 

might have been missed during the first step, especially as the different datasets were searched with different 

resolutions (i.e., limited to the title, abstract or keywords). To make our review method more robust we 
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applied an approach, which focused on the similarity between papers. This is computed based on the concepts 

of co-citation and Bibliographic Coupling and is implemented in the Connected Papers platform, which uses 

the Semantic Scholar database covering more than 240 million papers. Each of the 35 articles identified 

above served as an anchor, allowing to identify similar articles and to infer an article similarity graph. We 

analyzed the 35 graphs and removed articles that displayed a connectivity smaller than 4, based on the 

observation that relevant articles were strongly connected while non-relevant articles were less connected. 

This approach would allow us to add relevant articles, resulting in a list of 44 articles. 

Finally, the third and last step consisted of a manual curation and expert evaluation of the articles, through 

careful examination. We eliminated 12 articles; one was a review, one was a preprint, 2 were thesis 

dissertations and 8 did not deal with the subject. The final selection consisted of 32 articles, published from 

1991 to 2022 and allowed us to compile a good overview of the different methods of digitization in ECG 

images. 

 

Figure 1: Systematic Literature Review approach as used in this article. A) The Prisma diagram showing the different 
stages of article selection B) The Detailed diagram of our article selection approach, including the Connected Papers step. 

Comparative methodology attributes  

Comparing the different approaches was not straightforward as they covered different technologies, tasks 

and spanned over a large period of time when technology evolved quickly. However, we proposed a number 

of criteria that we believe are useful to the reader Table 1. One important consideration is the code or 
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software accessibility. Another attribute is the capability of the digitization approaches to handle poor quality 

images. Only articles where this was specifically mentioned are tagged as “True”. Another important 

consideration is how automated these approaches were and whether they required human intervention. 

Automation consisted mainly of detecting leads and three different scenarios were retained: (i) the article 

mentioned human intervention, (ii) the article did not mention anything and (iii) the article specifically 

mentioned that the lead detection was made automatically. 

Finally, the last attributes of Table 1 concern the signal extraction approaches. Three main steps were 

considered for the digitization process: (i) the deskewing method, (ii) the binarization method and (iii) the 

signal extraction method. The first step involved correcting or rotating the image, which may have been 

necessary due to the scanning process. The second step included the use of a binarization approach and the 

grid line removal to isolate the ECG waveforms in the image. Finally, the third step considered how the 

waveform was converted from a 2D image to a 1D signal after it was isolated from the image. Figure 2 

illustrates the different steps of the digitization process.  

 

Figure 2: Schematic of the digitization process. The digitization process is composed of three main steps, which include, 
deskewing, binarizing the image and extracting the signal. 
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Reference Dataset: Origin / Numbers of lead 
Code or 
software 
accessibility 

Noisy image 
Treatment Human intervention Deskew approach Binarization approach Signal Extraction 

(Widman and Hines 1991) [1] NA / 21 leads False NA User intervention NA NA Line finding algorithm 
 

(Lawson et al. 1995) [4] 
 

NA / 84 leads False NA User intervention NA NA Skelotinization 

(J.T Wang and Mital 1996) [5] NA False NA User intervention NA Iterative Mask Thinning Algorithm 

(Mitra, Mitra and Chaudhuri 2004) [6] NA False NA User intervention NA User defined threshold Pixel vertical extraction 

(Badilini et al. 2005) [7] University of Rochester Heart Research Follow-Up 
Program / 720 leads 

False/True NA User intervention NA NA Active Contour 

(Chebil, Al-Nabulsi, and Al-Maitah 2008) 
[8]  

NA / NA False NA NA NA NA Pixel vertical extraction 

(Swamy, Jayaraman, and Chandra 2010) 
[9]  

NA / 120 leads False NA NA Radon Transform Otsu Pixel vertical extraction 

(Shi, Zheng and Dai 2011) [10]  NA / NA False NA NA NA Sobel Pixel k-mean clustering 
 

(Sanromàn-Junquera et al. 2012) [11] Hospital General Gregorio Maranon AND Hospital 
Universitario Virgen de la Arrixaca de Murcia / NA 

False NA NA Hough transform NA Pixel vertical extraction  

(Kumar et al. 2012) [12] MIT-BIH / NA False NA User intervention NA User defined threshold Pixel vertical extraction 

(Jayaraman et al. 2012) [13] NA / 300 leads False NA NA Radon transform Otsu Pixel vertical extraction 

(Garg et al. 2012) [14] NA / 240 leads False NA 
 

NA Hough transform Color segmentation Pixel vertical extraction 

(Ravichandran et al. 2013) [15] Emory Vietnam Twins Study / 638 leads False NA User intervention - User intervention Otsu Pixel vertical extraction 

(Mallawaarachchi Perera and Nanayakkara 
2014) [16] 

NA / 216 False NA 
 

User intervention - Radon Transform Otsu Pixel vertical extraction 

(Patil and Karandikar 2015) [17] NA / NA False NA User intervention NA User defined threshold Pixel vertical extraction 

(Attin et al. 2016) [18] NA / NA False NA NA NA NA Shortest Path 
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(Lozano-Fernandez et al. 2016) [19] NA / NA False True User intervention Perspective distortion 
correction 

Color filtering NA 

(Math and Akkasaligar 2017) [20] NA / NA False NA User intervention Hough Transform User defined threshold Pixel vertical extraction 

(Rajiv Gandhi Institute of Technology, 
Mumbai, India et al. 2017) [21] 

Saikripa Hospital, Mulund / 100032 leads False True NA NA NA Pixel vertical extraction 

(Patil and Karandikar 2018) [22] NA / 1512 leads False/False True User intervention NA EBPS Pixel vertical extraction 

(Sun et al. 2019) [23] NA / 1548 leads False/False NA No user intervention Hough transform Scan line seed filing Pixel vertical extraction 

(Baydoun et al. 2019) [24] Physionet / 360 leads False/False NA No user intervention Hough transform Otsu Connectivity algorithm 
 

(Patil and Karandikar 2019) [25] Gautama Hospital / 972-1298 leads False/False NA NA NA Sauvola Pixel vertical extraction 

(Jalgaon, INDIA et al. 2019) [26] NA / NA False/False NA No user intervention NA NA Dijikstraws shortest path 

(Gupta and Sachan 2020) [27] NA / NA False/False NA No user intervention Hough Transform NA pixel vertical extraction 

(Li et al. 2020) [28] Department of Medical Record Management / 1140 
leads 

True/True 
 

True NA NA Deep learning Connectivity algorithm 
 

(Tabassum and Ahmad 2020) [29] MIT-BIH / 16265 leads False NA NA NA HSV Pixel vertical extraction 

(Mishra et al. 2021) [30] Saidhan Hospital AND STEMI Global / 38400 leads True True User intervention NA Deep learning Pixel vertical extraction 

(Ganesh et al. 2021) [31]  NA / NA True 
 

NA User intervention Hough Transform NA Pixel vertical extraction 

(Fortune et al. 2021) [32]  Oregon Health & Science University / 2760 leads True 
 

NA User intervention -User intervention Otsu Viterbi Dynamic 
programming 

(Randazzo et al. 2022) [33]  Own / 192 leads False/False NA User intervention NA Binary Mask Pixel vertical extraction 

(Wu et al. 2022) [34]  Imperial College London NHS Trust AND BIDMC / 
NA 

True/True NA No user intervention NA Threshold Pixel vertical extraction 

 

Table 1: Articles considered for this review. After identifying selecting and discarding inadequate papers, we obtained a final list of 32 articles, which are 
described as a function of different methodological attributes.
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Results 

Deskewing The Image 

The image obtained after the scanning process may be skewed and this can make it difficult to extract 

the signals. Therefore, rotation or straightening is required so that the contents are aligned horizontally 

or vertically. Two main deskewing approaches were observed in the reviewed articles. The first 

involved a manual correction of the skewness by selecting a rotation angle to deskew the image [15]. 

The second used automated algorithms to automatically deskew the image [20], [32]. The two main 

algorithms used were the Hough Transform and the Radon Transform. While the Radon Transform is 

slightly more precise, it is also slower than the Hough Transform [35].  

Grid Removal 

When digitizing paper ECGs, it is crucial to remove the gridline, which poses a challenge for algorithms 

because it introduces artefacts and noise in the image. For this, the image is binarized, converting each 

pixel to a black or white pixel level value based on its intensity. The first step is to convert the RGB 

pixel values to grayscale and determine the light intensity for each pixel. The threshold for 

distinguishing ECG lines and background pixels is critical; if the threshold is too low, it will generate 

noise, and if it is too high, information will be lost. Global thresholding was used by some articles [6], 

[12], [34], while others used specific algorithms to find the optimal threshold. 

The most used algorithms for determining the optimal binarization threshold were Otsu [36] and 

Sauvola [37]. The Otsu algorithm is efficient for low noise images and proposes to maximize the inter-

class and minimize the intra-class variation of the image pixels from the greys diagram. The Sauvola's 

algorithm uses patches to locally binarize the image and has the advantage of being robust to noisy 

images. The method proposed by Randazzo et al [33] is partly based on the idea of binarizing the image 

from a threshold. However, they proposed to convert the image to HSV (Hue, Saturation, Value) and 

define thresholds for each channel to extract only the signal. 

There are several other specific methods available to remove the gridline in an ECG image. For 

example, the Scan-line-polygon-filing method which involves filling the inside of a polygon whose 
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edge is detected using connect region analysis (CRA). Once the edge is identified, the pixels that form 

the polygon are set to 1, and the other pixels are set to 0, effectively removing the gridline [23]. 

Another method is the iterative mask approach, which is similar to the Sauvola method. It involves 

binarizing the image by region using two masks, one horizontal and another vertical. The masks browse 

the image in the top-to-bottom and left-to-right directions. If two white pixels are in the extrema of the 

mask, every pixel in the mask is converted to white. Conversely, if only one pixel in the extrema is 

black, then the pixels in the mask remain the same [5]. 

Finally, a last method is based on color segmentation and is applied by column, where pixels from the 

grid line are usually lighter than pixels from the ECG waveform. Therefore, the darkest pixels are 

assigned the value 1, while the other pixels are set to 0, resulting in a binarized image [14]. An 

alternative approach is to convert the image into HSV format, where the grid line will have a higher 

value than the ECG waveform. With this representation, binarization is easier, especially for poor 

quality images [29]. 

Signal Detection / Extraction 

The most straightforward approach to extract the waveform data from the image is to examine each 

column pixel, identify the pixels that correspond to the waveform, and associate each of them with a 

numerical value on the vertical axis. Many studies have used this method, including those referenced 

by the articles [6], [8], [9], [11]–[16], [21]–[23], [25], [27], [29]–[31]. The algorithm scans each column 

of the image, identifies the pixels corresponding to the ECG waveform, and records their coordinates. 

The index in the rows represents the amplitude value, while the index in the columns represents the 

time value.  

Other approaches propose, in their own way, to extract the signal from the image. There are clustering-

based approaches, such as the Connectivity[24], [28] and K-mean[10] algorithms. The idea is to group 

pixels according to their spatial proximity, their mathematical similarity or their brightness. 

Finally, we can also mention algorithms based on the minimization of mathematical functions. The 

Active Contour algorithm [7] for instance proposes 3 functions (path length, path continuity and signal 
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fidelity) updated for each pixel of the image. The idea behind this is to minimize the path length and 

maximize the signal fidelity and path continuity. The Viterbi dynamic programming [32] proposes the 

same thing but reduced to a single function to be minimized. The Dijikstraws algorithm [18], [26] 

applies weights to each pixel of the image and then seeks to find the shortest path minimizing the 

weights to reconstruct the signal. 

Robustness To Noise  

The concept of robustness to noise is complex because of its broad definition. To focus on poor-quality 

images, we reviewed articles that explicitly address this issue and found four that fit our criteria. Two 

of the articles proposed mathematical solutions, while the other two proposed using deep neural 

networks. The first article used an anti-aliasing algorithm and a K-Fill filter to smooth the line and 

reduce noise [21]. The second article used bit plane slicing. Each color was defined on 8 bits, for 

example 0 was defined as 00000000 and 255 was defined as 11111111. The idea of bit plane slicing is 

to consider only the 7th and 8th bits (the leftmost numbers) because these are the bits that carry the most 

information. Next, the authors propose to compute the maximum entropy on the 7th and 8th level (bit) to 

transform the image into grey scale [22]. The third article presents a neural network trained to binarize 

the image based on the U-net architecture [28], while the fourth article introduced a method, which 

finds the optimal binarization threshold with the help of a neural network based on a pixel intensity 

distribution [30]. 

Human Intervention 

Automating ECG analysis is crucial as it reduces the amount of time and effort needed for analysis by 

humans and improves reproducibility. The detection of the regions of interest (ROI) is the most critical 

aspect of automation in ECG image processing.  

Only a group of the articles selected in this review can be considered fully automatic in terms of ROI 

detection [23], [24], [34]. The horizontal projection-based approach was used in these studies where the 

intensity level [23], [34] or the variance [24] is computed horizontally to obtain a vector of the variance 

or intensity level on the ordinate of the image. These vectors display peaks that correspond to the leads' 

position. Subsequently, the image is cropped between these peaks to isolate the leads. The level of 
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human intervention must be kept to a minimum to ensure reproducibility, as different users may select 

the ROI differently, which can lead to variations in results.  

Performance Evaluation 

A wide range of techniques have been employed in the literature to improve the binarization, signal 

detection/extraction, or to deskew the image and it is important to evaluate these techniques and 

determine their performance and usability. 

As illustrated in Table 1, there is a lack of uniformity in the databases used, which makes the 

comparison of the methods quite challenging. For instance, certain articles attempted to digitize poor 

quality images, so one can expect fewer good results than articles that digitize high-quality ECG images. 

Out of the 32 articles considered here, only 13 (41%) provide the origin of the databases, and 

unfortunately none of them are in common.  

Similarly, the lack of uniformity in the measured elements and metrics presented in Table 2 was also 

observed. It is essential to note that 9 articles out of 32 (28%) are not presented in Table 2. One of them 

measured a specific EGM (electrogram) classification, while another used a pre-trained model to 

classify the digitized ECGs. Finally, 7 other articles did not provide performance metrics of their 

digitization. Thus, only 23 articles were retained and analyzed in Table 2. What stands out from these 

results is the variety of the measured elements (21 elements: P wave amplitude, P wave duration, etc.) 

and the variety of the ways to evaluate performance (13 metrics: T-test, RMS, etc.). We have also noted 

the number of different articles that used these metrics or measured a particular element. Most of the 

articles presented the measurements either on the RR distance or on the overall signal. The measurement 

on the RR distance was found in 62% of the articles and the measurement on the signal as a whole in 

62% of the articles. To effectively compare the different methods featured by papers, it is crucial to 

have common ground metrics on which they could be evaluate 
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Reference P 

amplitude P duration 
Q 
amplitu
de 

Q 
duratio
n 

R 
amplitud
e 

R 
durati
on 

S 
amplitud
e 

S 
durati
on 

T 
amplitud
e 

T 
duratio
n 

PQRS 
amplitude 

Heart 
rate QT  RR interval PR interval 

RS 
durati
on 

QT interval Signal QRS 
duration 

ST 
interval HRV 

QRS 
amplitu
de 

RR 
amplitu
de 

(Widman and Hines 
1991)[1] NA NA NA NA NA NA NA NA NA NA NA NA NA Corr NA NA NA NA Corr NA NA 

Mean∆ 
/ 
RMSE 

Mean∆ 
/ 
RMSE 

(Lawson et al. 
1995)[4] T-Test T-Test T-Test T-Test T-Test T-Test T-Test T-

Test T-Test T-Test NA T-Test NA NA NA NA NA NA NA NA NA NA NA 

(Mitra, Mitra and 
Chaudhuri 2004)[6] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

T-Test on the 
Fourier 
Transform 

NA NA NA NA NA 

(Badilini et al. 
2005)[7] NA NA NA NA NA NA NA NA NA NA 

RMSE / 
Mean∆ / 
Median∆ 

NA Mean
∆ NA NA NA NA NA NA NA NA NA NA 

(Chebil, Al-Nabulsi, 
and Al-Maitah 
2008)[8] 

NA NA NA NA NA NA NA NA NA NA NA Relative 
Error NA NA Relative 

Error NA Relative 
Error RMSE Relative 

Error NA NA NA NA 

(Swamy, Jayaraman, 
and Chandra 
2010)[9] 

NA NA NA NA NA NA NA NA NA NA NA NA NA Acc NA NA NA NA NA NA NA NA NA 

(Shi, Zheng and Dai 
2011)[10] 

Absolute 
Error NA NA NA NA NA NA NA NA NA NA NA NA Acc NA NA NA NA NA NA NA NA NA 

(Kumar et al. 
2012)[12] NA NA NA NA NA NA NA NA NA NA NA Relative 

Error NA Relative 
Error 

Relative 
Error 

Relati
ve 
Error 

Relative 
Error Corr NA NA NA NA NA 

(Jayaraman et al. 
2012)[13] 

Acc / 
Slope 

Acc / 
Slope NA NA Acc/ 

Slope NA NA NA Acc/ 
Slope 

Acc/ 
Slope NA Acc/ 

Slope NA Acc Acc/Slope NA Acc / Slope 
DTW_classifi
er / Adaboost 
classifier 

Slope Acc/ 
Slope NA NA NA 

(Garg et al. 2012)[14] NA NA NA NA NA NA NA NA NA NA NA NA NA Acc NA NA NA NA Accuracy NA NA NA NA 
(Ravichandran et al. 
2013)[15] NA NA NA NA NA NA NA NA NA NA NA NA NA Corr_Intra / 

Corr_Inter 
Corr_Intra/ 
Corr_Inter  Corr_Intra / 

Corr_Inter Corr Corr_Intra / 
Corr_Inter NA NA NA NA 

(Mallawaarachchi 
Perera and 
Nanayakkara 
2014)[16] 

NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA Acc NA NA NA NA NA 

(Attin et al. 2016)[18] NA NA NA NA NA NA NA NA NA NA NA NA NA RMSE NA NA NA RMSE/Corr NA NA NA NA NA 
(Rajiv Gandhi 
Institute of 
Technology, Mumbai, 
India et al. 2017)[21] 

NA NA NA NA Acc NA Acc NA NA NA NA Acc NA Acc NA NA NA PSCM NA NA NA NA NA 

(Patil and Karandikar 
2018)[22] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA RMSE / Acc / 

Corr NA NA NA NA NA 

(Sun et al. 2019)[23] NA NA NA NA NA NA NA NA NA NA NA NA NA RMSE / PRD NA NA NA NA NA NA NA NA NA 
(Baydoun et al. 
2019)[24] Corr NA Corr NA Corr NA Corr NA Corr NA NA NA NA Corr Corr NA Corr Corr NA NA NA NA NA 

(Patil and Karandikar 
2019)[25] NA NA NA NA 

Acc/ 
Absolut
e Error 

NA 
Acc/ 
Absolut
e Error 

NA NA NA NA 
Acc/ 
Absolut
e Error 

NA 
Acc / 
Absolute 
Error 

NA NA NA NA NA NA NA NA NA 

(Li et al. 2020)[28] NA NA NA NA NA NA NA NA NA NA NA Corr NA Corr Corr NA NA Corr Corr NA Corr NA NA 
(Tabassum and 
Ahmad 2020)[29] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA Corr NA NA NA NA NA 

(Ganesh et al. 
2021)[31] NA NA NA NA NA NA NA NA NA NA NA NA NA Corr_Intra / 

Corr_Inter 
Corr_Intra / 
Corr_Inter NA Corr_Intra / 

Corr_Inter RMSE / Acc Corr_Intra / 
Corr_Inter NA NA NA NA 

(Randazzo et al. 
2022)[33] NA Mean∆ NA NA NA NA NA NA NA NA NA Mean∆ NA Mean∆ NA NA Mean∆ Corr Mean∆ NA NA NA NA 

(Wu et al. 2022)[34] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA Corr/RMSE NA NA NA NA NA 

Table 2: Performance evaluation metrics used by the different articles described in this review.  
(Corr: Correlation, Acc: Accuracy, RMSE: Root Mean Square Error) 
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Code accessibility 

When lacking standardized datasets and metrics, another way to effectively compare the performance of 

the methods described in the different articles would be to execute their code. Code accessibility is in this 

case a crucial factor. However, despite thorough investigation on various platforms such as "GitHub" and 

"paperwithcode", as well as other resources including ResearchGate, ScienceDirect, Google Scholar, 

PubMed, and Ieeexplore, only 6/32 (19%) of the articles were identified with available code. 

ECGscan [7] provided a demo software that allows users to only view the digitization process of the 

provided ECG. However, we noticed that the demo was not accessible anymore as of from March 2023. 

Personal ECG digitization requires paid professional services and the software is not provided. Another 

article [34] offers a free web application that can import and digitize paper ECGs. Few other articles 

provide access to their code for testing purposes. Some offer GitHub access [31], [32] and the code is 

written either in Python or MATLAB. Another article provided a complete data bundle, including 

documentation, test images, a neural network model, and code to perform the digitization [28]. One of 

the articles only described the pseudocode, requiring language specific implementation to be able to use 

[30]. Nevertheless, despite the limited accessibility of code, these articles provided valuable insight into 

the techniques used for ECG digitization. 

Discussion 

The process of comparing digitization approaches for paper ECGs is not a simple task. A major challenge 

in this area of research is the lack of standardization in metrics and the absence of benchmark datasets. 

Only 15/23 (65%) of the articles provide common measurement elements, including the RR interval and 

the whole signal length. Moreover, the metrics of measuring these elements (RMSE, correlation, DTW, 

etc.) vary greatly across articles, which makes it difficult to compare results.  

The variability of the databases used to evaluate the methods, further compounds the challenge of 

comparing results even with identical metrics. The quality of paper ECGs must also consider their ability 

of dealing with noise.  

In addition, code accessibility is a major issue as only 6/32 (19%) of the articles shared their code or a 

usable software. This lack of accessibility makes it difficult to evaluate the efficiency of the different 
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approaches and limits the development of new techniques. The few articles that do present their code 

often make them available through paid licensed software, bundled black boxes or professional services. 

Opensource software that does not profit business corporates are expected to make significant advances 

in this domain. 

Several articles presented techniques that aimed to overcome specific challenges in ECG digitization, 

including poor image quality or automation of the process. These techniques take advantage of the use of 

deep learning models, as well as more advanced binarization and signal extraction approaches. However, 

the performance of these techniques needs to be evaluated and compared. 

Overall, ECG digitization is a complex process that requires careful consideration of several factors, 

including the quality of the paper ECGs, evaluation metrics, code accessibility, and potential information 

loss. Improvements in these areas would facilitate the development of new and more accurate techniques 

for ECG digitization and expand the potential uses of ECG data. 

Conclusion 

In conclusion, the digitization of ECG paper records has garnered significant interest in the medical 

community. However, the current state of the field poses several challenges to the adoption and efficient 

comparison of various approaches. The lack of standardization in metrics and databases, along with 

limited code accessibility, makes it challenging to assess and compare different methods’ performance. 

Despite these obstacles, researchers have proposed various techniques for digitizing paper ECGs, which 

can be further improved by addressing issues such as poor image quality and automation. Overall, there 

is a need for increased standardization and accessibility in this field to enable more efficient comparison 

and adoption of digitization methods. A valuable contribution to this research topic would be the creation 

of international databases with data from multiple facilities as well as standardized metrics allowing for 

comparison and evaluation of ECG digitizing approaches.  
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