
HAL Id: hal-04578700
https://hal.science/hal-04578700

Submitted on 17 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Transforming Time Petri Nets into Heterogeneous Petri
Nets for Hybrid System Monitoring
Léonie Hatte, Pauline Ribot, Elodie Chanthery

To cite this version:
Léonie Hatte, Pauline Ribot, Elodie Chanthery. Transforming Time Petri Nets into Heterogeneous
Petri Nets for Hybrid System Monitoring. IFAC Safeprocess 2024, Jun 2024, Ferrara, Italy. �hal-
04578700�

https://hal.science/hal-04578700
https://hal.archives-ouvertes.fr

Transforming Time Petri Nets into
Heterogeneous Petri Nets for Hybrid

System Monitoring

Léonie Hatte ∗ Pauline Ribot ∗ Elodie Chanthery ∗

∗ LAAS-CNRS, Université de Toulouse, INSA, UPS, Toulouse, France.
(e-mail: firstname.name@laas.fr).

Abstract: Increasing industrial system complexity challenges maintenance and health moni-
toring, that involves both diagnosis and prognosis tasks. While formalisms like Time Petri Nets
(TPN) simplify the explicit expression of temporal uncertainties, Heterogeneous Petri Nets
(HtPN) offer a formalism for hybrid system health monitoring that lacks explicit time represen-
tation. This article demonstrates HtPN’s ability to explicitly represent temporal information.
Key contributions include a lossless transformation from a subclass of the TPN to a subclass
of the HtPN and the provision of a Python code for conversion. This transformation enables
simulation, diagnosis, and prognosis with explicit time representation.

Keywords: Time Petri Nets, Diagnosis, Prognosis, Hybrid Systems, Health monitoring

1. INTRODUCTION

Industrial systems tend to become increasingly complex.
This also means that their maintenance is becoming in-
creasingly complex, which is a major challenge today. Sys-
tem maintenance includes monitoring the state of health
of a system, which mainly involves diagnosis and progno-
sis. The diagnosis is used to estimate the current health
state of the system, whereas prognosis computes its future
evolution up to failure, in order to predict the system’s Re-
maining Useful Life (RUL). To carry out these monitoring
tasks, model-based approaches are based on modeling the
system as faithfully as possible.

In order to satisfy the needs, the number of existing
formalisms has increased, especially with the introduction
of hybrid systems. Hybrid systems (Henzinger (1996)) in-
clude a discrete-event evolution and continuous dynamics.
Some formalisms allow for the explicit inclusion of time
constraints in models, making it easier to understand the
temporal aspects of diagnosis and especially prognosis.
For that purpose, Time Petri Nets (TPN) (Wang and
Wang (1998)) express explicit temporal uncertainties, but
do not represent continuous nor hybrid dynamics. On the
other side, Heterogeneous Petri Nets (HtPN) (Vignolles
et al. (2022)) are a valuable formalism for modeling hy-
brid systems. They allow representing all the necessary
information for diagnosis and prognosis, as well as taking
into account the uncertainties within complex systems. As
defined, the formalism does not make the time variable or
time constraints explicit, as TPN can.

There exists three types of TPN depending on which
element of the net the temporal information is associated
with (David and Alla (2010)): P-TPN that carry condi-
tions on the places; T-TPN that carry conditions on the
transitions; A-TPN that carry conditions on the arcs. The

choice of a formalism depends on the application and the
implementation targeted in the study. To the best of our
knowledge, there exist tools that simulate and analyze
the T-TPN behavior, which gives them computational
advantages. Nevertheless, we claim that the explicitness of
time in HtPN is possible, and we assert that they are more
expressive than TPN, ultimately enabling the modeling of
systems subject to temporal constraints and encompassing
both continuous and discrete dynamics.
This article aims to demonstrate that HtPN can explic-
itly represent all temporal information inherent in TPN.
This capability is crucial for effective health monitoring of
systems. The health monitoring process is facilitated by
HeMU, a software solution designed not only for simulat-
ing hybrid systems, but also for diagnosis and prognosis
purposes.

The first contribution of this article is to demonstrate the
feasibility of transforming a TPN into a HtPN, without
losing any information about the expressiveness. The sec-
ond contribution is the provision of a Python transforma-
tion code that directly converts a T-TPN into a HtPN. It is
then possible to start from a T-TPN model, automatically
convert it into a model that will be enriched with expert
information, for example by defining continuous dynamics
or degradation dynamics. At the end of the process, the en-
riched model can be simulated, diagnosed, and prognosed
while preserving the explicit notion of time inherited from
the T-TPN initial model.

This article is organized as follows. Section 2 delves into
the formalism of HtPN, focusing on the particular class of
time-HtPN (t-HtPN). Section 3 focuses on the transforma-
tion process, specifically from the A-TPN to the t-HtPN.
Section 4 details the use of the Python transformation code
that directly converts a T-TPN into a HtPN that can be
used in the HeMU software. Finally, Section 5 concludes
the paper.

2. BACKGROUND ON HETEROGENEOUS PETRI
NETS

A Petri Net is a formalism used to model Discrete Event
Systems (DES) whose definition given in Peterson (1977)
is recalled hereafter.

Definition 1. (Petri Net). A Petri Net (PN) is a quintu-
plet N =< P, T, Pre, Post,M0 >:

• P is the set of places;
• T is the set of transitions;
• Pre : P × T → N is the application of backward
incidence. Pre(p, t) is the weight of the arc going from
place p ∈ P to transition t ∈ T . If the weight equals
0, there is no arc between p and t;

• Post : T × P → N is the application of forward
incidence. Post(t, p) is the weight of the arc going
from transition t ∈ T to place p ∈ P . If the weight
equals 0, there is no arc between t and p;

• M0 ∈ N|P | is the initial marking representing the
number of tokens present in each place of the network.

2.1 HtPN

Heterogeneous Petri nets (HtPN) (Vignolles et al. (2022))
are an extension of Petri nets. They were developed in
order to model, simulate and monitor hybrid systems. To
represent such systems, HtPN make use of a continuous
dynamic Cp and a degradation dynamic Dp that may
be associated with each place p ∈ P . HtPN formalism
uses tokens that are objects with three attributes: a
configuration, a continuous state vector and a degradation
vector, whose values condition the firing of a transition
in the HtPN. This vision comes from colored Petri nets
(Gehlot (2019), Liu et al. (2002)) and Petri nets with
objects (Lakos (1995)).

The continuous information within the token is termed
the token state. It evolves according to the continuous
dynamics Cp associated with the places. Concurrently, the
token status represents the degradation information within
the token. It evolves according to the degradation dynam-
ics Dp associated with the places. If no continuous (resp.
degradation) dynamics are associated to a place, then the
token state (resp. status) remains constant. Introducing
the token status, representing the system’s degradation in
HtPN, is a notable advantage of this formalism. It facil-
itates the computation of RUL for prognosis and health
management purposes. The formal definition of a HtPN is
the following.

Definition 2. (HtPN). A HtPN is a tuple
< P, T, Pre, Post,M0 > with:

• P and T defined as for a PN;
• Pre is a structure of size |P | × |T | that defines the
firing conditions for an arc connecting a place p to a
transition t : Pre(p, t) = ((ΩS

p,t,Ω
N
p,t,Ω

D
p,t), ρp,t).

• Post is a structure of size |P | × |T | that defines the
firing assignments for an arc connecting a transition
t to a place p: Post(t, p) = ((AS

t,p,AN
t,p,AD

t,p), ρt,p).

• M0 ∈ N|P | is the initial marking.

Pre(p, t) contains a condition triplet and a weight ρp,t ∈ N.
The condition triplet is composed of a symbolic (i.e. dis-
crete) condition, a numerical (i.e. continuous) condition,

and a degradation condition whose outputs are true or
false. They depend on the attributes of the tokens. The
symbolic condition ΩS

p,t can be set to true, false, or it
can test the occurrence of a discrete event. The numerical
condition ΩN

p,t can be set to true, false, or it can represent
a constraint on the continuous state vector of the token to
be fired (for example, testing the values of the state vector
of the token to be fired). The degradation condition ΩD

p,t
can be set to true, false, or express a constraint on the
token’s status vector. By default, when not specified, the
symbolic and numerical conditions are set to true, and the
degradation condition is set to false. Similarly, if ρp,t = 0,
it means that there is no arc connecting the place to the
transition.

Post(t, p) contains an assignment triplet and a weight
ρt,p ∈ N. The assignment triplet can modify the values of
token attributes (configuration, state, status) that cross
transitions. It is also composed of a symbolic (AS

t,p),

numerical (AN
t,p) and degradation parts (AD

t,p), each of
which sets the value of the tokens’ attributes. By default,
when assignments are not specified, the token values
remain unchanged. Similarly, if ρt,p = 0, it means that
there is no arc connecting the transition to the place.

The values of the tokens’ attributes are tested and con-
dition the firing of transitions. These test conditions are
expressed by labels associated with the input arcs.

Definition 3. (Enabled Arc). An arc going from a place p
to a transition t is enabled if:

• the number of tokens located in the place downstream
of the transition is greater than the weight ρp,t of the
arc;

• the symbolic condition ΩS
p,t and the numerical condi-

tion ΩN
p,t are true, or the degradation condition ΩD

p,t
is true:

(ΩS
p,t ∧ ΩN

p,t) ∨ ΩD
p,t

In other words, the arc is enabled if there are at least ρp,t
tokens whose configuration and state satisfy the symbolic
and numerical conditions, or if the tokens’ status satisfies
the arc’s degradation condition.

A transition is fireable if all its incoming arcs are enabled.
HtPN always operate under strong semantics: the firing of
transitions occur as soon as they are fireable.

Compared to classical PN, HtPN therefore extend the def-
initions of Pre, Post, tokens and add dynamics associated
with places in P .

2.2 Time HtPN: t-HtPN

To make explicit the temporal information represented
in HtPN and facilitate a comparison with the temporal
information contained in TPN, we introduce a subclass
of HtPN, named t-HtPN (explicit time-HtPN). In a t-
HtPN, the numerical condition ΩN depends only on time
and is expressed in the form of a time interval, like those
described in TPN.

The explicit notion of time in t-HtPN arises from a re-
striction on the continuous information carried by tokens.
The token state is thus restricted into a single variable,
denoted as θ ∈ R+, referred to as the ”clock”.

Definition 4. (t-HtPN). A t-HtPN is a HtPN restricted as
follows:

• P , T , Pre, Post, M0 are defined as for a HtPN;
• the state vector of each token τ is reduced to its clock
θτ ;

• the continuous dynamics Cp associated with each
place p ∈ P enable the incrementation of the token
clock values, such that dθτ

dt = 1 for each token of
each place. The clock of a token therefore begins to
increment when it is produced in p;

• no degradation dynamics Dp are defined for the
system to lighten the study;

• no symbolic ΩS or degradation ΩD conditions are
defined;

• the numerical conditions ΩN are necessarily express-
ing conditions on time intervals. They are numerical
conditions composed by logical conditions ”and/or”.

3. TRANSFORMATION FUNCTION BETWEEN
A-TPN AND T-HTPN

This section delves into the transformation function bridg-
ing A-TPN (Arc-Time Petri Net) and t-HtPN (timed
Heterogeneous Petri Net). First, we will show that A-TPN,
a subset of TPN, incorporate temporal conditions on arcs,
and their expressive hierarchy has been established. Subse-
quently, we introduce a transformation function designed
to convert A-TPN into t-HtPN under strong semantics.
A proof of equivalence between A-TPN and t-HtPN is
thus provided. Finally, some illustrative examples of the
transformation process are provided.

3.1 Background on TPN

A TPN with weak semantics means that a transition can
remain fireable for an infinite time, meaning its firing is
not obligatory as soon as it becomes fireable. Conversely,
in a TPN with strong semantics, the firing of transitions
are forced whenever they are fireable. Let X represents
A, T or P, TPN under weak (resp. strong) semantics are
denoted X − TPN (resp. X − TPN).

We define the notation ”N1 ⊂≈ N2” that means ”the for-
malism N2 is strictly more expressive than the formalism
N1”, or in other words, ”N1 is generalized by N2”. The
following theorems have been demonstrated in Boyer and
Roux (2008).

Theorem 5. The strong semantics of all TPN types are
strictly more expressive than their weak semantics:

X − TPN ⊂≈ X − TPN (1)

This means that a Petri net with weak semantics can be
transformed into a Petri net with strong semantics.

Theorem 6. A-TPN are strictly more expressive than T-
TPN:

T − TPN ⊂≈ A− TPN (2)

This means that a T-TPN can be transformed into an A-
TPN.

Theorem 7. A-TPN are strictly more expressive than P-
TPN:

P − TPN ⊂≈ A− TPN (3)

This means that a P-TPN can be transformed into an A-
TPN.

Thus, by transitivity, A-TPN in strong semantics are
strictly more expressive than all other types of Time Petri
Nets. This is why, without loss of generality, we will now
only focus our study on the transformation of A-TPN into
t-HtPN.

3.2 Arc-Time Petri Net

The formal definition of an A-TPN with enabling time
intervals associated with network arcs is given below.

Definition 8. (Arc-Time Petri Net). An A-TPN is a cou-
ple < N, I > where:

• N =< P, T, Pre, Post,M0 > is a PN (see Defini-
tion 1)

• I : (P × T) ∪ (T × P) → Q+ × (Q+ ∪∞) is the time
interval function associated with the existing input
and output arcs of the system.

Enabling intervals of the arcs of Pre from place p ∈ P
to transition t ∈ T are associated with time intervals
I(p, t) = [tp,tmin, t

p,t
max], with tp,tmin the minimum dwell time

of the token in p to enable t and tp,tmax the maximum dwell
time of the token before stopping enabling t.

Assignment intervals of the arcs of the set Post from
transition t ∈ T to place p ∈ P are associated with
time intervals I(t, p) = [tt,pmin, t

t,p
max], with tt,pmin and tt,pmax

the minimum and maximum clock values the token can
take when produced in p. When tokens are created in
the place downstream of the arc, the assignment arc
allows expressing uncertainty about the value of the clock
associated with the produced tokens. Assignment arcs are
not always defined in the literature. When the intervals are
not specified on the outgoing arcs, this amounts to saying
that the time interval for this assignment is [0, 0], that is
to say that the token clock is initialized at 0.

3.3 Transformation function

Intuitive model transformation Let us consider the A-
TPN represented in Figure 1a where there are trivial time
intervals such as [3, 3], as well as non-trivial time intervals
like [2, 4] which express uncertainty regarding the token
firing times and/or the assignment of token clock values
at their production.

As mentioned earlier, HtPN always operate under strong
semantics. By extension, t-HtPN also operate under strong
semantics. The firing of a fireable transition is forced as
soon as the minimum of the upper bounds of the time
intervals associated with its incoming arcs is reached. The
intuitive transformation of the presented A-TPN into a
t-HtPN is given in Figure 1b.

The intuition is to keep the initial structure of the A-TPN.
There is here no information about discrete events nor
about degradation, so that symbolic conditions and degra-
dation conditions are set to their default values (true for
ΩS and false for ΩD). In t-HtPN, time can be expressed in
the token state representing continuous information. Time
intervals are expressed as time constraints in conditions

(a) A-TPN

(b) HtPN

Fig. 1. Transformation of an A-TPN into an HtPN

associated with incoming arcs in the t-HtPN. These time
constraints allow comparing the clock value of the tokens
to the values of the enabling intervals of the original A-
TPN.

Formal definition of the transformation function The
formal definition of the transformation function that maps
both A-TPN and t-HtPN formalisms is provided in this
subsection.

Let NA−TPN be the A-TPN set and Nt−HtPN be the t-
HtPN set.

Let f be the transformation function from an A-TPN G
to a t-HtPN G′:

f :

∣∣∣∣NA−TPN −→ Nt−HtPN

G 7−→ G′ (4)

where the A-TPNG is of the form< P, T, Pre, Post, I,M0 >
and the t-HtPNG′ is of the form< P ′, T ′, P re′, Post′,M ′

0 >.

Step 1 The function f defines:

T ′ = T ; P ′ = P ; M ′
0 = M0. (5)

It associates continuous dynamics Cp with each place
p′ ∈ P ′, that control the evolution of the tokens’ clock
that are in each place p′ ∈ P ′.

Step 2 For each existing input arc, numerical conditions
are defined by f as:

• ∀ I(p, t) = [a, b], where a, b ∈ R+, defined for G then:

Pre′(p′, t′) = ((−, θ ∈ [a, b],−); ρ) (6)

Step 3 For each existing output arc, assignments are
defined by f as:

• ∀ I(t, p) = ∅, then:
Post′(t′, p′) = ((−, θ = 0,−); ρ) (7)

• ∀ I(t, p) = [α, α] is a trivial time interval, with
α ∈ R+, then:

Post′(t′, p′) = ((−, θ = α,−); ρ) (8)

• ∀ I(t, p) = [α, β] is a non-trivial time interval indi-
cating uncertainty about the clock value of the token
produced in the place p, with

Post′(t′, p′) = ((−, θ = [α, β],−); ρ) (9)

3.4 Equivalence proof

This section demonstrates the equivalence between the t-
HtPN and A-TPN formalisms by examining three prop-
erties of the transformation function f . It’s worth noting
that if the f function is a bijection, then equivalence is
established. We thus demonstrate that f is injective, then
surjective, thereby concluding its bijectivity.

Function f is injective

Proof. The function f has a unique solution: every el-
ement in the image set of f has at most one inverse
image under f . In other words, two distinct elements in
its domain cannot have the same image by f . Indeed,
when f is used to transform an A-TPN into a t-HtPN, the
structure and marking of the final network are identical to
the structure and marking of the initial network.

Let us consider two A-TPN,N =< P, T, Pre, Post, I,M0 >
and M =< P ′, T ′, P re′, Post′,M ′

0 >, and their images
f(N) and f(M). Their images are supposed to be identical,
then we have:

f(N) = f(M) ⇐⇒

P = P ′

T = T ′

M0 = M ′
0

Pre = Pre′

Post = Post′

(10)

The networks M and N thus have the same structure and
the same attributes on the arcs. Therefore, we have:

∀N,M ∈ NA−TPN , f(N) = f(M) ⇐⇒ N = M (11)

2

Function f is surjective

Proof. Let M be a t-HtPN of the form < P ′, T ′, P re′,
Post′,M ′

0 >, we prove that there exists at least one A-
TPN N such that f(N) = M . Indeed, we can construct N
such that N =< P, T, Pre, Post, I,M0 > with:

T = T ′ ; P = P ′ ; M0 = M ′
0. (12)

For every input arc going from p′ to t′ in the t-HtPN,
such that Pre′(p′, t′) = (−, θ ∈ [a, b],−), a time interval
I(p, t) = [a, b], and Pre(p, t) are defined for the arc going
from p to t.

For every output arc going from t′ to p′ in the t-HtPN,
such that Post′(t′, p′) = (−, θ ∈ [α, β],−), a time interval
I(t, p) = [α, β], and Post(t, p) are defined for the arc going
from t to p.

N belongs to NA−T PN the set of A-TPN, therefore f is
surjective:

∀M ∈ Nt−HtPN ,∃N ∈ NA−TPN |f(N) = M (13)

2

Function f is bijective

The transformation function f is bijective, as it is injec-
tive and surjective. Since f is bijective, there exists an
application f−1 that allows transforming a t-HtPN into
an A-TPN. Consequently, we can infer that there exists an
equivalence relation between A-TPN and t-HtPN through

the function f . Figure 2 sums up the relation by f between
the A-TPN and the t-HtPN, included in the HtPN domain.

Fig. 2. Graphical representation of the sets

3.5 Illustrations

Some common temporal patterns of A-TPN are compared
in this section with their equivalent in t-HtPN, obtained
through the transformation function f .

Figure 3 illustrates a pattern with a simple condition
associated with an incoming arc. Top left shows the A-
TPN and right the corresponding t-HtPN obtained with
the function f . The bottom of the figure shows the number
of tokens in places p1 and p′1 respectively, according to the
time. During the period between a and b, the number of
tokens in p1 and p′1 is not accurately known, as the firing
of the transition t1 is uncertain. It is illustrated by the
colored zone in the figure.

Fig. 3. Simple condition associated to an incoming arc

We can see that both patterns in Figure 3 exhibit the same
behavior:

• The token in the A-TPN is used to fire the transition
t1 after the delay a.

• The token in the HtPN is used to fire the transition
t′1 after the delay a.

• If t1 and t′1 are fired at the same time c ∈ [a, b], then
the tokens in p1 and p′1 are respectively consumed by
t1 and t′1.

• If the clocks of the tokens in p1 and p′1 reach the time
b, then according to the strong semantics of A-TPN,
t1 is necessarily fired; and according to the semantics
of HtPN, t′1 is also necessarily fired.

Figure 4 illustrates a pattern with a simple assignation
associated to an outgoing arc. Top left shows the A-TPN
and right the corresponding t-HtPN obtained with the
function f . The bottom of the figure shows the number
of tokens in places p1 and p′1 respectively, according to the

time. During the period between a and b, the number of
tokens in p1 and p′1 is not accurately known, as the firing
of the transition t1 is uncertain. It is illustrated by the
colored zone in the figure.

Fig. 4. Simple assignment associated to an outgoing arc

We can see that both patterns in Figure 4 exhibit the same
behavior:

• Once t1 is fired, a token is produced in place p1.
• Once t′1 is fired, a token is produced in place p′1.
• The internal clocks of the tokens produced in p1

and p′1 are initialized to a value between a and b.
This value is chosen by the system (for example
in a manufacturing system, it can correspond to a
processing time inherent to the system). So if the
HtPN describes the same system as the A-TPN, there
is no reason for the clock assignments to be different
in the two formalisms.

Figure 5 illustrates a pattern with a basic loop. Top
left shows the A-TPN and right the corresponding t-
HtPN obtained with the function f . The bottom of the
figure shows the number of tokens in places p1 and p′1
respectively, according to the time. During the period
between a and b, the firing of the transition t1 and t′1
is uncertain, so the consumption and the production of
tokens are uncertain.

Fig. 5. Basic loop

We can see that both patterns in Figure 5 exhibit the same
behavior:

• In the A-TPN, the transition t1 can be fired only if
the token in p1 has a clock value between a and b.

• In the t-HtPN, the transition t′1 can be fired only if
the token in p′1 has a clock value between a and b.

• If t1 and t′1 are fired simultaneously, then the tokens
in p1 and p′1 are respectively consumed by t1 and t′1.

A transformation function f was proposed to convert an
A-TPN into a t-HtPN for later system health monitoring.
Indeed, HeMU software enables diagnosis and prognosis
from a HtPN model representing hybrid systems and
uncertainties. We have shown in this section that HtPN
can capture all the temporal aspects expressed in Time
Petri Nets.

4. TOOL PROTOTYPE

A Python-based software named HeMU (Vignolles et al.
(2021), Chanthery et al. (2019)), which stands for Hetero-
geneous systems Monitoring under Uncertainty, was devel-
oped to perform the simulation, diagnosis, and prognosis of
systems represented in the HtPN formalism. This software
is available on Git 3 .

A transformation function f has been defined to obtain
a t-HtPN from an A-TPN, considering that an A-TPN is
more expressive than a T-TPN. Despite this, T-TPN are
still the most widely used TPN, as there are a number of
software packages available for analyzing their properties
and simulating their evolution.

That is why we propose a translator from T-TPN to t-
HtPN. Figure 6 illustrates the integration of the T-TPN/t-
HtPN translator into the HeMU operating chain. At the
beginning of the chain, the TINA software (Berthomieu
and Vernadat (2006)) can be used to graphically editing
T-TPN. The .ndr file provided by the TINA block can be
used as input by the translator Python code (CONVERT
block). The theoretical conversion would consist of two
steps detailed under the block in the figure. The first
step would transform a T-TPN into an A-TPN with the
transformation function fBR that is already addressed by
Boyer and Roux (2008). The second step would use our
f transformation function, discussed in section 3.3. The
translator Python code automatically parses and converts
the T-TPN in the .ndr file into a Python file representing
the t-HtPN that can be given to the HeMU software tool
block for system health monitoring. It is then possible to
enrich the obtained model with expert information (EN-
RICH block)to define continuous dynamics or degradation
dynamics in order to simulate, diagnose and prognose
while keeping the explicit notion of time inherited from
the T-TPN initial model.

Fig. 6. Integration of the T-TPN/t-HtPN translator into
the HeMU operating chain

3 site: https ://gitlab.laas.fr/hymu/hemu.git

5. CONCLUSION

This article is part of the ambition to model complex
systems, and more particularly hybrid systems, in order
to carry out model-based diagnosis and prognosis.

It presents a transformation function between two sub-
classes of TPN and HtPN. The formal equivalence proof
between A-TPN and t-HtPN is provided. A Python code
is developed, enabling the conversion from a T-TPN model
with explicit time constraints to an enriched t-HtPN model
incorporating expert information on continuous dynamics
and degradation, crucial for health monitoring diagnostic
and prognostic functions. This t-HtPN model can be used
in the HeMU software. The transformation explicitly inter-
estingly preserves temporal constraints within the frame-
work of HtPN.

Future work will focus on the transformation from T-TPN
to A-TPN. This transformation was already discussed in
Boyer and Roux (2008), but it could be interesting to
implement it in our tool prototype, as T-TPN are the most
used formalism.

ACKNOWLEDGEMENTS

We would like to thank Amaury Vignolles for his work on
the HtPN formalism and the HeMu software.

REFERENCES

Berthomieu, B. and Vernadat, F. (2006). Time Petri nets
analysis with TINA. In QEST, volume 6, 123–124.

Boyer, M. and Roux, O.H. (2008). On the compared
expressiveness of arc, place and transition time Petri
nets. Fundamenta Informaticae, 88(3), 225–249.

Chanthery, E., Ribot, P., and Vignolles, A. (2019). HyMU:
a software for hybrid systems health monitoring under
uncertainty. In DX’19.

David, R. and Alla, H. (2010). Discrete, continuous, and
hybrid Petri nets, volume 1. Springer.

Gehlot, V. (2019). From Petri nets to colored Petri nets:
A tutorial introduction to nets based formalism for
modeling and simulation. In 2019 Winter Simulation
Conf., 1519–1533. IEEE.

Henzinger, T.A. (1996). The theory of hybrid automata.
In Proceedings 11th Annual IEEE Symposium on Logic
in Computer Science, 278–292. IEEE.

Lakos, C. (1995). From coloured Petri nets to object Petri
nets. In Application and Theory of Petri Nets, 278–297.
Springer.

Liu, D., Wang, J., Chan, S.C., Sun, J., and Zhang, L.
(2002). Modeling workflow processes with colored Petri
nets. computers in industry, 49(3), 267–281.

Peterson, J.L. (1977). Petri nets. ACM Computing Surveys
(CSUR), 9(3), 223–252.

Vignolles, A., Chanthery, E., and Ribot, P. (2021). A
holistic advanced diagnosis approach for systems under
uncertainty. In DX’2021.

Vignolles, A., Ribot, P., and Chanthery, E. (2022). Mod-
eling complex systems with heterogeneous Petri nets
(HtPN). In DX’2022.

Wang, J. and Wang, J. (1998). Time Petri nets. Springer.

