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ABSTRACT

Virtual Reality (VR) is spreading to the general public but still has a
major issue: VR sickness. To take it into consideration and minimize
its occurrence, evaluation methods are required. The current meth-
ods are mainly based on subjective measurements and therefore have
several drawbacks (e.g., non-continuous, intrusive). Physiological
signals combined with Machine Learning (ML) methods seem an
interesting approach to go beyond these limits. In this paper, we
present a large-scale experimentation (103 participants) where phys-
iological data (cardiac and electrodermal activities) and subjective
data (perceived VR sickness) were gathered during 30-minute VR
video game sessions. Using ML methods, models were trained to
predict VR sickness level (based on the physiological data labeled
with the subjective data). Results showed an explained variance
up to 75% (in a regression approach) and an accuracy up to 91%
(in a classification approach). Despite generalization issues, this
method seems promising and valuable for a real time, automatic
and continuous evaluation of VR sickness, based on physiological
signals and ML models.

Index Terms: H.1.2 [Models and principles]: User/Machine
Systems—Human factors; I.3.6 [Computer graphics]: Methodology
and Techniques—Ergonomics

1 INTRODUCTION

Consumer-grade Virtual Reality (VR) equipment is now broadly
distributed on the public market. However, one of the remaining
pitfalls to its usage is cybersickness in VR (i.e., ”sickness or general
feelings of malaise experienced due to exposure to VR” [119]). Con-
sequently, it is still necessary to propose some solutions to reduce
and, if it is possible, eliminate the occurrence of cybersickness. For
that, be able to measure it precisely seems an essential preliminary
step. The current methods are only based on subjective evaluations
with some limitations: they are offline, non-continuous, temporally
imprecise and non-automatic. An automatic cybersickness recog-
nition could be useful to adapt, potentially in real time, the content
to provide the most comfortable and adapted VR experience to the
user. Indeed, the current countermeasures proposed to reduce the
occurrence of cybersickness, such as reduction of the Field Of View
(FOV) [34, 40], are almost always done regardless of the current
state of the user. Consequently, they could reduce the immersion
and therefore feeling of presence [75] even if the user does not ex-
perience any trouble. Ideally, these methods must be tailored to
the actual feelings of the user. For this purpose, in this paper, we
present a large-scale experiment (103 participants) to detect VR
sickness based on physiological signals and Machine Learning (ML)
algorithms.
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In this paper, we present a solution to detect in real-time the
perceived cybersickness of users in VR. The Section 2 presents an
overview of related work. The Section 3 describes the study, which
was conducted to assess the physiological activity (i.e., electrodermal
and cardiac) of 103 participants in the context of VR games. The
processing chain of the collected data are presented including the
feature extraction and the normalization of physiological data to
reduce the inter-individual variability. The Section 4 presents the
recognition performance of trained models to detect cybersickness
in VR, using machine learning algorithms. Inferential statistics on
extracted features and several data splitting are compared. The best
configurations reached a recognition performance of 91% for two
level of cybersickness and a variance explained of 75% in regression
approach. Moreover, to fill the gap of prior works, the generalization
to new users is explored and showed limitations of the trained models.
Finally, these results are further discussed in Section 5; and Section
6 provides the concluding remarks. Finally, 3 main contributions
are provided by this work: (1) a machine learning approach for
VR sickness recognition based on only two physiological activity
(cardiac and electrodermal); (2) training and evaluation on a large
dataset (103 participants); (3) evaluation of the generalization of
trained models to new users. The experimental results also provide
insights on the methods of normalization.

2 RELATED WORK

2.1 Cybersickness in VR
In this paper, we will use indistinctly the terms ”cybersickness” and
”VR sickness”.

2.1.1 Definitions and theories
Cybersickness in VR can broadly be defined as the feeling of dis-
comfort that users can experience while using VR devices [119].
In VR, the most common conflict is a discrepancy between the
motion information coming from two separate systems [90]: the
vestibular system (i.e., sensory system related to the sense of bal-
ance, self-motion and spatial orientation located in the inner ear)
and visual system (i.e., central nervous system related to the pro-
cess of visual details [54]). This discrepancy will be detected by
the brain [20, 63] and will induce, within sensitive participants, the
symptoms of VR sickness. Several theories have been proposed to
explain the causes of VR sickness: the poison theory [12], postural
instability theory [71], rest frame theory [103, 104] and sensory
conflict theory [109] (see Davis [30] or Martirosov [85] for a review
on cybersickness). The most widely accepted theory is the sensory
conflict theory [109].

2.1.2 Cybersickness induction
Cybersickness in VR is a complex phenomenon in which motion
cues play a primary role [10, 33]. However, several other factors are
involved in the VR sickness etiology, grouped into 3 main categories:

• Characteristics of the stimuli (e.g., FOV [41, 130], reactivity
of the system [64], spatial frequency [10, 33])



• Predispositions of the users (e.g., gender [97], age [4], migraine
predisposition [29])

• Users’ past experiences [10]

2.1.3 Cybersickness symptomatology
Nausea and vomiting are the most evident and detrimental symptoms
of cybersickness [86]. Other symptoms like headache, disorientation
and eye strain can occur [11, 56, 110]. The intensity as well as the
duration of the symptoms are quite variable. In the majority of
cases, the symptoms disappear some minutes after the end of the
stimulation. However, some studies report the persistence of the
symptoms several hours after the VR experience [89, 91].

2.1.4 Cybersickness reduction methods
Over the years, multiple methods to reduce cybersickness has been
proposed such as virtual nose [128], dynamic blur [17], or reduction
of the FOV [18, 130]. Recently, eight methods from the prior re-
search have been implemented in an open-source software package,
called GingerVR, for the Unity game engine [3]. Nevertheless, these
methods are almost always applied regardless of the actual state of
the user.

2.2 Cybersickness in VR: measuring methods
2.2.1 Subjective methods
The usual way to evaluate VR sickness is based on subjective ques-
tionnaires. This approach seems relevant because it is based on
actual and declared user perception of sickness level. Thereby, var-
ious questionnaires have been previously proposed to assess VR
sickness. The most popular is probably the ”Simulator Sickness
Questionnaire” (SSQ) [56]. Some adaptations to VR have been
recently proposed [59, 112]. While still widely used for the sim-
plicity of its deployment and analysis, the subjective methods are
not flawless. Indeed, subjective evaluations are generally done af-
ter the experiment. Thus, only a punctual, a posteriori and global
measure of the user perception can be gathered [52]. Moreover, the
participants have to explicitly perform a self-assessment of their
state. To cope with these limitations, some online subjective eval-
uation of VR sickness (i.e., evaluation during the task) have been
tested [57, 58, 133] but they can lead to intrusiveness. Indeed, the
explicit self-assessment can interfere with the task that the partic-
ipant was performing and reduce the feeling of presence [42]. In
summary, subjective measurements are easy to pick up [94], but do
not allow continuous, automatic and real time measurement of VR
sickness. For these reasons, various researchers have investigated
the possibility to exploit the users’ physiological data to assess VR
sickness in real time.

2.2.2 Physiological methods
The conflicting inputs from visual, vestibular and somatosensory
afferents at the origin of VR sickness induce a vestibular autonomic
response [115, 131]. Such response, due to the connections between
vestibular and autonomic nervous systems [99], implies both the
sympathetic and parasympathetic activities [28, 38, 45, 63]. These
activities could consequently be detected and exploited to assess the
occurrence of VR sickness or motion sickness.

Various physiological parameters, requiring more or less intrusive
sensors, have been studied to assess their reliability as indicators
of VR sickness. Studies adopting intrusive sensors concern, for in-
stance, the gastric activity and, in particular, the gastric tachyarrhyth-
mia (increased electrogastrography activity in the 4-to 9-cycles/min
frequency) are correlated with motion sickness according to the prior
studies [51, 65]. Using respiratory sensors, some authors like Denni-
son [31] found a significant negative interaction between breathing
rate and cybersickness symptom severity adopting a regression anal-
ysis. Lastly, Chen [23] found five brain processes (for instance the

augmentation of the theta and delta bands in the occipital areas)
related to motion sickness using a 32-channel EEG system.

Using less intrusive sensors, some research have been conducted
on the electrodermal and cardiac activity [9, 80, 81]. For instance,
concerning the electodermal studies, Golding [47] founded that pha-
sic skin conductance activity on the forehead correlates with motion
sickness onset and recovery. The study of Meusel [87] showed a
weak but significant correlation between EDA and nausea subscale
of the SSQ. More recently, Plouzeau et al. [102] demonstrated that
the EDA variation over time could be used for estimating the VR
sickness. Finally, concerning the works conducted on cardiac ac-
tivity, for example, Yokota [132] emphasized a significant effect of
motion sickness over the cardiac activity manifested by an increase
of Low-Frequency power and a decrease of the High-Frequency
power of the Heart Rate Variability (HRV). This result is coherent
with previous research (e.g., [36]) that found a significant reduction
in the power spectral density of the R-R interval (at the medium and
high frequencies) during a vestibular disorientation test.

2.2.3 VR sickness recognition using physiological data: an
application of Machine Learning approach
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Figure 1: Machine Learning approach: Training and Testing

As previously presented, numerous studies (e.g., [31, 47, 51, 65])
supported the hypothesis of an existing relationship between the
physiological responses and VR sickness. However, the exploitation
of physiological data and its relation with VR sickness is complex
especially due to their non-linear relationships [32, 84] and the large
inter-individual variability (e.g., [95]). Thus, to handle this complex
data and respect constraints of real time automatic measurement, the
classical statistical methods of data analysis (e.g., linear regression)
are not suitable. In this context, the use of Machine Learning (ML)
models seems promising and has spread in recent years [73], includ-
ing the field of cybersickness recognition [74]. Using supervised
techniques [66], the training of ML models intends to automatically
infer the function between the input data (i.e., extracted physiologi-
cal features) and output data (i.e., subjective responses) [94]. This
way, after training, these models could provide a relevant method to
automatically recognize VR sickness, in real time, using the physio-
logical data without requesting a subjective response: see figure 1.

3 EXPERIMENT

In line with the previous research, the possibility to recognize VR
sickness using Machine Learning and physiological signals was
evaluated in the current study. For this purpose, an experiment was
conducted in order to collect physiological and subjective data during
VR video game sessions. The main long term goal is to facilitate the
study of cybersickness and the real-time in-game adaptation using
only few intrusive physiological sensors.

While physiological measures have several advantages over the
subjective methods (e.g., like their ability to provide information in
real time and continuously [27]), all the physiological measures do



not satisfy the criteria of low intrusiveness required in the frame of
our study. For this reason, only two physiological responses were
gathered: the cardiac and the electrodermal activities. Thereby, as
previously explained, various studies showed a relationship between
the Heart Rate Variability (HRV) (e.g., [36, 44, 132]) as well as
the electrodermal activity (EDA) (e.g., [47, 80, 87, 102]) and the
VR or motion sickness. These physiological signals can be easily
gathered [108] and are suitable for consumer or industrial use. For
instance, other studies integrate EEG (e.g., [92]), electrogastrogram,
electrooculogram and respiratory devices (e.g., [31]). The use of
such laboratory-grade devices increase the diversity of physiological
data collected but they can be intrusive and complex to deploy out
of a laboratory. In the same way, a majority of physiological studies
are conducted using devices like the Biopac MP150 [31] or Biopac
MP100 [92] that grant an accurate collection and synchronization of
the different physiological data. Nevertheless, due to their cost and
complexity, they are usually reserved to specialized laboratories.

Even if ML models have already been exploited to recognize VR
sickness (e.g., [31,53,92,96]), our research differs from the previous
studies in various aspects. Indeed, to the best of our knowledge,
no study has been conducted at large scale using only cardiac and
electrodermal activities with the objective to recognize VR sickness
using ML algorithms. Another peculiarity, our study explicitly aims
to obtain non-intrusive, online and automatic recognition of the VR
sickness level while using interactive VR content in natural settings.
This choice imposed a series of constraints concerning the content,
the data used for the ML training and the adopted physiological
sensors, these constraints were absent in the other studies.

Regarding the content presented to the user, only few researchers
(e.g., [53]) opted to use interactive content (i.e., video games) while
the majority of studies preferred to use non interactive content like
360-degree videos (e.g., [96]) or ad-hoc and simplified environments
(e.g., [31]). Our choice to use various prototypes of commercial
games instead of ad-hoc environment should increase the ecological
validity of our study and the generalization of our recognition model.

Considering the data exploited by the algorithms, only the physi-
ological responses of the participant, easily measurable, were con-
sidered without exploiting any information concerning the content.
Exploiting information concerning the content like the optical flow
could be used to increase the accuracy of the predictions [96], but
it requires access to the content itself. In our study, the choice to
focus only on the physiological data was also dictated by the need
to be able to apply our method to any VR environment (e.g., HMD,
CAVE), without having access to the content itself. This could be
particularly valuable to assess commercial products in case of pro-
prietary and/or confidential contents. Moreover, it may improve the
generalization of the approach across contents.

All these constraints, introduced by the willingness to propose an
operational and easily deployable VR sickness assessment solution,
suitable for commercial and industrial use, have strongly influenced
the protocol details.

3.1 Participants

One hundred and three (103) participants (86 men and 17 women -
mean age = 26.12; standard deviation = 6.31) were involved in the
study. All declared a normal or corrected-to-normal vision (contact
lenses). The selected participants could already have experienced
VR but should not be professional gamers or regular users of VR (i.e.,
no more than few VR experiences). To ensure of the VR sickness
induction, they may be susceptible to the cybersickness according
to Motion Sickness History Questionnaire [55]. They declared to
be free of any medical treatment likely to affect cognitive state or
proprioceptive systems. Participants who reported illness likely to
influence cognitive state like migraine sensitivity, mental disorders,
vestibular disorders were excluded from the recruitment. All the
experimental procedures followed the guidelines of the Declaration

of Helsinki [5]. The participants were informed that they were free
to stop the experiment at any time. They also completed and signed
an informed consent form at the beginning of the session.

3.2 Measures
Two types of measures were collected: the physiological data and
the users’ Subjective Responses (SR). The physiological data was
collected using the Shimmer GSR+1. This device measures the
Blood Volume Pulse (BVP) using PhotoPlethysmoGraphy (PPG) as
the measure of cardiac activity and electrodermal activity (EDA).
Based on literature (e.g., [124]) and preliminary studies, the position
of sensors have been evaluated to select the ones that maximize the
sensor sensibility and minimize the noise, without increase the intru-
siveness. The BVP sensor was placed at the extremity of the little
finger [79, 121]. The EDA sensors were placed on the middle pha-
lanx of the two first fingers of the non-dominant hand [13,124]. The
data was gathered in a continuous way (sampling frequency = 128
Hz) during the experimental session. The subjective data (i.e., per-
ceived cybersickness) was collected following the method proposed
by Keshavarz and collaborators [57]. Participants were instructed to
express orally their perceived VR sickness level on a scale from 0 to
20 in response of auditory stimuli presented every 45 seconds (re-
gardless the current content of the game). A score of 0 corresponds
to the lowest level and a total absence of VR sickness symptoms. A
score of 20 corresponds to the highest level of VR sickness state in
which participants lose completely their autonomy. According to
Keshavarz et al. [57], this scale is strongly correlated (r = .79) with
the gold standard SSQ [56]. All data were referenced to the same
clock to avoid asynchrony (participant PC clock).

3.3 Experimental Protocol
The participants were requested to test two games selected among
five VR game prototypes during 30 minutes. Since our final goal
was to use the developed solution during real VR customer ex-
periences like VR game experiences, our strategy was to build a
training database representative of the different games experiences
and the various hardware setups to increase the generalization of
our trained models. Thus, the VR devices and game experiences
were voluntarily diversified to grant the effectiveness of the algo-
rithms independently from the content and the VR device adopted
by the end-user. The participants were seated throughout the experi-
ence. They were equipped by an Oculus Rift VR (93 participants) or
HTC Vive helmet (20 participants). The VR game prototypes were
launched on a high-end VR ready computer (Nvidia GTX 1070,
Intel Xeon E2100, 16 Go of RAM). The VR game prototypes were
interactive games currently under development. They have been
selected as they offer a variety in gaming situations and potential
occurrences of cybersickness that users can encounter in the VR
gaming. Thus, they imply a relevant variety of motion commonly
present in video game, especially in terms of amount of camera and
avatar movements: walk, run, drive and flight, as well as first and
third points of view (POV). The games were a space simulation, an
arcade car racing game, a space first-person shooter, a horror explo-
ration puzzle game and an astronaut space simulation. None of the
typical countermeasures to prevent VR sickness (e.g., reduction of
the peripheral vision, fake nose or camera rotation constraints) were
implemented in these prototypes. All games have similar framerates
and lag times. Xbox 360 gamepad was used for the arcade car racing
game and the Oculus Touch was used for the remained games. The
distribution of participants per game is provided in Table 1.

A double audio ”beep” played every 45 seconds was used to
indicate to the participant to give their subjective VR sickness level.
The soundtrack was played in addition to the VR game sounds in
the audio headset. The subjective VR sickness levels orally given by

1http://www.shimmersensing.com/products/shimmer3-wireless-gsr-
sensor



the participants were recorded with the microphone integrated in the
Head-Mounted Display (HMD). After the presentation and setup of
the different devices and sensors (see figure 2), the participants were
instructed to give orally their current subjective VR sickness level
(scale from 0 to 20) each time they heard the sound signal. Next,
participants were instructed to play ”as if they were at home”. In
this way, they were instructed to do what they wanted into the game
prototypes, to follow their natural way of play and not to interact
with the experimenters except if they needed it. Each participant
played 2 games during 30 minutes (15 minutes for each game). The
second game was launched by an experimenter without removing
the participants VR helmet. After each experimental session, the
SRs were transcribed with the corresponding timestamps.

Figure 2: Participant with full devices and sensors

Physiological
signal

Time
Rest time

Subjective
Response 1

SR 2 SR 3

Baseline Sample 2

Sample 1

Window of data used to computed physiological features

Figure 3: Rest time, Baseline and Subjective Responses

Table 1: Descriptive statistics on game

Game
Space
simula-
tion

Arcade
car
racing
game

Space
first-
person
shooter

Horror
explo-
ration
puzzle
game

Astronaut
space
simula-
tion

Female 1 15 15 0 1
Male 14 62 57 11 9
Total 15 77 72 11 9

3.4 Features extraction
To fully exploit the raw physiological signal, it is necessary to ex-
tract specific features [1]. For this purpose, physiological responses
related to perceived sickness need to be extracted. Thus, for each
of the reported SR, a fixed-size window (several window sizes have
been explored: 10, 30, 60, 90, 120 seconds) of the raw physiological
data (BVP and EDA) was extracted. Thus, the X seconds of physio-
logical data before the SR are extracted to estimate the physiological
features (X corresponding to the evaluated window size) [42]: see
figure 3. The number of labeled data corresponds to the number of
collected SRs. Thus, for the 10 and 30 seconds window sizes, the
physiological windows are not overlapped (i.e., physiological data
are used only for 1 SR). For the 60, 90 and 120 seconds, physiologi-
cal windows are overlapped (i.e., same physiological data are used
for several SRs).

Based on these windows of physiological signals, the common
features from the relevant state of the art were used.

Concerning the cardiac activity, time-domain and frequency-
domain features based on the InterBeat Interval (IBI), related to the
HRV, were extracted [68]. To estimate the IBI, a bandpass filter was
firstly applied (cutoff frequency = [0.66; 3.33] Hz, order = 3) to
only select the normal cardiac activity between 40 and 200 beats per
minute and reduce noise such as user’s motions [1]. Then, the peaks
on the BVP signal are detected using a threshold (arbitrarily set) and
an estimation of local minima/maxima [122]: see figure 4. Based
on these IBI, 6 time-domain and 5 frequency-domain features were
computed: see table 2.

Figure 4: InterBeat Interval (IBI) on BVP

Concerning the electrodermal activity, the signal is composed
of two parts: the phasic and tonic part [13]. The phasic part (also
called Skin Conductance Level - SCL) corresponds to slow changes
in the EDA while the tonic part (also called Skin Conductance
Responses - SCR) corresponds to the rapid physiological responses
to a stimulus. Different steps compose the process of extracting
those two components from the raw signal. A low-pass filter (cutoff
frequency = 1Hz, order = 3) is firstly applied to reduce noise in the
signal [13]. Then, the tonic part of EDA is extracted from this filtered
signal using a low-pass filter (cutoff frequency = 0.05Hz, order = 3)
and averaged over the whole filtered signal [14]. The phasic part is



obtained by subtracting the tonic signal to the filtered signal. On the
phasic part, 9 features were calculated on the estimated EDA peaks2.
On the tonic part, 29 features were extracted: see table 2. A part of
these features are based on previous research from other domains
suggesting the introduction of features related to the frequency-
domain of EDA [77,111,113], or also the use of a data-driven signal
decomposition called Empirical Mode Decomposition (EMD) [49].

In summary, 50 features were computed based on the raw BVP
and EDA signals: see table 2.

Table 2: Extracted physiological features

Cardiac features
Time-domain features
Heart Rate
Average of NN intervals
Standard deviation of NN intervals
Root mean square of successive differences between NN inter-
vals
Number of interval differences of successive NN intervals greater
than 50 ms
Percentage of interval differences of successive NN intervals
greater than 50 ms
Frequency-domain features
Very Low Frequency (0.003 to 0.004 Hz)
Low Frequency (0.04 to 0.15 Hz)
High Frequency (0.15 to 0.4 Hz)
Ratio of Low Frequency and High Frequency
Total Spectral Power
EDA features
Tonic EDA features
Mean, Standard deviation, Maximum, Range, Inter-quartile
range and Root mean square error of EDA signal
Mean absolute value of 1st differences of the EDA signal
Mean absolute value of 2nd differences of the EDA signal
Mean absolute value of the 1st differences of the standardized
EDA signal
Mean absolute value of the 2nd differences of the standardized
EDA signal
Skewness and Kurtosis of EDA signal
Mean, Standard deviation, Min and Max of 3 Intrinsic Mode
Functions (IMFs)
Very low frequency (0 to 0.1 Hz)
Low frequency (0.1 to 0.2 Hz)
Middle frequency (0.2 to 0.3 Hz)
High frequency (0.3 to 0.4 Hz)
Very high frequency (0.4 to 0.5 Hz)
Phasic EDA features
Number of EDA peaks
Mean, SD, min and max of EDA peak amplitude
Mean, SD, min and max of half of recovery time of EDA peaks

3.5 Baseline and Normalization
Previous research in other fields showed an important variability
between participants concerning the physiological responses (e.g.,
[8, 42]) which could be an important limitation to the recognition

2An EDA peak is especially characterized by the amplitude (the height
of the peak) and recovery time (time to return to the level EDA before the
peak) [13, 117]

performance (e.g., [129]). So, several approaches were proposed in
the literature in order to reduce the influence of the inter-individual
variability. Concerning the EDA, the most common approach is
to collect data during a rest time (i.e., baseline; see figure 3) and
subtract the mean value of EDA during this rest time on the whole
signal [14]. This method aims to provide comparable data between
participants even if their EDA levels are different (inter-individual
variability). Nevertheless, it cannot be applied to periodic signal
such as BVP3. Conversely, deal with inter-individual variability at
feature level seems a more interesting approach [94] as it can be
applied to all signals. Thus, two types of approaches have been
previously proposed:

• Normalization by substracting at feature level (NFL): For
each participant, subtracting the features estimated for each
subjective response with the features estimated during the
baseline [24, 61, 118];

• Normalization by adding to feature map (NAF): For each
participant, adding the features estimated during the baseline
to the dataset (i.e., the feature space) [101, 123].

In the current study, the following approach is applied for each
participant: (1) extraction of the physiological features; (2) selec-
tion of the values of the physiological features during the baseline
(window of physiological data collected during the rest time); (3)
subtraction of these values to all other samples of the participant
(NFL method) or addition of these values to the feature space to all
other samples of the participant (NAF method). The NSF and NAF
methods have been evaluated on the same data. For this purpose,
a window of physiological data collected during the rest time was
used at baseline (the window size is equal to the window used for
extracting the physiological features). Otherwise, rest-phase corre-
sponds to the phase where participants are listening instructions for
the experiment. They do not have to move and they do not wear the
VR helmet.

3.6 Machine Learning
Based on the extracted physiological features and related subjective
responses, models were trained to detect VR sickness level using
supervised Machine Learning (ML) algorithms. Thus, the training
were done in the way to infer the function between the input data (i.e.,
extracted physiological features) and output data (i.e., subjective
responses) [94] without explicitly defining the relationship [7]. In
this way, trained models could provide a VR sickness estimation
only based on physiological features without requesting any user
evaluation (see figure 1). For this purpose, three ML algorithms were
evaluated: Support Vector Machine (SVM) [50], Gradient Boosting
(GB) [43] and Random Forest (RF) [15]. All training were realized
using R [106] and the library caret [69].

In summary, the following parameters were explored and evalu-
ated:

• Input: 50 extracted physiological features for each SR

– Normalization: No normalization, NFL, NAF

– Window size: 0, 30, 60, 90, 120 seconds

• Output/Label: Subjective Responses

– Regression approach: SRs are considered as continu-
ous values

3The BVP signal is a periodic signal unlike the EDA which is a non-period
(aperiodic) signal. Thus, subtract the mean value of BVP (estimated during
the baseline) will only bring the BVP signals to the same level (roughly the
same mean). But, the features related to the BVP signal are based on the IBI
which is not influenced by the mean level.



– Classification approach: SRs are divided into classes

• ML models: Support Vector Machine (SVM) [50], Gradi-
ent Boosting (GB) [43] and Random Forest (RF) [15] were
evaluated.

• Training strategies: Person-dependent models (one model
per participant), Group models (10-fold cross-validation on all
data), and person-independent models (LOOCV).

4 RESULTS

In total, 3022 SRs were collected (see table 3 for the data distri-
bution). The participants are asked to provided their SR every 45
seconds, theoretically corresponding to more than 3022 SRs (103
participants *≈ 30 min * 60 seconds / 45 seconds per SR). However,
some participants continued to play and forgot to provide some SRs
in response to the beep sound (e.g., during a complex action in the
game, beep sounds were masked by game sound). Moreover, the
duration of VR game can vary according to the selected games.

Based on the gathered SRs, regression and classification ap-
proaches were evaluated. Indeed, the SR are numeric values be-
tween 0 (i.e., no discomfort) and 20 (i.e., barely supportable sick-
ness). They can be considered as a continuous variable (regression
approach) or divided into classes (classification approach) [94].

Table 3: Contingency table of SRs

SR 0 1 2 3 4 5 6 7 8 9 10 11 12
N 1887 291 373 151 122 103 27 29 14 6 13 5 1

4.1 Statistical analysis
Before training models to detect VR sickness, some statistical analy-
sis have been conducted. The extracted physiological features were
compared between two classes: C1: SR =<1 and C2: SR>= 2 (see
table 4). As data are repeated, mixed models were used to assess
statistical effects using the R statistical software [107] with the lme4
library [6]. The participants were considered as a random factor,
and the SRs were considered as a within-subject factor. Analyses
showed significant (p < .05) differences between the two classes on
the following features: mean, max and range of EDA signal, number
of EDA peaks, mean, SD, min, and max of amplitude of EDA peaks,
Mean absolute value of 1st differences and of the 2nd different of
the EDA signal and also on very low, low, middle, high and very
high frequency of EDA. Similar results were found with the data
splitting C1: SR = 0 and C2: SR >= 1.

Table 4: Data splitting on SRs

2 classes
(see table 6)

2 classes
(see table 7)

3 classes
(see table 8)

C1: SR =< 1 C1: SR = 0 C1: SR = 0
C2: SR >= 2 C2: SR >= 1 C2: SR >= 1 & =< 2

C3: SR >= 3

As previously explained, several ML algorithms were tested but,
due to space limitation4, only the best combination of parameters
are listed. Thus, Random Forest (RF) presented almost always the
best performance on the dataset as in similar contexts (e.g., [37]).
Consequently, only the results estimated using this algorithm will be
presented. The number of trees as well as the number of randomly
selected predictors at each cut in the tree were tuned during the
training of RF. As the evaluation of feature selection (i.e., principal
component analysis) showed no improvement of the recognition

4Please contact the first author for details

accuracy and as the tree-based models are generally robust against
unhelpful features, all the features per sensor were considered.

4.2 Group models - Cross-Validation 10-fold

To evaluate the performance of the models obtained, all results
were computed using a 10-fold cross-validation method [94, 114].
Technically, the initial dataset (i.e., the 3022 labeled physiological
data window) is divided into 10 sub-samples. One sub-sample is
used as the testing dataset. The other 9 samples are used for training.
It is repeated 10 times (i.e., for each sub-sample). The average result
on the 10 sub-samples is used as the final result.

4.2.1 Regression approach

Using the regression approach, the SRs are considered as a con-
tinuous variable. Models were trained to produce a numeric value
between 0 and 12 (i.e., range of collected SRs; see table 3) based on
the labeled physiological data. Using several sizes of window and
type of normalization, regression models were trained to recognize
VR sickness: see table 5. To evaluate the recognition performance,
three metrics were used: Root Mean Square Error (RMSE)5, Mean
Absolute Error (MAE)6 and R-squared (R2)7. To facilitate the eval-
uation of the results, performance of a naive model corresponding to
the mean of SRs was presented. The variable importance calculated
on the model showing the best performance are the following top-10
features 8: mean of IMF3 during the baseline (100.00), pNN50
(73.87), mean absolute value of 1st differences of the EDA signal
(71.27), HR (65.91), mean absolute value of 2nd differences of the
EDA signal (64.98), min of peak amplitude (62.45), Mean absolute
value of 2nd and 1st differences of the standardized of EDA signal
during the baseline (respectively 62.40 and 60.70), min of half re-
covery of EDA peaks (59.28), nn50 (57.97), Mean absolute value of
2nd and 1st differences of the standardized of EDA signal (57.07).

Table 5: Influence of window size and type of normalization (Norm)
on recognition performance

Norm Metrics Window Size
10 30 60 90 120

Naive model
RMSE 1.83

R2 NA
MAE 1.34

No Norm
RMSE 1.66 1.59 1.52 1.48 1.42

R2 .19 .23 .32 .37 .42
MAE 1.17 1.11 1.07 1.01 0.96

NFL
RMSE 1.24 1.15 1.18 1.15 1.14

R2 .56 .62 .60 .62 .63
MAE 0.81 0.78 0.76 0.75 0.75

NAF
RMSE 1.03 0.99 0.97 0.95 0.94

R2 .69 .72 .73 .74 .75
MAE 0.60 0.59 0.56 0.55 0.53

5RMSE =

√
∑

n
i=1(ŷi−yi)2

n where yi corresponds to the predicted value and
ŷi to the correct value.

6MAE =

√
∑

n
i=1 |ŷi−yi |

n where yi corresponds to the predicted value and ŷi
to the correct value.

7R2 =
Residual sum of squares

Total sum of squares
8The feature importance was estimated based on the impurity decrease. It

corresponds to the mean decrease in impurity averaged over all nodes where
that feature was used to split the node [105]



4.2.2 Classification approach

The SR can be also classed by grouping the SR values into sub-
classes (e.g., two classes: SR =< 1 corresponding to the class 1 and
SR >= 2 corresponding to the class 2). Based on the data distribution
and over-representation of SR close to 0 (see figure 3), several data
splitting on SR were evaluated: see table 4. The results are presented
in the tables 6, 7 and 8.

Only the best configuration in the regression approach (i.e., win-
dow of 120 seconds and NAF normalization) were presented in the
classification approach. Several metrics were used to measure the
recognition performance: Accuracy, Kappa, Sensitivity, Specificity,
Precision and F1. The Accuracy9 varies between 0 and 1 (0 = all
data are misclassified and 1 = all data are correctly classified). The
Kappa10 metric [70] is based on the comparison of the observed
accuracy with the expected accuracy (corresponding to the random
chance). The Sensitivity measures the proportion of positive classes
(e.g., SR = 1 identified as SR = 1) that are correctly identified. The
Specificity measures the proportion of negative classes (e.g., SR
!= 1 identified as SR != 1) that are correctly identified. The Pre-
cision measures the ratio of true positives to combined true and
false positives. The F1 score is the harmonic mean of Precision and
Sensitivity.

Table 6: Classification performance (confusion matrix) on 2 classes
problem (SR =< 1 and SR >= 2)

Reference

Prediction

C1
(SR =<1; 71.3%)

C2
(SR >=2; 28.7%)

C1 68.0% 5.4%
C2 3.4% 23.3%

Accuracy (average) = .91 (Kappa = .78); Sensitivity = .95; Specificity = .81;
Precision = .93; F1 = .94

Table 7: Classification performance (confusion matrix) on 2 classes
problem (SR = 0 and SR >= 1)

Reference

Prediction

C1
(SR = 0; 61.6%)

C2
(SR >=1; 38.4%)

C1 57.4% 5.7%
C2 4.2% 32.7%

Accuracy (average) = .90 (Kappa = .79); Sensitivity = .93; Specificity = .85;
Precision = .91; F1 = .92

Table 8: Classification performance (confusion matrix) on 3 classes
problem (SR = 0; SR >= 1 & =< 2 and SR >= 3)

Reference

Pr
ed

ic
tio

n

C1 C2 C3
(SR=0;
61.6%)

(SR>=1 & =<2;
22.0%)

(SR>=3;
15.6 %)

C1 58.3% 4.7% 1.4%
C2 2.5% 15.7% 2.2%
C3 0.8% 1.9% 12.4%

Accuracy (average) = .87 (Kappa = .75); Sensitivity = .81; Specificity = .92;
Precision = .83; F1 = .82

9Accuracy= True Positive + True Negative
True Positive+True Negative+False Positive+False Negative

10Kappa = Observed Accuracy-Expected Accuracy
1 - Expected Accuracy

Table 9: Generalization - Classification performance (confusion matrix)
on 2 classes problem (SR =< 1 and SR >= 2)

Reference

Prediction

C1
(SR =<1; 71.3%)

C2
(SR >=2; 28.7%)

C1 67.5% 27.8%
C2 3.8% 0.9%

Accuracy (average) = .67 (Kappa = .02); Sensitivity = .96; Specificity = .06;
Precision = .70; F1 = .78

Similarly to the regression approach, the top-10 of variable im-
portance for each model have been extracted: see table 11.

Moreover, the models were trained on an unbalanced dataset (i.e.,
one or several classes are over-represented compared to the others).
Even if RF are suitable for this type of situation [16,98], it can lead to
weak performances. Several methods to handle unbalanced datasets
were evaluated (i.e., random up- and down-sampling [48], SMOTE
[22] and weights proportional to the class imbalance [35]), without
providing any increase on the ML performances and generalization.

4.3 Generalization

In the context of VR sickness recognition, a person-independent
recognition system seems desirable to provide an efficient tool. It
requires to be able to recognize cybersickness levels for new users
(i.e., unseen participant during the model training). For this purpose,
the generalization of our models was evaluated. This step is gener-
ally neglected in majority of studies implying physiological data and,
generally lead to weak accuracy [114, 125]. In the results presented
above, cross-validation was used during the models training. Thus,
some data of each participant could be seen by the algorithms during
the training. Indeed, using this method, the dataset is shuffled and
10-fold of data are created. Although no data point could be in
both the training and the testing datasets, some data gathered from
the same participant could be on the training and testing datasets.
Consequently, the results may be biased by this approach. In case
of weak generalization, for each new user, the model should be
retrained. That means, it could be necessary to collect physiological
data on the new user under sickness context and retrain the model.
So, in order to evaluate the generalization of trained models, another
method of validation was used: Leave-One-Out Cross-Validation
(LOOCV). This method consists of training a model on all partici-
pants except one [114]. Data of the discarded participant are used
to test the model. This process is repeated along all participants
(As 103 participants were involved in the current study, so 103 mod-
els were trained). This approach offers the possibility to evaluate
the generalization of the model by testing it on unseen participants.
Thereby, the parameters presenting the best performance using the
cross-validation method were used to evaluate the generalization of
our models to detect VR sickness level: RF algorithm, NAF normal-
ization, and window size of 120 seconds. Under regression approach,
the following results have been found: RMSE = 1.71, MAE = 1.52
and R2 = .14. Under classification approach, an accuracy of 67 %
with a Kappa of .02 has been found: see Table 9.

Lastly, to facilitate interpretation of performance, the previous
training strategies have been compared to person-dependent and
naive models. The results are presented in table 10.

4.4 Real-time Recognition

Based on the processing chain (i.e., filtering and features extraction)
and trained models described above, a Proof of Concept was im-
plemented in python using numpy, scipy and scikit-learn. It allows
to estimate VR sickness level every second: see figure 5. Prelimi-
nary evaluation showed that it is suitable for real-time applications
(detection provided in less than 30 ms).



Table 10: Summary of results according to the training strategy (R2

for regression and Accuracy for classification)

Training
strategy Regression 2

classes
2
classes

3
classes

Naive modelsa NA 62.4% 72.1% 62.4%
Person-
dependent
modelsb

.40 88.3%
(11.1)

89.0%
(10.7)

85.9%
(12.3)

Group modelsc .75 90.1% 91.7% 86.2%
Person-
independent
modelsd

.14 57.3% 68.3% 58.5%

a Model predicts the mean (regression approach) or the most
represented class (classification approach)

b One model for each participant (models trained and test on data
of each participant)

c Models trained on all participants
d Models trained on all participants except one and tested on

this remained participant. The process is repeated along all
participants.

Figure 5: Interface of real-time VR sickness detection

5 DISCUSSION

Cybersickness appears as an huge barrier for the mass adoption of
VR. Despite some recent technological equipment improvements
to reduce the effects of VR sickness (e.g., reduced latency, refresh
improvement, adjustment of FOV [18, 130]), this drawback is still
present. Previous research showed that physiological measurements
labeled with subjective data can be an efficient approach to recognize
cognitive states (e.g., [78, 82]). Thus, sensors whose physiological
data has been mapped to subjective data may represent a relevant
approach for measuring cybersickness. The current study was con-
ducted in order to train models to recognize VR sickness based on
physiological signals. Results showed an interesting recognition
performance of up to 75 % of explained variance using regression
approach and up to 91 % of accuracy using classification approach.
First, it can be noted that the features significantly related to in-
creased cybersickness (see Section Statistical analysis) are similar
to those having the most importance in RF models (see Table 11).
This confirms the relevance of the trained models and the selected
features. Second, several previous studies have attempted to set
up physiological measurements for cybersickness. For example,
Kim et al. [62] presented a study aggregating several physiological
responses (i.e., cardiac, electrodermal and gastrointestinal activi-
ties). They found a correlation between some physiological data and
the severity of cybersickness. Based on electroencephalogram and

Table 11: Features importance according to data splittinga

Rank C1=<1; C2>=2 C1=0; C2>=1
1 EDA - MAV of the 1st dif-

ferences of the stzd signal
during baseline (100.00)

EDA - Min amplitude dur-
ing baseline (100.00)

2 EDA - Number of peaks
during baseline (98.42)

EDA - SD of IMF1 during
baseline (54.93)

3 EDA - Mean of IMF2
(93.29)

MAV of the 2nd differ-
ences of the stzd signal
(53.35)

4 EDA - MAV of the 2nd dif-
ferences of the stzd signal
during baseline (91.79)

EDA - Mean of half
recovery during baseline
(51.91)

5 Cardiac - Heart rate during
baseline (88.20)

Cardiac - Heart rate
(51.80)

6 Cardiac - pNN50 during
baseline (85.17)

EDA - Nb of peaks during
baseline (50.36)

7 Cardiac - NN50 during
baseline (81.71)

EDA - Mean of IMF3 dur-
ing baseline (48.48)

8 EDA - Mean of half recov-
ery time during baseline
(80.09)

Cardiac - pNN50 (47.35)

9 EDA - MAV of the 1st
differences of the signal
(76.08)

EDA - Min of half recov-
ery time (43.84)

10 EDA - Inter-quartile range
during baseline (70.36)

Cardiac - NN50 during
baseline (43.25)

Rank C1=0; C2>=1 & =<2; C3>=3)b

1 EDA - Min of peak amplitude during baseline (92.70)
2 EDA - Nb of peaks during baseline (56.79)
3 EDA - MAV of the 1st differences of the stzd during

baseline (55.68)
4 EDA - Mean of peak half of recovery during baseline

(54.21)
5 Cardiac - pNN50 (51.86)
6 Cardiac - Heart rate (51.34)
7 EDA - MAV of the 2nd differences of the stzd signal

during baseline (49.13)
8 Cardiac - LF/HF (48.63)
9 EDA - Max of signal (48.15)
10 Cardiac - NN50 during baseline (47.07)
a Acronyms: MAV = Mean Absolute Value; stzd = standardized
b Importance is averaged over the 3 classes

electrocardiogram measures using classical statistical modeling, Lin
and collaborators [76] distinguished three classes of cybersickness.
Dennison and collaborators [31] obtained an accuracy of 77.8% on 2
classes based on 8 sensors. Nevertheless, the comparison with prior
research is tricky due to the huge differences in terms of cybersick-
ness induction, sensors or methods of recognition between papers.
Li et al. [74] obtained a binary accuracy of 76.3% using EEG, cen-
ter of pressure, and the head and waist motion trajectories. These
approaches seem offer satisfactory performance but require multi-
ple sensors which can be particularly intrusive and difficult to use
(e.g., Electrooculography or Electrogastrogram). To the best of our
knowledge, there is no study with this type of protocol related to this
goal. First, only BVP and EDA were used to predict cybersickness
level. Moreover, the sensors used are relatively non-intrusive and
easily deployed in industrial and commercial context [108]. Second,
interactive contents (i.e., VR video games) and relatively ecological
context were used to induce VR sickness which can lead to noise in
the data (e.g., motion artifact) and imply a series of difficulties. The



choice to use interactive video games was essential to grant the value
of our recognition model for the entertainment industry, but such
choice introduced a first drawback: the increase of motion artifacts
in the physiological data [1] due to the fact that the participants
were not necessarily static. A second drawback connected with the
use of our content was that the used prototype video games were
created to be engaging: as consequence, the user emotional response
influenced the physiological activity of the participants [26]. Third,
no information about the content (e.g., quantity of motion) was ex-
ploited in the recognition model. Furthermore, even if our results
showed an improvement in some way compared to the state of the
art, the diversity of experimental settings (e.g., sensors, protocols
and ML algorithm) complicates the comparison between studies.
Finally, questions may arise about the ability of electrodermal sig-
nals to predict cybersickness. Indeed, some authors like [126] found
that the increases in skin conductance did not correlate with single
indices of motion sickness.

All these constraints, introduced by the need to have an opera-
tional and easily deployable VR sickness assessment solution ex-
ploitable for commercial and industrial use, made our task partic-
ularly challenging and could explain the differences in the perfor-
mances compared to the other studies in the VR sickness domain.
Moreover, the problem of generalization remains a huge scientific
limitation of physiological methods and is rarely explored in pre-
vious research especially due to weak accuracy [114, 125]. The
current research and generalization tests tend to show that the sys-
tem is quite efficient to identify cybersickness when the participant
has been already seen by the model during the training. Beyond
good recognition rates, comparison to naive and person-dependent
models confirm the relevance of our approach. Conversely, the sys-
tem shows weak performance when the player is unknown from
the system. This weak generalization could be related to the inter-
individual variability (e.g., [88]). Some methods of normalization
were tested in order to reduce this variability. These approaches
have improved the recognition performance without improving gen-
eralization. Although the sample of participants are relatively large,
it may not be enough to train a powerful system of VR sickness
recognition. Lastly, even if person-dependent models are less valu-
able than person-independent model, it can allow, after training, to
adapt a video-game in real time according to the cybersickness state
of the user. Indeed, current models can already perform cybersick-
ness detection in real time and can be used for the implementation
of cybersickness adaptive countermeasures. These contermeasures
could be a simple adaptation such as FOV reduction (which can
be applied regardless to the game) or more complex and game de-
pendent adaptation (e.g., modify the scenario of the game to avoid
the scenes most likely to induce cybersickness such as stairs or fast
movements). A phase of calibration of the model (i.e., the model is
adapted with user data), requiring labeling of the data by the user,
must be carried out and integrated in the game.

5.1 Limitations and Future Works

Different limitations inherent to this field of research can be cited.
First, the accuracy of the recognition model is perfectible. It is
likely that other factors besides cybersickness influence physiolog-
ical signals, making automatic recognition and generalization of
results more complex (e.g., motion [120], inter-individual variabil-
ity [129]). The proposed approach aims to deal with this point by
training models to link physiological responses to cybersickness
perception by the users. But, the work needs to be extended to eval-
uate the sensibility and specificity of the proposed detection models
of cybersickness and other sickness. Moreover, cybersickness may
generate delayed physiological responses [91], which would impact
the efficiency of real time recognition. Subjective scale can also
skew the data labeling. Indeed, this measure may be influenced
by memory process (e.g., peak-and-end effect [46], primacy and

recency effects [19]). Moreover, the subjective responses may also
suffer from inter-individual variability (i.e., people’s estimation of
the severity of their sickness can also highly vary across participants.
A score of ’3’ for person A may not be the same as a score of ’3’
given by person B). Nevertheless, as the individual sensitivity to
cybersickness is quite variable [2, 95, 127], the subjective measures
seem a more interesting solution than using the content (e.g., quan-
tity of motion) to label the physiological data to be closer to the
feeling of the individual. Lastly, the collected SRs are imbalanced
with a low average level of cybersickness. It is primary related to the
ethical and legal impossibility of voluntarily inducing too high level
of cybersickness. More, VR game prototypes have been deliberately
used to induce realistic levels of cybersickness present in the video
game market. The data collection could be extended to include more
extreme level of cybersickness and improve the generalization of
the proposed approach. However, the slightest cybersickness is not
acceptable for the user and the video game industry and should be
avoided as much as possible.

Gender consideration remains an important limitation in VR re-
search and women are underrepresented [100]. The current sample
needs to be extended to consider more women and improve the
generalization of our approach.

The main objective of the current paper is to build a detection
system based on physiological signals. In this way, the relationship
between the physiological responses and the subjective perception
of cybersickness has been explored through machine learning al-
gorithms. The protocol of induction aims to produce the greater
variability in physiological responses under cybersickness condition,
in a safe way (i.e., no high level of cybersickness). The way to induce
cybersickness is an important aspect and needs to be explored in
future studies to improve the generalization of the approach. In this
way, the content of stimuli could be more controlled in future studies
by exposing the participants exactly to the same stimulus. Neverthe-
less, it can be complicated in VR games as participants interact with
the games resulting in differences in the content viewed.

Some perspectives and possible improvements can be also formu-
lated. The electrodermal and cardiac activities gathering were based
on the Shimmer GSR+ sensor. Even if it is relatively not intrusive,
it can impose physical constraints on the participant. These physi-
ological activities are now easily gathered using wearable sensors
(e.g., Empatica E4) and could provide comparable information [108]
while being less intrusive. Furthermore, in the current study, Shallow
Learning approach was used. This approach involves the extraction
of statistical features (e.g., heart rate from electrocardiogram) from
raw data (based on extensive domain knowledge [1, 72]) followed
by the training of a model using ML algorithms [1, 67, 72]. Using
Deep Learning approach, the features extraction and the classifier
are trainable at the same time (i.e., end-to-end trainable model) [83].
This approach drastically increased recognition rates in other areas
(e.g., [25, 116]) and could be relevant for VR sickness recognition
based on physiological data. For this purpose, it would be nec-
essary to expand the present dataset. As mentioned previously,
inter-individual physiological variability may restrain generalization.
To solve this issue, some normalization methods have been tested,
but are still inefficient. New normalization methods (e.g., [93])
could be evaluated to improve the generalization. Another approach,
based on the training of more specialized models, could be used to
deal with the inter-individual physiological variability [78]. First,
in correspondence with their specific physiological responses, the
users could be categorized into subgroups. Then, based on this first
categorization, specifically trained ML models (specialized models)
could be appropriate for each users groups. Some studies have used
other physiological signals (e.g., ocular behavior) or other objective
data (e.g., postural sway or optical flow) to classify cybersickness
levels [39, 60, 62, 76, 96]. It will be relevant to test the improve-
ment due to inclusion of new types of data. For example, some



correlations are established between cybersickness and ocular be-
havior [62]. Otherwise, eye tracking will be soon widely available
in HMD offering potentially more information about physiological
changes induced by cybersickness. Research based on postural in-
stability theory also showed a link between postural sway and VR
sickness [21]. Thereby, embedded accelerometer and gyroscope
could provide a fully non-intrusive measure of the postural sway
and consequently of the VR sickness. Moreover, as cybersickness
is related to motion cues in the content (e.g., optical flow [96]), this
information could be integrated in the extracted features to perform
cybersickness classification. These areas for improvement could
enhance the generalization of our models and could be the topic of
future research.

6 CONCLUSION

The major issue of Virtual Reality is still the cybersickness despite
the technological improvements. To minimize its occurrence, it is
necessary to be able to detect it. The use of physiological data seems
to be an interesting approach. For this purpose, physiological signals
(electrodermal and cardiac activities) and perceived VR sickness
were gathered on 103 participants during VR video game sessions.
Using ML methods, models were trained to predict cybersickness
intensity and showed an explained variance up to 75 % (in a re-
gression approach) and an accuracy up to 91 % (in a classification
approach). Although the results are hopeful for the development
of a system requiring calibration steps for each participant, further
studies are required to find solutions for a person-independent recog-
nition model. To conclude, this study paves the way to a new method
to automatically and continuously detect cybersickness in VR based
on physiological signals and Machine Learning algorithms. This ap-
proach could help to better understand the VR sickness phenomenon
and the characteristics of inductive stimuli. Cybersickness recogni-
tion could be useful to evaluate VR content acceptability and offer
real time content adaptation.

ACKNOWLEDGMENTS

This study was carried out within b<>com, an institute of research
and technology dedicated to digital technologies. It received sup-
port from the Future Investments program of the French National
Research Agency (grant no. ANR-07-A0-AIRT).

REFERENCES

[1] M. Ali, A. H. Mosa, F. A. Machot, and K. Kyamakya. Emotion Recog-
nition Involving Physiological and Speech Signals: A Comprehensive
Review, vol. 109, pp. 287–302. Springer International Publishing,
2018. doi: 10.1007/978-3-319-58996-1 13

[2] B. Allen, T. Hanley, B. Rokers, and C. S. Green. Visual 3d motion
acuity predicts discomfort in 3d stereoscopic environments. Enter-
tainment Computing, 13:1–9, Mar. 2016. doi: 10.1016/j.entcom.2016
.01.001

[3] S. Ang and J. Quarles. GingerVR: An Open Source Repository
of Cybersickness Reduction Techniques for Unity. In 2020 IEEE
Conference on Virtual Reality and 3D User Interfaces Abstracts and
Workshops (VRW), pp. 460–463. IEEE, Atlanta, GA, USA, Mar. 2020.
doi: 10.1109/VRW50115.2020.00097

[4] L. Arns and M. Cerney. The relationship between age and incidence
of cybersickness among immersive environment users. In IEEE Pro-
ceedings. VR 2005. Virtual Reality, 2005., vol. 2005, pp. 267–268,
2005. doi: 10.1109/VR.2005.1492788

[5] W. M. Association. World Medical Association Declaration of
Helsinki: Ethical Principles for Medical Research Involving Human
Subjects. JAMA, 310(20):2191, Nov. 2013. doi: 10.1001/jama.2013.
281053
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