
HAL Id: hal-04578576
https://hal.science/hal-04578576v1

Submitted on 17 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Fast Plan Enumerator for Recursive Queries
Amela Fejza, Pierre Genevès, Nabil Layaïda

To cite this version:
Amela Fejza, Pierre Genevès, Nabil Layaïda. A Fast Plan Enumerator for Recursive Queries. ICDE
2024 - 40th IEEE International Conference On Data Engineering, May 2024, Utrecht, Netherlands.
pp.1-4. �hal-04578576�

https://hal.science/hal-04578576v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


A Fast Plan Enumerator for Recursive Queries
Amela Fejza∗, Pierre Genevès†, Nabil Layaı̈da‡

Tyrex team, Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG
38000 Grenoble, France

Email: ∗amela.fejza@inria.fr, †pierre.geneves@inria.fr, ‡nabil.layaida@inria.fr,

Abstract—Plan enumeration is one of the most crucial
components in relational query optimization. We demonstrate
RLQDAG, a system implementation of a top-down plan enu-
merator for the purpose of transforming sets of recursive
relational terms efficiently. We describe a complete system of
query optimization with parsers and compilers adapted for
recursive queries over knowledge and property graphs. We focus
on the enumeration component of this sytem, the RLQDAG, and
especially on its efficiency in generating plans out of reach of
other approaches. We show graphical representations of explored
plan spaces for queries on real datasets. We demonstrate the plan
enumerator and its benefits in finding more efficient query plans.

I. INTRODUCTION

Labeled graph data structures become increasingly popular
in various applications such as social networks, knowledge
extraction, transportation networks, biological and clinical data
with interactions, etc. [13].

Two main labeled graph data models coexist: knowledge
graphs in which edges are labeled with a single predicate
(RDF graphs), and property graphs in which richer annotations
are possible on both edges and nodes since they can in addition
carry a list of key-value pairs.

In classical relational query optimization, plan enumeration
is essential as it defines the boundaries of practical query effi-
ciency. First, the theoretical plan space to be explored depends
on the initial query term and the set of rewrite rules considered.
Second, enumeration efficiency determines the portion of the
theoretical plan space that will be effectively explored. Given
a particular enumeration strategy, the greater the portion of
the plan space, the more likely it is to contain efficient and
practical plans. Optimizing plan enumeration is a well-known
and hard topic that seeks to minimize redundant computations
when exploring huge plan spaces. There are several ways
to enumerate recursion-free plans: bottom-up [14] and top-
down [7], [8].

We demonstrate a novel implementation of a top-down sys-
tem for exploring recursive plan spaces. The system includes
a complete implementation of the recursive relational algebra
proposed in [9], [10]. It also includes parsers and compilers
so that one can formulate, optimize and answer queries that
navigate recursively in property graphs. The novelty of the
system resides in its ability to efficiently explore recursive plan
spaces, with an application for optimizing query answering
with recursive path patterns on property graphs.

This research has been partially supported by MIAI@Grenoble Alpes,
(ANR-19-P3IA-0003).

The purpose of this demonstration is to show in an inter-
active manner: (i) how we can explore recursive plan spaces
efficiently by grouping sets of terms and applying rewrite rules
to a set of terms at a time; and (ii) how this efficient exploration
is actually beneficial in finding more efficient plans.

II. PRELIMINARY BACKGROUND

The RLQDAG introduced in [5] extends the Logical Query
Directed Acyclic Graph (LQDAG) with the ability to capture
and transform sets of recursive terms. The LQDAG is a
directed acyclic graph data structure used to represent and
generate the logical plan space in a compact manner, by
allowing the sharing of common subparts. It was introduced
in [8] and improved in [7]. It is also known as the AND-
OR-DAG in [12] where it is used for detecting and unifying
common subexpressions for multi-query optimization. It is
also used for generating the space of cross-product free join
trees in [15]. The LQDAG data structure comprises two
distinct node types: equivalence nodes and operation nodes.
Equivalence nodes exclusively accommodate operation nodes
as their children, while operation nodes can solely exist as
children within equivalence nodes. Equivalence nodes are
designed to explicitly group together subterms that are equiva-
lent. An operation node corresponds to an algebraic operation
like: join, filter, etc. All variants of LQDAG considered so far
only support recursion-free queries. To support recursion, one
extension brought by the RLQDAG [5] is the introduction of
the annotated equivalence node for representing a recursive
part. This node is introduced to model the fixpoint operator
(that captures recursion) found in recursive relational algebras
[2], [3], [9]. The main difference with the classical equivalence
node, is that under an annotated equivalence node one can
find explicit occurrences of the recursive variable bound by a
fixpoint operator.

III. SYSTEM ARCHITECTURE

The overall system architecture, shown in Figure 1, is
composed of several components:

• an interface based on an interactive notebook that uses
a scala shell [4] providing features in Jupyter notebooks.
The interface exposes an API for interacting with differ-
ent components of the system. As shown in Figure 1 the
interface acts at three different levels: (i) when writing
an input query that is parsed and sent to the system; (ii)
during the optimization part (when RLQDAG explores



Parser

Optimizer

Translator

Query

Backend 
evaluator

Interface

Fig. 1: Architecture of the system.

the plan space), the interface can access statistical infor-
mation like: number of plans created, selected evaluation
plan, etc. ; (iii) after the plan is sent to the backend
evaluator (PostgreSQL in our case) it shows the SQL
translation and the query evaluation time in milliseconds.

• a parser and transformer that parse an input query and
transform it into an algebraic expression in the recursive
relational algebra over the data model described in Sec-
tion IV, where each node and each edge is represented
in a separate table.

• an optimizer that generates new query evaluation plans
by applying rewrite rules on the initial relational term.
We demonstrate how the top-down plan enumerator effi-
ciently explores the plan space. It enables the grouping
of terms and the application of rewrite rules on sets of
terms instead of individual terms. In order to select a most
efficient estimated term from the generated plan space, we
use a cost estimator inspired from [10].

• translator and backend evaluator: the selected term is
then translated into SQL and sent to a relational database
management system for evaluation. In our demonstration,
we use PostgreSQL.

Advantages of this architecture: The demonstrated sys-
tem is an end-to-end optimizer for recursive graph queries
implemented as a layer on top of a widely used open-source
relational database management system (PostgreSQL), without
the need to modify it. A major novelty of the system is
its capability to leverage the most advanced recursive alge-
braic transformations and query evaluation plans for recursive
graph queries. The generated recursive query plans can be
efficiently evaluated by PostgreSQL. However, a plain-vanilla
PostgreSQL would not have been able to find such efficient
plans because recursion is not supported natively. In Post-

greSQL, recursion is a barrier for the application of rewrite
rules in the sense that rewrite rules apply only on recursion-
free subparts of the query (they cannot rearrange the structure
of recursions).

IV. APPLICATION FOR PROPERTY GRAPHS

A property graph can be represented in the relational data
model as a set of relations, with one relation per edge type and
one relation per node type. Each relation encodes the specific
properties of each node (or edge respectively) using one
column per property. Figure 2 illustrates this representation
with the Bahamas Leaks dataset [11]. This dataset is taken
from the International Consortium of Investigative Journalists.
It is based on the analysis of the island nation’s corporate
registry. It is a property graph that provides names of directors
and owners of more than 175,000 Bahamian companies, trusts
and foundations registered between 1990 and early 2016,
together with their connections. Node tables are shown in
orange and edge tables are shown in green.

Nodes are uniquely identified (the vid column) and those
identifiers are disjoint between node types. For each edge
type, the corresponding relation contains at least the source
and target nodes (which are foreign keys to node’s vids). A
knowledge graph is a particular case of a property graph with
no property beyond source and target vids in edge relations.

The demonstrated system optimizes and executes recursive
path queries on this representation of property graphs.

V. DEMONSTRATION SCENARIO

To demonstrate the novelties of the system, we will rely
on an interactive visualization of the RLQDAG’s compact
representation of terms. This visualization illustrates how sets
of recursive terms are grouped together (See e.g. Figure 3). We



Fig. 2: Representation of the Bahamas Leaks property graph in the relational algebra data model.

will also focus on how recursive terms can be transformed.
The visualization is progressively expanded with new terms
obtained by the successive applications of rewrite rules, which
makes the demonstration interactive.

Then, we will demonstrate the performance gains brought
by the enhanced term exploration. For that purpose, we will
use queries over property graphs. People in the audience will
be able to formulate their own queries in addition to some
predefined and third-party ones.

We will explore different scenarios with queries formulated
as Unions of Conjunctions of Regular Path Queries (UCRPQs)
on real datasets.

a) Scenario – Benefits of a compact representation and of
sharing made possible by equivalence nodes: In this scenario
we run a query over the Yago [6] dataset, which is a large
graph containing more than 62 million edges between more
than 42 millions of nodes. We start with a third-party query
taken from [1]:

?x←?x: influences/livesIn/isLocatedIn+/dealsWith+ Sweden

For the exploration of terms, we start from the initial trans-
lation of the query as a relational term. The rewrite rules of
relational algebra together with the ones specific for recursion
are applied, yielding many equivalent plans. These plans are
presented in Figure 3. The blue squares in this figure represent
the newly created equivalence nodes after the application
of rewrite rules. All the other equivalence nodes were al-
ready created and reused. This is one of the main benefits
of RLQDAG: the reusability of already created equivalence
nodes. This means that the plan space is explored much
faster, by maximizing subterm reuse and avoiding redundant
computations.

b) Scenario – Exploring plan spaces: This system allows
the user to write a query, to set a time budget for the plan space
enumeration, and then to apply the optimization using these
inputs. Among the results, we obtain statistics such as the
amount of plans explored by RLQDAG (and their graphical
visualization), the term chosen by the cost estimator, its SQL

Fig. 3: The set of plans after applying all rewrite rules with
RLQDAG representation.

translation, the time spent by PostgreSQL for its execution (in
comparison to the execution without our optimization), etc.
We will consider a query from Bahamas Leaks [11] dataset.
Its schema is shown in Figure 2.

We will consider different time budgets and show the
amount of plans that RLQDAG is able to generate. We will
start with the following query:



Fig. 4: Number of plans explored by RLQDAG for different
time budgets.

?o, ?e←?o : officer[name=‘AL’ sourceID=‘Bahamas’]
same name as+ ?x : officer,
?o : officer[name=‘AL’ sourceID=‘Bahamas’]
officer of ?y : entity

Figure 4 shows a generated chart presenting the sizes of
the explored plan spaces for varying time budgets. The plan
space is fully explored in 0.04 seconds. This is why the size
of the produced plan space remains the same for time budgets
0.04 and 0.05 seconds. There are more than 31,000 plans
in total. For a given time budget, we will also review the
number of plans explored by RLQDAG in comparison with
the mu-RA enumerator [9] that operates on individual terms.
For example, we consider the following query on the Bahamas
Leaks dataset:

?x, ?y, ?z, ?w ←?x : officer[name = ‘Z L’] same name as+
?y : officer,
?x : officer[name = ‘Z L’] officer of
?z : entity[date = ‘1992’],
?z : entity[date = ‘1992’] reg address ?w: address

The results are shown in Figure 5. We can observe the
differences between the plan space explorations made by both
systems. For example, for a budget of 0.03 seconds, RLQDAG
(in blue color) was able to explore more than 36,000 plans
whereas the mu-RA enumerator of [9] (in orange color) was
only able to explore a little more than 1,400 plans. We also
measure the amount of plans explored per second by each
system. Furthermore, we report the evaluation times of the
best estimated plans on the same backend (PostgreSQL version
15.1) for both systems. During the live demonstration, more
queries might be proposed for further experiments.

REFERENCES

[1] Z. Abul-Basher, N. Yakovets, P. Godfrey, S. Ghajar-Khosravi, and
M. Chignell. Tasweet : optimizing disjunctive regular path queries in
graph databases. In B. Mitschang, V. Markl, S. Bress, P. Andritsos,

Fig. 5: Sizes of plan spaces explored by RLQDAG and mu-
RA for different time budgets.

K.-U. Sattler, and S. Orlando, editors, 20th International Conference
on Extending Database Technology, 21-24 march 2017, Venice, Italy,
pages 470–473, Mar. 2017. EDBT/ICDT 2017 Joint Conference 20th
International Conference on Extending Database Technology, EDBT
2017 ; Conference date: 21-03-2017 Through 24-03-2017.

[2] R. Agrawal. Alpha: an extension of relational algebra to express a
class of recursive queries. IEEE Transactions on Software Engineering,
14(7):879–885, July 1988.

[3] A. V. Aho and J. D. Ullman. Universality of data retrieval languages.
In Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, POPL ’79, pages 110–119, New
York, NY, USA, 1979. ACM.

[4] Almond. Almond : A scala kernel for jupyter. almond.sh, 2023.
[5] A. Fejza, P. Genevès, and N. Layaı̈da. Efficient Enumeration of

Recursive Plans in Transformation-based Query Optimizers. preprint:
inria.hal.science/hal-03692274/document, Jan. 2023.

[6] M. P. I. for Informatics and T. P. University. Yago: A high-quality
knowledge base. www.mpi-inf.mpg.de/yago-naga/yago/, july 2019.

[7] G. Graefe. The cascades framework for query optimization. Data
Engineering Bulletin, 18, 1995.

[8] G. Graefe and W. J. McKenna. The volcano optimizer generator: Exten-
sibility and efficient search. In Proceedings of the Ninth International
Conference on Data Engineering, pages 209–218, Washington, DC,
USA, 1993. IEEE Computer Society.

[9] L. Jachiet, P. Genevès, N. Gesbert, and N. Layaı̈da. On the optimization
of recursive relational queries: Application to graph queries. In Proceed-
ings of the ACM SIGMOD International Conference on Management of
Data, pages 681–697, 2020.

[10] M. Lawal, P. Genevès, and N. Layaı̈da. A Cost Estimation Technique for
Recursive Relational Algebra. In CIKM 2020 - 29th ACM International
Conference on Information and Knowledge Management, pages 1–4,
Virtual Event, France, Oct. 2020.

[11] I. C. of Investigative Journalists. Bahamas leaks. www.kaggle.com/
datasets/zusmani/paradisepanamapapers, 2017.

[12] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and extensible
algorithms for multi query optimization. SIGMOD Rec., 29(2):249–260,
May 2000.

[13] S. Sakr, A. Bonifati, H. Voigt, A. Iosup, K. Ammar, R. Angles, W. Aref,
M. Arenas, M. Besta, P. A. Boncz, et al. The future is big graphs: a
community view on graph processing systems. Communications of the
ACM, 64(9):62–71, 2021.

[14] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G.
Price. Access path selection in a relational database management system.
In Proceedings of the ACM International Conference on Management of
Data, SIGMOD ’79, pages 23–34, New York, NY, USA, 1979. ACM.

[15] A. Shanbhag and S. Sudarshan. Optimizing join enumeration
in transformation-based query optimizers. Proc. VLDB Endow.,
7(12):1243–1254, aug 2014.

almond.sh
www.mpi-inf.mpg.de/yago-naga/yago/
www.kaggle.com/datasets/zusmani/paradisepanamapapers
www.kaggle.com/datasets/zusmani/paradisepanamapapers

	Introduction
	Preliminary Background
	System Architecture
	Application for property graphs
	Demonstration Scenario
	References

