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Abstract  26 

Since 2011, the Caribbean coasts have unprecedented stranding of a pelagic brown macroalgae 27 

Sargassum inducing damages for coastal ecosystems and economy. This study evaluated the 28 

temporal fluctuations of metallic trace elements (MTE) in Sargassum freshly arrived on the 29 

Caribbean coast. From May 2020 to September 2021, 12 floating samples of three morphotypes 30 

(S. fluitans III and S. natans I and VIII) were regularly collected in the Petit Cul-de-Sac Marin 31 

(Guadeloupe, French West Indies). Measured concentrations of 28 metal(loid)s trace elements 32 



reveal i) an absence of seasonal patterns in MTE concentrations except for metals Fe and Al 33 

during 2020 summer ii) a regular and high As content during the entire survey iii) a similar 34 

trend of contamination for each morphotype. The constant and high amount of As implies that 35 

stranding management policy and valorization processes of Sargassum must consider As 36 

contamination and that this vigilance must be constantly along the year.    37 

Keywords (5 words): Survey, MTE, Sargassum natans, Sargassum fluitans, Arsenic 38 

 39 

1 Introduction  40 

 41 

Sargassum (class : Phaeophyceae, order: Fucales)  is a group of brown marine algae including 42 

more than 350 species (Guiry and Guiry, 2022). Among these genera, only two species are 43 

strictly holopelagic: Sargassum fluitans and Sargassum natans (Dawes and Mathieson, 2008; 44 

Parr, 1939; Stoner, 1983) distributed in the Caribbean Sea, at the edge of the Gulf of Mexico 45 

and the Azores islands (Lapointe, 1995) including the western Atlantic tropical region and 46 

South America from northeastern Brazil (Gower et al., 2013; Guiry et al., 2014; Lapointe, 47 

1995).  48 

Since 2011, Caribbean coasts are exposed to unprecedented massive stranding of sargassum 49 

(Gower and King, 2011) and those floating algae are spotted in places never reported before, 50 

such as northeastern Brazil (Széchy et al., 2012). Stranding of sargassum induce ecological 51 

damages threatening endangered species such as turtle (Ross and Casazza, 2008; Witherington 52 

et al., 2012) and can lead to the disappearance of coastal ecosystems (Gledhiir and Buck, 2012; 53 

van Tussenbroek et al., 2017). The decomposition of sargassum accumulated in coastal 54 

environments liberates hydrogen sulfide (𝐻!S) provoking human health issues such as 55 

respiratory diseases, neurological problems, digestive and cardiovascular lesions (Resiere et al., 56 

2018). Economy is also affected by the stranding of sargassum with repercussions on tourism 57 



and circulation of boats impacting marine trade and fisheries (Langin, 2018; Lapointe et al., 58 

2014).  59 

Among those visible impacts, a more pernicious effect could be due to their capacity to absorb 60 

metallic trace elements (MTE) from their environment  (Volesky and Holan, 1995) notably due 61 

to the alginates in their cell walls (Davis et al., 1999; Vieira and Volesky, 2000). Sargassum 62 

spp. present a MTE profile similar to composition classically found in algae (Devault et al., 63 

2021; Neff, 1997). The metalloid arsenic is usually presenting concentrations above the limits 64 

recommended for seaweed utilization in Europe (European Commission, 2019) and agriculture 65 

soils in other countries (Rodríguez-Martínez et al., 2020). Experiments approach reveals that 66 

As element can be rapidly and highly incorporated by Sargassum (Devault et al., 2020; Neff, 67 

1997; Penrose and Woolson, 1974). In pelagic environments, total As concentrations of 68 

Sargassum naturally fluctuate between 80 and 150 ppm (Cipolloni et al., 2022; Dassié et al., 69 

2021; Rodríguez-Martínez et al., 2020). Several studies reveal higher concentrations in 70 

Sargassum close to the coast than off shore (Fernandez et al., 2007; Rodríguez-Martínez et al., 71 

2020) however this trend is not always observed (Cipolloni et al., 2022; Dassié et al., 2021). 72 

Geographical origins of Caribbean Sargassum vary along the year (Alleyne et al., 2023) and 73 

the discrepancies between studies can be due to different As availability in the environment 74 

according to i) different geographical origins and ii) periods of the year (Phillips, 1977). In 75 

addition to metal availability in algal environment, their metals absorption is linked with the 76 

physiological status of algae, with a higher integration during the growth stage (Dixon, 1996). 77 

Total abundance of Sargassum and respective abundance of each morphotype are changing 78 

along the year suggesting seasonality in growing periods and temporal fluctuations in 79 

physiological status of pelagic Sargassum  at different periods of the year (García-Sánchez et 80 

al., 2020).  81 



Such temporal variability was previously observed as a survey of stranded Sargassum on the 82 

Mexican coast revealed higher As concentrations during the rainy season (Magaña-Gallegos et 83 

al., 2023; Ortega-Flores et al., 2022).  However, such seasonal fluctuations can vary 84 

geographically, justifying studies in other locations (Rodríguez-Martínez et al., 2020). The aim 85 

of the present study is to evaluate temporal variations of MTE concentrations in three different 86 

morphotypes of holopelagic Sargassum freshly arrived in coastal waters of Guadeloupe (French 87 

West Indies) during a period of 16 months.  88 

 89 
 90 

2 Materials and methods  91 

 92 

2.1 Study sites 93 

 94 

The sampling was realized in Guadeloupe (French West Indies) in the Petit Cul-de-Sac Marin 95 

(PCSM) (16°13’15N - 61°32’07E) (Fig. 1). Pelagic Sargassum are naturally transported by 96 

oceanic currents and wind from the Southeast of the Atlantic Ocean toward the North along the 97 

Caribbean Islands to the Sargasso Sea and the Gulf of Mexico. Sargassum are moving rapidly 98 

with a minimum, average and maximum speeds respectively estimated 0.081, 0.32 and 0.46 99 

𝑚. 𝑠"#(van Sebille et al., 2021). In Guadeloupe Sargassum entering in PCSM are rapidly 100 

directed to the coast where they strand massively.  101 

  102 

 103 

2.2 Land sample collection 104 

 105 

Algae were sampled at sea every month, between 500m (before their stranding) and less than 5 106 

km (Fig. 1). This monthly survey lasted from May 2020 to September 2021. Timing of sampling 107 



was chosen i) in order to be regularly spaced in time and ii) according to Sargassum availability 108 

and weather conditions.  109 

Approximately 4kg of Sargassum were manually collected in triplicates from a boat using a 110 

landing net with a mesh of 1 x 1 mm. Less than two hours after their collection, morphotypes 111 

were separated (S. fluitans III, S. natans I and S. natans VIII), rinsed with fresh water and oven-112 

dried at a temperature of 50°C during 48h. 113 

 114 

 115 

2.3 Sample preparation 116 

 117 

For each sample, 80 g of dried algae were ground and homogenized using a vibro-grinder with 118 

10 mm zirconium balls of 10 mm for three minutes with a frequency of 30 beat/s (Retsch® MM 119 

400).  120 

 121 

2.4 Laboratory analysis  122 

 123 

Metal analysis  124 

 125 

For each sample, 28 elements (Al, As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, 126 

P, Pb, S, Sb, Sc, Se, Si, Sr, Ti, V, Zn and Zr) were analyzed using an Inductively Coupled 127 

Plasma Optical Emission Spectrometer (Spectrometer ICP-OES 700®, Agilent Technologies). 128 

A fixed amount of algal powder (70-80mg) was placed in a plastic tube and 1 mL of nitric acid 129 

(HN𝑂$ 67%) was added. The powdered sample was then mineralized for 4 h at 100°C 130 

(Environmental – EXPRESS HotBlock® - 54). After mineralization, 5 mL of deionized water 131 

was added to each sample. With the same process, we analyzed the certified reference materials 132 

(DOLT-5, TORT-3). All element concentrations in samples of Sargassum are expressed in 133 

ug.g−1 (ppm) dry weight.  134 

 135 



2.5 Data analysis  136 

 137 

The variance and the homogeneity of metals and metalloid concentration values were verified 138 

by the Shapiro’s and Level’s tests (with significance at the 95 % confidence level). The 139 

difference between means concentrations in morphotypes per station and in all stations were 140 

tested using the non-parametric test Kruskal-Wallis test.  141 

We tested different dependent factors, i.e. years, months and species on the dependent data.  142 

We transformed the data, in order to satisfy the criteria of normality and homoscedasticity for 143 

parametric tests (Underwood, 1999). Data were tested for homogeneity of variance with the 144 

Cochran’s test at the 0.05 significance level.  Next, we applied a two-ways ANOVA, which  145 

were used to aevaluate the effect of two groups variable on a response of one variable.  The 146 

two-ways ANOVA were performed on years, months and species content variables, using the 147 

metallic elements as factors (Table 2). Methods of multivariate statistics with Principal 148 

Component Analyses (PCA) were executed on RStudio® and RCran, using the following 149 

packages: FactoMiner (Husson et al., 2020), factoextra (Kassambara and Mundt, 2020), ggplot 150 

(Wickham et al., 2020) and corrplot (Wei et al., 2021) to select the metallic elements with 151 

higher influence in data structuration among the 28 elements. Metallic elements below the limit 152 

of detection (LOD), for at least one sample, were not considered (B, Ba, Co, K, Mg, Mo, Sb, 153 

Sc, Pb, Se, Sr, Ti and Zr).  154 

 155 

3 Results  156 

 157 

3.1 Metals concentrations 158 

 159 

Among the 28 elements analyzed, fourteen elements (Al, As, Ca, Cd, Cu, Fe, K, Mg, Mn, Ni, 160 

P, Sc, V and Zn) were the most abundant and were detected in all samples above the limit of 161 



detection (LOD). Fourteen metallic elements were below the LOD and were not considered (B, 162 

Ba, Co, Cr, Mo, Na, Pb, S, Sb, Se, Si, Sr, Ti and Zr).  163 

The metallic elements analyzed (Al, As, Ba, Ca, Cd, Fe, K, Mg, Mn, Na, P, Sc, Si, V, Zn and 164 

Zr) varied significantly with the time (year and months) and species (p<0.005, Table 2), 165 

demonstrating that metallic traces elements vary according to the time and species.  166 

A three-ways ANOVA were performed on Al, As, Fe, Cu and Zn variables, using year, months 167 

and species as factors. The relationship between metallic trace elements (Al, As, Fe, Cu and 168 

Zn) and the two species (Sargassum natans and fluitans), year and months were tested with 169 

analysis of variance (ANOVA), using parameters of variance to detect possible effects of years 170 

months and species. In our study when a significant interaction was revealed between year, 171 

months, species and metallic trace elements, an ANOVA three-ways was performed within 172 

metallic trace element (Al, As, Fe, Cu and Zn) (only p-values are presented in the study).  173 

The Al, As, Fe, Cu and Zn of the Sargassum varied significantly with year, month and species 174 

(p < 0.05, Table 2). For the elements As and Cu there was a significant interaction between the 175 

factor month and species (Table 2), demonstrating the difference in As and Cu over months 176 

depended on species.   177 

 178 

 179 

3.2 Principal Component Analysis (PCA)  180 

 181 

The PCA represented the relationship in Sargassum among the metallic elements studied (Al, 182 

As, Fe, Sc, Zn, Mn, Ni, V, K, Cu, Ca, Mg and K). The first two dimensions of PCA represents 183 

respectively 38.83% (F1) and 13.83% (F2) of the total variance (Fig 2A). F1 distinctly 184 

discriminates the variables Fe (15.85%), Al (14.10%), Cu (10.98%), Ca (11.74%) and Zn 185 

(8.71%), whereas and F2 discriminates Al (13.24%), Mn (11.41%) and Fe (10.35%) (Fig 2). 186 



The PCA clearly discriminates samples from the month of July in 2020, characterized by high 187 

concentrations in Al, Fe and Zn (Fig 3). Others months present similar composition in metallic 188 

trace element (MTE).  MTE concentration fluctuates according to years and months but they 189 

followed similar trend in the three morphotypes during all the survey (Fig 4). 190 

 191 

3.3 Metals and metalloids content  192 

 193 
The five metallic elements standing out of the PCA analysis (Al, As, Fe, Cu and Zn) were 194 

chosen to graphically present their fluctuations over time (Fig 4).  Al and Fe presented a 195 

significant increase from June to August 2020 (not observed during same months in the 196 

following year), while the metalloid As and metals Zn and Cu were constant along the 16 197 

months of the temporal monitoring (Fig 3). This trend was similar for each of the three 198 

morphotypes.  199 

 200 

4 Discussion  201 

 202 

The present study is a survey of the contamination by metallic trace elements (MTE) of each 203 

morphotype of holopelagic Sargassum (S. fluitans III and S. natans I and S. natans VIII) in 204 

coastal Caribbean (Guadeloupe - FWI). This study revealed i) an absence of MTE seasonality, 205 

that is a seasonal fluctuation, except for the Al and the Fe during 2020, ii) a regular and high 206 

As content during the entire survey; and ii) a similar trend of contamination for each 207 

morphotype. 208 

 209 

Limitation of the study  210 

 211 

In the present study, each tissue of the macroalgae thalli (leaves, stips, bladders) were not 212 

separately analyzed. Whole Sargassum were dried and homogenized through grinding of all 213 

tissues together potentially masking specificities of metals composition of  each algal tissue 214 



(Sadeghi et al., 2014). Our field observations revealed the punctual existence of raft composed 215 

principally by Sargassum bladders may be implying potential temporal variations of bladders 216 

contribution to Sargassum biomass. Such variation could represent a bias in our analysis of 217 

whole Sargassum. However, those fluctuation of bladders abundance could also due to algal 218 

mortality as after Sargassum death of the Sargassum the stipes and fronds tend to sink, leaving 219 

behind drifting masses of sole pneumatocysts (Ortega-Flores et al., 2023).  220 

The present survey was dependent on the field availability of Sargassum. Along the two years, 221 

were absent during similar periods (February, March, October and November) highlighting the 222 

annual cycle of massive arrival stranding of Sargassum. Sargassum aggregated in Inter-223 

Tropical convergence Zone (ITCZ), between February and September, and are dissipated 224 

between November and January  (Franks et al., 2016; Johns et al., 2020; Putman et al., 2018) 225 

and similar abundance fluctuations were observed during the present survey in Guadeloupe 226 

explaining observed Sargassum abundance in Guadeloupe. This unavoidable lack of samples 227 

during some periods of the year must be kept in mind in interpreting results.  228 

 229 

Temporal evolution of MTE  230 

Present temporal monitoring reveals an absence of seasonal patterns in MTE concentrations 231 

except higher abundances of Al and Fe during 2020 summer.  232 

The desert Sahara is one of the largest hot deserts on earth producing more dust sand than all 233 

others deserts cumulated (Prospero et al., 2021), and is one of the main sources of dust on the 234 

planet along with the Sahel  (D’Almeida, 1985; Schutz et al., 1981). Each year, 400-700 mega 235 

tons of dust sand are suspended in the atmosphere (Goudie and Middleton, 2001; Schutz et al., 236 

1981; Swap et al., 1992) and  migrates from Africa across the Atlantic Ocean with higher 237 

abundances during summer than winter (Gilbert and Sabogal, 2020; Ginoux et al., 2012). This 238 

lithometeor phenomena is impacting areas from Florida to Greater and lesser Antilles until 239 



French Guiana (Pastore et al., 2021). Dust from Sahara are notably containing N, P and Fe and 240 

can increase ocean primary production in low nutrients oceanic regions (Blain et al., 2007; 241 

Boyd et al., 2007; de Baar et al., 2005). In the Sargasso sea, similar MTE composition between 242 

atmosphere and surface water suggested an important contribution of aeolian sources for Al, Fe 243 

and Mn in water (Atkinson and Stefánsson, 1969). Similarly, elements (Al, Ca, K, Mg, Fe, Na, 244 

P, S and Zn) from atmospheric deposits collected from 2015 to 2018 in Guadeloupe reveal 245 

important fluxes due to Saharan dust with maximum inputs between June and July 2015 until 246 

2018 (Xu-Yang et al., 2022). In the present study, higher concentrations of Al and Fe observed 247 

in all morphotypes of Sargassum from June to August 2020 can potentially be linked with 248 

higher inputs of those elements during Saharan dust events. Those peaks coincides with a major 249 

Saharan dust flow into the Caribbean region (Xu-Yang et al., 2022). 250 

Along the year, Sargassum arriving near coasts of lesser Antilles present different origins with 251 

algae traveling directly from Africa along 15°N whereas others have a more southern origin 252 

and travel along the coast of South America (10°N) (Alleyne et al., 2023). Dust from Sahara is 253 

blown to the west depending on the position of the seasonal position on the Intertropical 254 

Convergence Zone (ITCZ) (Engelstaedter and Washington, 2007). The ITCZ acts as an 255 

effective barrier stopping dust movements into South Atlantic (Huang et al., 2010), and 256 

resulting in different biogeochemical provinces of the North and South tropical Atlantic ocean 257 

(Schlosser et al., 2014), by changing MTE composition of water during some periods of the 258 

year  (Álvarez-Salgado et al., 2007, 1999). However, the hypothesis of a large spatial scale 259 

origin of Sargassum explaining their different MTE composition of Sargassum found in 260 

Guadeloupe can be reasonably dismissed. One year is necessary for algae to travel from coasts 261 

of Africa (15°N) or South America (more Southern than 10°N) (Alleyne et al., 2023). During 262 

their long journey to Guadeloupe, Sargassum are reproducing vegetatively (Dawes and 263 



Mathieson, 2008) and this turnover of biomass should mask or decrease MTE specificities 264 

according to Sargassum origin.  265 

Indeed, algae arriving in summer 2020 in lesser Antilles would come from South America 266 

(Alleyne et al., 2023) and should be consequently less influenced by dust with lower Al and Fe 267 

composition. In the present study, higher Al and Fe Sargassum composition observed during 268 

this period suggest that geographical origin of Sargassum would have a limited influence.  269 

Moreover, a contamination due to coastal proximity remains unlikely as transects from off 270 

shore to coast did not revealed modification of element trace metallic composition in Sargassum 271 

(Cipolloni et al., 2022; Dassié et al., 2021). 272 

Arsenic is more abundant in marine waters than fresh waters  (Campbell, 1995) and constitute 273 

one of the most and widespread metalloids elements (Fattorini et al., 2006; Kevin Henke, 2002) 274 

with concentrations in oceanic waters around  1.7 µL/L (Cutter, 1993; Hutchinson and Meema, 275 

1987). This total As at the surface water of ocean has several origins i) drainage from land ii) 276 

upwellings from anoxic bottom water of the deep ocean and iii) deposit from atmosphere 277 

(45,000 metric tons per year) iv) geoactivity (volcanos, hydrothermals) (Cutter and Cutter, 278 

1995; Waslenchuk, 1978). In the present study, the mean of the metalloid concentration of As 279 

was 92.68 ppm in all samples of algae with a maximum value of 118 ppm. Those values are in 280 

the range of values previously observed in the Sargassum of the Caribbean area with As level 281 

fluctuating between 80 and 150 ppm in coastal waters (Dawczynski et al., 2007; García-Sartal, 282 

2012; Rodríguez-Martínez et al., 2020), and in the open ocean between 0.1 and 382 ppm (Dassié 283 

et al., 2021). 284 

The speciation of the As and the chemical form (oxidation and valence state) define the toxicity 285 

of the As and it’s bioavailability (Dixon, 1996). The total As (tAs) is composed of inorganic 286 



As (iAs) and less toxic organic As (oAs) (Andreae and Klumpp, 1979; Howard et al., 1995; 287 

Sanders and Windom, 1980) . In the inorganic compounds composed of the arsenite As(III) and 288 

arsenate As(V), with the As(III) more toxic than the As(V). Primary producers can present 289 

arsenate As(V) tolerance (Knauer et al., 1999). In the brown macroalgae, the As is accumulated 290 

in arsenate As(V) form and transformed into less toxic arsenite As(III) (Neff, 1997). The 291 

present study reveals a constant and high abundance of the As, in accordance if capacity of 292 

marine algae to present As concentration usually between 1 000 and 10 000 times higher than 293 

the As concentration in the waters (Borak and Hosgood, 2007).   294 

 295 

The three genotypes: S. fluitans III; S. natans (I and VIII) 296 

During the entire survey, evolutions of metal concentrations of algal tissue were significantly 297 

similar in the three morphotypes studied. The morphotype S. fluitans III present higher 298 

concentration of Al, Fe and Cu. Higher concentration in metallic element were previously 299 

observed in the two other morphotypes (Ortega-Flores et al., 2022) and in S. natans I (Cipolloni 300 

et al., 2023). The fixation and absorption of MTE elements is depending of the presence of 301 

polysaccharides (alginates and fucoidans) in Sargassum algae (Camacho and Hernández-302 

Carmona, 2012; Gobert et al., 2022; Robledo et al., 2021). During the periods of June to 303 

September in S. fluitans III, some studies showed the abundance of polysaccharides (alginates 304 

and fucoidans) and functional groups (uronic acids and sulfate) are higher than during the 305 

winter season  (Dibner et al., 2022; Ortega-Flores et al., 2022). Such variations in 306 

polysaccharide content according to morphotype can explain the specificity of S. fluitans III 307 

observed the in present study.  308 

 309 

Management strategies 310 



During the present survey, Al and Fe presented higher concentrations during summer of 2020 311 

whereas concentrations of another MTEs remained more stable. As is one of the most 312 

commonly toxic metallic metalloid present in the marine environment (Fattorini et al., 2006). 313 

In the present study, As concentrations are in the range of abundance previously observed  in  314 

Sargassum from coast (Cipolloni et al., 2023; Rodríguez-Martínez et al., 2020) and off-shore 315 

environments (Cipolloni et al., 2022; Dassié et al., 2021). Those concentrations of As remains 316 

above the limits accepted by the European norms of marine biology metallic elements (NFU 317 

44-051- ISSN 0335-3931) (European Commission, 2019). Our study reveals that independently 318 

of month, year and morphotype, Sargassum always present high concentrations of the toxic 319 

metalloid’s arsenic. This characteristic must be considered in the management of Sargassum 320 

stranding and valorization in order to limit environmental and public health issues.  321 

All uses in the agriculture (feed supplement, soil amendments, crop protection, growth 322 

substrate), cosmetics, human and cattle food and beverage should  be avoided whereas other 323 

uses of Sargassum with more limited risks regarding As like bioenergy (bioethanol, biodiesel, 324 

biogas (biomethane)), bioplastics and  constructions materials (Desrochers et al., 2020; Robledo 325 

et al., 2021) present more limited risks regarding As and should be favored.  326 

 327 
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Figure 1 A) Location of Guadeloupe in the Caribbean Island in the Caribbean Sea in the Lesser Antilles B) Location of the sampling area with hatch polygon  
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Fig 2. Circle of correlation of Principal Component Analyses (PCA) using observations (3 morphotypes and 7 months) and 13 variables (Al; As; Fe; Sc; Zn; Mn; 
Ni; V; K; Cu; Ca; Mg; K)  with F1 (33.38%) and F2 (13.83%) represents the relationship in Sargassum sp. among the metallic elements.  
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 3. Principal Component Analyses (PCA) using observations (3 morphotypes and 7 months) and 13 variables (Al; As; Fe; Sc; Zn; Mn; Ni; V; K; Cu; Ca; Mg; K)  
with F1 (33.38%) and F2 (13.83%) presenting observations with different symbol shape (morphotype) and color (months), with the letter A representing 2020 
and B representing 2021.  
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 4 Temporal variability of metal concentrations. Concentrations in Al, As, Cu, Fe and Zn (𝝁𝒈.𝒈!𝟏) in morphotypes S. fluitans III (red); S. natans I (blue) and S. 
natans VIII (green) during different months in 2020 and 2021. 
 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Table 1. Elements concentration (ppm = 𝜇𝑔. 𝑔!") of 112 samples of Sargassum spp. collected from May 2020 to September 2021 in Guadeloupe 
(French West Indies) with their respective standard error (standard deviation divided by the squared root of the number of data), and the average 
values in bold. Recovery rates obtained from the analyses of certified reference material (TORT-3, DOLT-5) are presented for each element.   
 
 
 
 
 
 
 
 

   
Al 
 

 
As 

 
Fe 

 
Cu 

 
Zn 

 Sf3 197.96±88.96 88.96±27.34 125.35±73.79 3.63±0.73 6.22±2.90 
2020 Sn1 145.22±134.11 84.60±15.25 93.72±66.83 2.53±0.52 4.94±2.65 

 Sn8 109.89±119.50 95.97±14.11 72.23±61.81 2.22±0.78 5.2±3.39 
Mean  151.03 89.84 97.10 2.79 5.47 

 
2021 

 
Sf3 

 
119.94±49.85 

 
79.31±14.82 

 
83.87±38.50 

 
3.79±0.60 

 
4.69±0.90 

 Sn1 145.22±134.11 145.22±11.43 56.16±20.70 56.16±0.51 4.38±1.04 
 Sn8 53.52±26.03 53.52±13.82 38.54 ±16.86 1.86±9.45 4.04±1.74 

Mean  106.23 92.68 59.53 20.60 4.37 
       

TORT-3 recovery rate (%SD)  53.22±0.01 77.5 ±0.01 78.24±0.04 77.29±0.04 75.8±0.03 
DOLT-5 recovery rate (%SD) 

 

 189.17 ±0.01 81.03±0.01 83.05±0.22 81.26±0.01 81.35±0.023 



 

 
Variables 

 

` 
Statistical 

test 
 

  
 

 
 

 
Fixed factors 

 
 

  

    
         Years 
 

 
  Months 

 
       Species 
 

 
Month: Species  

 
Year: Species 

 
Year: Month 

Al Three-ways 
ANOVA 

df 1 7 2 14 2 3 

  F 21.8 13.12 9.4 0.62 1.3 58.1 
  p p < 0.001 p < 0.001 p < 0.001 0.83 0.26 p < 2e-16 
         
As Three-ways 

ANOVA 
df 1 7 2 14 2 3 

  F 1.2 4.3 10.7 2.5 0.5 2.5 
  p 0.33 p < 0.01 p < 0.01 p < 0.004 0.55 0.06 
         
Fe Three-ways 

ANOVA 
df 1 7 2 14 2 3 

  F 52.6 30.6 40.1 1.02 2.01 41.5 
  p p < 0.001 p < 0.001 p < 0.001 0.44 0.1 p < 1.31e-15 
         
Cu Three-ways 

ANOVA 
df 1 7 2 14 2 3 

  F 0.182 3.471 73.6 1.2 1.6 0.3 
  p 0.67 p < 0.01 p < 0.001 p < 0.28 p < 0.19 p < 0.7 
         
Zn Three-ways 

ANOVA 
df 1 7 2 14 2 3 

  F 10.3 8.2 2.6 0.5 1.8 6.6 
  p p < 0.01 p < 0.001 0.07 0.88 0.16 p < 0.0004 



Table 2. Analyses two-way ANOVA test and the significant result of the p-values (0,005< p-value) with the significant codes) (***,0.001), (**, 
0.01), (*, 0.1). 


