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The random walk model in finance: a new taxonomy 

Christian Walter1 

 

 

 

Abstract 

 

The backbone of financial risk modeling in finance over a long time period of more than a 
century, the random walk hypothesis has shown substantial variations in its structure 
throughout its history. In this article, I revisit the history of the random walk model in finance 
by introducing a new way of describing what a random walk is, based on the Lévy measure in 
the Fourier space, a tool that has not yet been used in the history of financial thought. With 
this lens, we are able to understand the overview of the life of this model in finance over the 
entire 20th century, including the precursors of the 19th century. 

 

 

 

1. Introduction 
The backbone of financial risk modeling in finance over a long time period of more than a 

century, the random walk hypothesis has shown substantial variations in its structure 

throughout its history. In this paper, I wish to revisit the history of the random walk model in 

finance. I introduce a new way of conceptually describing what a random walk is, based on a 

mathematical shift. With this shift, we are able to understand the overview of the life of this 

model in finance over the entire 20th century, including the precursors of the 19th century. 

This way of conceptually describing what a random walk is has not yet been used in the 

history of financial thought. It is based on a very useful mathematical function for the 

description of random walks, called the Lévy measure, a function defined in the Fourier 

space. The shift in Fourier space reveals certain similarities that were previously considered to 
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be unconnected, and allows us to group together families of models that were previously 

considered to belong to different modeling traditions. 

More precisely, the new use of the Lévy measure as a technical key in the history of financial 

thought allows us to better understand some of the issues of financial modeling by random 

walks. It allows us to revisit many scientific debates or controversies by linking what was 

perceived as opposed, such as neoclassical modeling vs. fractals, or econophysics vs. 

mathematical finance. Very often, we believe that we are dealing with oppositions where 

there really are none and we create “false debates” because of a conceptual illusion. The use 

of the Lévy measure allows bypassing these spurious debates. Thus, my proposal allows us to 

remove some of the puzzles in understanding the historical evolution of financial modeling, 

by isolating key components of this modeling and by clearly identifying the respective 

positions of the different schools of thought. It allows us to group together the random walk 

models used in the long history of financial modeling in the same epistemological 

perspective. It allows to identify and compare the different research programs undertaken on 

the modeling of stock market dynamics throughout the 20th century until today. Using the 

Lévy measure, I introduce a new taxonomy in the history of financial thought, presented in a 

summarized table that spans the 20th century. The taxonomy is based on a “triplet” I 

introduce to describe the random walk model, I name the “risk triplet”, combining three 

characteristics of any random walk, its activity, its variation and its variance. The different 

alternatives of this triplet are displayed in a table that synthesizes them, namely the “Table T”. 

Table T helps to bring about a dialogue between theories, models and different ways of 

modeling financial risk in the case of random walk. 

The outline of the article is as follows. Section 2 presents the taxonomy in the table T. Section 

3 aims to distinguish the random walk hypothesis from the idea of unpredictability in general 

and to disentangle these notions that are sometimes confounded in the work on the history of 

the random walk model in finance. The IID hypothesis is introduced in this sense in order to 

highlight what is a random walk and to separate random walk from Brownian motion or 

Gaussian processes. Section 4 deals with scale invariance. I revisit the work of Jules Regnault, 

who has been described as a “precursor” of the random walk model in finance because of the 

so-called “square-root-of-time” rule. I identify this rule as a particular case of scale invariance 

in general, and to this purpose I introduce the fractal geometry of Benoît Mandelbrot. I show 

how and why neoclassical financial modeling is fractal in the sense of Mandelbrot, which 

allows us to avoid opposing too quickly neoclassical finance and fractal finance. I introduce 
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the stability-under-addition property to separate the scale invariance from the random walk 

model. Section 5 addresses the issue of heavy tails in random walk models. It connects the 

issue of extreme values with the scale of price changes, and it shows with two examples of 

Lévy measure the mathematical indistinguishability of the financial mathematicians’ approach 

and the physicists’ approach in the case of random walk models with heavy tails. 

2. The table T 
The taxonomy is built on the Lévy measure and more precisely the two main characteristics 

given by the Lévy measure, namely “activity” and “variation” of a Lévy process. I 

supplement these two characteristics with the second moment (if it exists), the “variance” or 

“diffusion component” of a Lévy process, to compose what I consider and name as the 

“characteristic triplet” of any random walk model for finance: activity, variation, variance. As 

we will see below, this triplet will be very useful for understanding some issues involved in 

financial modeling with random walks. My taxonomy gives four possible combinations with 

the components of the triplet. 

The risk triplet is built on the Lévy measure, and it is in this regard that one of the main 

contributions of this paper is to introduce the Lévy measure in the field of history of financial 

thought in order to refresh the historical perspective on the random walk model in finance. 

Preliminary definitions 
I begin with some preliminary definitions which are necessary to give a clear understanding 

of the use of this taxonomy. I said previously that the taxonomy is built on the two main 

characteristics given by the Lévy measure, namely “activity” and “variation” of a Lévy 

process. To clarify this point without exaggerating the mathematical treatment and to avoid 

the use of complex formulas, we now move on to Fourier space, which allows us to describe 

“in words” certain mathematical subtleties. In this space, we pass from the density function to 

the characteristic function, which is the Fourier transform of the density function. To be a 

little more accurate, if X is a random variable, the Fourier transform of X is ΦX (u) = E [exp 

iuX] where exp is the exponential function, the letter i is the imaginary unit of complex 

numbers and E the symbol of the mathematical expectation. For any random variable X, its 

characteristic function ΦX (u) exhibits a quantity called “characteristic exponent” of X which 

is denoted Ψ X (u) such that ΦX (u) = exp (Ψ X (u)). 
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The notion of characteristic exponent of a random variable plays an essential role in the study 

of random walks. The characteristic exponent shapes precisely the morphology of uncertainty, 

these words denoting the irregularity: for example in finance, the stock market paths, the 

“roughness” of their appearance. Random walks can have varying degrees of roughness. 

Activity and variation quantify these degrees. Activity and variation shape the roughness of 

the “pattern”, while variance indicates the “size” of this pattern, its scale. In this sense, the 

“pattern” of the risk morphology can change with scale (risk at one week, risk at one month) 

and its “shape” can be different or not depending on the scale. Risk morphology is not like 

Russian dolls, except in the case of stability-under-addition-property of Lévy processes (see 

section 4 below). 

The characteristic exponent is proportional to time. If X (t) is a Lévy process, then Ψ X (t) (u) = 

t × Ψ X (1) (u), meaning (in words) that the characteristic exponent at a given time t is easily 

obtained from the characteristic exponent at time 1: 

Characteristic exponent at time t = t × Characteristic exponent at time 1 

This is the reason why the characteristic exponent of a Lévy process is equal to t times that of 

its underlying infinitely divisible distribution, which is in fact the distribution X1 This 

property expresses the infinite divisibility of random variables. This is one of the main 

attractions of Lévy processes, making them preferable to other types of model. Roughly 

speaking, the property of infinite divisibility states that it is possible to consider a given 

random variable as a sum of identical independent random variables, for example the random 

variable of one-year returns as the sum of the 52 random variables of one-week returns. But 

the distribution of one-year returns has not to have the same shape (scale-free property) as the 

distribution of one-week returns. The distribution can be infinitely divisible but not scale 

invariant. It should not be confounded with the “Russian dolls property” of alpha-stable 

processes (see section 4 below). 

The Lévy measure has been explicitly introduced in the models of the 1990s, whereas it was 

only implicit in the models of the 1970s, with the exception of the models of Mandelbrot 

(1962) in which it appeared in a closed form of the characteristic exponent2. The explicit form 

                                                           
2 When the literature on the history of the random walk model addresses Mandelbrot models, 

this closed form is generally used. In this paper we introduce the explicit form because it 

allows us to unify different modeling approaches that were previously perceived as 
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of the characteristic exponent of a random walk was obtained in the most general case by Paul 

Lévy in 1934 from his theory of processes with IID increments, the so-called Lévy-

Khintchine formula. In words, the Lévy-Khintchine formula is decomposed in three parts: 

Characteristic exponent = expectation + diffusion coefficient����������������������� + Lévy measure���������
discontinuous component

Brownian motion continuous component                                                            

 

A Lévy process is fully determined by these three quantities. In financial words, the three 

parts of the Lévy-Khintchine formula mean: 

Market dynamics = trend of returns + scale of risk��������������������� + morphology of risk�������������
discontinuous component

continuous component                                                            

 

For financial purposes, the Lévy-Khintchine formula may be analyzed as follows (see 

technical details in Le Courtois and Walter 2014, pp. 60 sq.). The first two terms represent the 

continuous component of the dynamics, which is a Brownian motion with mean and standard 

deviation. Financially speaking the standard deviation represents market volatility. The 

second term is the Lévy measure. This component of the Lévy process completely defines the 

structure of jumps. Heuristically speaking, the Lévy measure provides the average number of 

jumps per time unit as a function of their amplitude. It is thus the mathematical object that can 

quantify the occurrence and size of jumps and creates discontinuity in the path of the 

stochastic process. 

Now we turn to the intuitive presentation of the activity and variation of a Lévy process. 

Intuitively, the greater the number of jumps per time unit, the more the path of the stochastic 

process will have a high degree of erraticness and the more discontinuous the random walk 

will be. A random walk will be highly erratic if the average number of jumps occurring per 

unit of time is very large. The average number of jumps per unit of time defines the so-called 

“intensity” of a Lévy process – also known as “activity” by analogy with turbulence. Consider 

for example a very simple Lévy process, the Poisson process with parameter λ: λ is the 

average number of jumps per unit of time. In this very simple Lévy process, the activity of the 

process is λ. In this extremely rudimentary case, the average number of jumps per unit of time 

is finite and is given by the Poisson parameter. 
                                                                                                                                                                                     
contradictory. The transition from one form to another is precisely explained in Le Courtois 

and Walter (2014, p. 82-88). 
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Let us continue with this simple example to get an intuitive idea of what the Lévy measure 

does. Whenever a jump in the Poisson process occurs, the magnitude of the jump must be 

specified. Suppose that this magnitude is random and is pulled into a given probability 

distribution with known density. In this case, one faces a so-called “compound Poisson 

process”. We see that the product activity-density captures both the occurrence rate of 

discontinuities and their magnitude. To say it differently, this product fully characterizes the 

jump structure of the process. This product is precisely the Lévy measure. If for example the 

distribution of jumps is Gaussian with a mean being the average size of jumps and a standard 

deviation being the “volatility” of the size of jumps, it will in this case be a compound 

Poisson process with a normal (Gaussian) distribution so-called “compound Poisson-normal” 

(CPN). The activity of this Lévy process (CPN process) is the Poisson parameter and the 

density of the distribution of jumps is the Gaussian distribution. In all cases in which one 

constructs a compound Poisson process with another distribution, the number of jumps per 

unit of time (the occurrence rate of discontinuities) is finite and the resulting Lévy process is 

of finite activity. In this situation one can clearly separate the activity from the density. 

But there is no reason why the average number of small jumps per unit of time should stay 

finite. The advantage of generalizing in this way is that the very many small movements in the 

market can be taken into account and that this makes it possible to disentangle the notion of 

discontinuity from the occurrence of large moves only. In the case of infinite activity, it is no 

longer possible to separate the activity from the density. Both are “mixed” in the Lévy 

measure, which entirely shapes the morphology of the irregularity (the discontinuity) of the 

financial dynamics. In this situation, it becomes less necessary to add a continuous Brownian 

component. It is only when the average number of jumps is finite that it is necessary to add 

this continuous Brownian component for market movements occurring between the jumps. To 

sum up, the activity can be finite or infinite. 

Consider now the average distance between two points of the process. The average distance 

too can be finite or infinite (the mean may or may not exist). This idea of average distance 

corresponds to what is called the variation of a Lévy process. The variation is another feature 

of the morphology of financial uncertainty. We see that the variation may be finite or infinite.  

The taxonomy 
I start by introducing my taxonomy. The table “T” below presents this taxonomy with some 

examples of financial models. 
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Lévy measure 
Variance Examples of random walk models in financial 

modeling Activity Variation 

0 N.S. Finite 
 

Samuelson (1965) 
 

Infinite Infinite Infinite 
 

Mandelbrot (1962) 
 

Finite Finite Finite 
 

Press (1967), Praetz (1972) 
 

Infinite Finite Finite 
 

Madan and Seneta (1990) 
 

Infinite 

 
 
 
 
 

Infinite 
 
 
 
 
 

Finite 

 
Financial mathematicians: 

Eberlein and Keller (1995), Barndorff-Nielsen 
(1998), Carr, Geman, Madan and Yor (2002) 

 

 
Physicists: 

Mantegna (1991), Mantegna and Stanley (1994), 
Koponen (1995), Bouchaud and Potters (1997)  

 

Table “T”. The “risk triplet” and the financial models of random walks 

The reading of the table T shows the kinds of modeling a random walk, corresponding to the 

different periods of the history of the random walk model in finance. It allows to understand 

the manner in which my taxonomy allows to organize the history of the random walk model 

in finance and provide a better understanding of some parts of this history. Each line reflects 

an episode in the history of the random walk model in finance. The first line presents the 

continuous random walk models of the mainstream financial economics before the crisis 

opened by Mandelbrot in 1962, with the main canonical model which is that of Paul 

Samuelson (1965). The four lines that follow describe four stages in the history of the 

accounting of discontinuities by random walk models, according to the values of the triplet. 

Now let us turn to the details of each line. The triplet “infinite / infinite / infinite” corresponds 

to Mandelbrot’s radical data-driven approach, which clashed with the dominant view of 

financial modeling in the 1960s, namely the continuous random walk model first introduced 

by Louis Bachelier in his 1900 thesis (see section 3 below). To solve the “leptokurtic 
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phenomenon”, characterized by a discontinuous price change dynamics creating fat tails on 

empirical price change distributions (high level of kurtosis), Mandelbrot adopted a very 

radical view on risk modeling by maintaining one of the fractal properties of neoclassical 

finance, the scale invariance of time-scaling of risk (see section 4 below) and extended this 

scale invariance to a subclass of Lévy processes, the alpha-stable processes, a family of 

stochastic processes which keeps the self-similar (fractal) property of risk morphology. In this 

very special case of scale invariance, the three components of the triplet are infinite. For this 

reason, and especially because of the infinite variance, it has been widely rejected by the 

mainstream financial economics academic community since its introduction, explained as 

producing “blood, sweat, toil and tears” (Cootner 1964, p. 337), as being “indigestible” 

(Mirowski 1995, p. 582), and a “monster” (MacKenzie 2006 p. 108). For example, the tenet 

concept of portfolio risk diversification, which has been central to neoclassical portfolio 

theory since the nobelised work of Harry Markowitz (1952), is cancelled out by an infinite 

variance (Le Courtois and Walter 2014, p. 339). 

The triplet “finite / finite / finite” corresponds to the modeling answer of the mainstream 

financial economics in the 1970s, adding Poisson jumps to Brownian diffusion component to 

exhibits discontinuities inside a continuous Brownian framework. Poisson type jump 

components in jump diffusion models address this issue. The CPN process is a particular case 

of Lévy processes, because its increments are IID. The three quantities of the risk triplet are 

finite and this finiteness seemed very convenient and tractable for academics. It is the 

development of mathematical models that is at the origin of financial models, even if we try to 

partially take into account the problem of jumps. The aim is to maintain the diffusion 

framework by including extra-jumps. This modeling period of discontinuous random walks is 

characterized by the extensive use of jump-diffusion processes, losing the scale invariance 

property of Brownian motion (the Russian doll property of the risk pattern). As it appears, it is 

column by column the opposite of the triplet characterizing Mandelbrot’s proposal. It is thus 

clear why it was impossible for the financial economics to originally accept Mandelbrot’s 

hypotheses. At this time, it was impossible for the financial industry driven by the mainstream 

continuous approach to include this view. This direct confrontation triggered the “leptokurtic 

crisis” (Walter 2019).  

The following triplet “infinite / finite / finite” releases one of the finite constraints and admits 

infinite activity. We find in this triplet the first attempts to take into account real market data 

in a fine tuning way, an approach that can be described as rediscovering the data-driven view: 
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the modelers work empirically on the basis of statistical data, and not by first looking for a 

development of mathematical models. Dilip Madan and Eugene Seneta (1990), followed by 

Madan and Milne (1991) introduce the (symmetric) Variance-Gamma process (symmetric VG 

process) to represent the price change dynamics and to price European options. The last triplet 

“infinite / infinite / finite” admits infinite activity and infinite variation. It corresponds to a 

second generation of financial models based on pure jump processes, in which the diffusion 

component has been removed as it is considered useless for modeling. 

As we notice, the last two triplets bring infinity into financial risk modeling. Despite its 

novelty, and although it breaks with the continuity paradigm of neoclassical finance because it 

clashes abruptly with the continuous mainstream financial economics of the 1970s, this 

approach remains in the community of financial mathematics. The financial mathematicians 

of this approach are not heterodox mathematicians and they don’t have to adopt a new 

economic paradigm. Borrowing a concept from David Colander (2007), I argue that, for this 

reason, these approaches can be considered as “inside-the-mainstream heterodoxy”. On the 

other hand, as well as Mandelbrot and the physicists who are beginning to be interested in 

finance are situated from the outset on the periphery of financial mathematicians. For this 

reason the physicists would be more considered as “outside-the-mainstream” heterodoxy. But 

it is worth noting that the introduced category “infinite / infinite / finite” combines the two 

different communities of academics, the financial mathematicians and the physicists3: these 

two heterodoxies (two communities) share the same triplet in modeling discontinuities. 

It is interesting here to see how the taxonomy based on Lévy measure allows the inclusion of 

physicists because the models of physicists that are IID match those of financial 

mathematicians with the considered triplet. The choice of the Fourier space gives access to a 
                                                           
3 According to the canonical book of Mantegna and Stanley (2000), “econophysics” describes 

the work of physicists working in finance and the way the physicists can contribute to the 

science of economics. It is worth noting that physicists worked in finance before the name 

“econophysics” (Weatherall 2014). It has emerged in 1991 in France with Jean-Philippe 

Bouchaud and in Italy with Rosario Mantegna (see below). Two of the first “econophysics” 

events in 1998 were the “Les Houches winter school of physics” held at Les Houches, France, 

23 February-6 Marsh and the “International Workshop on Econophysics and Statistical 

Finance” held at University of Palermo, Italy 28-30 September 1998. This workshop is the 

first workshop with Proceedings entirely dedicated to an econophysics conference. 
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“lens” of view of the history of the random walk model in finance which allows us not to be 

blurred by the different formats of the density function space. Mandelbrot’s initial approach is 

at the origin of a twofold inspiration, which fertilized two streams of modeling: one that 

coming from physicists, the other that coming from financial mathematicians. The intellectual 

source of the random walk models of these two communities is the same. All these models 

address the previously unresolved issue of discontinuities in price changes. Hence another 

result of this taxonomy is the highlighting of an important phenomenon over the long period 

of financial modeling I name the “discontinuous turn” in financial modeling (Walter 2019). 

The next section presents in the simplest and most intuitive possible way the main 

characteristics of random walks and Lévy processes4 with embodying these characteristics 

with elements of the history of financial thought. For more mathematical details, one can refer 

to one of the many books that provide a comprehensive view of this topic, as for example 

Bertoin (1998), Sato (1999) or Applebaum (2009). 

3. The IID hypothesis 
There already exists a considerable literature on the random walk model in finance5. A great 

deal of work has been carried out on this theme. It is not the place in this article even to try to 

review the abundant existing work on this topic. So many works have already been published 

on the history of this idea in the academic literature that it is impossible here to give even a 

brief review. I just recall some technical issues for clarifying the notions which serve as a 

basis for the topic. When I think it is useful, I will engage some of this literature, although 

often in footnotes rather than in the body of the text. 

                                                           
4 A random walk can be unidimensional (random walk in one dimension: a line) or 

multidimensional (random walk in higher dimensions: a walk in a space of dimension greater 

than one). In the paper, we consider only unidimensional random walks. 

5 According to Eric Brian and Christine Théré (1997, p. vii), the emergence of the topic of the 

history of the random walk model in academic audience was inaugurated by Christian Walter 

(1996). Walter (1996) cites Peter Bernstein (1992) book which mentions random walk model, 

but Bernstein’s book was “written for a broad, non-academic audience” (Dimand 2009, p. 84). 
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The unpredictability of future prices 
In order to clarify what we are talking about, let’s write down the quantities we will discuss in 

this article. If S (t) is the price of any given asset S (for Stock, Security, Share) at time t, the 

continuous compound return of asset S between dates 0 and t is: 

 𝑋(𝑡) = ln 𝑆(𝑡) − ln 𝑆(0) (1) 

This means that prices evolve according to the equation: 

 𝑆(𝑡) = 𝑆(0) exp 𝑋(𝑡) (2) 

where “exp” is the exponential function. The random walk hypothesis in financial modeling 

assumes that X (t) is a random walk. Nothing else. Nothing more. 

The concept of random walk has been applied to price changes in financial markets since the 

beginning of the 20th century6. In his pioneering doctoral thesis7, Louis Bachelier (1900) did 

not consider log-prices but what he called “true prices” (Bachelier 1900, p. 25). The market 

investigated by Bachelier was the Government bond market, not the stock market. The “true 

price” corresponds to what we would currently label on the bond market a clean price 

expressed as a percentage, i.e. excluding accrued interest, or “par value net of accrued 

interest”. If equivalence had to be found on the stock market, one would consider the stock 

price of a given share net of its accrued dividend. Let us note S*(t) the true price of asset S at 

time t. Knowing that the true price is obtained from the price by removing the fraction of the 

accrued interest during the period, one can write the relationship between the true price and 

the price at date t as: 

 𝑆∗(𝑡) = 𝑆(𝑡) − 𝜇𝜇 (3) 

where µ represents the accrued interest in continuous time. Bachelier’s famous assertion is 

then what he names the “fundamental principle” of true prices: “the mathematical expectation 

of the speculator is zero” (Bachelier 1900, p. 34). For Bachelier, the speculator is the one who 
                                                           
6 Strictly speaking, Jules Regnault’s (1863) analyses (see Jovanovic 2004), although they may 

prefigure the idea of random walk, do not contain the idea of a stochastic process on prices. 

About the Regnault’s “square-root-of-time-rule”, see below. 

7 Translated in English by James Boness in Paul Cootner (1964), and by Mark David and 

Alison Etheridge (2006). See also Jean-Michel Courtault and Youri Kabanov (2002). 
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makes a bet on the variation of true prices, instead of looking for the yield of the annuity. 

Bachelier’s assertion is therefore mathematically written as follows (Walter 2013, p. 73): 

 E0[S*(t) – S*(0)] = 0 (4) 

where E0 [.] is the symbol of mathematical expectation at date t=0. This equation can be 

written: 

 E0[S*(t)] = S*(0) (5) 

This relationship describes a stochastic process named a “martingale” on the true price. To 

say it differently, the true prices are unforecastable, but this model is not a random walk. This 

relation shows that the property of unpredictability of future prices is not identically 

associated with random walk. Martingales are sufficient for this8. 

The unpredictability of the future “true price” says nothing about the shape of the distribution 

of these future “true prices”. This is the second aspect of Bachelier’s thesis. In fact, using a 

law of large numbers argument, Bachelier introduces an additional hypothesis and obtains the 

normal distribution of returns (Walter 1996, p. 879). Bachelier proposes to use the Gaussian 

distribution because of the influence of Quetelet (Walter 1996, p. 904; Jovanovic 2004, p. 

219) which leads him to think in terms of average and Gaussian law. This in fact amounts to 

only imagining square-integrable martingales. But it could be otherwise with the only initial 

hypothesis on the “true price”. 

Hence the random walk model appears in Bachelier’s work, but indirectly. To put it simply 

but precisely, if W (t) is a standard Brownian motion, then Bachelier states that: 

 𝑆∗(𝑡) = 𝑆∗(0) + 𝜎 𝑊(𝑡) (6) 

This relation (6) is equivalent to: 

 𝑆(𝑡) = 𝑆(0) + 𝜇𝜇 + 𝜎 𝑊(𝑡) (7) 

                                                           
8 Jovanovic and Le Gall (2001) argue that, for Jules Regnault, if “the expected profit is zero 

for each operation” hence “in a very pioneering way, price behaviour took the shape of a 

random walk model” (p. 340) Technically this is not correct: if “the expected profit is zero for 

each operation”, price behavior follows a martingale, with or without square-integrability. 
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This is tantamount to saying that the price process is a Brownian motion. This new 

relationship will be used by Bachelier to price options. The parameter σ of relation (7) is the 

diffusion coefficient of Brownian motion. In the financial jargon, this is the “volatility” of 

markets. Harry Markowitz (1952) has proposed to summarize the risk by the variance of the 

returns. The distribution of W (t) is a Gaussian distribution centered on zero with variance 

equaling t: the square root of t is the standard deviation of the distribution. This property of 

Brownian motion is at the origin of the so-called “square-root-of-time-rule” (Danielsson and 

Zigrand 2006) in the standard model of fluctuations. 

The Osborne’s (1959) modification is to replace S (t) by X (t). This amounts to considering 

logarithms of prices instead of prices, leading to (Samuelson, 1965): 

 𝑆(𝑡) = 𝑆(0) exp (𝜇𝜇 + 𝜎 𝑊(𝑡)) (8) 

This above simple equation is the standard model of price fluctuations since the 1960s, the 

exponential of Brownian motion. 

We can therefore see how Bachelier’s thesis embeds both the idea of random walk with the 

use of Brownian motion for the pricing of options, and the idea of market informational 

efficiency with the use of martingales on true prices: the best possible forecast of the future 

true price is the present true price. 

The independence property 
We now turn to the difference between unpredictability and random walk. The association 

between random walk and unpredictability has sometimes been a source of some confusion. 

Let us start with an example taken from the financial literature. In his very celebrated and 

extremely renowned book on A random walk down Wall Street (1973), Burton Malkiel stated 

that “A random walk is one in which future steps of directions cannot be predicted on the 

basis of past actions” (Malkiel 1973, p. 24). But, strictly speaking, this heuristic definition is 

not the definition of a random walk but of a stochastic process in which the future is 

independent of the past, given the present. Such a process is not a random walk. It can be, but 

it might not be either. It could be a martingale, or a Markov process. We see in this example 

as a canonical pattern the confusions that have sometimes occurred in the financial literature 

and in the history of financial thought, about the notion of random walk. 

What exactly does mean that prices are unforecastable? And what exactly are we referring to 

when we claim such a statement? Secondly, are we talking about unforecastability of prices or 
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price changes? How to define the notion of unforecastability? Is unforecastability associated 

with random walk? If we want to mean that prices are unpredictable, why use a random walk 

model? And if we use a random walk model, what does it mean about price changes? One of 

the important points that we will try to emphasize in this section is the following: it is a 

misunderstanding to assimilate unpredictability and random walk. Let us just illustrate this 

with an example. If returns are unpredictable but volatility presents a short-term memory, then 

we can say that, indeed, we have unpredictability on prices changes but not a random walk 

since future volatility, and hence the square of returns, is predictable. This simple example 

introduces the issue of what is a random walk and what is not. 

In the simplest possible general terms by avoiding too technical definitions, what is called a 

“random walk” is a stochastic process whose increments are independently and identically 

distributed (hereafter IID): each increment is a random variable which has the same 

probability distribution as the others and all are mutually independent. This IID property 

characterizes Lévy processes, a family of stochastic processes named after their inventor, the 

French mathematician Paul Lévy9. Any Brownian motion is a Lévy process, but the opposite 

is not true. There are an infinite number of random walks that are not Brownian motions. The 

Brownian motion type of the random walk is only one of many, although it was the first to 

appear in the work of applied mathematics in finance with Bachelier (1900). We now 

elaborate on the issue of independence. 

With the independence property, we deal with three notions, the time, the scale and the lag. 

To be clear, let us recall that we are talking about the process X (t) and that we wonder if its 

increments are independent. To be able to define the increments of X(t), it is necessary to 

choose a characteristic “size” of the increments (one day, one week, one month etc.), denoted 

by the Greek letter τ. The variable τ is the characteristic scale of the increments (daily scale, 

weekly scale etc.). Once this scale is chosen, it is possible to consider the increments of X (t), 

which are periodical returns (one-day return, one-week return etc.) of the following form: 

 𝑋(𝑡) − 𝑋(𝑡 − 𝜏) ≝ 𝑍(𝑡, 𝜏) or  𝑍𝑡𝜏  (9) 

                                                           
9 A Lévy process has not to be confused with the so-called “Lévy distributions” (see below). It 

is worth to note that this point is sometimes a source of confusion in the literature. 
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The random variable Z (t, τ) is the law of the increments of X (t) for the scale τ. This notation 

is straightforward, but it uses a notation convention that deserves to be emphasized. We keep 

visible τ to highlight the fact that the structure of price changes and the tests for 

unpredictability are strongly dependent on the scale τ. The random walk model implies strong 

properties on the increments at various scales, as we will see below. Times lags will be 

denoted par the letter h which will be a multiple of τ.  Again the notation convention allows to 

precisely grasping what we want to check. For example, if τ = 1 day and h = 10, then the 

quantity denoted corr( 𝑍𝑡
1 day, 𝑍𝑡+10

1 day) defines the correlation between the daily return at date t 

and the daily return at date t+10 (10 days later). If, for that specific scale, the daily returns are 

independent, hence the autocorrelation is null. But the opposite is not true as we see now. 

The independence of increments means not only uncorrelated increments but also any 

uncorrelated nonlinear functions of increments. Since this difference is subtle but very 

important for a precise understanding of the financial controversies about the random walk 

model in finance, it is elaborated a little more explicitly. The dependence between two 

random variables (say Z1 and Z2) is measured by the quantity Cf,g (Z1,Z2) defined as: 

𝐶𝑓,𝑔(𝑍1,𝑍2) = 𝐄[𝑓(𝑍1) × 𝑔(𝑍2)] − 𝐄[𝑓(𝑍1)] × 𝐄[𝑔(𝑍2)]  (10) 

where E is the symbol of mathematical expectation. Z1 and Z2 are independent if and only if 

Cf,g (Z1,Z2) = 0 for all functions f and g. 

For financial modeling, we can think of Z1 and Z2 as two random variable representing 

increments of X (t) according to a given scale τ. Therefore, the independence of price changes 

at given scale τ for a given lag h is verified if and only if Cτ
f,g(h) = 0 in (note the superscript 

τ): 

𝐶𝑓,𝑔
𝜏 (𝑍𝑡𝜏,𝑍𝑡+ℎ𝜏 ) = 𝐄[𝑓(𝑍𝑡𝜏) × 𝑔(𝑍𝑡+ℎ𝜏 )] − 𝐄[𝑓(𝑍𝑡𝜏)] × 𝐄[𝑔(𝑍𝑡+ℎ𝜏 )] = 𝐶𝑓,𝑔

𝜏 (ℎ) (11) 

which is heuristically interpretable as a relationship that depends only on the scale τ and the 

lag h between the two observed price changes. Once again, we keep visible τ in the writing of 

the formula to emphasize the fact that the structure of price changes is strongly dependent on 

τ. For this very reason, given functions f and g, the quantity C depends only on the time scale 

τ and the lag h, hence the notation convention Cτ
f,g(h). 
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From the point of view of the history of financial thought, the history of the controversies on 

the unpredictability of price changes coincides with the chronology of the different selections 

made for the functions f and g. The role of the scale τ is not emphasized in the beginning of 

financial econometrics. In the first work of the years 1930-1970, f(x) =g(x) =x. In this case, 

the function Cf,g(h) is simply the autocovariance function γ (h): 

𝛾(ℎ) = cov(𝑍𝑡,𝑍𝑡+ℎ) = 𝐄[𝑍𝑡 × 𝑍𝑡+ℎ] − 𝐄[𝑍𝑡] × 𝐄[𝑍𝑡+ℎ] (12) 

The independence of the increments is identical to the nullity of the correlation coefficient. 

The correlation between two price changes is null. This kind of function C with evidence of 

absence of serial linear autocorrelation gave birth to the idea of efficient market hypothesis 

(LeRoy 1989, Walter 1996, Campbell et al. 1997, Jovanovic 2009, Delcey 2019). It is the 

reason why, due to the first definition of the quantity C, the work on random walk model in 

financial economics overlaps with research on the EMH and the random walk hypothesis was 

taken to be equivalent to the EMH. 

There are as many functions C as there are possible kinds of functions f and g. If for example 

f(x) =g(x) =x2 i.e. a simple kind of nonlinear function of increments, independence means C=0 

also for squared increments. But it is clear that it is possible to have C=0 for f(x) =g(x) =x 

(simple increments) and C≠0 for f(x) =g(x) =x2 (squared increments), meaning that price 

change are uncorrelated but non independent. For example, in the famous Nobel prized 

financial model using an autoregressive conditional heteroscedasticity process (ARCH) 

introduced by Robert Engle (1982), increments are uncorrelated but the squared increments 

are correlated: there is a “memory” of fluctuations compatible with uncorrelated increments 

(“volatility clusters”). That means that price changes are unforecastable but do not follow 

random walk because the volatility exhibits a short memory. 

4. Scale invariance in financial prices 
In the previous section, we have mentioned the so-called “square-root-of-time-rule” of 

Brownian motion. In fact, if X (t) is a Brownian motion, the square-root-of-time-rule is a 

mathematical consequence of the scale invariance of Brownian motion. If risk is measured by 

the standard deviation, hence the square-root-of-time-rule means that risk at scale τ is scaled 

to risk at scale a×τ by the multiplication of square root of a. This characteristic is heuristically 

described in Regnault (1863, p. 50) as follows: “The deviation of the prices increases with the 

square root of the time” (translation in Jovanovic and Le Gall 2001, p. 13). Regnault does not 
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speak in terms of stochastic processes, but if the Regnault’s “deviation” can be thought as the 

standard deviation i.e. the “volatility” in financial jargon, the Regnault’s sentence can denote 

in contemporary terminology that volatility scales with the square root of time. 

A simple way to understand what is at stake with this scale invariance for financial modeling 

is to consider the following practical problem. Let us consider a given financial asset and its 

distribution of returns (i.e. its risk) over a given time period (one week, one month, etc.). 

Following our notational convention, the distribution of returns between time 0 and time t is 

denoted X (t). Let us now consider the distribution of returns of the same asset over two time 

periods (two weeks, two months, etc.) knowing the distribution over both time periods and 

assuming that the continuous rate of return on assets follows a random walk. We are 

interested in the distribution of returns between time 0 and time 2t, i.e. X (2t). How do you get 

from a one-period risk to a cumulated two-period risk? If X (t) is a random walk, then moving 

to the Fourier space: 

Characteristic exponent at time 2t = 2 × Characteristic exponent at time t 

If the distribution of the two-week returns has the same shape as the distribution of the one-

week returns, scaled by the time, the distribution is scale invariant. In this case, the random 

walk exhibits scale invariance, which is not the case for the other possible distributions 

eligible for random walks. We now turn back to the Regnault “square-root-of-time-rule” by 

explaining more in details its link with the random walk model. 

The Regnault “square-root-of-time-rule” 
The random walk model in finance is often associated with stylized fact or “patterns” 

observed on stock market fluctuations, “scaling laws” or “power laws”10. A power law is a 

relation of the type Y = k Xα where α is called the power law exponent, and k is a constant. A 

power law describes the fact that one quantity varies as a power of another. Power law 

exponents characterize the kind of fluctuations of the quantity changes. One of the features of 

the power laws is their scale invariance. This property is the origin of the second name 

“scaling law”: scaling by a constant c simply multiplies the original power-law relationship by 

the constant c – α. Power laws are found in finance in distributions and correlations in financial 

time series. It follows from the previous section that the existence of power laws on the 
                                                           
10 See for example Bouchaud 2001; Cont 2001; Mandelbrot 2001; Farmer and Lillo 2004; Lux 

and Alfarano 2016. 
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correlations pushes the modeling out of the family of random walks, since the IID hypothesis 

is not satisfied. We will therefore only be interested in power laws under the IID hypothesis.  

The Regnault’s statement describes a specific case of power law on moments. To understand 

in what the Regnault’s rule is linked to the scale invariance of price changes, let us 

mathematically rewrite Regnault’s sentence. The issue is to pass from the distribution of X (t) 

to the distribution of X (at), a multiple of time. Let λ (X, t) be a parameter of the distribution 

of X (t). In the case of Regnault’s work, λ (X, t) is the standard deviation σ(X, t). I write the 

“square-root-of-time-rule” of Regnault’s sentence as following: 

𝜎(𝑋,𝑎 × 𝑡) = √𝑎 × 𝜎(𝑋, 𝑡) = 𝑎0,5 × 𝜎(𝑋, 𝑡) (13) 

From which comes the scaling property on volatility with exponent 0.5 for square root. For a 

financial practitioner, this scaling property is the reason why: 

volatility(𝑋, 12 months) = √12 × volatility(𝑋, 1 month) (14) 

The practical “square-root-of-time-rule” states that the annual volatility is obtained by the 

monthly volatility multiplied by the square root of the duration measured in months, i.e., 12.  

The standard deviation is the square root of the variance, the central moment of order 2. In 

fact, among the parameters useful to qualify the risk of a distribution are the central moments 

of order k for k=2, 3, 4. These moments give an idea of the shape of the distribution (size, flat, 

peaked, symmetric, asymmetric, etc.). Let 𝑚𝑘(𝑋, 𝑡) be a central moment of order k of the 

random variable X (t): the Regnault relationship dealing with m2. Now I write the Regnault 

sentence as follows: 

𝑚2(𝑋,𝑎 × 𝑡) = 𝑎 × 𝑚2(𝑋, 𝑡) (15) 

The variance is linear in time. Hence the idea of a scaling law on stock market variations can 

be found in an incipient manner in the Regnault’s book. More generally, we could look to 

obtain the moments 𝑚𝑘(𝑋,𝑎𝑎) at a scale at knowing the moments 𝑚𝑘(𝑋, 𝑡)  at scale t. 

The relation (15) is at the origin of variance-ratio tests in the financial literature (Lo and 

MacKinlay 1988). Given the time scaling of variance in the case of Brownian motion, the 

variance of (say) two-period returns is twice the variance of one-period return if the random 

walk hypothesis holds, hence the variance ratio to be checked is: 
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𝑚2(𝑋,𝑎 × 𝑡)
𝑎 × 𝑚2(𝑋, 𝑡)

 (16) 

If the variance ratio is equal to 1, X (t) follows the Regnault rule. Many studies have exploited 

this scaling property of moments in the random walk hypothesis (e. g. Campbell et al. 1997, 

Charles and Darné 2009). 

The square-root-of-time-rule is a mathematical consequence of the scale invariance of 

Brownian motion. In fact Brownian motion is a self-similar (fractal) process B (t) such as: 

𝐵(𝑎 × 𝑡) ≡ √𝑎  × 𝐵(𝑡) (17) 

where the symbol ≡ indicates an equality in distribution. The scaling exponent of Brownian 

motion is 0,5 from which it follows the Regnault law. The above equation means that the 

shape of the distribution of returns is invariant when the time scale is changed by the square 

root of time. This scale invariance of Brownian motion is also a core concept of the Bachelier 

(1900) model and, therefore, a core concept of neoclassical financial modeling. The Brownian 

motion type of the random walk allows annualizing the volatility from monthly measures of 

empirical volatility. The equation (17) describes a scale invariance property of the Brownian 

motion used in neoclassical risk modelling: in neoclassical finance, the risk is scaled by the 

square root of the time. 

The time-scaling of risk in neoclassical finance represents the scale invariance of neoclassical 

finance. In the standard model of stock market variations, this feature of the Brownian motion 

describes one aspect of the fractal property of volatility. This is another way to say that the 

fractal property of financial risk is pervasive in neoclassical finance. Hence, the neoclassical 

finance is somewhere embedded in a fractal framework. The mostly used square-root-of-time 

rule of financial practitioners reveals the underlying fractal framework of neoclassical 

finance. The main model of pricing options, the Black-Scholes (1973) model, as using as a 

mathematical ingredient a Brownian motion, is embedded in an underlying fractal framework. 

Hence it is not possible to easily contrast neoclassical finance with “fractal finance”. 

This square-root-of-time-rule has often been considered as a representation of the random 

walk model in finance, but one can have another scaling invariance under the IID hypothesis 

and outside the IID hypothesis. Let us give just an example. Instead of (17), on could have the 

following relation: 
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𝑋(𝑎 × 𝑡) ≡ 𝑎𝐻  × 𝑋(𝑡) (18) 

where the scaling exponent H is the self-similarity index of the stochastic process X(t). When 

H=1/2, X (t) is a Brownian motion. The Brownian motion is self-similar (fractal) with IID 

increments. When H ≠ 1/2, the stochastic process X (t) is the fractional Brownian motion 

(FBM) denoted BH (t) introduced by Mandelbrot (1965) and widely used in hydrology and 

climatology. 

𝐵𝐻(𝑎 × 𝑡) ≡ 𝑎𝐻  × 𝐵𝐻(𝑡) (18) 

In the case of FBM, the increments are identically distributed but not independent; hence in 

this case we depart from the random walk hypothesis. In the case of H=1/α, with stationary 

and independent increments, the stochastic process X (t) is an alpha-stable motion, self-similar 

with IID increments, and belongs to the random walk family. We can see how the fractality 

property can refer either to the random walk family of stochastic processes or to stochastic 

processes which are outside this family. To disentangle this puzzle, we now turn to the 

stability-under-addition property of the random walk model in finance. 

The stability-under-addition property 
The concept of scaling has been heuristically introduced by Augustin Cauchy in 1853 for 

expressing that in some cases the distribution of a random variable is invariant under non-

random weighting, a form of sum of random variables. This scale invariance is satisfied by 

the Gaussian distribution (Regnault and Bachelier cases). The annual risk has the same shape 

as the monthly risk: a Gaussian distribution, scaled by the square root of time. Using financial 

words, this assumption means that the shape of financial risk remains Gaussian at every scale. 

More generally, every distribution which exhibits this invariance belongs to a family of 

distributions named “alpha-stable distributions” because the scaling property is defined and 

quantified by a characteristic exponent denoted α which varies between 0 and 2. For example, 

the Gaussian distribution is stable under addition: the sum of two Gaussian distributions is a 

Gaussian distribution. The Cauchy distribution is stable under addition: the sum of two 

Cauchy distributions is a Cauchy distribution. In the case of Brownian motion, α = 2 and 

(Regnault and Bachelier cases) in this sense the Brownian motion is an IID-2-stable process. 

In the case of Cauchy, α = 1 and in this sense the Cauchy motion is an IID-1-stable process11. 

                                                           
11 For detailed exposition on alpha-stable processes, see Janicki and Weron (1993), 

Samorodnitsky and Taqqu (1994) and Lévy-Véhel and Walter (2002). 
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At the beginning of the use of Lévy’s processes in financial modeling, it should be noted that 

the vocabulary was not yet standardized. For example, in their 1991 papers, both the 

physicists Jean-Philippe Bouchaud and Rosario Mantegna used the term “Lévy flight” with 

the meaning introduced by Mandelbrot (1977, p. 113), a stochastic process with IID 

increments described by an alpha-stable distribution (Bouchaud et al., 1991, p. 1466; 

Mantegna 1991, p. 233). As they explain, the term “Lévy walk” refers to a stochastic model 

introduced in Physics in 1987 by Shlesinger, West and Klafter (reference [12] of Mantegna 

1991 and [13] of Bouchaud et al. 1991)12. For Bouchaud, a “Lévy flight” is a “superdiffusion” 

process, a kind of anomalous diffusion in which the sum of IID increments is dominated by its 

largest term (Bouchaud et al., 1991, p. 1466). For Mantegna, superdiffusion is a random walk 

in which the variance of the increments grows faster than time. He concludes his paper by 

considering plausible such a stochastic process because he detected superdiffusion for the l-

day variance of the index changes (Fig. 4 of Mantegna 1991). Thus the term “Lévy flight” 

was used into physics in 1991. 

The word “fractal” is a neologism created by Mandelbrot from the Latin adjective “fractus”, 

which has the same root as fraction and fragment and means “irregular or fragmented” 

(Mandelbrot 1977, p. 4). A fractal object is created from an initial object that is fragmented 

into small objects by following deterministic or stochastic rules involving internal homothety. 

Infinite repetition (iteration) is one of the essential aspects of fractals which are objects whose 

structure is invariant by certain translations (Mandelbrot 1977 p. 17). That means that the 

whole looks like the part, which itself looks like a smaller part. The pattern repeats itself at 

different scales. Some random walks exhibit fractal properties, some others not. X (t) exhibits 

scaling characteristics if X (t) is statistically identical to its transform by contraction in time 

followed by a corresponding change in intensity (Mandelbrot 1977, p. 254). Hence, 

“fractality” is another way to describe scale invariance. 

5. A tale of fat tails: random walks with heavy tails 
Let us now consider the random variable representing the law of IID increments at scale τ, 

namely Z (t, τ). If there is any topic of scientific discussion that runs through almost the entire 

20th century in financial modeling, it is certainly the shape of the distribution of Z (t, τ). It has 

been well documented in the academic literature that, in general, the empirical distribution of 

                                                           
12 Mantegna, personal communication to C. Walter, January 21, 2021. 
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Z (t, τ) has thick tails, too thick to be Gaussian13. This story is so well known today that it has 

been termed a “tale of fat tails” (Mandelbrot, 2001). The fat tails of empirical distributions of 

price changes have become an established stylized fact in the literature. I would just like to 

clarify two important technical points for the history of the random walk model in finance, 

enlightened by the choice of the Lévy measure. 

The issue of extreme values 
Firstly, it is important to keep in mind that the shape of the distribution has fat tails at a given 

time scale τ. Heavy tails are not necessarily the same on all scales. There in nothing like scale 

invariance in heavy tails, except in the case of fractal behavior of prices. Time scales in 

financial markets should be regarded as an area of study in their proper perspective (Walter 

2001, 2002). But it has been shown in a large number of studies that the tails of the random 

variable Z (t,τ) follows a scaling law. With scale invariance, the characteristic length scale of 

markets fluctuations is infinite. This infinity leads to self-similar and scale-free fluctuations of 

prices. But in a lot of cases, scale matters and scale invariance is a too strong property of 

random walks. Place has to be made for other kinds of random walks, which keep the 

infinitely divisible property but without the scale invariance property. In fact, the so-called 

“scaling anomalies” seem to contradict the Mandelbrot’s scale-invariant fractal model. The 

problem that appears for our purpose is that of the relationship between random walks, 

distribution tails and scaling laws. 

But there are a huge number of ways to make fat tails occur on random walks. This is the 

second element of our comments, which refers to the modeling of extreme values14. The 

technical relationship between Lévy processes and extreme values is described in Le Courtois 

and Walter (2017). 

The dialogue between theories  
Addressing the history of the random walk model in financial thought through the 

consideration of heavy tails of distribution by highlighting them through the Lévy measure 

allows for a dialogue between the different competing theories that seek to describe these 

heavy tails. We will now show how this makes it possible to consider the models of financial 
                                                           
13 A good introduction to heavy tailed distributions in finance is the handbook edited by 

Svetlozar Rachev (2003). 

14 A good introduction to extreme values in finance is the handbook edited by François Longin 
(2017). 
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mathematicians and the models of physicists as a single conceptual grid for the analysis of 

stock market variations. That is to say, thanks to the use of the Lévy measure, we are going to 

put forward the idea that the financial mathematicians’ models and the physicists’ models 

only differ in reality by the sociological origin of their scientists, but not by a different 

approach to the modeling of stock market dynamics. Hence, if we consider the Lévy measure 

of the models chosen by the physicists, we can observe that this measure is identical to that of 

the models implemented by the second generation of financial mathematicians. For example, 

the Lévy measure of the Koponen (1995) model is the same as that of the CGMY Carr et al. 

(2002) model15. The Lévy measure of the symmetric VG model of Madan et al (1998) is a 

special case of the Lévy measure of the Koponen (1995) model. 

6. Conclusion 
The history of the random walk model in finance is marked by a certain number of confusions 

or ambiguities in the different periods of its evolution during the 20th century. We have 

introduced a new historical “lens” to shed new light on this long history, with the use of a 

mathematical tool crucial for the description of random walks but never before used in the 

history of the random walk model, the Lévy measure. 

With this new technical tool, we were able to establish the relationships between the different 

variants of the random walk model in finance. We introduced a triplet characteristic of 

random walks, the “triplet T”. This triplet allowed us to contextualize Mandelbrot’s work in 

relation to fractals and the scientific controversies over fat tails in empirical distributions of 

financial data. 

Such a study of the random walk model in finance allows access to an epistemological 

perspective that is quite different from those that have been used to examine it up to now. We 

hope that this paper will be an encouragement to continue in this direction with the use of the 

Lévy measure, in order to pave the way for future historical and epistemological work on the 

history of the random walk model in finance, and more generally on the history of financial 

thought itself. 

 

  

                                                           
15 See the precise mathematical expressions in Le Courtois and Walter (2014, p. 102). 
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