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Math. Stat. Learn. (submitted)

Pair-Matching: Link Prediction with Adaptive Queries

Christophe Giraud, Yann Issartel, Luc Lehericy, and Matthieu Lerasle

Abstract. The pair-matching problem appears in many applications where one wants to discover
matches between pairs of entities or individuals. Formally, the set of individuals is represented by
the nodes of a graph where the edges, unobserved at first, represent the matches. The algorithm
queries pairs of nodes and observes the presence/absence of edges. Its goal is to discover as
many edges as possible with a fixed budget of queries. Pair-matching is a particular instance of
multi-armed bandit problem in which the arms are pairs of individuals and the rewards are edges
linking these pairs. This bandit problem is non-standard though, as each arm can only be played
once.

Given this last constraint, sublinear regret can be expected only if the graph presents some
underlying structure. This paper shows that sublinear regret is achievable in the case where
the graph is generated according to a Stochastic Block Model (SBM) with two communities.
Optimal regret bounds are computed for this pair-matching problem. They exhibit a phase trans-
ition related to the Kesten-Stigum threshold for community detection in SBM. The pair-matching
problem is considered in the case where each node is constrained to be sampled less than a given
amount of times, for example for ensuring individual fairness. We show how optimal regret rates
depend on this constraint. The paper is concluded by a conjecture regarding the optimal regret
when the number of communities is larger than 2. Contrary to the two communities case, we
argue that a statistical-computational gap would appear in this problem.

1. Introduction

1.1. Motivation

Many real world data can be represented as a graph of pairwise relationships. Examples
include social networks connections, metabolic networks, protein-protein interaction
networks, citations network, recommendations and so on. Matchmaking algorithms
and link prediction algorithms are routinely used in many practical situations to dis-
cover biochemical interactions, new contacts, hidden connections between criminals,
or to match players in online multiplayers video games and sport tournaments. As test-
ing a link in biological networks, or discovering connections between criminals can be
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expansive, link prediction algorithms are useful to focus on the most relevant links. In
social networks or online video games, they can help in finding relevant partners.

1.2. Problem

These applications raise the following mathematical problem that this paper intends
to study. Suppose that there exists a graph whose nodes represent a set of entities or
individuals and whose edges represent matches between entities or individuals. The
nodes are known to the statistician while the edges are typically hidden at first. Match-
making algorithms make queries on pairs of individuals, trying to discover as many
edges as possible. For biological networks like protein-protein interaction networks,
the individuals are proteins, an edge is an interaction between the two proteins and a
query is an experiment to test whether the interaction exists. The goal of matchmaking
algorithms is to discover as many edges of the graph as possible while minimizing the
number of mismatches. To stress that the focus lies on discovering graph structures,
the problem at hand is called hereafter pair-matching rather than matchmaking.

In this paper, pair-matching algorithms are constrained to explore the graph as
they cannot make queries on edges that have already been observed. To learn interest-
ing features on unobserved edges from previous observations, it is necessary to make
assumptions on the structure of the hidden graph. This paper considers the arguably
simplest situation where the graph has been generated according to an assortative con-
ditional stochastic block model (SBM) [HLL83] with two balanced communities, see
Section 2.2 for a formal presentation. In this model, individuals are grouped into two
(unobserved) communities and the probability of a match (edge) between two indi-
viduals is larger if they belong to the same community than to different ones. In this
context, the set of pairs is partitioned into good and bad ones, good pairs contain two
individuals from the same community and bad pairs two individuals from different
communities. A pair-matching algorithm samples pairs and should sample as many
good pairs as possible. Of course, the partition into good and bad pairs is unknown.

When the graph is fully observed, communities are recovered using clustering
algorithms, which have been extensively studied over the past few years, see for example
the recent overviews in [Abb17, Moo17, CLV18]. A key parameter in the analysis of
clustering algorithms, called here scaling parameter 𝑠, is the ratio

𝑠 =
(𝑝 − 𝑞)2

𝑝 + 𝑞 ,

where 𝑝 is the probability of connection within a community and 𝑞 the probability of
connection between communities. This parameter measures the difficulty of clustering,
see Section 2.2 for details. The quality of a pair-matching algorithm is evaluated by the
expected number of discovered edges after 𝑇 queries. Equivalently, the performance
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can be measured by the expected number of pairs sampled that do not contain edges,
which should be as small as possible, see Section 2.4 for details. This last quantity is
proportional to the expected number of bad pairs sampled, which is called sampling
regret in this paper. Besides constraining the algorithms to sample each pair only once,
we also force algorithms to sample each individual less than a certain amount of times
𝐵𝑇 before𝑇 queries have been made. This constraint corresponds to practical situations
where each individual may not be solicited too many times. For example, for fairness
policy, the algorithm may be required to sample a similar amount of time a large fraction
of the 𝑛 individuals. Such fairness constraint is then implemented by forcing to have
at most 𝐵𝑇 = 𝑐𝑇/𝑛 queries per individual, where 𝑐 ≥ 1.

1.3. Contribution

Our objective is to understand precisely the order of magnitude of the optimal regret in
this online learning problem. This task is not trivial due to the originality of our setting,
where pairs and nodes cannot be sampled as much as desired, but where the hidden
structure of the graph should help to learn useful information. Our main contribution is
that the sampling regret of any strategy that cannot sample pairs more than once, that is
invariant to nodes labelling and which satisfies the above constraint (see Assumptions
(NR), (IL) and (SpS) in Section 2.3 for details) is larger than

𝑇 ∧
√
𝑇 ∨ (𝑇/𝐵𝑇 )

𝑠
, (1.1)

up to multiplicative constants. Moreover, a polynomial-time algorithm with sampling
regret bounded from above by a constant times 𝑇 ∧

√
𝑇∨(𝑇/𝐵𝑇 )

𝑠
is described and ana-

lyzed, see Theorem 2. It follows that 𝑇 ∧ 𝑟 (𝑇, 𝑠) , where 𝑟 (𝑇, 𝑠) =
√
𝑇∨(𝑇/𝐵𝑇 )

𝑠
is the

order of magnitude of the optimal regret we were looking for and that this rate can be
achieved in polynomial time. As a consequence, when 𝑇 = 𝑂 (1/𝑠2) pairs have been
sampled, the linear sampling regret is unavoidable since 𝑟 (𝑇, 𝑠) ⩾

√
𝑇/𝑠 ⩾ 𝑇 . Like-

wise, 𝑟 (𝑇, 𝑠) ⩾ 𝑇/(𝑠𝐵𝑇 ) ≳ 𝑇 when 𝐵𝑇 = 𝑂 (1/𝑠) and linear sampling regret is also
unavoidable when the constraint is too strong. On the other hand, when 𝐵𝑇 ≫ 1/𝑠,
and 𝑇 ≫ 1/𝑠2, our algorithm reaches the optimal sub-linear sampling regret 𝑟 (𝑇, 𝑠). A
particular interesting arrises when 𝑇 = 𝑛𝛼 for some 𝛼 ∈ (1, 2) and when, for fairness
requirement, the algorithm is required to sample at most 𝑐𝑇/𝑛 time each individual.
In this situation actually, the optimal sampling regret becomes of order

𝑇 ∧ 𝑇
1/𝛼

𝑠
.

This result illustrates the price to pay for the fairness constraint: The optimal uncon-
strained rate

√
𝑇/𝑠 is replaced by the larger rate 𝑇1/𝛼/𝑠.
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1.4. Related literature

The following problem, related to matchmaking, has recently attracted attention, in
particular in Bradley-Terry models, see [BT52, Zer29]. The task is to infer, from the
observation of pairs, a vector of parameters characterizing the strength of players. Most
results considered the case where all the graph is observed, see [Hun04, CD12]. Recent
contributions dealing in particular with ranking issues also consider the case of par-
tially observed graphs, see [SW17, SBB+16, JKSO16] and the references therein. In
all cases, the list of observed pairs is given as input to the algorithm evaluating the
strength of all players. The choice of a relevant list of successive observed pairs, inde-
pendent of the observation of the edges is sometimes called a scheduling problem, see
[LCLV18]. Scheduling problems are different from matchmaking problems considered
here where the algorithm should choose the observed pairs and can use preliminary
observations to make its choice. For online video games, classical algorithms used to
evaluate strength of players are ELO or TRUESKILLS, see [HMG07, MCZ18]. Match-
making algorithms such as EOMM, see [CXK+17], which is used with TRUESKILLS,
see [MCZ18], are then used to pair players, taking as inputs these estimated strengths.
In this approach, the number of mismatches during the learning phase is not controlled.
It is an important conceptual difference with this paper where the matchmaking prob-
lem is considered together with the problem of discovering the strength (communities
here). Here, pair-matching algorithms have to simultaneously explore the graph to eval-
uate the strength and sample as many good pairs as possible to optimize the number of
matches. Closer to our setting is the active ranking literature, where the goal is to dis-
cover adaptively the rank or strength of players with a minimal amount of queries, see
[JN11, SBFPH15, HSRW19]. Contrary to our problem, only the exploration matters
in adaptive ranking and no notion of regret is investigated.

Pair-matching algorithms take sequential decisions to explore new pairs exploiting
previous observations. This kind of exploration and exploitation dilemma is typical in
multi-armed bandit problems, see [Tho33, Rob52, LR85, BK96]. In stochastic multi-
armed bandit problems, a set of actions, called arms is proposed to a player who
chooses one of these actions at each time step and receives a payoff. The payoffs are
independent random variables with unknown distribution. For any arm, payoffs are
identically distributed. The player wants to maximize its total payoff after 𝑇 queries.
The pair-matching problem introduced above can be seen as a non-standard instance
of stochastic multi-armed bandit problems. In this interpretation, each pair of nodes
is an arm and the associated payoff is 1 if an edge links these nodes and 0 otherwise.
The payoffs hence follow a Bernoulli distribution with parameter 𝑝 for good pairs and
parameter 𝑞 for bad pairs. The unusual feature is that each arm can only be played once,
so the pair-matcher must choose a new arm at each time step. For this reason, optimal
strategies differ in spirit from classical strategies in bandit problems, see Section 2.1
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for more details. While the proofs of lower bounds involve useful inequalities borrowed
from the classical bandit literature, in particular the data processing inequality from
[KCG16, GMS18], they require a non-trivial adaptation to work in our setting. The
lemmas involved in this adaptation may be of use in a wider class of problems with
pair-wise observations.

Forgetting the constraint that a node cannot be sampled more than 𝐵𝑇 times, the
pair-matching bandit problem could be seen as an extreme version of mortal or rotting
bandit problems see [CKRU09, LCM17, SLC+19], where every arm would systemat-
ically die or have zero pay-off after the first sampling. Without additional assumptions,
the regret would be inexorably linear in the querying budget 𝑇 . Here, an important
difference with classical mortal or rotting multi-armed bandits is that payoffs are struc-
tured by the underlying stochastic block model (SBM). While pair-matching can easily
be formalized as a bandit problem, and while we explore the parallel with some spe-
cific bandit problems like 𝑘 out of 𝑚 bandit, it turns out that neither the algorithms
nor the results or their proof can be used in our framework. In particular, our strategy
mixes clustering, iterative rounds of screening and exploitation steps in order to identify
a sufficiently large set of nodes in a single community, thus focusing on eliminating
sub–optimal arms (at the price of also eliminating optimal ones) rather than identifying
good ones as bandit algorithms usually do. Notice though that the paper [dHCMC22],
which is posterior to our work, considered related questions in a different setting.

Stochastic block models have attracted a lot of attention in the recent years, with
a focus on the determination of optimal strategies for clustering and for parameter
estimation, see [Abb17, Moo17]. In this prolific literature, the graph is fully observed
and the question is to identify precisely the weakest separation between the probabilities
of connection necessary to perfectly or partially recover the communities, or to estimate
the parameters of the SBM. Closer to our setting, the paper [YP14b] investigates the
question of recovering communities from a minimal number of observed pairs, sampled
sequentially. In this problem, the question is to assign a community to all nodes after a
minimal number𝑇 of time steps and try to minimize the number of misclassified nodes.
This is quite different from the minimization of the sampling regret considered here,
where we seek to find on a budget as many good pairs as possible and not to classify
all nodes. As discussed in Section 3.3, applying the algorithm of [YP14b] would lead
to a suboptimal regret in our problem.

The formalization of the pair-matching problem considered in this paper may be
restrictive in some applications. Section 5 presents some conjectures that seem reas-
onable for 𝐾 classes SBMs. Other graph structures would also be interesting, such
as Bradley-Terry models of [BT52, Zer29], which have been used for sport tourna-
ments in [SR09], chess ranking in [Joe90] and predictions of animal behaviors in
[WSFD+06]. Various constraints dealing with first discoveries for example may be
interesting depending on the applications: the first match of a node is the most import-
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ant in some situations, and, for the search of a life partner, discovering a match with
a node already connected in the observed graph is (for most nodes at least) less inter-
esting than a match with an isolated node. These constraints naturally induce different
versions of the pair-matching problem and raise mathematical questions of interest.
Multiplayer video games suggest the extension to hypergraphs of the pair-matching
problem. Indeed, the value of a player could be evaluated as part of a team and with
respect to a possible team of opponents rather than simply as part of a pair. Finally,
in many practical situations, additional information on individuals is available and
could be used to improve pair-matching algorithms. It is clear from our first results
that this information is necessary to avoid linear regret in applications such as life part-
ner research. These extensions are postponed to follow-up works. This paper should
be seen as a first step to formalize and study the important sequential pair-matching
problem. It focuses on a toy example but opens several interesting questions that arise
when dealing with natural constraints in practical applications of interest.

1.5. Organization and notation

The remainder of the paper is decomposed as follows. Section 2 introduces the formal
setting and objectives. As a warm-up, Section 3 focuses on the case where the algorithms
are not constrained to sample nodes more than a certain amount of times. Section 4
presents the main results where the algorithm are constrained. Section 5 gives con-
jectures for 𝐾-classes SBMs. Finally, in Section 6, we assess the behaviour of the
algorithms on synthetic data, and we explore the estimation of the scaling parameter
as well as the robustness of our result to slight model misspecification. The proofs of
the main results are postponed to the appendix.

Notation: we write 𝑥𝑛 ≲ 𝑦𝑛 and 𝑥𝑛 =𝑂 (𝑦𝑛), if there exist numerical constants such
that 𝑥𝑛 ⩽ 𝐶𝑦𝑛 for all 𝑛 ≥ 𝑛0; and we write 𝑥𝑛 ≍ 𝑦𝑛 and 𝑥𝑛 = Θ(𝑦𝑛), if 𝑥𝑛 = 𝑂 (𝑦𝑛)
and 𝑦𝑛 = 𝑂 (𝑥𝑛) that is, if there exist numerical constants 𝑐, 𝑐′ > 0 and 𝑛0 such that
𝑐𝑥𝑛 ≤ 𝑦𝑛 ≤ 𝑐′𝑥𝑛 for all 𝑛 ≥ 𝑛0. We denote by ⌈𝑥⌉ (respectively ⌊𝑥⌋) the upper (resp.
lower) integer part of 𝑥; by |𝐴| the cardinal of a set 𝐴; and by 𝐴Δ𝐵 the symmetric
difference between two sets 𝐴 and 𝐵.

2. Setting and Problem Formalization

2.1. A Special Bandit Problem

In the pair-matching problem described above, the data-scientist uncovers sequentially
a random graph, whose nodes are clustered into two communities. The probability to
have an edge between two nodes within a community is 𝑝, while this probability is 𝑞 for
two nodes belonging to different communities. The problem to discover sequentially as
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many edges as possible in𝑇 steps, without querying more than 𝐵𝑇 times a node, can be
interpreted as a non-standard multi-armed bandit problem. Actually, each pair {𝑎, 𝑏}
of nodes can be seen as an arm and the discovery of match as a payoff. The payoff of
the arm {𝑎, 𝑏} follows a Bernoulli distribution with parameter 𝑝 if 𝑎 and 𝑏 belongs to
the same communities, and with parameter 𝑞 if they are in different communities. This
bandit problem is non-standard, as

(1) the arms are sampled at most once,

(2) at most 𝐵𝑇 arms involving a given node can be sampled up to time 𝑇 ,

(3) the distribution of the payoffs have a hidden structure inherited from the SBM
setup.

Compared with the standard multi-armed bandit problem, points 1 and 2 make this
problem harder, while point 3 is a strong structural property that gives hope to find
regimes with sub-linear regret.

These special features make this problem quite different from classical bandit prob-
lems. In classical bandit problems, optimal strategies have to identify the best arm (or
some of the best arms) and each arm is played many times to reach this goal. Here,
half the arms are “optimal” but one cannot play an arm more than once. Therefore,
instead of identifying one of these, optimal strategies should avoid bad arms, possibly
disregarding a non-negligible proportion of good arms in the process.

The constraint 2. also induces a specific exploration / exploitation trade-off. When
the community of a node is identified, we wish to query it with a maximum of nodes
of the same community in order to maximise the rewards (exploitation). Yet, we also
need to pair this node to some new nodes in order identify the community of new
nodes (exploration). Since a node can be queried at most 𝐵𝑇 times, we need to trade-
off between these two strategies.

Due to these unusual features of the problem, the classical bandit literature is of
little help in order to design some optimal sampling algorithm. It is yet useful to estab-
lish our lower bounds, which involve inequalities from [GMS18, KCG16].

In the remaining of this section, the problem, the assumptions and the objectives
are described more formally.

2.2. Two-Classes SBM

The 𝑛 individuals are represented by the set𝑉 = {1, . . . , 𝑛}. Matches are represented by
a set of edges 𝐸 between nodes in𝑉 : there is a match between 𝑎 and 𝑏 in𝑉 if and only if
the pair {𝑎, 𝑏} belongs to 𝐸 . Hereafter, a set of two distinct elements in𝑉 is called a pair
and an element of 𝐸 is called an edge. The graph (𝑉, 𝐸) is conveniently represented
by its adjacency matrix 𝐴 ∈ R𝑛×𝑛, with entries 𝐴𝑎𝑏 = 1 if {𝑎, 𝑏} ∈ 𝐸 and 𝐴𝑎𝑏 = 0
otherwise. In the following, any graph (𝑉, 𝐸) is identified with its adjacency matrix



8 C. Giraud, Y. Issartel, L. Lehericy, and M. Lerasle

(𝐴𝑎𝑏)𝑎,𝑏∈𝑉 . For any pair 𝑒 = {𝑎, 𝑏}, the notations 𝐴𝑒 and 𝐴𝑎𝑏 are used indifferently.
Since the graph is undirected, the adjacency matrix 𝐴 is symmetric, and since there is
no self-matching (no self-loop in the graph), the diagonal of 𝐴 is equal to zero.

Individuals are grouped into two (unknown) communities according to their affin-
ity. To model this situation, the graph (𝑉, 𝐸) is random and distributed as a two-classes
conditional stochastic block model. Let 0 < 𝑞, 𝑝 < 1, and let 𝑛1 denote an integer
𝑛1 ≥ 𝑛 − 𝑛1 ≥ 1. The collection cSBM(𝑛1, 𝑛 − 𝑛1, 𝑝, 𝑞) of two-classes conditional
stochastic block model distributions on graphs is defined as follows. Let𝐺 = {𝐺1, 𝐺2}
be a partition of {1, . . . , 𝑛} into two groups, with |𝐺1 | = 𝑛1 and |𝐺2 | = 𝑛 − 𝑛1. The par-
tition𝐺 represents the communities of individuals. Let 𝜇𝐺 denotes the distribution on
graphs with nodes {1, . . . , 𝑛}, such that the adjacency matrix is symmetric, null on the
diagonal and with lower diagonal entries (𝐴𝑎𝑏)𝑎<𝑏 sampled as independent Bernoulli
random variables with 𝜇𝐺 (𝐴𝑎𝑏 = 1) = 𝑝 when 𝑎 and 𝑏 belong to the same group 𝐺𝑖 ,
and 𝜇𝐺 (𝐴𝑎𝑏 = 1) = 𝑞 when 𝑎 and 𝑏 belong to different groups. In other words, two
individuals are matched with probability 𝑝 if they belong to the same community, and
with probability 𝑞 otherwise. The class cSBM(𝑛1, 𝑛 − 𝑛1, 𝑝, 𝑞) is defined as the set of
all distributions 𝜇𝐺 defined above, where 𝐺 = {𝐺1, 𝐺2} describes the set of partitions
of {1, . . . , 𝑛} satisfying |𝐺1 | = 𝑛1 and |𝐺2 | = 𝑛 − 𝑛1:

cSBM(𝑛1, 𝑛 − 𝑛1, 𝑝, 𝑞)
= {𝜇𝐺 : 𝐺 = {𝐺1, 𝐺2} partition satisfying |𝐺1 | = 𝑛1, |𝐺2 | = 𝑛 − 𝑛1} .

In the following, the communities are balanced and matches happen with higher prob-
ability if individuals belong to the same community. Formally, 𝑛 is even and the graph
(𝑉, 𝐸) has been generated according to a distribution 𝜇 in cSBM(𝑛/2, 𝑛/2, 𝑝, 𝑞), for
some unknown parameters 𝑝 and 𝑞 such that 0 < 𝑞 < 𝑝 ≤ 1/2. As 𝑞 < 𝑝, the distribu-
tion of (𝑉, 𝐸) is called an assortative cSBM(𝑛/2, 𝑛/2, 𝑝, 𝑞). All along the paper, the
ratio 𝑝/𝑞 is also assumed bounded from above. To sum up, 𝑝 and 𝑞 are smaller than
1/2 and satisfy

1 < 𝑝/𝑞 ≤ 𝜌∗. (2.1)

The rationale for the upper bound in (2.1) is provided in the Remark below Theorem 1.
Given 𝑝 and 𝑞, the following scaling parameter plays a central role

𝑠 =
(𝑝 − 𝑞)2

𝑝 + 𝑞 . (2.2)

This parameter appears in various results in the literature on SBM. The following prop-
erty, proved for example in [YP14a, CRV15, AS15a, LZ16, GMZZ17, FC19, GV19],
will be used repeatedly in the paper. When the graph (𝑉, 𝐸) ∼ cSBM(𝑛1, 𝑛 − 𝑛1, 𝑝, 𝑞),
there exist polynomial-time clustering algorithms that return a partition of {1, . . . , 𝑛}
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such that, with large probability, the proportion of misclassified nodes decreases expo-
nentially:

Proportion of misclassified nodes ≤ exp(−𝑐𝑛𝑠), when 𝑛𝑠 ≥ 𝑐′,

where 𝑐, 𝑐′ > 0 are numerical constants. The rate 𝑛𝑠 of exponential decay in this result
is optimal (up to a constant) when (2.1) is met. Hence, the scaling parameter 𝑠 drives
the difficulty of clustering. To stress the importance of 𝑠, the following parametrization
will be used henceforth

𝑝 = 𝑠
(
𝛼 +

√
𝛼
)
/2, 𝑞 = 𝑠

(
𝛼 −

√
𝛼
)
/2,

with 𝛼 = (𝑝 + 𝑞)2/(𝑝 − 𝑞)2. In this parametrization, Assumption (2.1) is met if and
only if 𝛼 is bounded from below by (𝜌∗ + 1)2/(𝜌∗ − 1)2. Another useful property is that
there exist numerical constants 𝑐1, 𝑐2 > 0 such that non-trivial community recovery is
possible as soon as 𝑠 ≥ 𝑐1/𝑛, see [DKMZ11, Mas14, MNS18, CRV15, AS15a, BLM18,
FC19, GV19] and perfect community recovery is possible as soon as 𝑠 ≥ 𝑐2 log(𝑛)/𝑛,
see [AS15a, CX16, MNS16].

The reader familiar with SBM literature may be more comfortable with the para-
metrization 𝑝 = 𝑎𝑛/𝑛 and 𝑞 = 𝑏𝑛/𝑛 for a SBM distribution with two communities. For
a comfortable translation of the results, the following relations between 𝑠, 𝛼 and 𝑎𝑛,
𝑏𝑛 are provided:

𝑠 =
(𝑎𝑛 − 𝑏𝑛)2

𝑛(𝑎𝑛 + 𝑏𝑛)
, 𝛼 =

(𝑎𝑛 + 𝑏𝑛)2

(𝑎𝑛 − 𝑏𝑛)2 ,

𝑎𝑛

𝑏𝑛
=
𝛼 +

√
𝛼

𝛼 −
√
𝛼

and 𝑎𝑛 + 𝑏𝑛 = 𝑛𝛼𝑠.

With these notations, the optimal sampling regret (1.1) can be rewritten as

𝑇 ∧
√
𝑇 ∨ (𝑇/𝐵𝑇 )

𝑠
= 𝑇 ∧

((√
𝑇 ∨ (𝑇/𝐵𝑇 )

) 𝑛(𝑎𝑛 + 𝑏𝑛)
(𝑎𝑛 − 𝑏𝑛)2

)
,

which is smaller than 𝑇 as soon as

𝐵𝑇 ∧
√
𝑇 ≥ 𝑛(𝑎𝑛 + 𝑏𝑛)

(𝑎𝑛 − 𝑏𝑛)2 .

In particular, in the sparse regime where 𝑎𝑛 and 𝑏𝑛 are constants,
√
𝑇 has to be of the

order of 𝑛, while 𝑠 has to be of the order of 1/𝑛. The regret, which is lower bounded
by 𝑇 ∧

√
𝑇/𝑠, is then at least of the order of 𝑇 ∧ 𝑛2, and thus linear.
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2.3. Sequential Matching strategies

Denote by E the set of all pairs of nodes, that is the set of all subsets of 𝑉 containing
two distinct elements. Heuristically, a sequential matching strategy samples at each
time 𝑡 a new pair �̂�𝑡 ∈ E, using only past observations (�̂�1, . . . , �̂�𝑡−1, 𝐴�̂�1 , . . . , 𝐴�̂�𝑡−1)
and an internal randomness of the algorithm.

Formally, let 𝑈0, 𝑈1, . . . be i.i.d uniform random variables in [0, 1], independ-
ent of 𝐴 and representing the sequence of internal randomness for the algorithm. A
sequential matching strategy 𝜓 on E (shortened strategy in the following) is a sequence
𝜓 = (𝜓𝑡 )0≤𝑡≤(𝑛2)−1 of measurable functions 𝜓𝑡 : E𝑡 × {0, 1}𝑡 × [0, 1]𝑡+1 → E. Any
sequential matching strategy 𝜓 defines a matching algorithm as follows. The first pair
is sampled as �̂�1 = 𝜓0(𝑈0). Then, at each time 𝑡 ≥ 0, the pair �̂�𝑡+1 is defined by

�̂�𝑡+1 = 𝜓𝑡 (Ê𝑡 , (𝐴𝑒)𝑒∈ Ê𝑡
,𝑈0, . . . ,𝑈𝑡 ) with Ê𝑡 = {�̂�1, . . . , �̂�𝑡 } .

The strategy takes as input the observed graph (𝐴𝑒)𝑒∈ Ê𝑡
and possibly an internal inde-

pendent randomness𝑈𝑡 to output the new observed pair �̂�𝑡+1.
In the following, strategies are assumed to satisfy the following constraints: a pair

can only be sampled once and strategies are invariant to labelling of the nodes. These
constraints can be formalized as follows.

Non-redundancy (NR). The strategy 𝜓 samples any pair at most once, that is, for any
0 ≤ 𝑡 ≤

(𝑛
2
)
− 1 and 𝑒1, . . . , 𝑒𝑡 ∈ E, the map𝜓𝑡 fulfils𝜓𝑡 ({𝑒1, . . . , 𝑒𝑡 }, . . .) ∉ {𝑒1, . . . , 𝑒𝑡 }.

Invariance to labelling requires some notation. For any pair 𝑒 ∈ E and any strategy 𝜓,
let

𝑁𝑒 (𝜓, 𝑡) := 1
𝑒∈ Ê𝑡

(2.3)

indicate if the pair 𝑒 has been sampled or not before time 𝑡 by the strategy 𝜓. For any
non-redundant strategy 𝜓 (i.e. satisfying (NR)), pairs are sampled at most once and
the observation of {𝑁𝑒 (𝜓, 𝑡) : 𝑒 ∈ E} is equivalent to that of Ê𝑡 .

Let 𝜇 be a distribution in cSBM(𝑛/2, 𝑛/2, 𝑝, 𝑞) and 𝜎 be a permutation of 𝑉 . For
any pair {𝑎, 𝑏} ∈ E, let 𝜎({𝑎, 𝑏}) := {𝜎(𝑎), 𝜎(𝑏)}. Let 𝜇𝜎 denote the distribution of
(𝐴𝜎 (𝑒) )𝑒∈E , where (𝐴𝑒)𝑒∈E is distributed according to 𝜇.

Invariance to labelling (IL). The distribution of the outcomes of the strategy 𝜓 is
invariant by permutations of the nodes labels: For any 𝜇 ∈ cSBM(𝑛/2, 𝑛/2, 𝑝, 𝑞) and
any permutation 𝜎 on 𝑉 , the distribution of

(
𝑁𝑒 (𝜓, 𝑡) : 𝑒 ∈ E, 1 ≤ 𝑡 ≤

(𝑛
2
) )

under 𝜇𝜎

is the same as the distribution of
(
𝑁𝜎 (𝑒) (𝜓, 𝑡) : 𝑒 ∈ E, 1 ≤ 𝑡 ≤

(𝑛
2
) )

under 𝜇.

Remark. Any algorithm can be made invariant to labeling by simply relabeling all the
vertices at random before applying the algorithm.
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Besides (NR) and (IL), we consider strategies that do not sample a node more
than 𝐵 times before time 𝑇 . This constraint appears naturally in practical situations.
For example, if the algorithm matches biological entities or individuals, one may not
want to query too many times each individual for logistic or acceptability reasons. To
stress that the constraint 𝐵 typically grows with the time horizon 𝑇 , it is denoted 𝐵𝑇 .
Formally, for any 𝑎 ∈ 𝑉 , let

𝑁𝑎 (𝜓, 𝑡) =
∑︁

𝑏∈𝑉 :𝑏≠𝑎
𝑁{𝑎,𝑏} (𝜓, 𝑡) (2.4)

denote the number of times the node 𝑎 has been sampled in a pair {𝑎, 𝑏} after 𝑡 queries.

Sparse sampling (SpS). Let 𝑇 and 𝐵𝑇 denote two integers. The strategy 𝜓 is called
𝐵𝑇 -sparse up to time 𝑇 if it satisfies

∀𝑎 ∈ 𝑉, 𝑁𝑎 (𝜓,𝑇) ≤ 𝐵𝑇 . (2.5)

Since 𝑁𝑎 (𝜓,𝑇) ≤ (𝑛 − 1) ∧ 𝑇 for all nodes 𝑎, choosing 𝐵𝑇 ≥ (𝑛 − 1) ∧ 𝑇 corres-
ponds to the unconstrained case.

2.4. Objectives of the Pair-matcher

Let 𝜇 ∈ cSBM(𝑛/2, 𝑛/2, 𝑝, 𝑞) be the distribution of an assortative conditional stochastic
block model with associated partition 𝐺 = {𝐺1, 𝐺2}. Pairs within a community have
a larger probability to lead to a match, than pairs between two different communities.
Accordingly, pairs {𝑎, 𝑏} with 𝑎 and 𝑏 from the same community are called good pairs,
and E𝑔𝑜𝑜𝑑 (𝜇) (or simply E𝑔𝑜𝑜𝑑) denotes the set of such pairs. Similarly, E𝑏𝑎𝑑 (𝜇) (or
simply E𝑏𝑎𝑑) denotes the set of pairs {𝑎, 𝑏} with 𝑎 and 𝑏 from two different com-
munities.

The objective of the pair-matcher is to discover as many edges (i.e. matches between
individuals) as possible with 𝑇 queries, in expectation or with high-probability. For
simplicity, we focus henceforth on the maximization of the expected number of edges
discovered. The strategy 𝜓 of the pair-matcher should then maximize the number of
discovered edges, in expectation with respect to the randomness of the SBM and the
strategy. Optimal strategies should therefore sample as many pairs in Egood as possible.
Formally, consider a time horizon 𝑇 smaller than |Egood | = 2

(𝑛/2
2

)
∼ 𝑛2/4, and denote

by 𝑁𝑏𝑎𝑑 (𝜓,𝑇) = ∑
𝑒∈E𝑏𝑎𝑑 𝑁𝑒 (𝜓,𝑇) (respectively 𝑁𝑔𝑜𝑜𝑑 (𝜓,𝑇) = ∑

𝑒∈E𝑔𝑜𝑜𝑑 𝑁𝑒 (𝜓,𝑇))
the number of pairs in E𝑏𝑎𝑑 (resp. E𝑔𝑜𝑜𝑑) sampled up to time𝑇 . Applying Wald lemma
at the second line, we can compute the expected number of discoveries for any strategy
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𝜓

E𝜇

[
𝑇∑︁
𝑡=1

𝐴�̂�𝑡

]
=

∑︁
𝑒∈E𝑔𝑜𝑜𝑑 (𝜇)

E𝜇

[
1
𝑒∈ Ê𝑡

𝐴𝑒

]
+

∑︁
𝑒∈E𝑏𝑎𝑑 (𝜇)

E𝜇

[
1
𝑒∈ Ê𝑡

𝐴𝑒

]
=

∑︁
𝑒∈E𝑔𝑜𝑜𝑑 (𝜇)

𝑝 E𝜇

[
1
𝑒∈ Ê𝑡

]
+

∑︁
𝑒∈E𝑏𝑎𝑑 (𝜇)

𝑞 E𝜇

[
1
𝑒∈ Ê𝑡

]
= 𝑝 E𝜇

[
𝑁𝑔𝑜𝑜𝑑 (𝜓,𝑇)

]
+ 𝑞 E𝜇

[
𝑁𝑏𝑎𝑑 (𝜓,𝑇)

]
= 𝑝𝑇 − (𝑝 − 𝑞) E𝜇

[
𝑁𝑏𝑎𝑑 (𝜓,𝑇)

]
,

where the last line follows from 𝑁𝑔𝑜𝑜𝑑 (𝜓, 𝑇) + 𝑁𝑏𝑎𝑑 (𝜓, 𝑇) = 𝑇 . Since 𝑝 > 𝑞, the
maximal expected value of discoveries is achieved by any oracle strategy 𝜓∗ sampling
only edges in Egood. In that case, 𝑁𝑏𝑎𝑑 (𝜓∗, 𝑇) = 0 and the maximal expected number
of discoveries is equal to 𝑝𝑇 . The regret of the strategy 𝜓 is defined as the difference
between 𝑝𝑇 and its expected number of discoveries:

𝑅𝑇 (𝜓) = 𝑝𝑇 − E𝜇

[
𝑇∑︁
𝑡=1

𝐴�̂�𝑡

]
= (𝑝 − 𝑞) E𝜇

[
𝑁𝑏𝑎𝑑 (𝜓,𝑇)

]
.

As long as 𝑇 ⩽ |Egood |, the regret is proportional to the expected number of sampled
between-group pairs E𝜇

[
𝑁𝑏𝑎𝑑 (𝜓,𝑇)

]
. Therefore, the main results analyse this last

quantity rather than the regret. The expected number of bad sampled pairsE𝜇
[
𝑁𝑏𝑎𝑑 (𝜓,𝑇)

]
is called hereafter sampling-regret.

Remark. Without assumption on 𝜓, the distribution of 𝑁𝑏𝑎𝑑 (𝜓,𝑇) may depend on the
distribution 𝜇 of the cSBM. On the other hand, when the strategy 𝜓 fulfils (IL), the dis-
tribution of 𝑁𝑏𝑎𝑑 (𝜓,𝑇) does not depend on the distribution 𝜇 in cSBM(𝑛/2, 𝑛/2, 𝑝, 𝑞).
Indeed, let 𝜇, 𝜇′ be two distributions in cSBM(𝑛/2, 𝑛/2, 𝑝, 𝑞). By definition, there
exists a permutation 𝜎 on {1, . . . , 𝑛} such that 𝜇′ = 𝜇𝜎 , where 𝜇𝜎 has been defined
page 10. Since E𝑏𝑎𝑑 (𝜇𝜎) = 𝜎−1(E𝑏𝑎𝑑 (𝜇)), it follows from (IL) that the distribu-
tion under 𝜇𝜎 of

∑
𝑒∈E𝑏𝑎𝑑 (𝜇𝜎 ) 𝑁𝑒 (𝜓, 𝑇) is the same as the distribution under 𝜇 of∑

𝑒∈E𝑏𝑎𝑑 (𝜇) 𝑁𝑒 (𝜓,𝑇).

3. Warm-up: Unconstrained Optimal Pair-Matching

3.1. Optimal Rates for Unconstrained Pair-Matching

As a warm-up, we focus first on the simplest case, where 𝐵𝑇 = +∞, which amounts to
remove the constraint (SpS). Let Ψ∞ denote the set of strategies 𝜓 fulfilling (NR) and
(IL). The first main result describes the best sampling-regret that can be achieved by
a strategy in Ψ∞, as a function of 𝑠 and 𝑇 .
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Theorem 1. Let 𝑇 and 𝑛 be positive integers with 𝑇 ≤ |Egood | = 2
(𝑛/2

2
)
. Let 𝑝, 𝑞 ∈

[0, 1/2] be two parameters fulfilling (2.1) and such that

𝑠 ≤ 1
32(1 + 𝜌∗) , (3.1)

where the scaling parameter 𝑠 is defined in (2.2). Then, for any 𝜇 ∈ cSBM(𝑛/2, 𝑛/2, 𝑝, 𝑞),

inf
𝜓∈Ψ∞

E𝜇
[
𝑁𝑏𝑎𝑑 (𝜓,𝑇)

]
≥ 1

32

[ √
𝑇

32(1 + 𝜌∗)𝑠 ∧ 𝑇
]
. (3.2)

Moreover, there exist two numerical constants 𝑐1, 𝑐2 > 0, and a strategy 𝜓 ∈ Ψ∞
corresponding to a polynomial-time algorithm described in Section 3.2, taking 𝑠 as
input, such that, for any 𝑝, 𝑞 satisfying (2.1), any 𝜇 ∈ cSBM(𝑛/2, 𝑛/2, 𝑝, 𝑞) and any
time horizon 1 ≤ 𝑇 ≤ 𝑐2𝑛

2

E𝜇
[
𝑁𝑏𝑎𝑑 (𝜓,𝑇)

]
≤ 𝑐1

[√
𝑇

𝑠
∧ 𝑇

]
.

The proof of Theorem 1 is provided in the appendix. The lower bound is proved in
Section A and the upper bound in Section B. The upper bound derives from a stronger
result showing that similar bounds hold with high probability, see Theorem 7 for a
precise statement. Theorem 1 provides only the upper bound in expectation for clarity.

Remark. The parameter 𝜌∗ only appears in the lower bound. In fact, the SNR showing
up in the proof of the lower bound is 𝑠 := 𝑘𝑙 (𝑝, 𝑞) ∨ 𝑘𝑙 (𝑞, 𝑝) ≤ 1/16, where 𝑘𝑙 (𝑝, 𝑞) =
𝑝 log(𝑝/𝑞) + (1− 𝑝) log((1− 𝑝)/(1− 𝑞)) is the Kullback-Leibler divergence between
two Bernoulli distributions with parameters 𝑝 and 𝑞. Under the condition 𝑝/𝑞 ≤ 𝜌∗, we
have 𝑠 ≤ 𝑠 ≤ 2(1 + 𝜌∗)𝑠, so 𝑠 and 𝑠 are equivalent; see Lemma 19. Thus, the quantity
𝜌∗ appears when writing the condition with 𝑠 instead of 𝑠 as SNR.
We have chosen to use 𝑠 instead of 𝑠 for convenience, as it is a classical SNR in the
SBM literature, and it allows us to use existing results and clustering routines straight-
forwardly. We stress that 𝑠 can strongly differ from 𝑠when 𝜌∗ is large, but this difference
is large only in the ‘easiest’ setting where 𝑝 and 𝑞 are markedly different. On the other
hand, the regime where 𝜌∗ is small is more challenging. In the upper bound, the con-
stants 𝑐1 and 𝑐2 are numerical constants that do not depend on 𝜌∗.

Theorem 1 states that, when (2.1) holds, for any 𝜇 ∈ cSBM(𝑛/2, 𝑛/2, 𝑝, 𝑞) and any
time horizon 1 ≤ 𝑇 ≤ 𝑐2𝑛

2, the optimal sampling-regret

inf
𝜓∈Ψ∞

E𝜇
[
𝑁𝑏𝑎𝑑 (𝜓,𝑇)

]
≍

√
𝑇

𝑠
∧ 𝑇 ,
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grows linearly with𝑇 as long as𝑇 ≲ 1/𝑠2 and becomes sub-linear, of order
√
𝑇/𝑠, when

𝑇 ≳ 1/𝑠2.

Remark. For the convenience of the reader familiar with the SBM literature, the con-
clusion of Theorem 1 in terms of the parametrization 𝑝 = 𝑎𝑛/𝑛 and 𝑞 = 𝑏𝑛/𝑛 (as in
Section 2.2) is

inf
𝜓∈Ψ∞

E𝜇
[
𝑁𝑏𝑎𝑑 (𝜓,𝑇)

]
≍ 𝑛(𝑎𝑛 + 𝑏𝑛)

(𝑎𝑛 − 𝑏𝑛)2

√
𝑇 ∧ 𝑇,

since 𝑠 = (𝑎𝑛−𝑏𝑛 )2

𝑛(𝑎𝑛+𝑏𝑛 ) .
This result can be understood intuitively. As long as communities cannot be recovered

better than random, there is no hope of getting better sampling-regret than with purely
random sampling of the pairs. In this regime, the sampling-regret grows linearly with
𝑇 . To identify when this occurs, consider the situation where pairs are sampled at ran-
dom among 𝑁 nodes and 𝑇 = 𝛽𝑁2/2 (with 𝛽 ⩽ 1). Then the observed edges at time
𝑇 are approximately distributed as in a SBM with 𝑁 nodes, within-group connection
probability 𝑝𝛽 = 𝛽𝑝, and between-group connection probability 𝑞𝛽 = 𝛽𝑞. It follows
from [DKMZ11, Mas14, MNS15, BLM18] that weak recovery of the communities is
possible if and only if 𝑁 (𝑝𝛽 − 𝑞𝛽)2 ≥ 2(𝑝𝛽 + 𝑞𝛽), which is equivalent to

√
𝛽𝑇𝑠 ≥

√
2

or 𝑇 ≥ 2/(𝛽𝑠2). Since 𝛽 ≤ 1 by definition, no information about the communities can
be recovered when 𝑇 ≤ 2/𝑠2. Hence, the sampling-regret is expected to grow linearly
with 𝑇 for 𝑇 = 𝑂 (1/𝑠2). This intuition is confirmed by Eq. (3.2).

When𝑇 ≫ 1/𝑠2, the situation is different. Classical results, such as those in [YP14a,
CRV15, AS15a, LZ16, MNS16, FC19, GV19] among others, ensure that the com-
munities of 𝑁 nodes can be recovered almost perfectly if 𝑁 ≫ 1/𝑠 and all edges
between these nodes are observed. Therefore, when 1/𝑠 ≪ 𝑁 =

(√
𝑇/𝑠

)1/2 ≪
√
𝑇 ,

one can sample all the edges between 𝑁 nodes and recover almost perfectly their com-
munity with a sampling regret smaller than 𝑁2 =

√
𝑇/𝑠.

A recipe in order to get a sublinear regret is the following. If we are able to find a
community of Θ(

√
𝑇) nodes, then we can spend a budget of 𝑇 queries without further

regret by sampling pairs among these Θ(
√
𝑇) nodes. To do so, we need to identify

a community of Θ(
√
𝑇) nodes from the 𝑁 clustered nodes, with a regret smaller than√

𝑇/𝑠. Given the 𝑁 clustered nodes, a carefully designed screening strategy (see Step 2
of algorithm Section 3.2), can identify the community of a new node with a sampling
regret of order 𝑂 (1/𝑠). Proceeding recursively, Θ(

√
𝑇) new nodes can be identified

with a sampling-regret of order𝑂 (
√
𝑇/𝑠). The remaining budget of 𝑇 queries can then

be spent by sampling pairs among these Θ(
√
𝑇) nodes without further regret if there

were no errors in the community assignment. This informal reasoning suggests that
the optimal sampling-regret grows like

√
𝑇/𝑠 when 𝑇 ≫ 1/𝑠2. Again, this intuition is

confirmed by Eq. (3.2). An algorithm achieving the optimal upper bound in Theorem 1
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and taking as input 𝑠 and the time horizon 𝑇 is provided in Section 3.2. It essentially
proceeds as in the informal strategy outlined above, even if some steps have to be
refined. In particular, the identification of a community of Θ(

√
𝑇) nodes has to be

conducted with care in order to balance the regret and the community assignment
errors. The dependency of the algorithm of Section 3.2 on the time horizon 𝑇 , can be
easily dropped out with a classical doubling trick, see Section B in the appendix.

To sum up the discussion: in the early stage where 𝑇 = 𝑂 (1/𝑠2), one cannot do
better than random guessing, up to multiplicative constant factors. In the second stage
where 𝑇 ≥ 1/𝑠2, the rate

√
𝑇/𝑠 can be interpreted as follows. A total of Θ(

√
𝑇) nodes

are involved at time 𝑇 and, for each of them, Θ(1/𝑠) observations are necessary to
obtain an educated guess of their community .

Finally, Theorem 1 can be equivalently stated in terms of the regret 𝑅𝑇 (𝜓): for any
time horizon 1 ≤ 𝑇 ≤ 𝑐2𝑛

2, the minimal regret satisfies

inf
𝜓∈Ψ∞

𝑅𝑇 (𝜓) ≍
√
𝛼

(√
𝑇 ∧ (𝑠𝑇)

)
,

when the assumptions of Theorem 1 are met.

3.2. Algorithm with Specified Horizon 𝑻

This section presents an algorithm achieving the upper bound in Theorem 1. This
algorithm takes as input the scaling parameter 𝑠 and the time horizon 𝑇 . This depend-
ency on the time-horizon can be avoided with the classical doubling trick, see Section
B in the appendix. We discuss in Section 5.1 a heuristic for the preliminary estimation
of 𝑠 involving less than 𝑂 (1/𝑠2) edges.

When the horizon 𝑇 is 𝑂 (1/𝑠2), any strategy achieves a regret of order 𝑂 (𝑇).
Hence, without loss of generality, it is assumed in the remaining of the section that
𝑇 ≥ 𝑐𝑡ℎ/𝑠2 for some numerical constant 𝑐𝑡ℎ. Moreover, as Theorem 1 holds for 𝑇 ≤
𝑐2𝑛

2, it is also assumed that this condition is fulfilled for a sufficiently small constant
𝑐2.

The algorithm proceeds in three steps. In the first step, a core-set N of |N | =
Θ(

√
𝑇/log(𝑠

√
𝑇)) vertices is chosen uniformly at random and each pair within this

core-set is sampled with probability Θ
(
(log(𝑠

√
𝑇))2/(𝑠

√
𝑇)

)
. Hence, an average of

Θ(
√
𝑇/𝑠) pairs are sampled within this core-set. A community recovery algorithm is

run on this observed graph that outputs two estimated communities with a fraction of
misclassified nodes vanishing as 𝑂 (log(𝑠

√
𝑇)/(𝑠

√
𝑇)) with high probability.

The second step identifies with high probability Θ(
√
𝑇) vertices from the same

community, say community 1. To do so, it picks uniformly at random a set A0 of 8
√

2𝑇
vertices outside of the core-setN (this is possible thanks to the condition𝑇 ≤ 𝑐2𝑛

2) and
samples pairs between this set and the estimated community 1 of the core-set. This set
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of edges is used to estimate the connectivity between these vertices and community 1.
Vertices with low connectivity, that seem to belong to community 2, are removed online
to keep the sampling regret under control. The goal of this screening is not to classify
perfectly the 8

√
2𝑇 picked vertices, but instead to sift out vertices of community 2 with

a low sampling regret. In particular, a price to pay to achieve this goal is to possibly
remove a non-negligible proportion of vertices of community 1 from the 8

√
2𝑇 picked

vertices. This second step of the algorithm is crucial for getting the optimal regret rate
𝑂 (

√
𝑇/𝑠). A simplified version of this second step can be connected to a particular 𝑘

out of 𝑚 best arms identification problem. This connection is discussed in Section 3.3
below.

The third step samples all pairs {𝑎, 𝑏} such that 𝑎 and 𝑏 belong to the Θ(
√
𝑇)

vertices isolated in the second step of the algorithm, until the remaining budget of 𝑇
queries is expended.

The pair-matching algorithm calls an external clustering algorithm (generically
denoted by GOODCLUST in the following). GOODCLUST takes as input a graph (𝑉, 𝐸)
and outputs a partition 𝐺 = (𝐺1, 𝐺2). We require that GOODCLUST fulfils the follow-
ing recovery property: There exist numerical constants 𝑐GC, 𝑐GC

1 > 0 such that, for all
𝑁 = 𝑁1 + 𝑁2 and all 𝑝, 𝑞 ∈ [0, 1], if (𝑉, 𝐸) ∼ cSBM(𝑁1, 𝑁2, 𝑝, 𝑞), the proportion of
misclassified nodes

𝜀𝑁 =
|𝐺1Δ𝐺1 | + |𝐺2Δ𝐺2 |

2𝑁
,

with Δ the symmetric difference, satisfies

𝜀𝑁 ≤ exp
(
−𝑐GC

1 𝑁
(𝑝 − 𝑞)2

𝑝

)
, (3.3)

with probability at least 1 − 𝑐GC/𝑁3. Algorithms achieving this proportion of mis-
classification can be found e.g. in [GV19], see also [YP14a, CRV15, AS15a, LZ16,
GMZZ17, FC19] for similar results.
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Unconstrained Algorithm

Inputs: 𝑠 scaling parameter, 𝑇 time horizon, 𝑉 set of nodes.

Internal constants: 𝑐O0 = 2 ∨ (1/𝑐GC
1 ), 𝐶𝑘 = 2200 and 𝐶𝐼 = 4.

Step 1: finding communities in a core-set
1.Sample uniformly at random a set N ⊂ 𝑉 of 𝑁 =

⌈√
𝑇/log(𝑠

√
𝑇)

⌉
nodes.

2.Sample each pair of N with probability 𝑐O0

√
𝑇

𝑠
(𝑁

2
) , call O0 ⊂ E the output.

3.Estimate global connectivity 𝜏 = (𝑝 + 𝑞)/2 by 𝜏 =
1

|O0 |
∑︁
𝑒∈O0

𝐴𝑒.

4.Run GOODCLUST on the graph with nodes set N and edges present in O0. Output,
for any 𝑥 ∈ N , 𝑍𝑥 the estimated community of 𝑥. Choose the label �̂� = 1 for the
largest estimated community.

Step 2: expanding the communities
5.Sample uniformly at random a set A0 of |A0 | =

⌈
8
√

2𝑇
⌉

nodes in 𝑉 \ N .

6.Set 𝑘 = ⌈𝐶𝑘/𝑠⌉ and 𝐼 =
⌈
𝐶𝐼 log(𝑠

√
𝑇)

⌉
7.For 𝑖 = 1, . . . , 𝐼, do
(a)For 𝑥 ∈ A𝑖−1, sample 𝑘 nodes (𝑦𝑥

𝑘 (𝑖−1)+𝑎)𝑎=1,...,𝑘 uniformly at random in N ∩{
�̂� = 1

}
\ {𝑦𝑥𝑎}𝑎=1,...,𝑘 (𝑖−1) .

(b)Sample the pairs ({𝑥, 𝑦𝑥
𝑘 (𝑖−1)+𝑎})𝑎=1,...,𝑘 and let 𝑝𝑥,𝑖 = 1

𝑘𝑖

∑𝑘𝑖
𝑎=1 𝐴𝑥𝑦𝑥𝑎 .

(c)Select A𝑖 =
{
𝑥 ∈ A𝑖−1 : 𝑝𝑥,𝑖 ≥ 𝜏

}
.

(d)In casea where A𝑖 = ∅, then set A𝐼 = ∅ and BREAK.

Step 3: sampling pairs within estimated communities
8.Sample uniformly at random pairs within the set A𝐼 until 𝑇 pairs have been
sampled overall. If the number of sampled pairs is smaller than 𝑇 after all pairs
in A𝐼 have been sampled𝑎, then sample the remaining pairs at random.

Output: 𝑇 pairs sampled at steps 2., 7.(b) and 8. of the algorithm.
awith high probability, this undesirable case does not happen

3.3. Community Expansion versus 𝒌 out of 𝒎 Best Arm Identification

As proved in Lemma 8 in the Appendix B, after Step 1, with high probability, we end
up with a set of 𝑁 classified nodes, where at most𝑂 (1/𝑠) of them are misclassified, and



18 C. Giraud, Y. Issartel, L. Lehericy, and M. Lerasle

the empirical connectivity 𝜏 does not deviate from the population one 𝜏 = (𝑝 + 𝑞)/2
by more than (𝑝 − 𝑞)/4. The goal of Step 2 is then to identify

√
2𝑇 new nodes of

community 1, with at most𝑂 (1/𝑠) misclassified nodes and a regret at most𝑂 (
√
𝑇/𝑠).

Let us connect this problem to a 𝑘 out of 𝑚 best arms identification problem.
Let us consider a simplified version of the problem of Step 2. Assume that we have

identified 𝑁1 = 𝑁/2 nodes of community 1 with no error, that we have access to the
population connectivity 𝜏 and that among the 𝑀 = 8

√
2𝑇 nodes in A0, half of them

are of community 1. Then, each node 𝑎 ∈ A0 can be seen as an arm, and pulling the
arm 𝑎 amounts to query a pair {𝑎, 𝑏} with 𝑏 one of the 𝑁1 nodes of community 1
identified at Step 1. The mean reward of the arm 𝑎 is 𝑝 if it belongs to community
1, and 𝑞 otherwise. Hence, a simplified version of the problem in Step 2 amounts to
identify 𝑘 =

√
2𝑇 out of 𝑚 = 𝑀/2 = 4

√
2𝑇 best arms, with at most 𝑂 (1/𝑠) errors,

and a cumulated regret 𝑂 (𝑘/𝑠). We have the additional constraint that an arm can be
pulled at most 𝑁1 times, but we will forget this additional feature in this discussion,
for simplicity of the comparison.

The problem of identifying 𝑘 out of𝑚 best arms with a tolerance 𝜖 has been invest-
igated in [GWLC13, RLS19]. The focus on these papers is on the minimal sample size
needed to identify 𝑘 arms whose expected reward is larger than the 𝑚th largest expec-
ted reward minus 𝜖 . The main results of [RLS19] states that, with probability at least
1 − 𝑘−2, the algorithm AL-Q-FK can recover with a sample size

𝑂

(
1

(𝑝 − 𝑞)2

(
𝑀 log

(
𝑚 + 1

𝑚 + 1 − 𝑘

)
+ 𝑘 log(𝑘)

))
𝑘 out of the 𝑚 best arms with a tolerance 𝜖 = (𝑝 − 𝑞)/2. The sampling regret is not
considered and it can be as large as the sample size. In the same setting, the screening
algorithm of Step 2 achieves the following performance. For 𝑚 ≥ 𝑐𝑘 ≥ 𝑐′/𝑠, with
probability at least 1 − 𝑐′′𝑘−2 a budget of at most 𝑂 (𝑘𝑠−1 log(𝑠𝑘)) queries, and a
sampling regret at most 𝑂 (𝑘/𝑠), the algorithm identifies a set of arms with at least
𝑘 out of 𝑚 best arms and at most 𝑂 (1/𝑠) arms not in the 𝑚 best ones. As 𝑠 = (𝑝 −
𝑞)2/(𝑝 + 𝑞), the sampling regret achieved by the screening algorithm of Step 2 is at
least (𝑝 + 𝑞)/log(𝑘) times smaller. We can explain this gain by several reasons. The
𝑝 + 𝑞 improvement comes from the fact that we explicitly take into account the fact
that the rewards have a Bernoulli distribution. The 1/log(𝑘) improvement is obtained
by a careful design of the algorithm to keep the regret low, at the price of possibly
𝑂 (1/𝑠) identification errors.

Specified to the simplified version of the problem in Step 2 depicted above, the
AL-Q-FK algorithm would return 𝑘 =

√
2𝑇 nodes out of the 𝑚 = 𝑀/2 = 4

√
2𝑇 nodes
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of community 1 with a sampling regret

𝑂

( √
𝑇

(𝑝 + 𝑞)𝑠 log(
√
𝑇)

)
.

This sampling regret is larger than the 𝑂 (
√
𝑇/𝑠) regret needed for our Step 2, so the

AL-Q-FK cannot be used as a black-box for Step 2.
We emphasize also that the expansion of the communities in Step 2 is somewhat

more complex than the simplified version described above: at Step 1, up to 𝑂 (1/𝑠)
nodes are misclassified, we only have access to the empirical connectivity 𝜏, an arm
can only be pulled 𝑁1 times and the number of best arms is random.

We also emphasize that we cannot use the algorithm of [YP14b] as a black-box
to identify

√
2𝑇 nodes of community 1 within A0 with at most 1/𝑠 errors and with a

sampling regret 𝑂 (
√
𝑇/𝑠). Indeed, if we take Θ(

√
𝑇) nodes and apply the procedure

of [YP14b] to classify them with a sampling regret at most 𝑂 (
√
𝑇/𝑠), then a fixed

proportion of the nodes are misclassified and pairing them together at Step 3 would
generate a final regret of order Θ(𝑇). In addition, from the lower bounds in [YP14b],
we observe that the above phenomenon occurs, whatever the algorithm, if we try to
classify all the nodes in A0. To overcome this issue, the algorithm of Step 2 recovers
the class for a fraction only of the nodes in A0 with a sampling regret at most𝑂 (

√
𝑇/𝑠)

and at most 1/𝑠 errors. When recovering the class of
√

2𝑇 nodes within A0, we do not
sample pairs at random, but we carefully select them in order to avoid as much as
possible the sampling of bad pairs.

4. Constrained Optimal Pair-Matching

4.1. Main Results

Let us now consider the general problem, where sparse sampling (SpS) is enforced. The
algorithm described in Section 3.2 for unconstrained pairs-matching uses extensively
the opportunity to make “localized” queries: At time 𝑇 , a small number of Θ(

√
𝑇)

nodes has been queried a large number of Θ(
√
𝑇) times, while other nodes have been

queried less than 𝑂 (log(𝑠
√
𝑇)2/𝑠) times. So, the strategy has to be adapted to fulfils

(SpS).
For a sparsity bound 𝐵𝑇 , denote by Ψ𝐵𝑇 ,𝑇 the set of strategies 𝜓 fulfilling the Non-

redundancy (NR), Invariance to labelling (IL) and Sparse sampling (SpS) properties
at time 𝑇 .

Theorem 2. Let 𝑇 and 𝑛 be positive integers with 𝑇 ≤ |Egood | = 2
(𝑛/2

2
)
. Let 𝑝, 𝑞 ∈

[0, 1/2] be two parameters fulfilling (2.1) and such that the parameter 𝑠, defined in
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(2.2), fulfils

𝑠 ≤ 1
32(1 + 𝜌∗) .

Then, for any 𝜇 ∈ cSBM(𝑛/2, 𝑛/2, 𝑝, 𝑞),

inf
𝜓∈Ψ𝐵𝑇 ,𝑇

E𝜇
[
𝑁𝑏𝑎𝑑 (𝜓,𝑇)

]
≥ 1

32

[√
𝑇 ∨ (𝑇/𝐵𝑇 )

32(1 + 𝜌∗)𝑠 ∧ 𝑇
]
.

Conversely, there exist two numerical constants 𝑐1, 𝑐2 > 0 such that, for any time
horizon 𝑇 and constraint 𝐵𝑇 satisfying 1 ≤ 𝑇 ≤ 𝑐1𝑛(𝐵𝑇 ∧ 𝑛), there exists a strategy
𝜓 ∈ Ψ𝐵𝑇 ,𝑇 corresponding to a polynomial-time algorithm, described in Section 4.2,
such that

E𝜇
[
𝑁𝑏𝑎𝑑 (𝜓,𝑇)

]
≤ 𝑐2

[√
𝑇 ∨ (𝑇/𝐵𝑇 )

𝑠
∧ 𝑇

]
. (4.1)

We refer to the appendix for a proof of this theorem. The lower bound is proved in
Section A and the upper bound in Section C.

Compared with Theorem 1, Theorem 2 shows that the sparse sampling constraint
(SpS) amounts to replace

√
𝑇 by

√
𝑇 ∨ (𝑇/𝐵𝑇 ) in the optimal sampling-regret. In

particular, the sparse sampling constraint downgrades optimal rates only when 𝐵𝑇 is
smaller than

√
𝑇 . Actually, a close look at the unconstrained algorithm page 17 reveals

that, by construction, it satisfies assumption (SpS) with 𝐵𝑇 = 17
√
𝑇 . So, in the regime

where 𝐵𝑇 ≥ 17
√
𝑇 , the lower bound cannot be worse than the upper-bound of the

unconstrained setting of Theorem 1.
When 𝐵𝑇 ≲

√
𝑇 , the optimal sampling-regret is of order (𝑇/(𝐵𝑇 𝑠)) ∧ 𝑇 . This rate

can be understood as follows. If 𝐵𝑇 ≤ 1/𝑠, there is not enough observations per node
to infer their community better than at random, which induces an unavoidable linear
regret. When 𝐵𝑇 ≫ 1/𝑠, to proceed as in Step 3 of the constrained case, one needs to
identify a sufficiently large set of nodes of the same community, among which one can
sample up to𝑇 pairs without adding regret. As each node can now be paired with at most
𝐵𝑇 others, this set should be of size Θ(𝑇/𝐵𝑇 ) instead of Θ(

√
𝑇) in the unconstrained

case. As the identification of the community of a node requires at least Θ(1/𝑠) queries,
the sampling-regret expected to identify this large set of nodes is Θ(𝑇/(𝐵𝑇 𝑠)).

The previous informal discussion suggests to extend the algorithm described in
Section 3.2 for the unconstrained case. This extension, fully described and commen-
ted in Section 4.2, still proceeds in 3 steps and goes as follows. The first step of the
constrained algorithm is essentially the same as the first step of the unconstrained
algorithm, with

√
𝑇 replaced by 𝐵 = (𝐵𝑇 ∧

√
𝑇)/2. In this first step, all pairs are sampled

among a set of 𝐵/log(𝑠𝐵) ≤ 𝐵𝑇 nodes, so the constraint cannot be violated. Then, to
keep the sampling-regret under control while not violating the (SpS) contraint, the trick
is to apply recursively a variant of the screening algorithm in Step 2 and repeat these



Pair-Matching: Link Prediction with Adaptive Queries 21

screenings until a total number ofΘ(𝑇/(𝐵𝑇 ∧
√
𝑇)) nodes are correctly classified, with

a small proportion of error. Finally, one can sample at most 𝐵𝑇 ∧
√
𝑇 pairs for each

of these nodes in Step 3 with a controlled regret. The resulting algorithm extends the
unconstrained one of Section 3.2 where 𝐵𝑇 ∧

√
𝑇 =

√
𝑇 and where the screening step

is only applied once. This extension is fully described in Section 4.2.
To illustrate the theorem, one can discuss the results with the constraint 𝐵𝑇 = 𝑇𝛾 ,

where 0 < 𝛾 ≤ 1/2. As mentioned in the introduction, this situation arises with 𝛾 = 1 −
1/𝛼when𝑇 = 𝑛𝛼, and when, for fairness reasons, the algorithm is required to sample at
most 𝐵𝑇 = 𝑐𝑇/𝑛 = 𝑐𝑇1−1/𝛼 times each node. In this case, the optimal sampling-regret
is of order 𝑇 ∧ (𝑇1−𝛾/𝑠) which becomes, in the example discussed in introduction
the mentioned rate 𝑇 ∧ 𝑇1/𝛼/𝑠. It follows that any pair-matching algorithm that is 𝑇𝛾-
sparse up to time 𝑇 (besides satisfying (NR) and (IL)) has linear sampling-regret up
to time 𝑠−1/𝛾 . On the other hand, there exist strategies with optimal sampling-regret
of order 𝑇1−𝛾/𝑠 after time 𝑠−1/𝛾 .

Notice that the sparse sampling property𝑁𝑎 (𝜓,𝑇) ≤ 𝐵𝑇 only constrains the algorithm
at the time horizon𝑇 . This time horizon has therefore to be specified beforehand for this
constraint to be defined. In many practical situations, this specification is not reasonable
and a more realistic constraint takes the form: 𝑁𝑎 (𝜓, 𝑡) ≤ 𝐵𝑡 at any time 𝑡 ∈ {1, . . . , 𝑇}.
In the case where 𝐵𝑡 = Θ(𝑡𝛾/(log 𝑡)𝜏), the constraint can be enforced using a doubling
trick, without enlarging the regret by more than a multiplicative numerical constant.
This doubling trick is discussed in detail in Section 4.4.

4.2. Algorithm with Sparse Sampling

The algorithm described page 17 achieves optimal regret in the unconstrained case. It
identifies first a set of Θ(

√
𝑇) nodes from one community with 𝑂 (1/𝑠) misclassified

nodes and a regret of order 𝑂 (
√
𝑇/𝑠) in Steps 1 and 2. Then, it pairs these nodes

together in Step 3 with a 𝑂 (
√
𝑇/𝑠) regret (due to the misclassified nodes).

The algorithm described in this section follows essentially the same steps. It iden-
tifies first a set of nodes from a single community (with small error) and then samples
pairs among them. It has to be adapted to fulfil the (SpS) constraint. As the uncon-
strained algorithm fulfils the (SpS) constraint for any 𝐵𝑇 ≥ 17

√
𝑇 , it is assumed in

the remaining of this section that 𝐵𝑇 = 𝑂 (
√
𝑇). Moreover, as the result holds for

𝑇 ≤ 𝑐1𝑛(𝐵𝑇 ∧ 𝑛), this assumption is granted in the remaining of the section.
To respect the constraint (SpS), no node may be sampled in more than 𝐵𝑇 pairs.

Hence, to perform the last step, the algorithm has to identify Θ(𝑇/𝐵𝑇 ) nodes from one
community. It should achieve this identification with a sampling-regret smaller than
𝑂 (𝑇/(𝑠𝐵𝑇 )) while respecting the (SpS) constraint. To respect the (SpS) constraint in
the first step of the algorithm, a core-set N𝑖𝑛𝑖𝑡 of cardinality smaller than 𝐵𝑇 is chosen.
Formally, in points 1. and 2. of Step 1 in the algorithm page 17,

√
𝑇 is replaced by
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(𝐵𝑇 ∧
√
𝑇)/2. Then, as in the unconstrained case, Step 2 expands the communities in

order to identify, with high probability and up to a small error, Θ(𝑇/𝐵𝑇 ) nodes from
one community. The main difference with the unconstrained case is that this expansion
cannot be achieved in a single step of screening. Actually,

(i) Θ(𝑁/𝑠) pairs are required to identify the community of Θ(𝑁) new nodes.

(ii) Any node from the core-set N𝑖𝑛𝑖𝑡 cannot be sampled more than 𝐵𝑇 times.

By (ii), one cannot sample more than 𝑂 ( |N𝑖𝑛𝑖𝑡 |𝐵𝑇 ) pairs and by (i), it follows that at
most 𝑂 ( |N𝑖𝑛𝑖𝑡 |𝐵𝑇 𝑠) = 𝑂 (𝐵2

𝑇
𝑠) nodes can be classified with a single screening step

based on N𝑖𝑛𝑖𝑡 . The main idea of the new algorithm is to iterate the screening step,
expanding progressively the communities. Along these iterations, to satisfy the (SpS)
constraint, the screening has to be conducted with more care than in step 2 of the uncon-
strained algorithm page 17. The trick is to apply the SCREENING function described
page 24, which compartmentalizes the nodes in order to enforce the condition (SpS).
This iterative process outputs a set of Θ(𝑇/𝐵𝑇 ) nodes from a single community (with
a small proportion of error with high probability). The algorithm finally pairs nodes
among this subset while respecting the (SpS) constraint in Step 3 of the algorithm.
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Constrained Algorithm

Inputs: 𝑠 scaling parameter,𝑇 time horizon,𝑉𝑖𝑛𝑖𝑡 the set of the 𝑛 nodes of the whole
graph, 𝐵𝑇 constraint.

Internal constants: set 𝑐O0 = 8 ∨ (1/𝑐GC
1 ) and 𝐵 = (𝐵𝑇 ∧

√
𝑇)/2.

Step 1: finding communities in a core-set
(1) Sample uniformly at random an initial set N𝑖𝑛𝑖𝑡 ⊂ 𝑉𝑖𝑛𝑖𝑡 of 𝑁𝑖𝑛𝑖𝑡 =

⌈
𝐵

log(𝑠𝐵)

⌉
nodes.

(2) Sample each pair ofN𝑖𝑛𝑖𝑡 with probability 𝑐O0
𝐵
𝑠
/
(𝑁𝑖𝑛𝑖𝑡

2
)
, callO0 ⊂ E the output.

(3) Estimate mean connectivity 𝜏 = 𝑝+𝑞
2 by 𝜏 = 1

| O0 |
∑

(𝑥,𝑥′ ) ∈O0 𝐴𝑥,𝑥′ .

(4) Run GOODCLUST on the graph (N𝑖𝑛𝑖𝑡 , O0) and output, for any 𝑥 ∈ N𝑖𝑛𝑖𝑡 , 𝑍𝑥
the estimated community of 𝑥 (with the convention that the largest estimated
community is labelled by 1).

Step 2: iteratively expanding the communities

Internal constants: set 𝑁 (0) = ⌈𝑁𝑖𝑛𝑖𝑡/2⌉,

𝑡 𝑓 =

⌈
log(⌈2𝑇/𝐵⌉/𝑁 (0) )

log⌊log(𝑠𝐵)⌋

⌉
(4.2)

and for all 𝑡 ∈ {0, . . . , 𝑡 𝑓 },

𝑁 (𝑡 ) = 𝑁 (0) ⌊log(𝑠𝐵)⌋𝑡 ∧
⌈
2𝑇
𝐵

⌉
. (4.3)

(5) Let N (0) be a set of 𝑁 (0) nodes in N𝑖𝑛𝑖𝑡 ∩ {𝑍 = 1} sampled uniformly at ran-
dom, and let 𝑉 (0) = 𝑉𝑖𝑛𝑖𝑡 \ N𝑖𝑛𝑖𝑡 .

(6) For 𝑡 = 1, . . . , 𝑡 𝑓 , set

(N (𝑡 ) , 𝑉 (𝑡 ) ) = SCREENING
(
N (𝑡−1) , 𝑁 (𝑡 ) , 𝐵, 𝜏,𝑉 (𝑡−1)

)
. (4.4)

Step 3: sampling pairs within estimated communities

(7) Sample pairs within the set N (𝑡 𝑓 ) while respecting the constraint (SpS) with
𝐵𝑇 , until 𝑇 pairs have been sampled overall (the sampling method does not
matter).
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Function SCREENING(N , 𝑁 ′, 𝐵, 𝜈,𝑉) = (N ′, 𝑉 ′)

Inputs: a reference core-set N of cardinality 𝑁 , a target number of nodes 𝑁 ′, a
constraint 𝐵 ∈ R+, a threshold 𝜈 ∈ [0, 1], a set of “new” nodes 𝑉 .

Output: a set of nodesN ′ ⊂ 𝑉 of cardinality at most 𝑁 ′ and the set of nodes𝑉 ′ ⊂ 𝑉
that are still “new” after running SCREENING. (Most of the nodes of N ′ will belong
to the most represented community in N .)

Internal constants: a number of pairs per step 𝑘 = ⌈𝐶𝑘

𝑠
⌉ and a number of steps

𝐼 = ⌈𝐶𝐼 log(𝑠𝐵)⌉, with 𝐶𝑘 = 2500 and 𝐶𝐼 = 1026.

(1) Sample uniformly at random a set A0 of |A0 | = 4𝑁 ′ nodes in 𝑉 .

(2) Let 𝑚 = ⌊𝑁/(𝑘 𝐼)⌋. Take a uniform partition of N into 𝑚 sets (V𝑗)1≤ 𝑗≤𝑚 of
cardinality 𝑘 𝐼 and one set of cardinality smaller than 𝑘 𝐼.
Likewise, take a uniform partition of A0 into𝑚 sets (A ( 𝑗 )

0 )1≤ 𝑗≤𝑚 with cardin-
ality in {⌊4𝑁 ′/𝑚⌋, ⌈4𝑁 ′/𝑚⌉}.

(3) For 𝑗 = 1, . . . , 𝑚 and 𝑖 = 1, . . . , 𝐼, do
For each 𝑥 ∈ A ( 𝑗 )

𝑖−1, do
i.Sample 𝑘 nodes (𝑦𝑥

𝑘 (𝑖−1)+𝑎)𝑎=1,...,𝑘 uniformly at random in
V𝑗 \ {𝑦𝑥𝑎}𝑎=1,...,𝑘 (𝑖−1) .

ii.Sample pairs ({𝑥, 𝑦𝑥
𝑘 (𝑖−1)+𝑎})𝑎=1,...,𝑘 and compute

𝑝𝑥,𝑖 =
1
𝑘𝑖

𝑘𝑖∑︁
𝑎=1

𝐴𝑥𝑦𝑥𝑎 . (4.5)

iii.Select A ( 𝑗 )
𝑖

=

{
𝑥 ∈ A ( 𝑗 )

𝑖−1 : 𝑝𝑥,𝑖 ≥ 𝜈

}
.

(4) Set N ′ a set of 𝑁 ′ nodes sampled uniformly at random from
⋃

1≤ 𝑗≤𝑚
A ( 𝑗 )
𝐼

.

In casea |⋃1≤ 𝑗≤𝑚A ( 𝑗 )
𝐼

| < 𝑁 ′, then sample at random 𝑁 ′ nodes in A0.

(5) Set 𝑉 ′ = 𝑉 \ A0.

Return (N ′, 𝑉 ′).

awith high probability, this undesirable case does not happen

4.3. Screening versus 𝒌 out of 𝒎 Best Arms Identification

Similarly as in Section 3.3, let us compare the screening step to a 𝑘 out of 𝑚 best
arms identification problem. The main additional feature compared to the situation
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discussed in Section 3.3, is that an arm 𝑎 cannot be sampled more than 𝐵 times. Hence,
a simplified version of the screening problem amounts to identify 𝑘 out of 𝑚 best arms
with tolerance 𝜖 = (𝑝 − 𝑞)/2, with the constraint that each arm cannot be sampled more
than 𝐵 times. In these simplified setting, the screening function achieves the following
performance. Assume that 𝑀 ≥ 𝑐𝑘 and 𝑘, 𝐵 ≥ 𝑐′/𝑠. With probability 1 − 𝑐(𝑠𝑘)−1 ,
with a budget of 𝑂 (𝑘𝑠−1 log(𝑠(𝐵 ∧ 𝑘))) queries, and with a sampling regret at most
𝑂 (𝑘/𝑠), the screening function identifies at least 𝑘 arms of community 1 with at most
𝑂 ((𝑘 (𝑠𝐵)−1) ∨ 𝑠−1) errors.

The situation handled by the screening function is actually somewhat more com-
plex than the stylized bandit problem depicted above. Actually, among the initial set
of 𝑁 classified nodes, we have up to 𝑐𝑁/(𝑠𝐵) misclassified nodes. At the same time,
we cannot query more than 𝐵 times any of these classified nodes. Hence, we need a
careful querying policy in order to avoid the misclassified nodes to generate errors,
while keeping the (SpS) condition enforced. Fulfilling together these two conditions
is the main hurdle in the design and analysis of the screening function.

4.4. Pathwise Sparse Sampling Algorithm

The algorithm presented above fulfils the sparse sampling condition (SpS) at time
horizon 𝑇 . In many practical situations, it is more natural to consider Condition (SpS)
at all times 𝑡 = 1, 2, . . . rather than only at a predefined time horizon 𝑡 = 𝑇 . Form-
ally, Condition (SpS) would be replaced by 𝑁𝑎 (𝜓, 𝑡) ≤ 𝐵𝑡 , for all 𝑡 = 1, 2, . . .. It
is possible to modify the previous algorithm to build a strategy 𝜓 such that, when
𝐵𝑡 = Θ(𝑡𝛾 log−𝜏 (𝑡)), the sampling regret E𝜇

[
𝑁𝑏𝑎𝑑 (𝜓, 𝑡)

]
fulfils

E𝜇
[
𝑁𝑏𝑎𝑑 (𝜓, 𝑡)

]
= 𝑂

(√
𝑡 ∨ (𝑡/𝐵𝑡 )

𝑠
∧ 𝑡

)
, for 𝑡 = 1, 2, . . . .

Assume that there exist 𝛾 ∈ (0, 1/2] and 𝜏 ∈ [0, +∞) such that 𝐵𝑡 = 𝑡𝛾/(log 𝑡)𝜏 , so√
𝑡 ∨ (𝑡/𝐵𝑡 ) = 𝑡1−𝛾 log𝜏 (𝑡). In this case, a pathwise sampling condition can be enforced

using the simple doubling trick. For any positive integer 𝑙, let 𝑡𝑙 = 2𝑙 . At each time 𝑡𝑙 , the
new algorithm discards all nodes and pairs previously sampled and starts the algorithm
of Section 4.2 with the remaining nodes, time horizon 𝑇 = 𝑡𝑙+1 − 𝑡𝑙 and terminal sparse
sampling constraint 𝑁𝑎 (𝜓, 𝑡𝑙+1 − 𝑡𝑙) ≤ min𝑡𝑙≤𝑡≤𝑡𝑙+1 𝐵𝑡 . The resulting strategy does not
depend on any time horizon and it fulfils the condition 𝑁𝑎 (𝜓, 𝑡) ≤ 𝐵𝑡 , for all 𝑡 = 1,2, . . ..
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Moreover, for any 𝑙 such that 𝑡𝑙 ≥ 𝑒𝜏/𝛾 , min𝑡𝑙≤𝑡≤𝑡𝑙+1 𝐵𝑡 = 𝐵𝑡𝑙 . Hence, for any 𝑙 such
that 𝑡𝑙 < 𝑐1𝑛(𝐵𝑡 ∧ 𝑛) and for any 𝑡 such that 𝑡𝑙−1 ≤ 𝑡 ≤ 𝑡𝑙 < 𝑐1𝑛(𝐵𝑡 ∧ 𝑛),

E
[
𝑁𝑏𝑎𝑑 (𝜓, 𝑡)

]
= 𝑂

(
1 +

𝑙∑︁
𝑘=1

(𝑡𝑘 − 𝑡𝑘−1)1−𝛾 log𝜏 (𝑡𝑘 − 𝑡𝑘−1)
𝑠

∧ (𝑡𝑘 − 𝑡𝑘−1)
)

= 𝑂

((
1
𝑠

𝑙−1∑︁
𝑟=0

2𝑟 (1−𝛾) (𝑟 log(2))𝜏
)
∧ 𝑡𝑙

)
= 𝑂

(
𝑡
1−𝛾
𝑙

log𝜏 (𝑡𝑙)
𝑠

∧ 𝑡𝑙

)
= 𝑂

(
𝑡1−𝛾 log𝜏 (𝑡)

𝑠
∧ 𝑡

)
.

According to Theorem 2, the sampling-regret of the algorithm derived from the doub-
ling trick is then rate optimal.

5. Discussion

The present paper provides the optimal sampling-regret for pair-matching in the case
where 𝐺 = (𝐸, 𝑉) is a conditional SBM with a number of groups 𝐾 = 2, where the
groups have 𝑛/𝐾 elements, with intra class probability of connection 𝑝 and inter-class
𝑞. The algorithm depicted p.17 in Section 3.2 runs in polynomial time and has optimal
sampling-regret given in Theorem 1, up to a multiplicative constant. Let us discuss the
two following questions: How can we estimate the scaling parameter 𝑠? How does the
rates depend on the number 𝐾 of groups?

5.1. A Heuristic to Estimate the Scaling Parameter 𝒔

The algorithms described p.17 and p.23 in Sections 3.2 and 4.2 take the scaling para-
meter 𝑠 as input. This parameter is typically unknown in practice and an estimated
value �̂� has to be plugged in the algorithm. To guarantee a sampling-regret smaller
than 𝑂 (𝑇 ∧ (

√
𝑇/𝑠)), the estimator �̂� should use at most 𝑂 (1/𝑠2) edges and satisfy

�̂� ≍ 𝑠 with high probability. The following heuristic builds a possible estimator �̂�.
Pick uniformly at random 𝑁 nodes in 𝑉 and sample all 𝑁 (𝑁 − 1)/2 pairs between

these 𝑁 nodes. When 𝑁𝑠 > 2, 𝑝 = 𝑎/𝑁 and 𝑞 = 𝑏/𝑁 , the results in [MNS15] ensures
that, as 𝑁 →∞, 𝑎 and 𝑏 can be consistently estimated. Therefore, 𝑁𝑠 = (𝑎 − 𝑏)2/(𝑎 +
𝑏) can also be consistently estimated from these 𝑇 = 𝑁 (𝑁 − 1)/2 = 𝑂 (1/𝑠2) observa-
tions. Yet, this estimator requires the knowledge 𝑁𝑠 larger than 2 and cannot therefore
be used directly when 𝑠 is unknown.

However, when 𝑝 = 𝑎/𝑁 and 𝑞 = 𝑏/𝑁 and 𝑁 → ∞, it is theoretically possible to
detect whether 𝑁𝑠 = (𝑎 − 𝑏)2/(𝑎 + 𝑏) is smaller or larger than 2. To proceed, denote
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by B the non-backtracking matrix associated to the graph, see [BLM18] for a defin-
ition of the non-backtracking matrix. Let 𝜆1, 𝜆2, . . . be the eigenvalues of B ranked
in decreasing order of their moduli. The main result of [BLM18] shows that, when
𝑝 = 𝑎/𝑁 and 𝑞 = 𝑏/𝑁 , with 𝑎, 𝑏 > 0 fixed, except on an event of vanishing probability
as 𝑁 → ∞,

|𝜆2 |2 < 𝜆1 when 𝑁𝑠 < 2 ,

|𝜆2 |2 > 𝜆1 when 𝑁𝑠 > 2 .

Hence, in this asymptotic setting where 𝑠 =Θ(1/𝑁), it is possible to detect if 𝑁𝑠 > 2 by
looking at the ratio |𝜆2 |2 > 𝜆1. In addition, when𝑁𝑠 > 2, the ratio 2|𝜆2 |2/𝜆1 consistently
estimates (𝑎 − 𝑏)2/(𝑎 + 𝑏).

This result suggests the following recursive algorithm to estimate 𝑠: fix some 𝜖 > 0
and start with a set 𝑉1 of 2 nodes 𝑖 and 𝑗 picked uniformly at random in 𝑉 . Query the
pair {𝑖, 𝑗} and let 𝐸1 denote the set of edges in 𝐸 ∩ {𝑖, 𝑗}. At each step 𝑘 ⩾ 2, pick at
random a set𝑉𝑘 of 2𝑘 nodes in𝑉 \ ∪ℓ⩽𝑘−1𝑉ℓ . Sample all pairs in𝑉𝑘 , and denote by 𝐸𝑘
the set of edges among these pairs. Build the non-backtracking matrix B𝑘 of the graph
(𝑉𝑘 , 𝐸𝑘) and compute 𝜆 (𝑘 )1 and 𝜆 (𝑘 )2 the eigenvalues of this matrix with largest moduli.
If |𝜆 (𝑘 )2 |2 < (1 + 𝜖)𝜆 (𝑘 )1 iterate. If |𝜆 (𝑘 )2 |2 > (1 + 𝜖)𝜆 (𝑘 )1 stop, denote by �̂� the stopping
iteration time and 𝑁 = 2�̂� the number of nodes sampled in the last graph (𝑉

�̂�
, 𝐸

�̂�
).

Output �̂� = 2|𝜆 ( �̂� )2 |2/(𝑁𝜆 ( �̂� )1 ).
Assume that 𝑝 = 𝑎/𝑁 and 𝑞 = 𝑏/𝑁 with 𝑎, 𝑏 ∈ R+ fulfilling (𝑎 − 𝑏)2/(𝑎 + 𝑏) > 2.

Let Ω𝑁 denote the event where simultaneously 2 ≤ 𝑁𝑠 ≤ 8(1 + 𝜖) and 𝑠/2 ≤ �̂� ≤ 2𝑠.
Then the results of [BLM18] suggest that the event Ω𝑁 holds with probability tending
to 1 as 𝑁 →∞. In addition, the total number of sampled edges is

∑�̂�
𝑘=1

(2𝑘

2
)
=𝑂 (𝑁2) =

𝑂 (1/𝑠2) on this event. While the results of [BLM18] suggest that the procedure should
work for vanishingly small 𝑠 (large 𝑁 limit), we emphasize that they only hold in a
setting where 𝑝 = 𝑎/𝑁 , 𝑞 = 𝑏/𝑁 , with 𝑎, 𝑏 fixed and 𝑁 →∞, and we cannot turn them
into a theoretical guarantee that Ω𝑁 holds with probability close to 1. We evaluate the
performance of this heuristic numerically in Section 6.3.

5.2. Case with 𝑲 > 2 Groups

Let us discuss the case where the number of groups 𝐾 is larger than 2, still assuming
that all the groups have 𝑛/𝐾 elements, with intra class probability of connection 𝑝 and
inter-class 𝑞. Contrary to 𝐾 = 2, we expect in this case an information-computation
gap and conjecture the following optimal rates for pair-matching.
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Conjecture 1. DefineΨ𝑝𝑜𝑙𝑦
∞ as the intersection ofΨ∞ defined page 12, with polynomial-

time algorithms. Let

𝑠𝐾 =
(𝑝 − 𝑞)2

𝑞 + (𝑝 − 𝑞)/𝐾 . (5.1)

Under Assumption (2.1) and 𝑠𝐾 ≤ 1, without computational constraint:

inf
𝜓∈Ψ∞

E
[
𝑁𝑏𝑎𝑑 (𝜓,𝑇)

]
≍

((
𝐾 log(𝐾)

𝑠𝐾

)2
∨ 𝐾

√
𝑇

𝑠𝐾

)
∧ 𝑇. (5.2)

With polynomial time constraint:

inf
𝜓∈Ψ𝑝𝑜𝑙𝑦

∞

E
[
𝑁𝑏𝑎𝑑 (𝜓,𝑇)

]
≍

((
𝐾2

𝑠𝐾

)2

∨ 𝐾
√
𝑇

𝑠𝐾

)
∧ 𝑇. (5.3)

Let us explain the heuristics leading to these rates.

For 𝐾 = 2, a central tool to design the rate-optimal polynomial-time algorithm p.17
is the existence of polynomial-time algorithms (called GOODCLUST p.17) achieving
non trivial classification for a cSBM(𝑁/2, 𝑁/2, 𝑝, 𝑞) when 𝑁𝑠 is larger than some
constant. When 𝐾 > 2 and the number of nodes 𝑁 → ∞, for 𝑝, 𝑞 scaling as 1/𝑁 , the
papers [BLM18, AS15b, SM18] provide polynomial-time algorithms GOODCLUSTpoly

𝐾

achieving a non trivial classification for

𝑁𝑠𝐾 > 𝐾
2 =: 𝜆𝑝𝑜𝑙𝑦

𝐾
.

Furthermore, it is conjectured in [DKMZ11] that there does not exist any polynomial-
time algorithm achieving non-trivial classification when 𝑁𝑠𝐾 < 𝐾2. The threshold
𝜆
𝑝𝑜𝑙𝑦

𝐾
is known as the Kesten-Stigum (KS) threshold. While the conjecture of [DKMZ11]

is relative to the case where 𝐾 is fixed, 𝑝 = 𝑎/𝑁 , 𝑞 = 𝑏/𝑁 , and 𝑁 goes to infinity, this
conjecture has been recently supported non-asymptotically by a Low-Degree polyno-
mial lower bound [SW22, LG23] whenever 𝐾2 ≤ 𝑁 . This supports the conjecture that,
when 𝑠𝐾 ≤ 1, non-trivial clustering is possible only when 𝑁 = Θ(𝐾2/𝑠𝐾 ).

The information theoretic threshold 𝜆𝑖𝑛 𝑓
𝐾

for non-trivial classification is below
𝜆
𝑝𝑜𝑙𝑦

𝐾
for 𝐾 ≥ 5. Actually, the paper [BMNN16] proved that 𝜆𝑖𝑛 𝑓

𝐾
≍ 𝐾 log(𝐾) and

𝜆
𝑖𝑛 𝑓

𝐾
< 𝜆

𝑝𝑜𝑙𝑦

𝐾
for𝐾 ≥ 5, so, if the conjecture of [DKMZ11] holds, there is an information-

computation gap for𝐾 ≥ 5. A consequence of the result of [BMNN16] is that there exist
algorithms GOODCLUSTinf

𝐾
, with exponential complexity, achieving non-trivial classi-

fication for 𝑁𝑠𝐾 = 𝑂 (𝐾 log(𝐾)).
Theorem 1 requires that GOODCLUST has more than non-trivial classification, it

should have vanishing classification error. Several papers have established, under Assump-
tion (2.1), the existence of algorithms GOODCLUSTpoly

𝐾
and GOODCLUSTinf

𝐾
with misclas-

sification proportion smaller than exp(−𝑐𝑁𝑠𝐾/𝐾), for some positive constant 𝑐. This
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result is obtained for 𝑁𝑠𝐾 ≥ 𝑐′𝜆𝑝𝑜𝑙𝑦
𝐾

for GOODCLUSTpoly
𝐾

, see for example [CRV15,
GMZZ17, FC19, GV19] and for 𝑁𝑠𝐾 ≫ 𝜆

𝑖𝑛 𝑓

𝐾
for GOODCLUSTinf

𝐾
, see [ZZ16].

As a consequence, without computational constraint, a linear sampling regret is
expected for any algorithm as long as the time horizon satisfies

√
2𝑇𝑠𝐾 < 𝜆

𝑖𝑛 𝑓

𝐾
, or

equivalently
𝑇 < 0.5(𝜆𝑖𝑛 𝑓

𝐾
/𝑠𝐾 )2 = 0.5(𝐾 log𝐾/𝑠𝐾 )2.

On the other hand, when𝑇 ≫ (𝐾 (log𝐾)2/𝑠𝐾 )2, one can choose𝑁 fulfilling𝜆𝑖𝑛 𝑓
𝐾

/𝑠𝐾 ≪
𝑁 ≤ (𝐾

√
𝑇/𝑠𝐾 )1/2 ≪

√
𝑇 . Selecting 𝑁 nodes uniformly at random and observing all

pairs of these 𝑁 nodes, GOODCLUST𝑖𝑛 𝑓
𝐾

classifies correctly the 𝑁 nodes, but a proportion
at most exp(−𝑐𝑁𝑠𝐾/𝐾) of them. The sampling-regret for this step does not exceed the
number𝑂 (𝑁2) =𝑂 (𝐾

√
𝑇/𝑠𝐾 ) of pairs sampled. Since 𝑁𝑠𝐾/𝐾 ≫ log(𝐾), the propor-

tion of misclassified nodes among these 𝑁 nodes is small and a screening procedure as
in Step 2 of the algorithm p.17 can be applied in order to classify correctly

√
𝑇 nodes.

As an average of 𝐾/𝑠𝐾 queries is necessary to classify one new node, this step will
have a regret scaling as 𝐾

√
𝑇/𝑠𝐾 . Then, we can pair all nodes of the same group until

the budget of 𝑇 queries is spent. Hence, in the regime where 𝑇 ≫ (𝐾 (log𝐾)2/𝑠𝐾 )2,
the final regret should be proportional to 𝑁2 + 𝐾

√
𝑇/𝑠𝐾 ≍ 𝐾

√
𝑇/𝑠𝐾 . To sum-up the

discussion, without computational constraints, one can expect a sampling-regret of
order (

(𝐾 log(𝐾)/𝑠𝐾 )2 ∨ 𝐾
√
𝑇/𝑠𝐾

)
∧ 𝑇 ,

which is the conjectured rate (5.2).
Using polynomial time algorithms for clustering, the information-theoretic threshold

𝜆
𝑖𝑛 𝑓

𝐾
should be replaced by the KS-threshold 𝜆𝑝𝑜𝑙𝑦

𝐾
. Following the same reasoning as

before, linear regret is expected as long as

𝑇 < 0.5(𝜆𝑝𝑜𝑙𝑦
𝐾

/𝑠𝐾 )2 = 0.5(𝐾2/𝑠𝐾 )2.

On the other hand, when
√
𝑇 ≫ 𝐾3/𝑠𝐾 , one can pick 𝑁 nodes at random with 𝑁 ful-

filling𝜆𝑝𝑜𝑙𝑦
𝐾

/𝑠𝐾 ≪ 𝑁 ≤ (𝐾
√
𝑇/𝑠𝐾 )1/2 ≪

√
𝑇 . A polynomial time algorithmGOODCLUSTpoly

𝐾

run with all pairs based on these nodes classifies correctly these 𝑁 nodes, except
for a proportion at most exp(−𝑐𝑁𝑠𝐾/𝐾) of them. The sampling-regret associated to
this classification step is smaller than 𝑁2 ≤ 𝐾

√
𝑇/𝑠𝐾 . The screening step classifies

correctly
√
𝑇 nodes with a regret 𝐾

√
𝑇/𝑠𝐾 . The remaining budget until sampling 𝑇

pairs is spent by pairing together nodes in a same estimated group. Ultimately, taking
into account the computational constraint, one can expect a sampling-regret of order
((𝐾2/𝑠𝐾 )2 ∨ 𝐾

√
𝑇/𝑠𝐾 ) ∧ 𝑇 , which is the conjectured rate (5.3).
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5.3. Unbalanced partitions and pairwise dependent probabilities

Although we use a simple random graph model for the ease of exposition, our analysis
can be extended to a more general set-up which relaxes the following assumptions: (i)
the graph has only two groups; (ii) the two groups have the same number 𝑛/2 of nodes;
(iii) the probabilities 𝑝 and 𝑞 of (intra and inter-group) connection are constants. For
the relaxation of (i), we refer the reader to the Section 5.2, where we discuss conjectures
in a SBM with 𝐾 groups, for any integer 𝐾 ≥ 2.

We can relax assumption (ii) by assuming that |𝐺1 | = 𝑐𝑛 and |𝐺2 | = (1− 𝑐)𝑛with 𝑐
a numerical constant in (0,1). Among the ten points in Lemma 8 and 9, one can readily
check that only the point 5 about the estimation of (𝑝 + 𝑞)/2 does not hold anymore.
Indeed, for 𝑐 ≠ 1/2, the global connectivity of the graph is not equal to (𝑝 + 𝑞)/2,
and thus our estimator 𝜏 of the global connectivity is not a consistent estimator of
(𝑝 + 𝑞)/2. A solution is to replace 𝜏 by 𝜏′ = (𝑝 + 𝑞)/2 where the estimators 𝑝 and 𝑞
of 𝑝 and 𝑞 are obtained from the following two-step procedure. One run GOODCLUST
on a first set of sampled pairs in the core-set; then conditionally to the estimated group
labels 𝑍𝑥 , one estimate 𝑝 by sampling new intra-group pairs (i.e. pairs (𝑥, 𝑦) satisfying
𝑍𝑥 = 𝑍𝑦) and one estimate 𝑞 by sampling new inter-group pairs (𝑍𝑥 ≠ 𝑍𝑦).

Instead of the model assumption (iii), let us consider the situation where the prob-
ability 𝑝𝑖 𝑗 of connection between the nodes 𝑖 and 𝑗 belongs to [𝑝0, 𝑝] if 𝑖 and 𝑗 are
in the same group, while 𝑝𝑖 𝑗 ∈ [𝑞, 𝑞0] otherwise, with 𝑞0 < 𝑝0. Turnkey clustering
algorithms work in such situations − see [ZZ16] for example. Then, still with the
idea of having two distinct groups of nodes, assume that the intra group variations
𝛿 := (𝑝 − 𝑝0) ∨ (𝑞0 − 𝑞) are smaller than the inter group separation Δ := 𝑝0 − 𝑞0.
Under this assumption, one can readily check that our estimator 𝜏 of the global con-
nectivity satisfies |𝜏 − (𝑝0 + 𝑞0)/2| ≤ Δ/4 (i.e. the point 5 in Lemma 8), and that all the
other points in Lemma 8 and 9 still hold. In this situation of non-constant probabilities
of connection, note that the link between the regret and the sampling regret (seen in
Section 2.4) does not hold anymore, and we only control the sampling regret.

6. Numerical experiments

6.1. Unconstrained setting

In this section, we empirically assess the sharpness of our unconstrained algorithm
from Section 3.2 on the following parameters:

• the budget𝑇 is taken in {50,100,200,500,1000,2000,5000,10000,20000,50000,
100 000, 200 000, 500 000, 1 000 000, 2 000 000, 5 000 000},
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• the connection probabilities are taken as (𝑝, 𝑞) = (0.6,0.4), (0.7,0.3), (0.55,0.45)
or (0.4, 0.2), which corresponds to 𝑠 = 0.04, 0.16, 0.01, or 0.0666... respectively,

• the groups are either balanced, or one group contains 20% of the individuals while
the other contains 80%,

• the pool of available individuals is assumed infinite (i.e. 𝑛 infinite), which means
that one may freely add new individuals and decide their class independently of
the classes of previously sampled individuals,

• for each choice of parameter, 10 experiments are performed to obtain an averaged
regret.

A few adaptations are required for the implementation to work efficiently and for
all values of 𝑇 . For the unconstrained algorithm,

• if log(𝑠
√
𝑇) < 1, it is replaced by 1 in the formulas of the size 𝑁 of the core-set

and of the number 𝐼 of steps in Step 2,

• if the size of the core-set 𝑁 is smaller than the size 2𝑘 𝐼 required to have at least
one estimated class large enough to perform step 2, 𝑁 is replaced by 2𝑘 𝐼 (more
generally 𝐾𝑘𝐼 when there are 𝐾 groups),

• GOODCLUST classifies the individuals by applying the Lloyd algorithm to the first 2
eigenvectors of the trimmed-adjacency matrix of the graph (more generally to the
first 𝐾 eigenvectors), see [CRV15],

• the values of the constants are fixed to 𝑐0 = 2, 𝐶𝐼 = 10, 𝐶𝑘 = 0.1, and the number
of individuals in the core-set is taken as 𝑁 = ⌈𝑐N

√
𝑇/log(𝑠

√
𝑇)⌉ with 𝑐N = 2,

• instead of sampling a set A0 in step 2 and pruning the individuals with low con-
nectivity, we instead proceed individual by individual, discarding them if their
connectivity dips below the threshold at one point and adding them to A𝐼 if not.

These modifications are intended to make the algorithm work more efficiently and for
smaller values of 𝑇 than the ones presented in the theorems above, without changing
its theoretical properties.

The results for the unconstrained algorithm are displayed in Figure 1 (balanced
communities) and Figure 2 (unbalanced communities). In both cases, as predicted by
Theorem 1, we observe an initial linear regime for the regret for𝑇 =𝑂 (1/𝑠2), followed
by a

√
𝑇/𝑠 regime for 𝑇 large compared to 1/𝑠2.

6.2. Constrained setting

In this section, the constrained algorithm from Section 4.2 is assessed, the results are
displayed in Figure 3. The parameters are the same than in the previous section, with
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the difference that we only consider balanced communities and budgets 𝑇 greater or
equal to 500. The constraint 𝐵𝑇 is taken in {500, 1 000}.

In addition to the adaptations from the previous section, we modified the algorithm
as follows:

• if log(𝑠
√
𝑇) < 1, since this corresponds to the linear case, the edges are sampled

at random,

• the values of the constants are fixed to 𝑐0 = 8, 𝐶𝐼 = 10, 𝐶𝑘 = 0.1, and the number
of individuals in the core-set is taken as 𝑁 = ⌈𝑐N

√
𝑇/log(𝑠

√
𝑇)⌉ with 𝑐N = 4,

• if the size of the core-set is smaller than 5/2 × 𝑐0/𝑠 = 20/𝑠, which ensures that the
constraint is satisfied with high probability, 𝑁 is replaced by 20/𝑠.

Again, we observe empirically the three regimes from Theorem 2: the sampling regret
is first linear in 𝑇 , then proportional to

√
𝑇/𝑠 and then linear again as 𝑇/(𝐵𝑠).

6.3. Estimation of the Scaling Parameter 𝒔

In this section, we investigate the empirical performance of the heuristic procedure
from Section 5.1 for estimating 𝑠. As 𝑠→ 0, the two key properties that we are looking
for, are

2 < �̂�𝑠 = 𝑂 (1) and 𝑠 = Θ(𝑠).

We focus on the empirical evaluation of these two properties.
For non-vanishing values of 𝑠, random fluctuations of the eigenvalues of the non-

backtracking matrix can blur the asymptotic results of [BLM18]. We evaluate the noise
level with the modulus of the third eigenvalue |𝜆 (𝑘 )3 |, whose asymptotic value remains

smaller than
√︃
𝜆
(𝑘 )
1 when 𝑠 is vanishingly small. We changed the stopping criterion

accordingly: the algorithm stops when |𝜆 (𝑘 )3 |2 < (1 + 𝜖)𝜆 (𝑘 )1 and |𝜆 (𝑘 )2 |2 ≥ (1 + 𝜖)𝜆 (𝑘 )1 ,
with 𝜖 = 0.1. The additional condition |𝜆 (𝑘 )3 |2 < (1 + 𝜖)𝜆 (𝑘 )1 is meant to ensure that
the stopping condition |𝜆 (𝑘 )2 |2 ≥ (1 + 𝜖)𝜆 (𝑘 )1 is not due to pure random fluctuations.
This modification does not change the asymptotic properties of the estimator or the
asymptotic of the number of edges sampled, that is 𝑂 (1/𝑠2) when 𝑠 → 0.

The parameters taken were balanced groups with (𝑝, 𝑞) = (0.45, 0.05), (0.4, 0.1),
(0.35, 0.15), (0.3, 0.2), (0.3, 0.1/3), (0.8/3, 0.2/3), (0.7/3, 0.1), or (0.2, 0.4/3). For
each value of (𝑝, 𝑞), the ratio 𝑠/𝑠 and the product �̂�𝑠 are displayed in Figure 4 for 10
simulations.

We used the SuNBEaM package from [TSE19], available at [Tor18], to compute
the eigenvalues of the non-backtracking matrix. The results are displayed in Figure 4.
The left-hand side figure shows that the estimator 𝑠 is always comparable to 𝑠, and
almost always smaller than 𝑠, which makes it a good choice to replace 𝑠 by 𝑠 in the
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pair-matching algorithm. Finally, the right-hand side figure shows that the condition
𝑠�̂� > 2 is always satisfied, thus ensuring that 𝑠 consistently estimates 𝑠.

6.4. Resilience to model misspecification

The above simulations use data generated by a cSBM model. We now investigate how
the algorithm’s performance is affected when the data does not exactly follow a cSBM
distribution.

We consider the following alternative model. Let 0 < 𝑝, 𝑞 < 1 be connectivity para-
meters as above, as well as a misspecification parameter 𝜎 ∈ [0, 1/2). When sampling
a new node 𝑖, it is affected the label 𝑍𝑖 = 0 or 1 with probability 1/2. In addition to its
label, it is assigned a hidden state 𝑆𝑖 ∼ Unif( [𝑍𝑖 − 𝜎, 𝑍𝑖 + 𝜎]). The probability that
two nodes 𝑖 and 𝑗 are connected is given by

P(𝐴𝑖 𝑗 = 1|𝑍𝑖 , 𝑍 𝑗 , 𝑆𝑖 , 𝑆 𝑗) = 𝑝 + (𝑞 − 𝑝)
(
|𝑆𝑖 − 𝑆 𝑗 | −

2𝜎
3

)
.

The case 𝜎 = 0 is the usual, well specified, case. In general, for any 𝜎, P(𝐴𝑖 𝑗 = 1|𝑍𝑖 =
𝑍 𝑗) = 𝑝 andP(𝐴𝑖 𝑗 = 1|𝑍𝑖 ≠ 𝑍 𝑗) = 𝑞, that is, the expected connectivity between members
of the same class (resp. between members of different classes) is the same as in the
well specified setting. Where the distribution differs is in the joint distribution of more
than two nodes: if two nodes are connected, chances are good their hidden states are
closer than average, thus making it more likely that if a new node connects to one of
them, then it will connect to the other.

We take the same possible values of 𝑇 as in Section 6.1, with balanced communit-
ies, (𝑝, 𝑞) = (0.6, 0.4), and an infinite pool of individuals and misspecification values
𝜎 ∈ {0, 0.1, 0.2, 0.3, 0.4}. 10 experiments are performed for each choice of paramet-
ers, and the average regrets computed over them, are displayed in Figure 5. The two
regimes from the well specified case (linear then proportional to

√
𝑇) are still visible.

A. Proof of the Lower Bounds

A.1. Distributional Properties under Assumption (IL)

Recall that E denotes the set of all pairs in {1, . . . , 𝑛}. The invariance to labelling
property enforces some invariances on the distribution of the (𝑁𝑒 (𝜓,𝑇) : 𝑒 ∈ E), with
𝑁𝑒 (𝜓,𝑇) defined by (2.3) and on the distribution of the (𝑁𝑎 (𝜓,𝑇) : 𝑎 = 1, . . . , 𝑛) with
𝑁𝑎 (𝜓,𝑇) defined by (2.4).

Let 𝜇 be a distribution in cSBM(𝑛/2, 𝑛/2, 𝑝, 𝑞) associated to a partition 𝐺 =

{𝐺1, 𝐺2} of {1, . . . , 𝑛}. Consider a permutation 𝜎 which leaves the partition𝐺 invari-
ant, that is such that, either 𝜎(𝐺1) = 𝐺1 and hence 𝜎(𝐺2) = 𝐺2, or 𝜎(𝐺1) = 𝐺2 and
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thus 𝜎(𝐺2) = 𝐺1. Then, the distribution 𝜇𝜎 defined page 10 is equal to the distribu-
tion 𝜇. Hence the invariance to labelling property ensures that for any permutation 𝜎
leaving 𝐺 invariant, the vectors (𝑁𝑒 (𝜓, 𝑡) : 𝑒 ∈ E; 𝑡 = 1, . . . ,

(𝑛
2
)
) and (𝑁𝜎 (𝑒) (𝜓,𝑇) :

𝑒 ∈ E; 𝑡 = 1, . . . ,
(𝑛
2
)
) have the same distribution. As a consequence, the following

properties holds.

Lemma 3. When the strategy 𝜓 fulfils the invariance to labelling property, then the
random variables (𝑁𝑒 (𝜓,𝑇) : 𝑒 ∈ E𝑔𝑜𝑜𝑑) are pair-wise exchangeable. The same prop-
erty holds for (𝑁𝑒 (𝜓,𝑇) : 𝑒 ∈ E𝑏𝑎𝑑) and (𝑁𝑎 (𝜓,𝑇) : 𝑎 = 1, . . . , 𝑛).

Proof. Let {𝑎, 𝑏} , {𝑎′, 𝑏′} denote two pairs in E𝑔𝑜𝑜𝑑 and let 𝜎 be a 𝐺-invariant per-
mutation such that 𝜎({𝑎, 𝑏}) = {𝑎′, 𝑏′}, and 𝜎({𝑎′, 𝑏′}) = {𝑎, 𝑏}. Since 𝜇 = 𝜇𝜎 and 𝜓
is invariant to labelling, the random variables (𝑁{𝑎,𝑏} , 𝑁{𝑎′ ,𝑏′ }) and (𝑁{𝑎′ ,𝑏′ } , 𝑁{𝑎,𝑏})
have the same distribution. The same reasoning applies for pairs in E𝑏𝑎𝑑 .

Consider now two nodes 𝑎, 𝑏 ∈ {1, . . . , 𝑛}. Let 𝜎 be a 𝐺-invariant permutation
on {1, . . . , 𝑛} such that 𝜎(𝑎) = 𝑏 and 𝜎(𝑏) = 𝑎. Since 𝜇 = 𝜇𝜎 and 𝜓 is invariant to
labelling, the random variables (𝑁𝑎 (𝜓,𝑇), 𝑁𝑏 (𝜓,𝑇)) and (𝑁𝑏 (𝜓,𝑇), 𝑁𝑎 (𝜓,𝑇)) have
the same distribution. □

A.2. Proof of the Lower Bound in Theorems 2 and 1

This section contains the proof of the first part of Theorem 2. The first part of Theorem 1
follows by taking 𝐵𝑇 = 𝑇 .

Let 𝑘𝑙 (𝑝, 𝑞) = 𝑝 log(𝑝/𝑞) + (1 − 𝑝) log((1 − 𝑝)/(1 − 𝑞)) be the Kullback-Leibler
divergence between two Bernoulli distributions with parameters 𝑝 and 𝑞. We actually
prove the following stronger lower bound: when 𝑠 = 𝑘𝑙 (𝑝, 𝑞) ∨ 𝑘𝑙 (𝑞, 𝑝) satisfies 𝑠 ≤
1/16, for any 𝜇 ∈ cSBM(𝑛/2, 𝑛/2, 𝑝, 𝑞),

inf
𝜓∈Ψ𝐵𝑇 ,𝑇

E𝜇
[
𝑁𝑏𝑎𝑑 (𝜓,𝑇)

]
≥ 1

32

[√
𝑇 ∨ (𝑇/𝐵𝑇 )

16𝑠
∧ 𝑇

]
. (A.1)

The first part of Theorem 2 follows from this bound and from Lemma 19 which ensures
that 𝑠 ≤ 𝑠 ≤ 2(1 + 𝜌∗)𝑠 when (2.1) holds.

Recall that 𝑁𝑎 (𝜓, 𝑇) denotes the number of pairs involving the node 𝑎 sampled
by the strategy 𝜓 up to time 𝑇 . Let 𝑁𝑏𝑎𝑑𝑎 (𝜓, 𝑇) be the number of pairs {𝑎, 𝑏} with 𝑏
not in the community of 𝑎 sampled up to time 𝑇 . Hereafter in the proof, the strategy
𝜓 is fixed and, to simplify notations, the dependency of 𝑁𝑎 and 𝑁bad

𝑎 on 𝜓 is dropped
out: 𝑁𝑏𝑎𝑑𝑎 (𝜓, 𝑇) is denoted 𝑁𝑎 (𝑇) and 𝑁𝑏𝑎𝑑𝑎 (𝜓, 𝑇) is denoted 𝑁𝑏𝑎𝑑𝑎 (𝑇). Let also
𝑁
𝑔𝑜𝑜𝑑
𝑎 (𝑇) = 𝑁𝑎 (𝑇) − 𝑁𝑏𝑎𝑑𝑎 (𝑇). The number of between-group sampled pairs is

𝑁𝑏𝑎𝑑 (𝑇) = 1
2

𝑛∑︁
𝑎=1

𝑁𝑏𝑎𝑑𝑎 (𝑇).
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Let us also recall that𝑁{𝑎,𝑏} (𝜓,𝑇) ∈ {0, 1} (denoted𝑁{𝑎,𝑏} (𝑇)), is the number of times
the pair {𝑎, 𝑏} has been sampled before time𝑇 . Likewise, let𝑁𝑎𝐵 (𝑇) =

∑
𝑏∈𝐵 𝑁{𝑎,𝑏} (𝑇)

be the number of times a pair between node 𝑎 and the set of nodes 𝐵 has been sampled
before time 𝑇 . For 𝑡 ≥ 0, let F𝑡 be the 𝜎-algebra gathering information available up to
time 𝑡: F𝑡 is the 𝜎-algebra generated by (Ê𝑡 , (𝐴𝑒)𝑒∈ Ê𝑡

,𝑈0, . . . ,𝑈𝑡 ).
The main tools for proving Equation (A.1) are the next two lemmas. The first lemma

is directly adapted from [GMS18, KCG16]. It is a derivative of the data processing
inequality, and it merely states that the Kullback-Leibler divergence between two dis-
tributions of observation stopped at some stopping time is larger than the Kullback-
Leibler divergence of processed versions of these distributions.

Lemma 4. Let 𝑇 be a stopping time with respect to the filtration (F𝑡 )𝑡≥0. Let 𝜇, 𝜇′ ∈
𝑐𝑆𝐵𝑀 (𝑛/2, 𝑛/2, 𝑝, 𝑞) and let 𝜈 = (𝜈𝑎𝑏)𝑎<𝑏 and 𝜈′ = (𝜈′

𝑎𝑏
)𝑎<𝑏 denote their connection

probabilities, that is 𝜈𝑎𝑏 = 𝜇({𝑎, 𝑏} ∈ 𝐸) and 𝜈𝑎𝑏 = 𝜇′ ({𝑎, 𝑏} ∈ 𝐸) for all 𝑎, 𝑏 ∈ 𝑉 .
If 𝑇 ≤ 𝑇 a.s., then for any F�̃� -measurable random variable Z taking values in [0, 1],∑︁

𝑎<𝑏

E𝜇 [𝑁{𝑎,𝑏} (𝑇)]𝑘𝑙 (𝜈𝑎𝑏, 𝜈′𝑎𝑏) ≥ 𝑘𝑙 (E𝜇 [Z],E𝜇′ [Z]), (A.2)

where 𝑘𝑙 (𝑝, 𝑞) = 𝑝 log(𝑝/𝑞) + (1 − 𝑝) log((1 − 𝑝)/(1 − 𝑞)) is the Kullback-Leibler
divergence between two Bernoulli distributions with parameters 𝑝 and 𝑞.

Proof. The lemma follows directly from Lemma 1 in [KCG16] and Lemma 1 in [GMS18].
As discussed in Section 2.1, the pair-matching problem can be seen as a bandit prob-
lem with restrictions on the set of admissible strategies. Since Lemma 1 in [KCG16]
and Lemma 1 in [GMS18] hold for any strategy, Inequality (A.2) holds in particular
for any strategy 𝜓 satisfying the constraints 𝜓𝑡 (Ê𝑡 , . . . ) ∉ Ê𝑡 and 𝑁𝑎 (𝑡) ≤ 𝐵𝑇 . □

While the previous lemma is only based on the bandit nature of the problem, the
next lemma is based on the constraint that arms can only be sampled once.

Lemma 5. Let 𝑀 be a positive real number and consider 𝑇 ≥ 1. Then
𝑛∑︁
𝑎=1

(𝑁𝑎 (𝑇) ∧ 𝑀) ≥
(
(𝑀

√
𝑇) ∨ 𝑀𝑇

𝐵𝑇

)
∧ 𝑇

2
.

Proof of Lemma 5. Let 𝑆1 = {𝑎 : 𝑁𝑎 (𝑇) ≤ 𝑀} and 𝑆2 = {𝑎 : 𝑁𝑎 (𝑇) > 𝑀}.
If

∑
𝑎∈𝑆1 𝑁𝑎 (𝑇) ≥ 𝑇/2 then

∑𝑛
𝑎=1(𝑁𝑎 (𝑇) ∧ 𝑀) ≥ ∑

𝑎∈𝑆1 𝑁𝑎 (𝑇) ≥ 𝑇/2.
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Assume now that
∑
𝑎∈𝑆1 𝑁𝑎 (𝑇) < 𝑇/2. Since 2𝑇 =

∑𝑛
𝑎=1 𝑁𝑎 (𝑇),

2𝑇 ≤ 𝑇/2 +
∑︁
𝑎∈𝑆2

𝑁𝑎 (𝑇) = 𝑇/2 +
∑︁
𝑎∈𝑆2

𝑁𝑎𝑆1 (𝑇) +
∑︁
𝑎∈𝑆2

𝑁𝑎𝑆2 (𝑇)

= 𝑇/2 +
∑︁
𝑎∈𝑆1

𝑁𝑎𝑆2 (𝑇) +
∑︁
𝑎∈𝑆2

𝑁𝑎𝑆2 (𝑇)

≤ 𝑇 + |𝑆2 | (𝐵𝑇 ∧ |𝑆2 |).

Hence, |𝑆2 | ≥
√
𝑇 ∨ (𝑇/𝐵𝑇 ) and
𝑛∑︁
𝑎=1

(𝑁𝑎 (𝑇) ∧ 𝑀) ≥ |𝑆2 |𝑀 ≥ (𝑀
√
𝑇) ∨ (𝑀𝑇/𝐵𝑇 ).

The proof is complete. □

With these two lemmas, the core inequality of the proof can be established. This
inequality shows that if 𝑁𝑎 (𝑡) = 𝑂 (1/𝑠), then 𝑁𝑏𝑎𝑑𝑎 (𝑡) is of the same order of mag-
nitude than 𝑁𝑎 (𝑡).

Let 𝐺 = (𝐺1, 𝐺2) be a partition of {1, . . . , 𝑛} with 𝐺1 = {1, . . . , 𝑛/2} and 𝐺2 =

{𝑛/2 + 1, . . . , 𝑛}. Let 𝜇 ∈ 𝑐𝑆𝐵𝑀 (𝑛/2, 𝑛/2, 𝑝, 𝑞) be the distribution of a conditional
SBM with classes 𝐺1 and 𝐺2, within-group connection probability 𝑝 and between-
group connection probability 𝑞. Unless specified, E = E𝜇 in the following.

Lemma 6. Let 𝑀 be a positive integer such that 16𝑀𝑠 ≤ 1 and define the stopping
time𝑇 = 𝑇 ∧ inf {𝑡 : max(𝑁1(𝑡), 𝑁𝑛 (𝑡)) ≥ 𝑀}. Setting 𝑁1+𝑛 (𝑇) = 𝑁1(𝑇) + 𝑁𝑛 (𝑇) and
𝑁𝑏𝑎𝑑1+𝑛 (𝑇) = 𝑁1𝐺2 (𝑇) + 𝑁𝑛𝐺1 (𝑇),

E
[
𝑁𝑏𝑎𝑑1+𝑛 (𝑇)

]
≥ 1

4
E

[
𝑁1+𝑛 (𝑇)

]
≥ 1

4
E [𝑁1(𝑇) ∧ 𝑀] . (A.3)

Proof of Lemma 6. Some arguments of this proof are inspired by [GMS18]. The last
inequality in (A.3) follows directly from

𝑁1+𝑛 (𝑇) ≥ 𝑁1(𝑇)1�̃�=𝑇 + 𝑀1�̃�<𝑇 ≥ 𝑁1(𝑇) ∧ 𝑀.

It remains to show the first inequality. Consider the transposition 𝜎 = (1, 𝑛) of 1
and 𝑛 which switches the labels 1 and 𝑛 while keeping other nodes unchanged. Let
𝜇𝜎 be the distribution of (𝐴𝜎 (𝑎) ,𝜎 (𝑏) )𝑎𝑏. The partition 𝐺𝜎 =

{
𝐺𝜎

1 , 𝐺
𝜎
2
}

associated
to 𝜇𝜎 , corresponds to 𝐺 with 1 and 𝑛 switched, that is 𝐺𝜎

1 = {𝑛, 2, . . . , 𝑛/2} and
𝐺𝜎

2 = {𝑛/2 + 1, . . . , 𝑛 − 1, 1}.
Let 𝑀 be a positive integer and set

Z =
𝑁1𝐺2 (𝑇) + 𝑁𝑛𝐺1 (𝑇)

2(𝑀 ∧ 𝐵𝑇 )
∈ [0, 1] .



Pair-Matching: Link Prediction with Adaptive Queries 37

By invariance to labelling,

E𝜇𝜎

[
𝑁1𝐺2 (𝑇) + 𝑁𝑛𝐺1 (𝑇)

]
= E𝜇𝜎

[
𝑁1𝐺𝜎

2
(𝑇) + 𝑁𝑛𝐺𝜎

1
(𝑇) + 2𝑁{1,𝑛} (𝑇)

]
= E𝜇

[
𝑁1𝐺1 (𝑇) + 𝑁𝑛𝐺2 (𝑇) + 2𝑁{1,𝑛} (𝑇)

]
.

Hence, setting �̃� = 𝑀 ∧ 𝐵𝑇 , Lemma 4 ensures that,

(𝑘𝑙 (𝑝, 𝑞) ∨ 𝑘𝑙 (𝑞, 𝑝)) E𝜇
[
𝑁1(𝑇) + 𝑁𝑛 (𝑇)

]
≥ 𝑘𝑙

(
E𝜇

[
𝑁1𝐺2 (𝑇) + 𝑁𝑛𝐺1 (𝑇)

]
/(2�̃�),E𝜇𝜎

[
𝑁1𝐺2 (𝑇) + 𝑁𝑛𝐺1 (𝑇)

]
/(2�̃�)

)
= 𝑘𝑙

(
E𝜇

[
𝑁1𝐺2 (𝑇) + 𝑁𝑛𝐺1 (𝑇)

]
/(2�̃�),E𝜇

[
𝑁1𝐺1 (𝑇) + 𝑁𝑛𝐺2 (𝑇) + 2𝑁{1,𝑛} (𝑇)

]
/(2�̃�)

)
≥ 1

2(𝑀 ∧ 𝐵𝑇 )

(
E𝜇

[
𝑁1𝐺2 (𝑇) + 𝑁𝑛𝐺1 (𝑇)

]
− E𝜇

[
𝑁1𝐺1 (𝑇) + 𝑁𝑛𝐺2 (𝑇) + 2𝑁{1,𝑛} (𝑇)

] )2

E𝜇
[
𝑁1𝐺2 (𝑇) + 𝑁𝑛𝐺1 (𝑇)

]
∨ E𝜇

[
𝑁1𝐺1 (𝑇) + 𝑁𝑛𝐺2 (𝑇) + 2𝑁{1,𝑛} (𝑇)

] ,

where the last line follows from Lemma 19. Setting 𝑁𝑔𝑜𝑜𝑑1+𝑛 (𝑇) = 𝑁1𝐺1 (𝑇) + 𝑁𝑛𝐺2 (𝑇),
the last inequality can be written as

2(𝑀 ∧ 𝐵𝑇 )𝑠 E
[
𝑁1+𝑛 (𝑇)

] (
E

[
𝑁
𝑔𝑜𝑜𝑑

1+𝑛 (𝑇) + 2𝑁{1,𝑛} (𝑇)
]
∨ E

[
𝑁𝑏𝑎𝑑1+𝑛 (𝑇)

] )
≥

(
E

[
𝑁
𝑔𝑜𝑜𝑑

1+𝑛 (𝑇) + 2𝑁{1,𝑛} (𝑇)
]
− E

[
𝑁𝑏𝑎𝑑1+𝑛 (𝑇)

] )2
. (A.4)

If E
[
𝑁
𝑔𝑜𝑜𝑑

1+𝑛 (𝑇)
]
≤ E

[
𝑁𝑏𝑎𝑑1+𝑛 (𝑇)

]
, then

2E
[
𝑁𝑏𝑎𝑑1+𝑛 (𝑇)

]
≥ E

[
𝑁
𝑔𝑜𝑜𝑑

1+𝑛 (𝑇)
]
+ E

[
𝑁𝑏𝑎𝑑1+𝑛 (𝑇)

]
= E

[
𝑁1+𝑛 (𝑇)

]
and Lemma 6 follows.

Assume therefore that E
[
𝑁
𝑔𝑜𝑜𝑑

1+𝑛 (𝑇)
]
≥ E

[
𝑁𝑏𝑎𝑑1+𝑛 (𝑇)

]
. It follows that

2E
[
𝑁
𝑔𝑜𝑜𝑑

1+𝑛 (𝑇)
]
≥ E

[
𝑁
𝑔𝑜𝑜𝑑

1+𝑛 (𝑇)
]
+ E

[
𝑁𝑏𝑎𝑑1+𝑛 (𝑇)

]
= E

[
𝑁1+𝑛 (𝑇)

]
,

so Inequality (A.4) implies

4(𝑀 ∧ 𝐵𝑇 )𝑠E
[
𝑁
𝑔𝑜𝑜𝑑

1+𝑛 (𝑇) + 2𝑁{1,𝑛} (𝑇)
]2

≥
(
E

[
𝑁
𝑔𝑜𝑜𝑑

1+𝑛 (𝑇) + 2𝑁{1,𝑛} (𝑇)
]
− E

[
𝑁𝑏𝑎𝑑1+𝑛 (𝑇)

] )2
.

Rearranging the expression gives

E
[
𝑁𝑏𝑎𝑑1+𝑛 (𝑇)

]
≥ E

[
𝑁
𝑔𝑜𝑜𝑑

1+𝑛 (𝑇) + 2𝑁{1,𝑛} (𝑇)
] (

1 −
√︁

4(𝑀 ∧ 𝐵𝑇 )𝑠
)

≥ 1
2
E

[
𝑁
𝑔𝑜𝑜𝑑

1+𝑛 (𝑇)
]
≥ 1

4
E

[
𝑁1+𝑛 (𝑇)

]
,

since 𝑀 ∧ 𝐵𝑇 ≤ 1/(16𝑠) by assumption. The proof is complete. □
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The lower bound in Theorem 2 can now be proved. Recall that for any strategy
𝜓 ∈ Ψ𝐵𝑇 ,𝑇 , Assumption (IL) implies that the sampling-regret E𝜇

[
𝑁𝑏𝑎𝑑 (𝜓,𝑇)

]
does

not depend on 𝜇 ∈ cSBM(𝑛/2, 𝑛/2, 𝑝, 𝑞), see the remark page 12. Therefore, it is
sufficient to prove (A.1) for any strategy 𝜓 invariant by labelling, with the distribution
𝜇 defined above Lemma 6.

Let 𝑀 be a positive integer such that

1 ≤ 𝑀 ∧ 𝐵𝑇 ≤ 1
16𝑠

.

First, Lemma 3 ensures that, for any pair {𝑎, 𝑏} ∈ E𝑏𝑎𝑑 ,E
[
𝑁{𝑎,𝑏} (𝑇)

]
=E

[
𝑁{1,𝑛} (𝑇)

]
and hence

E
[
𝑁𝑏𝑎𝑑 (𝑇)

]
=
𝑛2

4
E

[
𝑁{1,𝑛} (𝑇)

]
=
𝑛

4
E

[
𝑁𝑏𝑎𝑑1+𝑛 (𝑇)

]
.

Lemma 3 also ensures that E [𝑁𝑎 (𝑇) ∧ 𝑀] = E [𝑁1(𝑇) ∧ 𝑀] for all 𝑎 ∈ {1, . . . , 𝑛}.
By Lemma 6, it follows that

16E
[
𝑁𝑏𝑎𝑑 (𝑇)

]
= 4𝑛E

[
𝑁𝑏𝑎𝑑1+𝑛 (𝑇)

]
≥ 4𝑛E

[
𝑁𝑏𝑎𝑑1+𝑛 (𝑇)

]
≥ 𝑛E [𝑁1(𝑇) ∧ 𝑀] =

𝑛∑︁
𝑎=1
E [𝑁𝑎 (𝑇) ∧ 𝑀] .

Hence, by Lemma 5

16E
[
𝑁𝑏𝑎𝑑 (𝑇)

]
≥

(
(𝑀

√
𝑇) ∨ 𝑀𝑇

𝐵𝑇

)
∧ 𝑇

2
.

For 𝑠 ≤ 1/16, taking 𝑀 equal to the integer part of 1/(16𝑠) gives

16E
[
𝑁𝑏𝑎𝑑 (𝑇)

]
≥

(√
𝑇

32𝑠
∨ 𝑇

32𝑠𝐵𝑇

)
∧ 𝑇

2
.

Since the sampling-regret does not depend on the choice of 𝜇, the proof is complete.

B. Proof of the Unconstrained Upper Bound

This section proves the following result, from which follows the upper bound of The-
orem 1, as explained below Theorem 7.

Theorem 7. There exist numerical constants 𝑐1, 𝑐2 > 0, such that, for any 𝑇 ≤ 𝑐2𝑛
2,

with probability at least 1 − 13/𝑇 , the algorithm described in Section 3.2 fulfils

𝑁𝑏𝑎𝑑 (𝜓,𝑇) ≤ 𝑐1

(
𝑇 ∧

√
𝑇

𝑠

)
.
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Let us explain how the upper bound of Theorem 1 follows from Theorem 7. First,
let us note that the upper bound of Theorem 7 also holds in expectation. Indeed, since
𝑁𝑏𝑎𝑑 (𝜓,𝑇) ≤ 𝑇 , the algorithm described in Section 3.2 fulfils

E
[
𝑁𝑏𝑎𝑑 (𝜓,𝑇)

]
≤ 𝑐1

(
𝑇 ∧

√
𝑇

𝑠

)
+ 13 ≤ 𝑐′1

(
𝑇 ∧

√
𝑇

𝑠

)
. (B.1)

Second, we can get an horizon free algorithm by applying a doubling trick. For any
integer 𝑙, let 𝑡𝑙 = 2𝑙 . At each time 𝑡𝑙 , discard all nodes and pairs involved in the previous
iterations of the algorithm and restart the algorithm described in Section 3.2 with time
horizon 𝑡𝑙+1 − 𝑡𝑙 . The resulting strategy does not depend on any time horizon. Let us
prove that this horizon-free algorithm also has a 𝑂

(
𝑇 ∧ (

√
𝑇/𝑠)

)
sampling regret.

The argument for this proof is classical: according to the upper bound (B.1), for any
𝑡𝑙−1 ≤ 𝑇 ≤ 𝑡𝑙 < 𝑐2𝑛

2,

E
[
𝑁𝑏𝑎𝑑 (𝜓,𝑇)

]
≤ 𝑐1

(√
𝑡0

𝑠
∧ 𝑡0 +

√
𝑡1 − 𝑡0
𝑠

∧ (𝑡1 − 𝑡0) + ... +
√
𝑡𝑙 − 𝑡𝑙−1

𝑠
∧ (𝑡𝑙 − 𝑡𝑙−1)

)
≤ 𝑐1

(
1
𝑠
+ 1
𝑠

𝑙−1∑︁
𝑟=0

2𝑟/2

)
∧ 𝑡𝑙

≤ 𝑐1

( √
𝑡𝑙

(
√

2 − 1)𝑠
∧ 𝑡𝑙

)
≤ 4𝑐1

(√
𝑇

𝑠
∧ 𝑇

)
.

Hence, we have proved that the upper bound of Theorem 1 is a consequence of The-
orem 7.

The proof of Theorem 7 is quite lengthy. To help the reader to understand the
organization of this demonstration, the section starts with a sketch of proof.

B.1. Outline of the Proof of Theorem 7

As any strategy has at most linear regret, it is sufficient to prove that there exist two
positive numerical constants 𝑐thresh and 𝑐1 such that, for any 𝑇 ≥ 𝑐thresh/𝑠2, the number
𝑁𝑏𝑎𝑑 (𝜓,𝑇) of pairs sampled among Ebad by the strategy 𝜓 described in the algorithm
p.17 in Section 3.2 is smaller than 𝑐1

√
𝑇/𝑠 with probability at least 1 − 13/𝑇 . As a

consequence, in the proof, without loss of generality, it is assumed that 𝑇 ≥ 𝑐thresh/𝑠2,
for a sufficiently large constant 𝑐thresh. To prove the theorem, it is sufficient to show that
neither Steps 1., 2. nor 3. of the algorithm sample more than 𝑂 (

√
𝑇/𝑠) “bad” pairs,

where a bad pair involves one node from community 1 and one from community 2.

Step 1. In the first step, the algorithm samples at random a core-setN of𝑁 = ⌈
√
𝑇/log(𝑠

√
𝑇)⌉

nodes (point 1. in the algorithm). In this core-set, with large probability, at least ⌈𝑁/4⌉
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nodes from each community are sampled. This result follows from Hoeffding’s con-
centration inequality for hypergeometric random variables, it is rigorously established
in point 2 of Lemma 8.

Each pair of the core-set is sampled with probability proportional to
√
𝑇/

(
𝑠
(𝑁

2
) )

(point 2. of the algorithm). With high probability, the set of sampled pairs O0 has car-
dinality |O0 | ≍

√
𝑇/𝑠, see point 3. of Lemma 8. At this point, the observed graph follows

a cSBM with connection probabilities 𝑝 ≍ 𝑝
√
𝑇/

(
𝑠
(𝑁

2
) )

and 𝑞 ≍ 𝑞
√
𝑇/

(
𝑠
(𝑁

2
) )

. By (3.3),
setting �̃� = (𝑝 − 𝑞)2/(𝑝 + 𝑞) the proportion of misclassified nodes by GOODCLUST is
upper bounded by

exp(−𝑐GC
1 𝑁�̃�) = exp

(
−𝑐

√
𝑇/𝑠
𝑁

𝑠

)
= exp(− log(𝑠

√
𝑇)) ≤ 1

𝑁𝑠
,

with probability at least 1− 𝑐GC
2 /𝑁3. In particular, at most 1/𝑠 nodes of the core-set are

misclassified. A rigorous proof of this last statement is provided in point 4 of Lemma 8.
Let us comment briefly the choice of the cardinalities 𝑁 of the core-set and |O0 |

of the sampled pairs in this first step of the algorithm. These are chosen to guarantee
the following properties.

(1.i) 𝑁 is sufficiently large to make the probability 𝑐GC/𝑁3 small and, on the other
hand, 𝑁 is sufficiently small so that one can classify a large proportion of N with
less than |O0 | = 𝑂 (

√
𝑇/𝑠) observed pairs.

(1.ii) |O0 | is large enough to ensure that the proportion of misclassified nodes in N
satisfies exp

(
− 𝑐GC

1 E[|O0 |]𝑠/𝑁
)
≤ 1/(𝑁𝑠).

(1.iii) On the other hand, |O0 | is small enough, namely |O0 | = 𝑂 (
√
𝑇/𝑠), to ensure a

regret 𝑂 (
√
𝑇/𝑠) in this exploratory phase of the algorithm.

Before moving to the screening step 2 of the algorithm, the estimator

𝜏 =
1

|O0 |
∑︁

{𝑥,𝑥′ }∈O0

𝐴{𝑥,𝑥′ }

of 𝜏 = (𝑝 + 𝑞)/2 is shown to satisfy, with large probability,

|𝜏 − 𝑝 | ∧ |𝜏 − 𝑞 | ≥ |𝜏 − 𝜏 |.

This property is obtained by a careful application of Bernstein inequality for hyper-
geometric random variables in point 5 of Lemma 8. This estimation of 𝜏 is sufficient
for the screening step.

Step 2. The second step of the algorithm samples uniformly at random a set A0 of
⌈8
√

2𝑇⌉ nodes. These nodes are screened with the following objectives.
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(2.i) A set of at least ⌈
√

2𝑇⌉ nodes among A0 are selected containing at most 1/𝑠
members of community 2.

(2.ii) A set of at most 𝑂 (
√
𝑇/𝑠) bad pairs is sampled during this screening.

Claims (2.i) and (2.ii) are formally established in Lemma 9, Claim (2.i) in points 8 and
10 and Claim (2.ii) at point 9.

The main tool for proving these two properties is Lemma 10. It ensures that the
probability that a node from community 2 is not removed after 𝑖 steps of screening
decreases exponentially fast with 𝑖. Therefore, after 𝐼 ≍ log(𝑠

√
𝑇) screening steps, each

node from community 2 remains with probability at most 𝑒−𝑐 log(𝑠
√
𝑇 ) . Since there are

𝑂 (
√
𝑇) nodes in A0, the expected number of remaining nodes from community 2 is

upper bounded, when 𝑇 ≳ 1/𝑠2, by

𝑂

(√
𝑇𝑒−𝑐 log(𝑠

√
𝑇 )

)
≲

1
𝑠
.

The same bound holds with high probability. Similar arguments are used to obtain
that, with large probability, less than ⌈8

√
2𝑇⌉ − ⌈

√
2𝑇⌉ nodes are removed during the

screening step, which shows property (2.i).
The proof of Property (2.ii) is more involved. At step 7(b) of the algorithm, a bad

pair is sampled when it involves either

(2.ii.a) a node of community 2 and a well classified node of the core-set,

(2.ii.b) a node of community 1 and a misclassified node of the core-set.

The number of pairs in the case (2.ii.a) is simply bounded from above by |A0 | =
𝑂 (

√
𝑇) multiplied by the number of misclassified nodes in the core-set. We have

checked in step 1, that the number of misclassified nodes in the core-set is bounded
from above by 𝑂 (1/𝑠). So, on this event, the number of such bad pairs is at most
𝑂 (

√
𝑇 × 1/𝑠).

The number of pairs in the case (2.ii.b) is bounded from above as follows. During
each screening step (point 7.), a node is queried 𝑘 =𝑂 (1/𝑠) times. Thus, the number of
queries of a node from community 2 during this screening step is 𝑘 times the number
of screening steps before it is removed. Recall that, from Lemma 10, the probability
that a node of community 2 remains after 𝑖 screening steps decreases exponentially fast
with 𝑖. Hence, the expected number of queries of a node from community 2 is bounded
from above by

𝑘 ×
∑︁
𝑖≥1

𝑒−𝑐𝑖 = 𝑂 (𝑘) = 𝑂 (1/𝑠) .

The number of sampled pairs in case (2.ii.b) is smaller than the total number of queries
on nodes from community 2 in A0, which is smaller than𝑂 ( |A0 |𝑘) = 𝑂 (

√
𝑇/𝑠). This

bound also holds with high probability, which proves property (2.ii.b).
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Step 3. During Step 3. of the algorithm, pairs within A𝐼 are sampled until 𝑇 pairs
have been sampled overall. On the event where |A𝐼 | is larger than

√
2𝑇 , this sampling

is possible. In addition, on the event where the number of nodes from community 2 in
A𝐼 is upper bounded by 1/𝑠, the number of bad pairs in A𝐼 is smaller than

𝑂 ( |A𝐼 |/𝑠) = 𝑂 ( |A0 |/𝑠) = 𝑂 (
√
𝑇/𝑠).

B.2. Proof of Theorem 7

All we need is to prove that there exists a numerical constant 𝑐thresh ≥ 1, such that, for
any 𝑇 ≥ 𝑐thresh/𝑠2, the upper bound 𝑁𝑏𝑎𝑑 (𝜓, 𝑇) ≤ 𝑐1

√
𝑇/𝑠 holds with probability at

least 1 − 13/𝑇 . We focus then on the case where 𝑇 ≥ 𝑐thresh/𝑠2.
Denote by �̂� = {�̂�1, �̂�2} the partition of N output by the GOODCLUST algorithm

and by 𝑆Δ𝑆′ the symmetric difference between two sets 𝑆, 𝑆′. Define the community
labelling vectors 𝑍 and �̂� by 𝑍𝑥 = 𝑗 for all 𝑥 ∈ 𝐺 𝑗 and �̂�𝑥 = 𝑗 for all 𝑥 ∈ �̂� 𝑗 . The
following lemma controls the first step of the algorithm.

Lemma 8. There exists numerical constants 𝑐thresh ≥ 𝑒 and 𝑇0 ≥ 1 such that, if 𝑇0 ≤
𝑇 ≤ 𝑛2/16 and 𝑠

√
𝑇 ≥ 𝑐thresh, then with probability at least 1 − 9/𝑇:

(1) only a small part of the nodes has been sampled: 𝑁 ≤ 𝑛
4 ;

(2) the two communities of the sampled nodes are approximately balanced, that
is 𝑁1 ∧ 𝑁2 ≥ 𝑁/4, where 𝑁 𝑗 := |{𝑍 = 𝑗} ∩ N | is the number of nodes from
community 𝑗 in N ;

(3) the cardinality of the sample pairs fulfils
𝑐O0

√
𝑇

2𝑠 ≤ |O0 | ≤
3 𝑐O0

√
𝑇

2𝑠 ;

(4) the fraction of misclassified nodes is upper bounded by

𝜀𝑁 = inf
𝜋 permutation on {1,2}

1
2𝑁

2∑︁
𝑘=1

| {𝑍 = 𝑘}Δ{�̂� = 𝜋(𝑘)}| ≤ 1
𝑠𝑁

;

(5) |𝜏 − 𝑝+𝑞
2 | ≤ 𝑝−𝑞

4 .

We refer to Section B.3.1 for a proof of this lemma.
At the end of the first step, |O0 | = 𝑂 (

√
𝑇
𝑠
) pairs have been sampled according to

point 3 of Lemma 8, thus resulting in a number of sampled bad pairs 𝑂 (
√
𝑇
𝑠
). Let us

now turn to the second step of the algorithm.
Assume without loss of generality that the community labelling �̂� of the nodes in

N is mostly in agreement with 𝑍 , i.e. the infimum in the definition of 𝜀𝑁 is achieved
for the identity permutation:

𝜀𝑁 =
1

2𝑁

2∑︁
𝑘=1

| {𝑍 = 𝑘}Δ{�̂� = 𝑘}|.
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If it is not the case, the remaining of the proof still holds but with {𝑍 = 1} replaced by
{𝑍 = 2}.

For each 𝑥 ∈ A0, the (distinct) nodes
{
𝑦𝑥1 , . . . , 𝑦

𝑥
𝑘𝐼

}
are sampled uniformly at

random in N ∩
{
�̂� = 1

}
. Let V𝑥,0 = ∅ for all 𝑥 ∈ A0 and V𝑥,𝑖 =

{
𝑦𝑥1 , . . . , 𝑦

𝑥
𝑘𝑖

}
for

𝑖 = 1, . . . , 𝐼. Note that |V𝑥, 𝑗 | = 𝑘 𝑗 for all 𝑥 ∈ A0. By induction, construct the sequences
of sets (A𝑖)0≤𝑖≤𝐼 , which contain the “active” nodes remaining at each iteration, and
(O𝑖)0≤𝑖≤𝐼 , which contain the sampled pairs.

More formally, for 𝑖 ≥ 1 and all 𝑥 ∈ A𝑖−1, the pairs {{𝑥, 𝑦𝑥(𝑖−1)𝑘+𝑎}, 1 ≤ 𝑎 ≤ 𝑘}
are observed at iteration 𝑖, so that

O𝑖 = O𝑖−1 ∪
⋃

𝑥∈A𝑖−1

{{𝑥, 𝑦𝑥(𝑖−1)𝑘+𝑎}, 1 ≤ 𝑎 ≤ 𝑘}.

We remind the reader that we estimate the connectivity between 𝑥 and community
1 by

𝑝𝑥,𝑖 =
1
𝑘𝑖

∑︁
𝑦∈V𝑥,𝑖

𝐴𝑥,𝑦

and only keep the nodes whose estimated connectivity is large enough in the active set:

A𝑖 =
{
𝑥 ∈ A𝑖−1 : 𝑝𝑥,𝑖 ≥ 𝜏

}
. (B.2)

After 𝐼 iterations, the total number of sampled pairs is

|O𝐼 | = |O0 | + 𝑘
𝐼−1∑︁
𝑖=0

|A𝑖 |

and the number of sampled bad pairs from this step is upper bounded by

𝑘

𝐼−1∑︁
𝑖=0

|A𝑖 ∩ {𝑍 ≠ 1}| + |A0 ∩ {𝑍 = 1}| × |N ∩ {�̂� ≠ 𝑍}| (B.3)

where the first term comes from the pairs connecting community 2 to the core-set and
the second term comes from the pairs connecting community 1 to a misclassified vertex
of the core-set.

The following lemma controls this screening step.

Lemma 9. There exists numerical constants 𝑇 ′
0 , 𝑐′thresh larger than 1 such that if 𝑇 ′

0 ≤
𝑇 ≤ ( 3𝑛

64
√

2
)2and 𝑠

√
𝑇 ≥ 𝑐′thresh, then with probability at least 1 − 13/𝑇 , Lemma 8 holds

and

(6) the algorithm does not run out of connections with the core-set of the first step:
𝑘 𝐼 ≤ 𝑁;

(7) it is possible to take |A0 | new vertices: |A0 | ≤ 3𝑛
4 ≤ 𝑛 − 𝑁;
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(8) few vertices from the wrong community remain: |A𝐼 ∩ {𝑍 ≠ 1}| ≤ 1
𝑠
;

(9) the number of sampled bad pairs from nodes in the wrong community is con-
trolled:
𝑘
∑𝐼−1
𝑖=0 |A𝑖 ∩ {𝑍 ≠ 1}| ≤ 𝐶fail

√
𝑇
𝑠

for a numerical constant 𝐶fail;

(10) enough vertices from community 1 remain for the next step: |A𝐼 ∩ {𝑍 = 1}| ≥√
2𝑇 .

We refer to Section B.3.2 for a proof of this lemma.
Equation (B.3) together with point 9 of Lemma 9 and point 4 of Lemma 8 entail

that the number of sampled bad pairs during the screening step is again 𝑂 (
√
𝑇/𝑠).

Finally, during the last step, the algorithm uses the remaining budget to observe
pairs uniformly at random between vertices of A𝐼 . Point 10 of Theorem 9 ensures that
the number of possible pairs is larger than 𝑇 −

√︁
𝑇/2, which allows to spend the whole

budget (since at least ⌈
√︁
𝑇/2⌉ pairs have been observed in the previous steps), and point

8 ensures that the number of sampled bad pairs of this step is again 𝑂 (
√
𝑇
𝑠
).

Hence, the total number of bad pairs sampled during the whole process is𝑂 (
√
𝑇/𝑠).

B.3. Proofs of the Technical Lemmas

B.3.1. Proof of Lemma 8. The proof of point 1 is straightforward: since
√
𝑇 ≤ 𝑛/4 by

assumption, the condition 𝑁 ≤ 𝑛/4 holds as soon as 𝑁 ≤
√
𝑇, that is ⌈

√
𝑇

log(𝑠
√
𝑇 )
⌉ ≤

√
𝑇

by definition of 𝑁 . Therefore point 1 holds true as soon as 𝑠
√
𝑇 ≥ 𝑐𝑡ℎ𝑟𝑒𝑠ℎ for some

numerical constant 𝑐𝑡ℎ𝑟𝑒𝑠ℎ.

Proof of point 2. There are only two communities, so it is enough to consider the first
one. Since the communities are balanced, the number 𝑁1 of nodes from community
1 in the core-set follows an hypergeometric distribution with parameters (𝑁, 1/2, 𝑛).
Therefore,

P

(����𝑁1 −
𝑁

2

���� ≥ √︁
2𝑁 log 𝑁

)
≤ 2
𝑁4

using Equation (D.1). Since 𝑁 =

⌈ √
𝑇

log(𝑠
√
𝑇 )

⌉
,

2
𝑁4 ≤ 2 log(𝑠

√
𝑇)4

𝑇2 ≤ (log𝑇)4

8𝑇2
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using 𝑠 ≤ 1, which is upper bounded by 1/𝑇 for all 𝑇 ≥ 1. Assuming 𝑠
√
𝑇 ≥ 𝑐𝑡ℎ𝑟𝑒𝑠ℎ

for some numerical constant 𝑐𝑡ℎ𝑟𝑒𝑠ℎ ≥ 𝑒, one has
√
𝑇

log
√
𝑇
≤ 𝑁 ≤

√
𝑇 , so that√︁

2𝑁 log 𝑁
𝑁/4

≤ 4
√

2

√︄
log(

√
𝑇)

√
𝑇/log

√
𝑇

≤ 4
√

2

√︄
log(

√
𝑇)2

√
𝑇

.

Therefore, it is smaller than 1 as soon as 𝑇 ≥ 𝑇0,2 for some numerical constant 𝑇0,2,
which entails

P

(����𝑁1 −
𝑁

2

���� ≥ 𝑁

4

)
≤ 1
𝑇
,

and the same for 𝑁2.

Proof of point 3. The number |O0 | of sampled pairs in the core-set N follows a bino-
mial distribution with parameters

( (𝑁
2
)
, 𝑐O0

√
𝑇/𝑠

(𝑁
2
) )

. Therefore,

P
©«
�����|O0 | − 𝑐O0

√
𝑇

𝑠

����� ≥
√︄

2𝑐O0

√
𝑇

𝑠
log(2𝑇) + log(2𝑇)ª®¬ ≤ 1

𝑇

using Bernstein’s inequality (D.3). This implies that

1
2
𝑐O0

√
𝑇

𝑠
≤ |O0 | ≤

3
2
𝑐O0

√
𝑇

𝑠
(B.4)

as soon as 𝑇 ≥ 𝑇0,3 for some numerical constant 𝑇0,3.
Let us check that the probability parameter of the binomial distribution is well

defined, that is, the condition 𝑐O0

√
𝑇/𝑠

(𝑁
2
)
∈ [0, 1] is satisfied. One can show that

𝑁 ≥ 8 as soon as 𝑇 ≥ 𝑇0,3 for some numerical constant 𝑇0,3. Then(
𝑁

2

)
≥ 𝑁2

4

so that the condition holds as soon as 𝑐O0

√
𝑇/𝑠 ≤ 𝑁2/4, which is implied by

𝑐O0

√
𝑇/𝑠 ≤ 1

4
𝑇

(log(𝑠
√
𝑇))2

,

or equivalently
𝑠
√
𝑇

(log(𝑠
√
𝑇))2

≥ 4𝑐O0 .

Hence, the condition 𝑐O0

√
𝑇/𝑠

(𝑁
2
)
∈ [0, 1] holds as soon as 𝑠

√
𝑇 ≥ 𝑐𝑡ℎ𝑟𝑒𝑠ℎ for some

numerical 𝑐𝑡ℎ𝑟𝑒𝑠ℎ. This, together with (B.4), concludes the proof of point 3.
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Proof of point 4. Since each pair of N is sampled with probability 𝑐O0

√
𝑇/𝑠

(𝑁
2
)
,

the matrix 𝐴 defined by �̃�𝑥,𝑥′ = 𝐴𝑥,𝑥′ if the pair {𝑥, 𝑥′} has been sampled and zero
otherwise has the same distribution as the adjacency matrix of a fully observed SBM
with connection probabilities 𝑝 = 𝑝 𝑐O0

√
𝑇/𝑠

(𝑁
2
)

and 𝑞 = 𝑞 𝑐O0

√
𝑇/𝑠

(𝑁
2
)
. Therefore,

the proportion 𝜀𝑁 of misclassified nodes in N by the GOODCLUST algorithm is upper
bounded by

𝜀𝑁 ≤ exp
(
−𝑐GC

1 𝑁
(𝑝 − 𝑞)2

𝑝 + 𝑞

)
(B.5)

with probability at least 1 − 𝑐GC/𝑁3. Hence with probability at least 1 − 1/𝑇

𝜀𝑁 ≤ exp

(
−2 𝑐GC

1 𝑐O0

log(𝑠
√
𝑇)

2

)
using 𝑁 := ⌈

√
𝑇

log(𝑠
√
𝑇 )
⌉ ≤ 2

√
𝑇

log(𝑠
√
𝑇 )

as soon as 𝑇 ≥ 𝑇0,4 for some numerical constant
𝑇0,4. Hence, by taking 𝑐O0 ≥ 1/(𝑐GC

1 ), one has with probability at least 1 − 1/𝑇

𝜀𝑁 ≤ exp
(
− log(𝑠

√
𝑇)

)
=

1
𝑠
√
𝑇

so that
𝜀𝑁 ≤ 1

𝑠𝑁

as soon as 𝑁 ≤
√
𝑇 , which holds true when 𝑠

√
𝑇 ≥ 𝑐𝑡ℎ𝑟𝑒𝑠ℎ for some numerical constant

𝑐𝑡ℎ𝑟𝑒𝑠ℎ .

Proof of point 5. Let Owithin := O0 ∩ E𝑔𝑜𝑜𝑑 be the subset of within-group pairs, and
Oout := O0 \ Owithin the subset of pairs between two different communities. Then

𝜏 =
|Owithin |
|O0 |

1
|Owithin |

∑︁
(𝑥,𝑥′ ) ∈Owithin

𝐴𝑥,𝑥′ +
|Oout |
|O0 |

1
|Oout |

∑︁
(𝑥,𝑥′ ) ∈Oout

𝐴𝑥,𝑥′ .

Conditionally to the number of sampled pairs |O0 | and the number of within-group
pairs |Owithin |, the sum

∑
(𝑥,𝑥′ ) ∈Owithin 𝐴𝑥,𝑥′ (resp.

∑
(𝑥,𝑥′ ) ∈Oout 𝐴𝑥,𝑥′) is independent

of O0, and is a sum of i.i.d. Bernoulli random variables with parameter 𝑝 (resp. 𝑞).
Therefore, Bernstein’s inequality (D.2) ensures that with probability at least 1 − 4/𝑇

|Owithin |
|O0 |

������ 1
|Owithin |

∑︁
(𝑥,𝑥′ ) ∈Owithin

𝐴𝑥,𝑥′ − 𝑝

������ ≤
√︄

2𝑝
log𝑇
|O0 |

+ log𝑇
|O0 |

and
|Oout |
|O0 |

������ 1
|Oout |

∑︁
(𝑥,𝑥′ ) ∈Oout

𝐴𝑥,𝑥′ − 𝑞

������ ≤
√︄

2𝑞
log𝑇
|O0 |

+ log𝑇
|O0 |

.
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Using point 3, one has |O0 | ≥ 𝑐O0

√
𝑇/(2𝑠) with probability at least 1 − 1/𝑇 , so that����𝜏 − (

|Owithin |
|O0 |

𝑝 + |Oout |
|O0 |

𝑞

)���� ≤ 2
√︄

2𝑝𝑠
log𝑇

𝑐O0

√
𝑇/2

+ 2𝑠
log𝑇

𝑐O0

√
𝑇/2

≤ 2(𝑝 − 𝑞)
√︄

2
log𝑇

𝑐O0

√
𝑇/2

+ 2(𝑝 − 𝑞) log𝑇
𝑐O0

√
𝑇/2

with probability at least 1− 5/𝑇 , using 𝑠 = (𝑝 − 𝑞)2/𝑝 ≤ 𝑝 − 𝑞. Finally, since 𝑐O0/2 ≥ 1
and |Owithin | = |O0 | − |Oout |,���𝜏 − 𝑝 + 𝑞

2

��� ≤ ���� |Owithin |
|O0 |

𝑝 + |Oout |
|O0 |

𝑞 − 𝑝 + 𝑞
2

���� + 2(𝑝 − 𝑞)
√︄

2
log𝑇
√
𝑇

+ 2(𝑝 − 𝑞) log𝑇
√
𝑇

≤
����(2 |Oout |

|O0 |
− 1

)
𝑝 − 𝑞

2

���� + |𝑝 − 𝑞 |
16

(B.6)

as soon as 𝑇 ≥ 𝑇0,4 for some numerical constant 𝑇0,4.
Conditionally to the number of pairs |O0 | and the sizes 𝑁1 and 𝑁2 of the two

communities sampled in N , the number |Oout | of between group pairs follows an
hypergeometric distribution with parameters

(
|O0 |, 𝑟,

(𝑁
2
) )

with 𝑟 = 𝑁1𝑁2/
(𝑁

2
)
. Con-

ditionally to |O0 | and the event 3
8 ≤ 𝑟 ≤ 5

8 , the random variable |Oout | dominates
stochastically an hypergeometric random variable with parameters ( |O0 |, 3

8 ,
(𝑁

2
)
) and

it is stochastically dominated by an hypergeometric random variable with parameters
( |O0 |, 5

8 ,
(𝑁

2
)
). There exists a real 𝛾 > 0 such that 𝑁1 = 𝛾𝑁 and 𝑁2 = (1 − 𝛾)𝑁 so that

𝑟 =
𝛾𝑁 (1 − 𝛾)𝑁
𝑁 (𝑁 − 1)/2

= 2𝛾(1 − 𝛾) (1 + 1
𝑁 − 1

) = 2𝛾(1 − 𝛾) (1 + 1
√
𝑇

log(𝑠
√
𝑇 )

− 1
)

Using point 2, one has with probability at least 1 − 1/𝑇 that 1
4 ≤ 𝛾 ≤ 3

4 which entails
3
8 ≤ 𝑟 ≤ 5

8 as soon as 𝑇 ≥ 𝑇0,5 for some numerical constant 𝑇0,5. Therefore,

P

(
|Oout | ≤

3|O0 |
8

−
√︂

|O0 | log𝑇
2

)
≤ 1
𝑇
+ 1
𝑇

using Equation (D.1), and similarly

P

(
|Oout | ≥

5|O0 |
8

+
√︂

|O0 | log𝑇
2

)
≤ 1
𝑇
+ 1
𝑇
.

Using point 3, one has with probability at least 1 − 1/𝑇 that |O0 | ≥ 𝑐O0

√
𝑇/(2𝑠) which

entails
√︃

| O0 | log𝑇
2 ≤ | O0 |

16 as soon as 𝑇 ≥ 𝑇0,6 for some numerical constant 𝑇0,6. Hence

5
16

≤ |Oout |
|O0 |

≤ 11
16
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with probability 1 − 5
𝑇

. This, together with Equation (B.6), concludes the proof of
point 5 (which holds with probability 1 − 8

𝑇
).

B.3.2. Proof of Lemma 9.

Proof of point 6 and point 7. There exists a constant 𝑐′thresh such that 4𝐶𝐼𝐶𝑘 ≤
𝑠
√
𝑇

(log(𝑠
√
𝑇 ) )2 as soon as 𝑠

√
𝑇 ≥ 𝑐′thresh. It follows that 𝑘 𝐼 ≤ 𝑁 .

Point 7 follows from straightforward algebra.

Proof of point 8. For all 𝑥 ∈ A0, denote by 𝑇𝑥 = max{𝑖 : 𝑥 ∈ A𝑖} the index of the last
iteration where the vertex 𝑥 was in the active set. Let us first show that if 𝑥 is not in the
first community, then 𝑇𝑥 has sub-exponential tails.

Lemma 10. Set 𝜌′ = 1/2000. If 𝐶𝑘 ≥ (log 3)/𝜌′ then

∀𝑖 ∈ N∗ P(𝑇𝑥 ≥ 𝑖) ≤ 𝑒−𝜌′𝐶𝑘 𝑖 . (B.7)

We refer to Section B.4 for a proof of this lemma.
Let us now prove point 8. Let 𝑇 (1) = |O0 | and 𝑉𝑥 = 1𝑇𝑥≥𝐼 . Conditionally on F𝑇 (1) ,

the variables (𝑉𝑥)𝑥∈A0∩{𝑍≠1} are i.i.d. Bernoulli random variables with parameter 𝑟 ≤
𝑒−𝜌

′𝐶𝑘 𝐼 by equation (B.7). Therefore, for all 𝑖 ∈ N,

P
©«

∑︁
𝑥∈A0∩{𝑍≠1}

𝑉𝑥 = 𝑖
ª®¬ ≤ |A0 |𝑖

𝑖!
𝑟 𝑖

so that

P( |A𝐼 ∩ {𝑍 ≠ 1}| ≥ 𝑖) ≤
∑︁
𝑗≥𝑖

|A0 | 𝑗
𝑗!

𝑟 𝑗

≤ (|A0 |𝑟)𝑖
𝑖!

∑︁
𝑗≥0

(
|A0 |𝑟
𝑖

) 𝑗
≤ 2

( |A0 |𝑟)𝑖
𝑖!

as soon as 𝑖 ≥ 2|A0 |𝑟 . For 𝑖 = ⌈1/𝑠⌉, this condition holds if 16
√

2 ≤ (𝑠
√
𝑇)𝜌′𝐶𝑘𝐶𝐼−1

which holds when 𝐶𝐼𝐶𝑘 ≥ 4/𝜌′ and 𝑠
√
𝑇 ≥ 𝑐′

𝑡ℎ
.

Taking 𝑖 = ⌈1/𝑠⌉ and using that 𝑖! ≥ (𝑖/𝑒)𝑖 for all 𝑖 ≥ 1, it follows that

P

(
|A𝐼 ∩ {𝑍 ≠ 1}| ≥ 1

𝑠

)
≤ 2

(
𝑒 |A0 |𝑟
⌈1/𝑠⌉

) ⌈1/𝑠⌉
≤ 2 (𝑠𝑒 |A0 |𝑟)1/𝑠

as soon as 𝑠𝑒 |A0 |𝑟 ≤ 1.



Pair-Matching: Link Prediction with Adaptive Queries 49

We want to take 𝑟 small enough such that 2(𝑠𝑒 |A0 |𝑟)1/𝑠 ≤ 1/𝑇 , that is

log(𝑠𝑒 |A0 |) + 𝑠 log(2𝑇) ≤ (− log 𝑟),

which holds as soon as

𝜌′𝐶𝑘 𝐼 ≥ log(𝑠
√
𝑇) + log(32𝑒

√
2) + 𝑠 log𝑇.

using |A0 | ≤ 16
√

2𝑇 .
Note that 𝑠 log𝑇

log(𝑠
√
𝑇 )

= 2 𝑠
√
𝑇

log(𝑠
√
𝑇 )

log
√
𝑇√
𝑇

≤ 2, since log(𝑥)/𝑥 is decreasing for 𝑥 > 𝑒 and

𝑠
√
𝑇 ≤

√
𝑇 , so that there exists a numerical constant 𝑐′thresh such that if 𝑠

√
𝑇 ≥ 𝑐′thresh,

then point 8 is implied by

𝜌′𝐶𝑘 𝐼 ≥ 4 log(𝑠
√
𝑇),

which holds when 𝐶𝐼𝐶𝑘 ≥ 4/𝜌′.

Proof of point 9. Note that

𝑘

𝐼−1∑︁
𝑖=0

|A𝑖 ∩ {𝑍 ≠ 1}| = 𝑘
∑︁

𝑥∈A0∩{𝑍≠1}
𝑇𝑥 .

Conditionally on A0, the random variables (𝑇𝑥)𝑥∈A0∩{𝑍≠1} are i.i.d. random vari-
ables which are stochastically dominated by random variables𝑌𝑥 ∼ E(𝜌′𝐶𝑘) by Equa-
tion (B.7). These exponential random variables satisfy

E

(
𝑌𝑥 −

1
𝜌′𝐶𝑘

)2
≤ 1

(𝜌′𝐶𝑘)2

and for all 𝑎 ∈ N such that 𝑎 ≥ 3

E

(
𝑌𝑥 −

1
𝜌′𝐶𝑘

)𝑎
+
≤ 𝑎!

(𝜌′𝐶𝑘)𝑎
,

so that Bernstein’s inequality, see for instance Proposition 2.9 of [Mas07], entails that
for all 𝑡 > 0

P

( ∑︁
𝑥∈A0

𝑌𝑥 −
|A0 |
𝜌′𝐶𝑘

≥
2
√︁
|A0 |𝑡
𝜌′𝐶𝑘

+ 𝑡

𝜌′𝐶𝑘

)
≤ 𝑒−𝑡

and therefore by taking 𝑡 = log𝑇 , with probability at least 1 − 1/𝑇 :

∑︁
𝑥∈A0∩{𝑍≠1}

𝑇𝑥 ≤ 16
√

2𝑇
𝜌′𝐶𝑘

+
2
√︃

16
√

2𝑇 log𝑇
𝜌′𝐶𝑘

+ log𝑇
𝜌′𝐶𝑘

≤ 32
√
𝑇

𝜌′𝐶𝑘
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as soon as 𝑇 ≥ 𝑇 ′
0 for some numerical constant 𝑇 ′

0 . Hence, with probability at least
1 − 1/𝑇 ,

𝑘

𝐼−1∑︁
𝑖=0

|A𝑖 ∩ {𝑍 ≠ 1}| ≤ 64
√
𝑇

𝜌′𝑠

using 𝑘 ≤ 2𝐶𝐾/𝑠.

Proof of point 10. The same proof as the one of Equation (B.9) shows that for all
𝑥 ∈ A0 ∩ {𝑍 = 1}, for all 𝑖 ≥ 1 and for all 𝑡 > 0,

P

(
𝑝𝑥,𝑖 < 𝑝 − |𝑝 − 𝑞 |

8
− |𝑝 − 𝑞 |

√︂
𝑡

2𝑘𝑖
− 2

√︂
2𝑝

𝑡

𝑘𝑖
− 2

𝑡

𝑘𝑖

)
≤ 3𝑒−𝑡 , (B.8)

so that by union bound and the inequality 𝑘 ≥ 𝐶𝑘 ,

P
©«∃𝑖 ≥ 1, 𝑝𝑥,𝑖 <

7𝑝 + 𝑞
8

− |𝑝 − 𝑞 |

√︄

log(2𝜋2𝑖2)
𝐶𝑘𝑖

(
1
√

2
+ 2

√
2
)
+ 2

log(2𝜋2𝑖2)
𝐶𝑘𝑖

ª®¬ ≤ 1
4
.

Therefore, if 𝐶𝑘 is larger than a numerical constant,

P

(
∃𝑖 ≥ 1, 𝑝𝑥,𝑖 <

3𝑝 + 𝑞
4

)
≤ 1

4
,

which, combined with point 5 of Theorem 8, implies

P
(
∃𝑖 ≥ 1, 𝑝𝑥,𝑖 < 𝜏

)
≤ 1

4
.

Let𝑉𝑥 = 1𝑥∈A𝐼
for all 𝑥 ∈ A0 ∩ {𝑍 = 1}. The above inequality ensures that condi-

tionally onA0, the (𝑉𝑥)𝑥∈A0∩{𝑍=1} are i.i.d. Bernoulli random variable with parameter
𝑟 ≥ 3/4. Therefore, Hoeffding’s inequality entails

P

(
|A𝐼 ∩ {𝑍 = 1}| ≤ 3|A0 ∩ {𝑍 = 1}|

4
−

√︂
|A0 |

log𝑇
2

)
≤ 1
𝑇
.

Let us assume for now that |A0 ∩ {𝑍 = 1}| ≥ 2
√

2𝑇 with probability 1 − 1/𝑇 . Then
this ensures that for 𝑇 larger than some numerical constant,

P
(
|A𝐼 ∩ {𝑍 = 1}| ≤

√
2𝑇

)
≤ 1
𝑇
+ 1
𝑇
.

To conclude, note that conditionally on N , the random variable |A0 ∩ {𝑍 = 1}| is
an hypergeometric random variable with parameters (⌈8

√
2𝑇⌉, 𝑟 ′, 𝑛 − 𝑁) where

𝑟 ′ =
𝑛
2 − |N ∩ {𝑍 = 1}|

𝑛 − 𝑁 ≥
𝑛
2 − 3

4
𝑛
4

𝑛
≥ 5

16



Pair-Matching: Link Prediction with Adaptive Queries 51

by points 1 and 2 of Theorem 8. Therefore, Equation (D.1) implies that

P
©«|A0 ∩ {𝑍 = 1}| ≤ 5

16
8
√

2𝑇 −

√︄
16
√

2𝑇 log𝑇
2

ª®¬ ≤ 1
𝑇
,

so that for 𝑇 larger than a numerical constant

P
(
|A0 ∩ {𝑍 = 1}| ≤ 2

√
2𝑇

)
≤ 1
𝑇
.

B.4. Proof of Lemma 10

Let 𝑥 ∈ A0 ∩ {𝑍 ≠ 1} and assume that we are in the event of probability at least 1− 9/𝑇
where Theorem 8 holds. For all 𝑖 ∈ N∗,

P(𝑇𝑥 ≥ 𝑖) = P
(
∀ 𝑗 ∈ {1, . . . , 𝑖}, 𝑝𝑥, 𝑗 ≥ 𝜏

)
≤ P

(
𝑝𝑥,𝑖 ≥ 𝜏

)
≤ P

(
𝑝𝑥,𝑖 ≥

𝑝 + 3𝑞
4

)
using point 5 of Lemma 8.

Following the same proof as in point 5 of Theorem 8, one can show that for all
𝑥 ∈ A0 ∩ {𝑍 ≠ 1}, all 𝑖 ≥ 1 and all 𝑡 > 0,

P

(
𝑝𝑥,𝑖 ≥ 𝑞 +

|V−
𝑥,𝑖

|
|V𝑥,𝑖 |

|𝑝 − 𝑞 | + 2
√︂

2𝑝
𝑡

𝑘𝑖
+ 2

𝑡

𝑘𝑖

)
≤ 2𝑒−𝑡

where V−
𝑥,𝑖

:= V𝑥,𝑖 ∩ {𝑍 ≠ 1}.
For 𝑠

√
𝑇 ≥ 𝑐′thresh, with 𝑐′thresh such that log(𝑠

√
𝑇 )

𝑠
√
𝑇

≤ 1/64, one has 1
𝑠
≤ 𝑁/64. Then,

points 2 and 4 of Lemma 8 imply that |N ∩ {�̂� = 1} ∩ {𝑍 ≠ 1}| ≤ 𝑁/64 and �̂�1 := |N ∩
{�̂� = 1}| ≥ 𝑁/8. Therefore, the proportion of misclassified vertices inN ∩ {�̂� = 1} is at
most 1/8, so that conditionally on �̂�1 and the event of Lemma 8 |V−

𝑥,𝑖
| is stochastically

dominated by an hypergeometric distribution with parameters (𝑘𝑖, 1/8, �̂�1). Hence,
Equation (D.1) entails

P

(
|V−
𝑥,𝑖

|
|V𝑥,𝑖 |

≥ 1
8
+

√︂
𝑡

2𝑘𝑖

)
≤ 𝑒−𝑡 ,

so that for all 𝑖 ≥ 1 and 𝑡 > 0,

P

(
𝑝𝑥,𝑖 ≥ 𝑞 +

|𝑝 − 𝑞 |
8

+ |𝑝 − 𝑞 |
√︂

𝑡

2𝑘𝑖
+ 2

√︂
2𝑝

𝑡

𝑘𝑖
+ 2

𝑡

𝑘𝑖

)
≤ 3𝑒−𝑡 . (B.9)
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Note that

𝑝 + 3𝑞
4

−
(
𝑞 + |𝑝 − 𝑞 |

8
+ |𝑝 − 𝑞 |

√︂
𝑡

2𝑘𝑖
+ 2

√︂
2𝑝

𝑡

𝑘𝑖
+ 2

𝑡

𝑘𝑖

)
≥ |𝑝 − 𝑞 |

8
−

√︂
𝑡

𝐶𝑘𝑖

(
|𝑝 − 𝑞 |

√
𝑠

√
2

+ 2
√︁

2𝑝𝑠
)
− 2

𝑡𝑠

𝐶𝑘𝑖

≥ |𝑝 − 𝑞 |
(

1
8
−

√︂
𝑡

𝐶𝑘𝑖

(
1
√

2
+ 2

√
2
)
− 2

𝑡

𝐶𝑘𝑖

)
.

since 𝑠 = (𝑝 − 𝑞)2/𝑝 ≤ 1.
Thus, there exists a numerical constant 𝜌 = 10−3 such that by taking 𝑡 = 𝜌𝐶𝑘𝑖,

𝑝 + 3𝑞
4

≥ 𝑞 + |𝑝 − 𝑞 |
8

+ |𝑝 − 𝑞 |
√︂

𝑡

2𝑘𝑖
+ 2

√︂
2𝑝

𝑡

𝑘𝑖
+ 2

𝑡

𝑘𝑖
,

so that

P

(
𝑝𝑥,𝑖 ≥

𝑝 + 3𝑞
4

)
≤ 3𝑒−𝜌𝐶𝑘 𝑖

and finally by letting 𝜌′ = 𝜌/2 and if 𝐶𝑘 ≥ (log 3)/𝜌′:

∀𝑖 ∈ N∗ P(𝑇𝑥 ≥ 𝑖) ≤ 𝑒−𝜌′𝐶𝑘 𝑖 .

C. Proof of the Constrained Upper Bound

This section proves the upper bound in Theorem 2. Recall that 𝐵 = (𝐵𝑇 ∧
√
𝑇)/2 in

the Constrained Algorithm page 23.
It is enough to prove the upper bound in Theorem 2 in the case where 𝑠𝐵 ≥ 𝑐𝑡ℎ𝑟𝑒𝑠ℎ

for some numerical constant 𝑐𝑡ℎ𝑟𝑒𝑠ℎ ≥ 1. Indeed, if 𝑠𝐵 ≤ 𝑐𝑡ℎ𝑟𝑒𝑠ℎ, Equation (4.1) auto-
matically holds with 𝑐2 ≥ 𝑐𝑡ℎ𝑟𝑒𝑠ℎ. Hereafter, it is then assumed that 𝑠𝐵 ≥ 𝑐𝑡ℎ𝑟𝑒𝑠ℎ.

The first step of the Constrained Algorithm page 23 is almost identical to that of the
Unconstrained Algorithm after replacing

√
𝑇 by 𝐵 = (𝐵𝑇 ∧

√
𝑇)/2 in the cardinality of

the core-set. The following lemma is a slight variant of Lemma 8 in this setting. The
proof is omitted.

Lemma 11. There exist numerical constants 𝑐𝑡ℎ𝑟𝑒𝑠ℎ ≥ 𝑒 and 𝐵0 ≥ 1, such that, if
𝐵 ≥ 𝐵0 and 𝑠𝐵 ≥ 𝑐𝑡ℎ𝑟𝑒𝑠ℎ and 𝑇/𝐵 ≤ 𝑛/136, then with probability at least 1 − 9/(𝑠𝐵):

(1) the number 𝑁𝑖𝑛𝑖𝑡 of sampled nodes satisfies 𝑁𝑖𝑛𝑖𝑡 ≤ 𝑛
8 − 4

∑𝑡 𝑓 −1
𝑡=1 𝑁 (𝑡 ) ,

(2) at least 𝑁𝑖𝑛𝑖𝑡/4 nodes of each community have been sampled, that is |{𝑍 =

𝑗} ∩ N𝑖𝑛𝑖𝑡 | ≥ 𝑁𝑖𝑛𝑖𝑡/4 for each 𝑗 ∈ {1, 2},
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(3) the proportion 𝜀𝑁𝑖𝑛𝑖𝑡
of misclassified nodes satisfies

𝜀𝑁𝑖𝑛𝑖𝑡
= inf
𝜋 permutation on {1,2}

1
2𝑁𝑖𝑛𝑖𝑡

2∑︁
𝑘=1

| {𝑍 = 𝑘}Δ{�̂� = 𝜋(𝑘)}| ≤ 4
5122

1
𝑠𝐵
,

(C.1)

(4) |𝜏 − 𝑝+𝑞
2 | ≤ 𝑝−𝑞

4 .

At the end of the first step, |O0 | pairs have been sampled and the sampling-regret
therefore does not exceed E [|O0 |] = 𝑐O0𝐵/𝑠 ≤ 𝑐O0𝑇/(𝑠𝐵) since, by definition of 𝐵,
𝑇 ≥ 𝐵2.

Let us proceed with the second step. To show that the sampling regret in the second
step does not exceed𝑂 (𝑇/(𝑠𝐵)), it is sufficient to prove that there exist two numerical
constants 𝑐𝑝𝑟𝑜𝑏𝑎 and 𝑐𝑟𝑒𝑔𝑟𝑒𝑡 such that for any (𝑇, 𝐵) satisfying 𝑠𝐵 ≥ 𝑐𝑡ℎ𝑟𝑒𝑠ℎ and
𝑇/𝐵 ≤ 𝑛/136, the number of bad pairs sampled during the second step is bounded
from above by 𝑐𝑟𝑒𝑔𝑟𝑒𝑡𝑇/(𝑠𝐵) with probability at least 1 − 𝑐𝑝𝑟𝑜𝑏𝑎/(𝑠𝐵). Indeed, since
the number of bad pairs sampled in the second step 𝑁𝑏𝑎𝑑

𝑠𝑡𝑒𝑝2(𝜓,𝑇) cannot be larger than
𝑇 , it directly follows that the sampling-regret during the second step is upper bounded
by

E
[
𝑁𝑏𝑎𝑑𝑠𝑡𝑒𝑝2(𝜓,𝑇)

]
≤ 𝑐𝑟𝑒𝑔𝑟𝑒𝑡

𝑇

𝑠𝐵𝑇
+ 𝑇

𝑐𝑝𝑟𝑜𝑏𝑎

𝑠𝐵𝑇
≤ 𝑐′ 𝑇

𝑠𝐵𝑇
.

The following lemma provides such a control of the number of bad pairs accumu-
lated in step 2, as well as an upper bound on the number of misclassified nodes. It is a
counterpart to Lemma 9 of the unconstrained case.

Lemma 12. There exist two numerical constants 𝐵′
0 ≥ 1 and 𝑐′

𝑡ℎ𝑟𝑒𝑠ℎ
≥ 𝑒 such that if

𝐵 ≥ 𝐵′
0, 𝑠𝐵 ≥ 𝑐′

𝑡ℎ𝑟𝑒𝑠ℎ
and 𝑇/𝐵 ≤ 𝑛/136, then with probability at least 1 − 63/(𝑠𝐵),

Lemma 11 holds and for all iterations of SCREENING in point 6 of the constrained
algorithm,

(5) it is always possible to sample |A0 | new vertices: |𝑉 (0) | ≥ . . . ≥ |𝑉 (𝑡 𝑓 −1) | ≥ 7𝑛
8 ;

(6) No node from A0 has more than 2𝐵 adjacent pairs sampled during the whole
execution of the constrained algorithm.

(7) the algorithm does not run out of connections with the reference core-set:
𝑘 𝐼 ≤ 𝑁 (0) ≤ . . . ≤ 𝑁 (𝑡 𝑓 −1) ;

and there exists a numerical constant 𝐶fail such that for all 𝑡 ∈
{
1, . . . , 𝑡 𝑓

}
, during the

call SCREENING
(
N (𝑡−1) , 𝑁 (𝑡 ) , 𝐵, 𝜏,𝑉 (𝑡−1) ) ,

(8) the number of bad pairs sampled during the 𝑡𝑡ℎ-call to SCREENING from nodes
in A0 is controlled:∑
𝑥∈A0

��{𝑦𝑥𝑎 : (𝑥, 𝑦𝑥𝑎) sampled and 𝑍𝑦𝑥𝑎 ≠ 𝑍𝑥
}�� ≤ 𝐶fail

𝑁 (𝑡 )

𝑠
;

(9) few vertices from the wrong community remain: |N (𝑡 ) ∩ {𝑍 ≠ 1}| ≤ 8𝑁 (𝑡 )/(𝑠𝐵);
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(10) enough vertices from community 1 remain for the construction of the core-set
N (𝑡 ) of 𝑁 (𝑡 ) nodes:

∑𝑚
𝑗=1 |A

( 𝑗 )
𝐼

∩ {𝑍 = 1}| ≥ 𝑁 (𝑡 ) ;

As a consequence, the total number of bad pairs sampled during the second step is
upper bounded by

𝐶fail

𝑡 𝑓∑︁
𝑡=1

𝑁 (𝑡 )

𝑠
≤ 2𝐶fail

𝑁𝑡 𝑓

𝑠
≤ 4𝐶 𝑓 𝑎𝑖𝑙

𝑇

𝑠𝐵
,

with probability larger than 1 − 63/(𝑠𝐵).

We refer to Section C.1 for a proof of Lemma 12.
Let us now conclude the proof of the upper bound of Theorem 2. In the third step,

the core-set N (𝑡 𝑓 ) has ⌈𝑇/𝐵⌉ ≤ 2𝑇/𝐵 nodes and a proportion of misclassified nodes
smaller than 8/(𝑠𝐵) with probability larger than 1 − 63/(𝑠𝐵) by point 9 of Lemma 12.
Since each node of N (𝑡 𝑓 ) is sampled at most 𝐵 times, the number of bad pairs sampled
during the third step is smaller than 16𝑇/(𝑠𝐵) with probability at least 1 − 63/(𝑠𝐵),
and smaller than 𝑇 otherwise.

Hence, using again that we always have 𝑁𝑏𝑎𝑑 (𝜓,𝑇) ≤ 𝑇 , the total sampling-regret
E

[
𝑁𝑏𝑎𝑑 (𝜓,𝑇)

]
during the whole process is𝑂 (𝑇/(𝑠𝐵)). The proof of the upper bound

of Theorem 2 is complete.

C.1. Proof of Lemma 12

Lemma 12 simultaneously controls all the iterations of SCREENING. To prove it, we
use the following lemma which controls each iteration.

Lemma 13. There exists a numerical constant 𝑐′
𝑡ℎ𝑟𝑒𝑠ℎ

≥ 𝑒 such that the following
holds.

Let N ⊂ 𝑉𝑖𝑛𝑖𝑡 , 𝑁 ′ ∈ N, 𝐵 > 0, 𝜈 ∈ [0, 1] and 𝑉 ⊂ 𝑉𝑖𝑛𝑖𝑡 , and

(N ′, 𝑉 ′) = SCREENING(N , 𝑁 ′, 𝐵, 𝜈,𝑉). (C.2)

Write 𝑁 = |N |.
Assume that 𝑠𝐵 ≥ 𝑐′

𝑡ℎ𝑟𝑒𝑠ℎ
, that 𝐵 ≤ 4𝑁 ′ ≤ 4𝑁 log(𝑠𝐵), that the proportion of

misclassified nodes |N ∩ {𝑍 ≠ 1}|/|N | is upper bounded by 𝑐misclas/(𝑠𝐵) for some
constant 𝑐misclas ∈ [8/5122, 8], that 𝜈 ∈ [ 𝑝+3𝑞

4 ,
3𝑝+𝑞

4 ], that |𝑉 | ≥ 7𝑛/8 and that no
node in 𝑉 is adjacent to a pair sampled before this call to SCREENING. Then with
probability at least 1 − 6/(𝑠𝑁 ′),

(1) the proportion |N ′ ∩ {𝑍 ≠ 1}|/|N ′ | of misclassified nodes after SCREENING is
upper bounded by 𝑐after

misclas/(𝑠𝐵) where 𝑐after
misclas = 𝑐misclas ∨ 8 if𝑁 ′ ≥ 𝐵 log(𝑠𝐵)3/2

and 𝑐after
misclas = 512𝑐misclas otherwise.
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(2) the number of sampled bad pairs is controlled: there exists a numerical con-
stant 𝐶fail (for instance 𝐶fail = 26𝐶𝑘 + 2 = 65002) such that∑︁

𝑥∈A0

��{𝑦𝑥𝑎 : (𝑥, 𝑦𝑥𝑎) was sampled and 𝑍𝑦𝑥𝑎 ≠ 𝑍𝑥
}�� ≤ 𝐶fail

𝑁 ′

𝑠
. (C.3)

(3) no node in N ′ or 𝑉 has more than 𝐵 adjacent pairs sampled during this call
to SCREENING.

(4) |𝑉 ′ | ≥ |𝑉 | − 4𝑁 ′.

(5) it is possible to construct the core-setN ′ with𝑁 ′ nodes after Step 3:
∑𝑚
𝑗=1 |A

( 𝑗 )
𝐼

∩
{𝑍 = 1}| ≥ 𝑁 ′.

(6) no node in 𝑉 ′ is adjacent to a pair sampled before or during this call to
SCREENING.

Lemma 13 is proved in Section C.2.

To prove Lemma 12, we control the 𝑡 𝑓 screening calls at the second step of the con-
strained algorithm page 23 as follows. For the first step, denote by 𝐸0 the event of prob-
ability 1 − 9/(𝑠𝐵) where all the points of Lemma 11 are true. For each 𝑡 ∈ {1, . . . , 𝑡 𝑓 },
denote by 𝐸𝑡 the event where all the points of Lemma 13 are satisfied by the output of
SCREENING at the 𝑡𝑡ℎ-call, which is (N (𝑡 ) ,𝑉 (𝑡 ) ) = SCREENING

(
N (𝑡−1) , 𝑁 (𝑡 ) , 𝐵, 𝜏,𝑉 (𝑡−1) ) .

On the event
⋂

0≤𝑡≤𝑡 𝑓 𝐸𝑡 , all the points of Lemma 12 can be easily derived, see Sec-
tion C.1.1 for a detailed proof.

Therefore, Lemma 12 holds with a probability at least P
(⋂

0≤𝑡≤𝑡 𝑓 𝐸𝑡
)
. To prove

that
⋂

0≤𝑡≤𝑡 𝑓 𝐸𝑡 holds with high probability, we proceed by induction. First, the event𝐸0
holds with probability at least 1 − 9/(𝑠𝐵) by Lemma 11. Next, for any 𝑡 ∈ {1, . . . , 𝑡 𝑓 },
we check in Section C.1.2, that, on the event 𝐸0 ∩ . . . ∩ 𝐸𝑡−1, the assumptions of
Lemma 13 holds at the 𝑡𝑡ℎ-call of theSCREENING routine. Hence, according to Lemma 13,
conditionally on the event 𝐸0 ∩ . . . ∩ 𝐸𝑡−1, the event 𝐸𝑡 holds with probability at least
1 − 6/(𝑠𝑁 (𝑡 ) ). By induction, we thus have

P
©«

⋂
0≤𝑡≤𝑡 𝑓

𝐸𝑡
ª®¬ = P (𝐸0) P (𝐸1 |𝐸0) . . . P

(
𝐸𝑡 𝑓 |𝐸𝑡 𝑓 −1, . . . , 𝐸0

)
≥

(
1 − 9

𝑠𝐵

) 𝑡 𝑓∏
𝑡=0

(
1 − 6

𝑠𝑁 (𝑡 )

)
,
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which is larger than

1 − 9
𝑠𝐵

−
𝑡 𝑓∑︁
𝑡=1

6
𝑠𝑁 (𝑡 ) = 1 − 9

𝑠𝐵
− 6
𝑠𝑁 (0)

𝑡 𝑓 −1∑︁
𝑡=1

⌊log(𝑠𝐵)⌋−𝑡 − 6
𝑠⌈𝑇/𝐵⌉

≥ 1 − 9
𝑠𝐵

− 12 log(𝑠𝐵)
𝑠𝐵

× ⌊log(𝑠𝐵)⌋−1

1 − ⌊log(𝑠𝐵)⌋−1 − 6
𝑠(𝑇/𝐵)

≥ 1 − 9
𝑠𝐵

− 48
𝑠𝐵

− 6
𝑠𝐵

= 1 − 63
𝑠𝐵
,

using for the last inequality that 𝐵 ≤
√
𝑇/2 and 𝑠𝐵 ≥ 𝑐′

𝑡ℎ𝑟𝑒𝑠ℎ
for some numerical con-

stant 𝑐′
𝑡ℎ𝑟𝑒𝑠ℎ

> 0.
To conclude, Lemma 12 holds with probability at least 1 − 63/(𝑠𝐵), provided that

the conclusions of Lemma 12 hold on the event
⋂

0≤𝑡≤𝑡 𝑓 𝐸𝑡 , and that the assumptions
of Lemma 13 are satisfied at each call of SCREENING. These two points are proved in
the next two subsections.

C.1.1. The Conclusions of Lemma 12 holds on
⋂

0≤𝒕≤𝒕 𝒇 𝑬𝒕 . Assume that the event⋂
0≤𝑡≤𝑡 𝑓 𝐸𝑡 holds, and let us show that all the points of Lemma 12 are fulfilled.

Points 7, 8 and 10. Points 8 and 10 of Lemma 12 follow directly from Point 2 and
Point 5 of Lemma 13. As for Point 7, it is satisfied when

4𝐶𝑘𝐶𝐼
log(𝑠𝐵)

𝑠
≤ 𝐵

2 log(𝑠𝐵) ,

which holds as soon as 𝑠𝐵 ≥ 𝑐′
𝑡ℎ𝑟𝑒𝑠ℎ

for some numerical constant 𝑐′
𝑡ℎ𝑟𝑒𝑠ℎ

.

Point 9. In the initial core-set, the proportion of misclassified nodes is upper bounded
by Lemma 11 as follows

|N (0) ∩ {𝑍 ≠ 1}|/|N (0) | ≤ 2𝜀𝑁 ≤ 8
5122 × 1

𝑠𝐵
.

For the next core-set N (1) , it implies that

|N (1) ∩ {𝑍 ≠ 1}|/|N (1) | ≤ 512
8

5122 × 1
𝑠𝐵

=
8

512
× 1
𝑠𝐵

using 𝑐𝑚𝑖𝑠𝑐𝑙𝑎𝑠 = 8/5122 in the point 1 of Lemma 13. For the subsequent core-sets, the
proportion of misclassified nodes is upper bounded as above, updating the value of
𝑐𝑚𝑖𝑠𝑐𝑙𝑎𝑠 at each step. We thus have

|N (2) ∩ {𝑍 ≠ 1}|/|N (2) | ≤ 512
8

512
× 1
𝑠𝐵

=
8
𝑠𝐵
,

and for all 𝑡 ≥ 3,
|N (𝑡 ) ∩ {𝑍 ≠ 1}|/|N (𝑡 ) | ≤ 8

𝑠𝐵
,
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since 𝑁 (𝑡 ) ≥ 𝐵 log(𝑠𝐵)3/2 as soon as 𝑡 ≥ 3 and 𝑠𝐵 ≥ 𝑐′
𝑡ℎ𝑟𝑒𝑠ℎ

for some numerical con-
stant 𝑐′

𝑡ℎ𝑟𝑒𝑠ℎ
.

Point 5. At the 𝑡𝑡ℎ-call to SCREENING, the output of “new” nodes 𝑉 (𝑡 ) satisfies the
recursive inequality |𝑉 (𝑡 ) | ≥ |𝑉 (𝑡−1) | − 4𝑁 (𝑡 ) by construction of the algorithm. The
sequence of inequalities telescopes, leaving

|𝑉 (𝑡 ) | ≥ |𝑉 (0) | −
𝑡∑︁
𝑠=1

4𝑁 (𝑠) ,

which is larger than 7𝑛/8 since |𝑉 (0) | = 𝑛 − 𝑁𝑖𝑛𝑖𝑡 and 𝑁𝑖𝑛𝑖𝑡 ≤ 𝑛/8 − ∑𝑡 𝑓 −1
𝑠=1 4𝑁 (𝑠) by

the point 1 of Lemma 11.

Point 6. A node can fall into four categories:
1/ it is never used;
2/ it is used in Step 1 and possibly in the first iteration of SCREENING. Then the number
of adjacent sampled pairs is at most 𝑁𝑖𝑛𝑖𝑡 + 𝐵 by construction of Step 1 and by point
3 of Lemma 13, which is smaller than 2𝐵 as soon as 𝑠𝐵 ≥ 𝑐𝑡ℎ𝑟𝑒𝑠ℎ for some numerical
constant 𝑐𝑡ℎ𝑟𝑒𝑠ℎ;
3/ it is used in (at most) two consecutive iterations of SCREENING (and nowhere else).
Then the number of adjacent sampled pairs is at most 2𝐵 by Lemma 13;
4/ it is used in the last iteration of SCREENING and (possibly) in Step 3. Then the number
of adjacent sampled pairs is at most 𝐵 + 𝐵 by Lemma 13 and by construction of Step
3.

C.1.2. Check of the Assumptions of Lemma 13. Assume that the events𝐸0, . . . , 𝐸𝑡−1
hold together, and let us check Lemma 13 assumptions. First, the condition 𝑠𝐵 ≥
𝑐′
𝑡ℎ𝑟𝑒𝑠ℎ

comes from Lemma 12. Then, following the proof of Point 9, we can check
that |N (𝑡−1) ∩ {𝑍 ≠ 1}|/|N (𝑡−1) | ≤ 𝑐𝑚𝑖𝑠𝑐𝑙𝑎𝑠/(𝑠𝐵) for 𝑐𝑚𝑖𝑠𝑐𝑙𝑎𝑠 ∈ [8/5122, 8]. For the
threshold 𝜏 taking value in [ 𝑝+3𝑞

4 ,
3𝑝+𝑞

4 ], it is stated in Lemma 11. The input of “new”
nodes𝑉 (𝑡−1) satisfies |𝑉 (𝑡−1) | ≥ 7𝑛/8, as seen above in the proof of Point 5. Finally, the
inequality 𝐵 ≤ 4𝑁 (𝑡 ) ≤ 4𝑁 (𝑡−1) log(𝑠𝐵) is satisfied by construction of the algorithm,
as soon as 𝑠𝐵 ≥ 𝑐′

𝑡ℎ𝑟𝑒𝑠ℎ
for some numerical constant 𝑐′

𝑡ℎ𝑟𝑒𝑠ℎ
.

C.2. Proof of Lemma 13: Control of SCREENING

In this section, we work conditionally to F𝑇start where 𝑇start is the number of pairs
sampled before the current call to SCREENING.

Let us state the two main technical results that allow to prove Lemma 13. Write
V(𝑥) :=V𝑗 for each 𝑗 ∈ {1, . . . , 𝑚} and 𝑥 ∈ A ( 𝑗 )

0 . The first one controls the properties
of the sets (V(𝑥))𝑥∈A0 . Given a subset of nodes 𝑆, denote by misclas(𝑆) the set of
misclassified nodes in 𝑆, that is the set of all 𝑥 ∈ 𝑆 such that 𝑍𝑥 ≠ 1 in SCREENING.
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Lemma 14. The sets (V(𝑥))𝑥∈A0 satisfy

(1) For all 𝑦 ∈ N , | {𝑥 ∈ A0 : 𝑦 ∈ V(𝑥)} | ≤ 𝐵,

(2) P

(����{𝑥 ∈ A0 : | misclas(V(𝑥)) | ≥ 𝑘 𝐼

16

}���� ≥ 𝑐
after
misclas

2
𝑁 ′

𝑠𝐵

)
≤ 2
𝑠𝑁 ′

where 𝑐after
misclas is defined as in Lemma 13,

(3)
∑︁
𝑥∈A0

| misclas(V(𝑥)) | ≤ 𝑁 ′

𝑠
.

The proof of the above lemma is postponed to Section C.3. The next lemma allows
to control the effectiveness of Step 3 of SCREENING. Its proof follows the same lines
as the proof of Lemma 10 (for proving (C.4)) and Point 10 of Lemma 9 (for proving
(C.5)), it is therefore omitted.

Lemma 15. Conditionally to the choice of the set A0 and (V(𝑥))𝑥∈A0 , the variables
(𝑇𝑥)𝑥∈A0 are independent and for all 𝑥 ∈ A0 and all 𝑖 ∈ {1, . . . , 𝐼},

P

(
𝑇𝑥 ≥ 𝑖

��� 𝑍𝑥 ≠ 1 and | misclas(V(𝑥)) | ≤ 𝑘 𝐼

16

)
≤ 𝑒−𝑖 (C.4)

P

(
𝑇𝑥 ≥ 𝐼

��� 𝑍𝑥 = 1 and | misclas(V(𝑥)) | ≤ 𝑘 𝐼

16

)
≥ 3

4
. (C.5)

Let us now prove Lemma 13. Note that Points 4 and 6 follow from the construction
of the algorithm and that Point 3 follows straighforwardly from point 1 of Lemma 14
(for the nodes from N ) and from the construction of the algorithm (for the nodes from
A0).

C.2.1. Proof of Point 1.

|N ′ ∩ {𝑍 ≠ 1}| ≤
𝑚∑︁
𝑗=1

| misclas(A ( 𝑗 )
𝐼

) |

=

𝑚∑︁
𝑗=1

∑︁
𝑥∈A0 s.t.

| misclas(V (𝑥 ) ) |> 𝑘𝐼
16

1
𝑥∈A ( 𝑗)

𝐼
and 𝑍𝑥≠1 +

𝑚∑︁
𝑗=1

∑︁
𝑥∈A0 s.t.

| misclas(V (𝑥 ) ) |≤ 𝑘𝐼
16

1
𝑥∈A ( 𝑗)

𝐼
and 𝑍𝑥≠1

≤
∑︁
𝑥∈A0

1 | misclas(V (𝑥 ) ) |≥ 𝑘𝐼
16
+

∑︁
𝑥∈A0 s.t.

| misclas(V (𝑥 ) ) |≤ 𝑘𝐼
16

1𝑇𝑥≥𝐼 and 𝑍𝑥≠1

≤
𝑐after

misclas
2

𝑁 ′

𝑠𝐵
+

∑︁
𝑥∈A0 s.t.

| misclas(V (𝑥 ) ) |≤ 𝑘𝐼
16

1𝑇𝑥≥𝐼 and 𝑍𝑥≠1

with probability at least 1 − 2/(𝑠𝑁 ′) by point 2 of Lemma 14.
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The second term is dominated by a binomial random variable with parameters
( |A0 |, 𝑒−𝐼 ) by Lemma 15, so it is dominated by a binomial random variable 𝑋 with
parameters (4𝑁 ′, 1/(𝑠𝐵)1026) since 𝐼 ≥ 1026 log(𝑠𝐵). Equation (D.5) implies that for
𝑠𝐵 ≥ 512 (which is implied by 𝑐′

𝑡ℎ𝑟𝑒𝑠ℎ
≥ 512),

P

(
1

4𝑁 ′ 𝑋 ≥ 1
512𝑠𝐵

)
≤ exp

(
−1

2
4𝑁 ′ 1

512𝑠𝐵
log

(
(𝑠𝐵)1025

512

))
≤ exp

(
−4𝑁 ′ log(𝑠𝐵)

𝑠𝐵

)
.

We want this probability to be smaller than 1/(𝑠𝑁 ′), that is

log(𝑠𝐵)
𝑠𝐵

≥ 𝑠
log(𝑠𝑁 ′)

4𝑠𝑁 ′ ,

which is true since 𝑠 ≤ 1, and the function 𝑥 ↦−→ log 𝑥
𝑥

is nonincreasing for 𝑥 ≥ 𝑒, and
4𝑠𝑁 ′ ≥ 𝑠𝐵 ≥ 𝑒 by assumption.

Therefore,

P

(
|N ′ ∩ {𝑍 ≠ 1}| ≥

𝑐after
misclas + (8/512)

2
𝑁 ′

𝑠𝐵

)
≤ 3
𝑠𝑁 ′

which implies Point 1 (since 𝑐after
misclas ≥ 8/512 by definition).

C.2.2. Proof of Point 2. Given a subset 𝑆 of A0, denote by bad(𝑆) the number of
sampled bad pairs coming from nodes in 𝑆 during SCREENING, that is

bad(𝑆) =
∑︁
𝑥∈𝑆

|{𝑦𝑥𝑖 : 𝑖 ≤ 𝑘 ((𝑇𝑥 + 1) ∧ 𝐼) and 𝑍𝑦𝑥
𝑖
≠ 𝑍𝑥}|.

The total number of bad pairs sampled during SCREENING can be decomposed into

bad (A0) =
∑︁
𝑥∈A0

bad({𝑥})1 | misclas(V (𝑥 ) ) |> 𝑘𝐼
16

+
∑︁

𝑥∈A0∩{𝑍=1}
bad({𝑥})1 | misclas(V (𝑥 ) ) |≤ 𝑘𝐼

16

+
∑︁

𝑥∈A0∩{𝑍≠1}
bad({𝑥})1 | misclas(V (𝑥 ) ) |≤ 𝑘𝐼

16

≤ 𝑘 𝐼
∑︁
𝑥∈A0

1 | misclas(V (𝑥 ) ) |≥ 𝑘𝐼
16

(C.6)

+
∑︁

𝑥∈A0∩{𝑍=1}
| misclas(V(𝑥)) | (C.7)

+
∑︁

𝑥∈A0∩{𝑍≠1}
𝑘 (𝑇𝑥 + 1)1 | misclas(V (𝑥 ) ) |≤ 𝑘𝐼

16
(C.8)
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The first sum is controlled by Point 2 of Lemma 14:

P

(
(C.6) ≥

𝑐after
misclas

2
𝑁 ′𝑘 𝐼

𝑠𝐵

)
≤ 2
𝑠𝑁 ′ .

Thus, since 𝑘 𝐼/𝐵 ≤ 4𝐶𝑘𝐶𝐼 log(𝑠𝐵)/(𝑠𝐵) by definition, there exists a constant
𝑐′
𝑡ℎ𝑟𝑒𝑠ℎ

such that 𝑘 𝐼/𝐵 ≤ 2/𝑐after
misclas as soon as 𝑠𝐵 ≥ 𝑐′

𝑡ℎ𝑟𝑒𝑠ℎ
, so that

P

(
(C.6) ≥ 𝑁 ′

𝑠

)
≤ 2
𝑠𝑁 ′ .

Likewise, by Point 3 of Lemma 14,

(C.7) ≤ 𝑁 ′

𝑠
.

By Lemma 15, the variables 𝑇𝑥 in the third sum are stochastically dominated by
i.i.d. exponential random variables with parameter 1. Therefore, using the inequality
𝑘 ≤ 2𝐶𝑘/𝑠, the term (C.8) is stochastically dominated by

8𝐶𝑘
𝑁 ′

𝑠
+ 2

𝐶𝑘

𝑠

4𝑁 ′∑︁
𝑖=1
𝑌𝑖

where (𝑌𝑖)𝑖∈N∗ are i.i.d. exponential random variables with parameter 1. These expo-
nential random variables satisfy

E (𝑌𝑖 − 1)2 ≤ 1

and for all 𝑎 ∈ N such that 𝑎 ≥ 3

E (𝑌𝑖 − 1)𝑎+ ≤ 𝑎!,

so that Bernstein’s inequality, see for instance Proposition 2.9 of [Mas07] entails for
all 𝑡 > 0

P

(4𝑁 ′∑︁
𝑖=1
𝑌𝑖 − 4𝑁 ′ ≥ 4

√
𝑁 ′𝑡 + 𝑡

)
≤ 𝑒−𝑡

and therefore by taking 𝑡 = 𝑁 ′, with probability at least 1 − 𝑒−𝑁 ′ ≥ 1 − 1/𝑁 ′ ≥ 1 −
1/(𝑠𝑁 ′)

4𝑁 ′∑︁
𝑖=1
𝑌𝑖 ≤ 9𝑁 ′.

Hence, with probability at least 1 − 3/(𝑠𝑁 ′),

bad (A0) ≤ (26𝐶𝑘 + 2) 𝑁
′

𝑠
.
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C.2.3. Proof of Point 5. Write A𝐼 =
⋃𝑚
𝑗=1 A

( 𝑗 )
𝐼

and for each 𝑥 ∈ A0, let𝑉𝑥 = 1𝑥∈A𝐼

indicate whether 𝑥 has been kept until the end of Step 3 of SCREENING. Lemma
15 ensures that the random variables (𝑉𝑥)𝑥∈A0∩{𝑍=1} s.t. | misclas(V (𝑥 ) ) |≤ 𝑘𝐼

16
dominate

i.i.d. Bernoulli random variables with parameter 3/4. Therefore, Hoeffding’s inequal-
ity (D.1) entails

P

(��A𝐼 ∩ {𝑍 = 1}
�� ≤ 3

��A0 ∩ {𝑍 = 1} ∩ {𝑥 : | misclas(V(𝑥)) | ≤ 𝑘𝐼
16 }

��
4

−
√︂
|A0 |

log(𝑠𝑁 ′)
2

)
≤ 1
𝑠𝑁 ′ .

Note that |{𝑥 ∈ A0 s.t. | misclas(V(𝑥)) | > 𝑘𝐼
16 }| ≤

𝑐after
misclas

2 𝑁 ′/(𝑠𝐵) with probability
at least 1 − 2/(𝑠𝑁 ′) by Lemma 14. Since |A0 | = 4𝑁 ′, the previous equation entails

P

(
|A𝐼 ∩ {𝑍 = 1}| ≤ 3|A0 ∩ {𝑍 = 1}|

4
−

3 𝑐after
misclas𝑁

′

8𝑠𝐵
−

√︂
4𝑁 ′ log(𝑠𝑁 ′)

2

)
≤ 3
𝑠𝑁 ′ .

Let us assume for now that |A0 ∩ {𝑍 = 1}| ≥ 11
7 𝑁

′ with probability at least 1 −
1/(𝑠𝑁 ′). Then this ensures that for 𝑁 ′ and 𝑠𝐵 larger than some numerical constants
(which is guaranteed by 𝐵 ≥ 𝐵0 and 𝑠𝐵 ≥ 𝑐′

𝑡ℎ𝑟𝑒𝑠ℎ
),

P
(
|A𝐼 ∩ {𝑍 = 1}| ≤ 𝑁 ′) ≤ 4

𝑠𝑁 ′ ,

which gives point 5, provided that |A0 ∩ {𝑍 = 1}| ≥ 11
7 𝑁

′.
The random variable |A0 ∩ {𝑍 = 1}| is an hypergeometric random variable with

number of draws 4𝑁 ′ and initial probability of a winning draw 𝑟 ′ ∈ [ 3
7 ,

4
7 ] because the

number of nodes that have not been sampled at the start of SCREENING is bigger than
7𝑛/8 by assumption and because the true communities are balanced.

Therefore, Hoeffding’s inequality (D.1) implies

P

(
|A0 ∩ {𝑍 = 1}| ≤ 3

7
4𝑁 ′ −

√︂
4𝑁 ′ log(𝑠𝑁 ′)

2

)
≤ 1
𝑠𝑁 ′ ,

so that for 𝑁 ′ large enough (which is implied by 𝐵 ≥ 𝐵0 for some numerical constant
𝐵0).

P

(
|A0 ∩ {𝑍 = 1}| ≤ 11

7
𝑁 ′

)
≤ 1
𝑠𝑁 ′ .

C.3. Proof of Lemma 14

C.3.1. Points 1 and 3. To check Point 1, it suffices to check that ⌈4𝑁 ′/𝑚⌉ ≤ 𝐵. For
𝑠𝐵 ≥ 𝑐′

𝑡ℎ𝑟𝑒𝑠ℎ
with a numerical constant 𝑐′

𝑡ℎ𝑟𝑒𝑠ℎ
large enough, one has𝑚 = ⌊𝑁/(𝑘 𝐼)⌋ ≥
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𝑁/(2𝑘 𝐼) and ⌈
4𝑁 ′

𝑚

⌉
≤ 16𝑁 ′𝑘 𝐼

𝑁
≤ 64𝐶𝑘𝐶𝐼

(log(𝑠𝐵))2

𝑠
≤ 𝐵. (C.9)

For Point 3, note that∑︁
𝑥∈A0

| misclas(V(𝑥)) | ≤
⌈
4𝑁 ′

𝑚

⌉ 𝑚∑︁
𝑗=1

| misclas(V𝑗) |

≤ 16𝑘 𝐼
𝑁 ′

𝑁
| misclas(N)|

≤ 64𝐶𝑘𝐶𝐼
log(𝑠𝐵)

𝑠
𝑐misclas

𝑁 ′

𝑠𝐵

≤ 64𝐶𝑘𝐶𝐼
log(𝑠𝐵)
𝑠𝐵

𝑐after
misclas

𝑁 ′

𝑠

≤ 𝑁 ′

𝑠

by assumption on the the number of misclassified nodes in N , and as soon as 𝑠𝐵 ≥
𝑐′
𝑡ℎ𝑟𝑒𝑠ℎ

for some numerical constant 𝑐′
𝑡ℎ𝑟𝑒𝑠ℎ

.

C.3.2. Point 2, Small Core-sets. In this section, we assume 𝑁 ′ < 𝐵 log(𝑠𝐵)3/2. By
Equation (C.9).����{𝑥 ∈ A0 : | misclas(V(𝑥)) | ≥ 𝑘 𝐼

16

}���� ≤ ⌈
4𝑁 ′

𝑚

⌉ 𝑚∑︁
𝑗=1

1 | misclas(V𝑗 ) |≥ 𝑘𝐼
16

≤ 16
𝑁 ′

𝑁
𝑘𝐼

𝑚∑︁
𝑗=1

1 | misclas(V𝑗 ) |≥ 𝑘𝐼
16
.

Note that

𝑘 𝐼

16

𝑚∑︁
𝑗=1

1 | misclas(V𝑗 ) |≥ 𝑘𝐼
16

≤
𝑚∑︁
𝑗=1

| misclas(V𝑗) |

= | misclas(N)| ≤ 𝑐misclas𝑁

𝑠𝐵

by assumption, so that����{𝑥 ∈ A0 : | misclas(V(𝑥)) | ≥ 𝑘 𝐼

16

}���� ≤ 16
𝑁 ′

𝑁
𝑘𝐼 × 16

𝑘 𝐼

𝑐misclas𝑁

𝑠𝐵

= 256𝑐misclas
𝑁 ′

𝑠𝐵

=
𝑐after

misclas
2

𝑁 ′

𝑠𝐵
.

This bound is not random, it holds with probability 1.
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C.3.3. Point 2, Large Core-sets. In this section, we assume 𝑁 ′ ≥ 𝐵 log(𝑠𝐵)3/2.
The number of misclassified nodes in each V𝑗 can be controlled more easily by

introducing a coupling with i.i.d. Bernoulli random variables. Note that this coupling
is a theoretical tool and does not appear in the algorithm.

Lemma 16. Let 𝐾 be a random variable taking values in {0, . . . , 𝑁}. Let (𝑋𝑥)𝑥∈N be
a vector of random variables taking values in {0, 1} such that

•
∑
𝑥∈N 𝑋𝑥 = 𝐾

• the distribution of (𝑋𝑥)𝑥∈N is invariant under permutation of N
Note that these two points together with the distribution of 𝐾 characterize the dis-

tribution of (𝑋𝑥)𝑥∈N . Then for all 𝑢 > 0, there exists a coupling with i.i.d. Bernoulli
random variables (𝑌𝑥)𝑥∈N with parameter 𝑢 such that by writing 𝑀 =

∑
𝑥∈N 𝑌𝑥 , 𝑀 is

independent of (𝑋𝑥)𝑥∈N and

𝑀 ≥ 𝐾 =⇒ (∀𝑥 ∈ N , 𝑋𝑥 ≤ 𝑌𝑥) . (C.10)

Proof of Lemma 16. Let 𝑀 be a binomial random variable with parameters (𝑁, 𝑢)
such that 𝑀 and 𝐾 are independent. Let (𝑋𝑖)1≤𝑖≤𝑁 and (𝑌𝑖)1≤𝑖≤𝑁 be random variables
such that conditionally to 𝑀 and 𝐾 and for all 1 ≤ 𝑖 ≤ 𝑁 ,

𝑋𝑖 =

{
1 if 𝑖 ≤ 𝐾

0 otherwise

𝑌𝑖 =

{
1 if 𝑖 ≤ 𝑀

0 otherwise
.

Let 𝜎 be a uniform random variable in the set of bijections from {1, . . . , 𝑁} to N
that is independent of 𝐾 , 𝑀 , (𝑋𝑖)𝑖 and (𝑌𝑖)𝑖 , and define 𝑋 ′

𝑥 = 𝑋𝜎−1 (𝑥 ) and𝑌𝑥 =𝑌𝜎−1 (𝑥 )
for all 𝑥 ∈ N .

Then the random vector (𝑋 ′
𝑥)𝑥∈N has the same distribution as the random vector

(𝑋𝑥)𝑥∈N , the random variables (𝑌𝑥)𝑥∈N are i.i.d. Bernoulli random variables with
parameter 𝑢, and Equation (C.10) holds for these two vectors. □

Let𝑀 and (𝑌𝑥)𝑥∈N be the random variables given by Lemma 16 applied to (𝑋𝑥)𝑥∈N =

(1
𝑍𝑥≠𝑍𝑥

)𝑥∈N , 𝐾 = | misclas(N)| and 𝑢 = 2𝑐after
misclas/(𝑠𝐵) + 4 log(𝑠𝐵)2/𝐵. Note that the

algorithm is invariant by permutation of the nodes ofN , so that we may assume without
loss of generality that the distribution of these (𝑋𝑥)𝑥∈N is invariant by permutation of
N .

By Assumption of Lemma 13, we have 𝐾 ≤ 𝑐misclas/(𝑠𝐵). Let us show that 𝑀 ≥
𝑐misclas/(𝑠𝐵) with probability at least 1 − 1/(𝑠𝑁 ′), which implies 𝑀 ≥ 𝐾 with prob-
ability at least 1 − 1/(𝑠𝑁 ′). Since 𝑀 is a binomial random variable with parameters
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(𝑁, 𝑢), Bernstein’s inequality (D.2) entails

P
(
𝑀 ≤ 𝑁𝑢 −

√
2𝑁𝑢𝑡 − 𝑡

)
≤ 𝑒−𝑡 .

Since
√

2𝑎𝑏 ≤ 𝑎
2 + 𝑏 for all 𝑎, 𝑏 > 0, it holds with probability at least 1 − 1/(𝑠𝑁 ′)

𝑀 ≥ 𝑁𝑢 − 𝑁𝑢

2
− log(𝑠𝑁 ′) − log(𝑠𝑁 ′)

≥ 𝑐misclas𝑁

𝑠𝐵
+ 2𝑁

log(𝑠𝐵)2

𝐵
− 2 log(𝑠𝑁 ′).

Note that

2 log(𝑠𝑁 ′)
2𝑁 log(𝑠𝐵)2

𝐵

≤
log(𝑠𝑁 log(𝑠𝐵) )

𝑁

log(𝑠𝐵)2

𝐵

=

log(𝑠𝑁 log(𝑠𝐵) )
𝑠𝑁 log(𝑠𝐵)

log(𝑠𝐵)
𝑠𝐵

≤ 1,

as soon as 𝑠𝐵 ≥ 𝑒 since the application 𝑥 ↦−→ (log 𝑥)/𝑥 is nonincreasing for 𝑥 ≥ 𝑒

and 𝑠𝑁 log(𝑠𝐵) ≥ 𝑠𝐵 ≥ 𝑒 (the second last inequality comes from the assumption
𝑁 ′ = 𝑁 ⌊log(𝑠𝐵)⌋ ≥ 𝐵 log(𝑠𝐵)3/2 made at the beginning of the current subsection).
Therefore,

P

(
𝑀 ≤ 𝑐misclas𝑁

𝑠𝐵

)
≤ 1
𝑠𝑁 ′ ,

and finally, according to Lemma 16,

P
(
∀𝑥 ∈ N , 1

𝑍𝑥≠𝑍𝑥
≤ 𝑌𝑥

)
≥ 1 − 1

𝑠𝑁 ′ . (C.11)

We can now proceed to the conclusion of the proof of Point 2 when𝑁 ′ ≥ 𝐵 log(𝑠𝐵)3/2.
We have ����{𝑥 ∈ A0 : | misclas(V(𝑥)) | ≥ 𝑘 𝐼

16

}���� ≤ ⌈
4𝑁 ′

𝑚

⌉ 𝑚∑︁
𝑗=1

1 | misclas(V𝑗 ) |≥ 𝑘𝐼
16

≤ 16
𝑁 ′

𝑁
𝑘𝐼

𝑚∑︁
𝑗=1

1∑
𝑥∈V𝑗

𝑌𝑥≥ 𝑘𝐼
16

with probability at least 1 − 1/(𝑠𝑁 ′) by Equations (C.9) and (C.11).
Note that the random variable

∑𝑚
𝑗=1 1∑

𝑥∈V𝑗
𝑌𝑥≥ 𝑘𝐼

16
is a binomial random variable

with parameters (𝑚, P(∑𝑥∈V𝑗
𝑌𝑥 ≥ 𝑘𝐼

16 )), and that
∑
𝑥∈V𝑗

𝑌𝑥 is a binomial random
variable with parameters (𝑘 𝐼, 𝑢) with 𝑢 = 2𝑐after

misclas/(𝑠𝐵) + 4 log(𝑠𝐵)2/𝐵. Since 5𝑢 ≤
1/16 for 𝑠𝐵 ≥ 𝑐′

𝑡ℎ𝑟𝑒𝑠ℎ
, we can apply Equation (D.5) to obtain

P
©«
∑︁
𝑥∈V𝑗

𝑌𝑥 ≥ 𝑘 𝐼

16
ª®¬ ≤ exp

(
− 𝑘 𝐼

32
log

1
16𝑢

)
. (C.12)
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Note that

log
1

16𝑢
≥ log

𝑠𝐵

256(1 ∨ (𝑠 log(𝑠𝐵)2))
= log(𝑠𝐵) − log 256 − 0 ∨ log(𝑠 log(𝑠𝐵)2)

≥ 2
3

log(𝑠𝐵) − 0 ∨ log((𝑠𝐵)1/3)

≥ 2
3

log(𝑠𝐵) − log(𝑠𝐵)/3 =
1
3

log(𝑠𝐵),

when 𝑠𝐵 ≥ 𝑐′
𝑡ℎ𝑟𝑒𝑠ℎ

for 𝑐′
𝑡ℎ𝑟𝑒𝑠ℎ

large enough. Therefore, Equation (C.12) implies

P
©«
∑︁
𝑥∈V𝑗

𝑌𝑥 ≥ 𝑘 𝐼

16
ª®¬ ≤ exp

(
− 𝑘 𝐼

96
log(𝑠𝐵)

)
.

It remains to control the probability that a binomial random variable with paramet-
ers

(
𝑚, exp

(
− 𝑘𝐼96 log(𝑠𝐵)

))
exceeds 𝑐after

misclas
2

𝑁 ′/(𝑠𝐵)
16𝑘𝐼𝑁 ′/𝑁 . To apply Equation (C.12), check

that
𝑐after

misclas
2

𝑁 ′/(𝑠𝐵)
16𝑘𝐼𝑁 ′/𝑁

𝑚 exp
(
− 𝑘𝐼96 log(𝑠𝐵)

) =
𝑐after

misclas
2

𝑁 ′

𝑚

16𝑘 𝐼 𝑁 ′
𝑁

1
𝑠𝐵

exp
(
𝑘 𝐼

96
log(𝑠𝐵)

)
≥
𝑐after

misclas
2

1
16𝑠𝐵

exp
(
𝑘 𝐼

96
log(𝑠𝐵)

)
since 𝑚 ≤ 𝑁

𝑘𝐼

≥ exp
(
𝑘 𝐼

200
log(𝑠𝐵)

)
≥ 5,

for 𝑠𝐵 ≥ 𝑐′
𝑡ℎ𝑟𝑒𝑠ℎ

. Thus, Equation (D.5) and 𝑐after
misclas = 𝑐misclas ∨ 8 imply

P
©«16

𝑁 ′

𝑁
𝑘𝐼

𝑚∑︁
𝑗=1

1∑
𝑥∈V𝑗

𝑌𝑥≥ 𝑘𝐼
16

≥ 𝑐misclas ∨ 8
2

𝑁 ′

𝑠𝐵

ª®¬ ≤ exp
(
−𝑐misclas ∨ 8

4
𝑁 ′/(𝑠𝐵)

16𝑘 𝐼𝑁 ′/𝑁
𝑘𝐼

200
log(𝑠𝐵)

)
≤ exp

(
−𝑁 log(𝑠𝐵)

1600𝑠𝐵

)
≤ exp

(
− 𝑁 ′

1600𝑠𝐵

)
since 𝑁 log(𝑠𝐵) ≥ 𝑁 ′.

We want this probability to be smaller than 1/(𝑠𝑁 ′), that is

𝑁 ′

1600𝑠𝐵
≥ log(𝑠𝑁 ′)
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which holds as soon as 𝑁 ′ ≥
[
2 × 1600𝑠𝐵 log(1600𝑠2𝐵)

]
, which is implied by the

assumption 𝑁 ′ ≥ 𝐵 log(𝑠𝐵)3/2 for 𝑠𝐵 ≥ 𝑐′thresh. Thus,

P

(����{𝑥 ∈ A0 : | misclas(V(𝑥)) | ≥ 𝑘 𝐼

16

}���� ≥ 𝑐after
misclas

2
𝑁 ′

𝑠𝐵

)
≤ 2
𝑠𝑁 ′ .

The proof is complete.

D. Probabilistic Inequalities

We recall Bernstein and Hoeffding inequalities for binomial and hypergeometric dis-
tributions.

Lemma 17. For 𝑛 ≥ 1, 𝑝 ∈ [0, 1] and 𝑁 ≥ 𝑛, let 𝑋 be either a binomial random
variable with parameters (𝑛, 𝑝) or a sum of 𝑚 i.i.d. hypergeometric random variables
with parameters ( 𝑛

𝑚
, 𝑝, 𝑁). Then, for all 𝑡 > 0,

P

(
𝑋 − 𝑛𝑝 ≥

√︂
𝑛𝑡

2

)
≤ 𝑒−𝑡 and P

(
|𝑋 − 𝑛𝑝 | ≥

√︂
𝑛𝑡

2

)
≤ 2𝑒−𝑡 (D.1)

and
P

(
𝑋 − 𝑛𝑝 ≥

√︁
2𝑛𝑝𝑡 + 𝑡

)
≤ 𝑒−𝑡 , (D.2)

P
(
|𝑋 − 𝑛𝑝 | ≥

√︁
2𝑛𝑝𝑡 + 𝑡

)
≤ 2𝑒−𝑡 . (D.3)

The following lemma allows to control large deviations of binomial and hypergeo-
metric random variables.

Lemma 18. Let 𝑋 be either a binomial random variable with parameters (𝑛, 𝑝) or a
sum of 𝑚 i.i.d. hypergeometric random variables with parameters ( 𝑛

𝑚
, 𝑝, 𝑁). Then for

all 𝑐 ∈ [𝑝, 1],
P (𝑋 ≥ 𝑛𝑐) ≤ 𝑒−𝑛·𝑘𝑙 (𝑐,𝑝) (D.4)

where 𝑘𝑙 (𝑐, 𝑝) = 𝑐 log(𝑐/𝑝) + (1 − 𝑐) log((1 − 𝑐)/(1 − 𝑝)).
In particular, if 𝑐 ≥ 5𝑝,

P (𝑋 ≥ 𝑛𝑐) ≤ 𝑒
− 1

2 𝑛𝑐 log 𝑐
𝑝 . (D.5)

Proof of Lemma 18. The large deviation Inequality (D.4) is derived by the classical
Cramèr-Chernoff’s method, see for instance Chapter 2 in [Mas07].
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For Inequality (D.5), note that for all 0 < 𝛼 < 1/𝑝,

𝑘𝑙 (𝛼𝑝, 𝑝) = 𝛼𝑝

2
log𝛼 +

[
𝛼𝑝

2
log𝛼 − (1 − 𝛼𝑝) log

1 − 𝑝
1 − 𝛼𝑝

]
=
𝛼𝑝

2
log𝛼 +

[
𝛼𝑝

2
log𝛼 − (1 − 𝛼𝑝) log

(
1 + 𝑝 𝛼 − 1

1 − 𝛼𝑝

)]
≥ 𝛼𝑝

2
log𝛼 +

[𝛼𝑝
2

log𝛼 − 𝑝(𝛼 − 1)
]

≥ 𝛼𝑝

2
log𝛼 + 𝑝

[
𝛼 log𝛼

2
+ 1 − 𝛼

]
,

and the term inside the square brackets is positive as soon as 𝛼 ≥ 5. □

We also recall some classical controls on the Kullback-Leibler divergence between
two Bernoulli distribution.

Lemma 19. For any 𝑝1, 𝑝2 ∈ [0, 1],

(𝑝1 − 𝑝2)2

𝑝1 ∨ 𝑝2
≤ 𝑘𝑙 (𝑝1, 𝑝2) ≤

(𝑝1 − 𝑝2)2

𝑝1(1 − 𝑝1) ∧ 𝑝2(1 − 𝑝2)
.

In particular, for any 𝑞 ≤ 𝑝 ≤ 1/2,

𝑠 =
(𝑝 − 𝑞)2

𝑝 + 𝑞 ≤ (𝑝 − 𝑞)2

𝑝
≤ 𝑘𝑙 (𝑝, 𝑞) ∨ 𝑘𝑙 (𝑞, 𝑝) ≤ 2(𝑝 − 𝑞)2

𝑞
= 2(1 + 𝑝/𝑞)𝑠.

Miscellaneous inequalities. The following inequality is used repeatedly in the proofs.

Lemma 20. For all 𝑥 > 0 and 𝑦 ≥ 0,

𝑥 ≥ (2𝑦 log 𝑦) ∨ 𝑒 =⇒ 𝑥

log 𝑥
≥ 𝑦. (D.6)
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Figure 1. Average number of errors �̄�bad over 10 simulations in the unconstrained case with
balanced communities. The graphs show log(�̄�bad) (left) and log(𝑠�̄�bad) (right) as a function of
log(𝑇), confirming the two regimes (linear in 𝑇 and proportional to

√
𝑇/𝑠). The lines have slope

1 and 1/2 respectively. Green: 𝑠 = 0.01, black: 𝑠 = 0.04, blue: 𝑠 = 0.06666..., red: 𝑠 = 0.16.
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Figure 2. Average number of errors �̄�bad over 10 simulations in the unconstrained case with a
80%-20% split between communities. The graphs show log(�̄�bad) (left) and log(𝑠�̄�bad) (right)
as a function of log(𝑇). The lines have slope 1 and 1/2 respectively. Green: 𝑠 = 0.01, black:
𝑠 = 0.04, blue: 𝑠 = 0.06666..., red: 𝑠 = 0.16.
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Figure 3. Average number of errors �̄�bad over 10 simulations in the constrained case with bal-
anced communities. The graphs show log(𝑠�̄�bad) as a function of log(𝑇). The lines have slope
1/2 and 1 respectively. This confirms the three regimes of Theorem 2: linear in 𝑇 for small and
large𝑇 and proportional to

√
𝑇/𝑠 in between. Black: 𝑠 = 0.04, green: 𝑠 = 0.06666..., red: 𝑠 = 0.16.
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Figure 4. On the left, ratio of the true scaling parameter 𝑠 to the estimated scaling parameter 𝑠
as defined in Section 5.1. The red line corresponds to 𝑠/𝑠 = 1. On the right, product 𝑠�̂� where
�̂� is the number of nodes at the stopping time. The red line corresponds to 𝑠�̂� = 2.
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Figure 5. Logarithm of the average regret 1
10

∑10
𝑘=1

(
𝑝𝑇 − ∑𝑇

𝑡=1 𝐴
(𝑘 )
�̂�𝑡

)
in the misspecified case,

as a function of log(𝑇). The lines have slope 1/2 and 1 respectively. Black: 𝜎 = 0, red: 𝜎 = 0.1,
green: 𝜎 = 0.2, blue: 𝜎 = 0.3, cyan: 𝜎 = 0.4, violet: 𝜎 = 0.5. The two regimes from the well
specified case (linear then proportional to

√
𝑇) are still visible.
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