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General oracle inequalities for a penalized log-likelihood

criterion based on non-stationary data

Julien Aubert*, Luc Lehéricy* and Patricia Reynaud-Bouret*
*Université Côte d’Azur, CNRS, LJAD, France

Abstract

We prove oracle inequalities for a penalized log-likelihood criterion that hold even if the data
are not independent and not stationary, based on a martingale approach. The assumptions are
checked for various contexts: density estimation with independent and identically distributed
(i.i.d) data, hidden Markov models, spiking neural networks, adversarial bandits. In each case,
we compare our results to the literature, showing that, although we lose some logarithmic
factors in the most classical case (i.i.d.), these results are comparable or more general than the
existing results in the more dependent cases.
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1 Introduction

Maximum likelihood estimator (MLE) (see [Bickel and Doksum, 2015] and the references therein)
is often considered a graal, even if it has been often debated w.r.t. robustness in particular
[Baraud and Birgé, 2016]. In particular, in the i.i.d. setting, it is known to be asymptotically
optimal (variance which is asymptotically minimal w.r.t. the Cramer-Rao bound) under mild con-
ditions (typically differentiability of the density) [Lehmann, 1999]. In 1973, [Akaike, 1973] proposed
its famous penalized log-likelihood criterion (AIC) stating that to select in a finite set of models,
one should penalize the log-likelihood of the model m by Dm, the number of parameters describ-
ing m. There is a large variety of variants of AIC, for which the asymptotic properties are more
or less precise (see [Burnham and Anderson, 2004] and the references therein). Under additional
differentiability assumptions, the Wilks phenomenon [Wilks, 1938] quantifies more precisely (in an
asymptotic way) how the recentered maximal log-likelihood behaves as a chi-square distribution
with Dm degrees of freedom. This phenomenon allows to construct asymptotic likelihood ratio test
and therefore to perform model selection by multiple testing [Zheng et al., 2019]. This idea has
been used in many settings, even quite recently in combination with asymptotic ℓ1 model selection
[Tang and Leng, 2010, Sur et al., 2019, Sur and Candès, 2019]. In short, with AIC-like penalties
and the Wilks phenomenon, we have a quite clear asymptotic picture in the i.i.d. setting on how
the maximum likelihood behaves in terms of dimension and how it has to be penalized to find the
correct model in a finite fixed set of smooth enough models.
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Moving on to the non-asymptotic setting, things are more difficult to study. It is possible to
get concentration inequalities that mimic the Wilks phenomenon [Boucheron and Massart, 2011].
With this kind of non asymptotic results, it is possible to understand non asymptotically what
the MLE does in an exponential family [Spokoiny, 2012], or how to penalize it to make it work
even in infinite dimensional settings with finite effective dimension [Spokoiny, 2017]. It is also
possible to penalize the log-likelihood to perform model selection [Castellan, 2003, Massart, 2007]
for particular family of models in the i.i.d. setting. However, in these works, model selection "à
la Birgé-Massart" [Birgé and Massart, 2001] is based on a form of linearity between the contrast
and the family of models under consideration, which leads to a very precise tuning of the penalty
constants [Arlot, 2019] but which at the same time, prevents the results to be applied in more
general settings.

If we drop the independence assumption but keep the stationarity of the data, there have been
a vast variety of model selection results by minimization of ℓ0 or ℓ1 penalized contrasts with or
without log-likelihood. Let us cite but a few: Markov chains [Lacour, 2008b], hidden Markov models
[Lacour, 2008a, De Castro et al., 2016, Lehéricy, 2021], spiking neuronal networks with unobserved
components [Ost and Reynaud-Bouret, 2020], point processes [Hansen et al., 2015]. Each time, the
arguments are a combination of martingale approach and non asymptotic exponential inequalities,
that derive from the ergodicity of the process and mixing properties.

However, the Akaike criterion (minus log-likelihood plus penalization proportional to Dm) is rou-
tinely used even beyond this setting [Daw, 2011, Wilson and Collins, 2019]. In particular, in learn-
ing experiments where the individual has to learn how to perform a task, and learn it only once,
data are neither independent nor stationary. Some authors [Ramponi et al., 2020] have tried to as-
sume that individuals are identically distributed, but this is a very strong and quite unlikely setting
in practice. In a first work [Aubert et al., 2023], we proved meaningful bounds for the maximum
likelihood estimator on an individual learning trajectory. However, up to our knowledge, there is
no theoretical work on model selection in this setting or more generally for dependent and non
stationary data.

The purpose of this work is to derive a non-asymptotic oracle inequality for AIC-like model selection
that is general enough to cover all the setups listed before: i.i.d. samples, Markov chains, hidden
Markov models, partially observed neuronal networks, learning models and more.

The proof relies on a martingale approach and an exponential inequality that was recently proved in
[Aubert and Lehéricy, 2024] for a supremum of empirical centered processes that are stochastically
normalized. This exponential inequality generalizes the works of [Baraud, 2010], [Talagrand, 1996],
and is inspired by the works on renormalized martingales due to [Bercu et al., 2015, Bercu and Touati, 2019]
and [de la Peña et al., 2004]. This is the key non asymptotic exponential inequality in the present
work.

The rest of the paper is organised as follows. In Section 2, we introduce the notations and the
general framework. In Section 3, we state our assumptions and oracle inequalities in probability
and in expectation, in the bounded and unbounded frameworks. We also discuss precisely how
the penalty in Dm is obtained with respect to more classical proof techniques. In Section 4, we
discuss various cases that are covered by these general results in light of the existing results of the
literature. The appendices are dedicated to the proofs.
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2 Framework and notation

Given two integers a 6 b and a sequence (xs)s∈Z, write xb
a = (xa, . . . , xb) (with xb

a being the empty
sequence when a > b). For any two real numbers x, y, write x ∨ y their maximum and x ∧ y their
minimum. Let N∗ be the set of positive integers, and for any n ∈ N∗, write [n] = {1, . . . , n}. Finally,
log denotes the natural logarithm.

Let n > 2. We observe a process (Xt)16t6n defined on a polish measure space (X ,F , µ) and
adapted to a filtration (Ft)16t6n. We write P the corresponding probability and E the corresponding
expectation.

We are interested in the successive conditional distributions of Xt. If X is discrete and µ is the
counting measure, we are therefore interested by the sequence

p⋆t (.) = P(Xt = .|Ft−1), ∀t ∈ [n].

More generally, in the sequel, for general measured spaces (X ,F , µ), we always assume that the
conditional density of Xt given Ft−1 with respect to µ exists and we write it p⋆t (.). Note that
for all x ∈ X , (p⋆t (x))16t6n is therefore predictable with respect to the filtration–we write that
p⋆t is predictable for short. We write p⋆ = (p⋆t )t∈[n] the vectors of all the successive conditional
densities.

2.1 Some examples

The emblematic case is the case where we take for filtration Ft = σ(Xt
1) for t > 1 and F0 is the

trivial σ-algebra. In this case, for t > 1, we can rewrite p⋆t as the conditional density of Xt given
Xt−1

1 and p⋆1 as the density of X1 (in this case p⋆1 is deterministic). To emphasize this fact, in this
case we note p⋆t (.|Xt−1

1 ) instead of just p⋆t . Note that the density of the vector Xn
1 with respect to

µ⊗n is therefore

xn
1 7→

n∏

i=1

p⋆t (xt|Xt−1
1 = xt−1

1 ). (1)

In the even simpler case that the coordinates of Xn
1 are independent, for all t > 1, p⋆t is the

(deterministic) density of Xt w.r.t. to µ.

We might be interested by an enlargement of the filtration. For instance, the conditional distribution
of Xt can be a function of not only the past realizations of Xt, but also of additional covariates:
imagine that each step t, the distribution of Xt depends on the past but also on an observed variable
Ct, so that the conditional densities can be written

p⋆t (xt) = p⋆t (xt|Xt−1
1 , Ct

1). (2)

Every decent model of evolution for Xt depends on Xt−1
1 but also on Ct

1. The natural filtration in
this setting is Ft−1 = σ(Xt−1

1 , Ct
1).

Another setup, where the filtration might not be completely observed, is chains with infinite memory
that can model potentially infinite neuronal networks. Even if we do not observe the chain on the
whole network with infinite past, we might be interested by approximating p⋆t , which exists as
a function of the infinite network, with functions that only involve a smaller subset of observed
neurons (see Section 4.3 for more details).
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2.2 Models and penalized (partial) log-likelihood

Consider a sequence of models ({pmθ : θ ∈ Θm ⊂ RDm})m∈M for some countable set M. Each pmθ
is a sequence pmθ = (pmθ,t)t∈[n], with pmθ,t being a candidate at being p⋆t . In particular, the candidate
pmθ,t must be predictable.

For any m ∈ M, define the (partial) log-likelihood of parameter θ ∈ Θm given the observations
by

ℓn(θ) =

n∑

t=1

log pmθ,t(Xt).

Note that in the case mentioned above where Ft = σ(Xt
1) for t > 1 and F0 is the trivial σ-algebra,

because of (1), ℓn(θ) is exactly the log-likelihood log pmθ (Xn
1 ). For models as in (2), this partial

log-likelihood still has the convenient form of a conditional log-likelihood: ℓn(θ) = log pmθ (Xn
1 |Cn

1 ),
and it matches Cox’s partial likelihood [Cox, 1975]. This might no longer be the case for larger
filtrations.

For each m ∈ M, define the maximum likelihood estimator of model m by

θ̂m ∈ arg max
θ∈Θm

1

n
ℓn(θ).

Finally, take a penalty pen : M → R+ and select a model m̂ that minimizes the penalized log-
likelihood:

m̂ ∈ arg min
m∈M

(
− 1

n
ℓn(θ̂

m) + pen(m)

)
.

The penalized likelihood estimator of p⋆ is therefore p̃ = pm̂
θ̂m̂

. We aim to understand the properties
of approximation of p̃ with respect to p⋆.

2.3 Stochastic loss function

Classical approaches [Massart, 2007, Spokoiny, 2012, Spokoiny, 2017], generally use an expectation
of the contrast to define the loss function. For instance, in i.i.d. examples, the log-likelihood is
naturally linked to the Kullback-Leibler divergence between the distributions.

Here, we want to keep the inherent martingale structure that comes with the filtration and with our
object of interest p⋆. This is why we are using the stochastic loss function Kn defined as follows:
for any sequence of conditional densities p = (pt)t∈[n], let

Kn(p) =
1

n

n∑

t=1

E

[
log

p⋆t (Xt)

pt(Xt)

∣∣∣Ft−1

]
.

This can be seen as the mean of the conditional Kullback-Leibler divergence in the sense that

E

[
log

p⋆t (Xt)

pt(Xt)

∣∣∣Ft−1

]
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is a predictable quantity which corresponds to the Kullback-Leibler divergence between the distri-
butions with densities p⋆t and pt w.r.t µ, conditionally to Ft−1.

Note that in the case where Ft = σ(Xt
1) for t > 1 and F0 is the trivial σ-algebra, because of (1),

nE[Kn(p)] is exactly the Kullback-Leibler divergence between the distributions defined respectively
by p⋆ and p.

Our oracle inequalities presented below are bounds on the stochastic loss Kn(p̃) in probability and
in expectation respectively.

3 Main results

3.1 Assumptions

Let us first discuss the main assumptions.

Because we are using a Kullback-Leibler-like divergence as a loss, we need to ensure that it does not
diverge. A natural assumption in this respect is to assume that p⋆ and the candidates pmθ stay far
from 0 and do not explode. This is done almost surely in Assumption 1 and with high probability
only in Assumption 1bis.
Assumption 1. There exists ε > 0 such that a.s., for all t ∈ [n], p⋆t (Xt) ∈ [ε, ε−1] and for all
m ∈ M and all θ ∈ Θm, pmθ,t(Xt) ∈ [ε, ε−1]. Without loss of generality, we assume log ε < −1.

A weaker version of this assumption is the following.
Assumption 1bis. For all m ∈ M, there exists a finite constant Bm such that for all y > 1,

P

(
∃t ∈ [n], ∃m ∈ M, sup

δ,θ∈Θm∪{⋆}

∣∣∣∣∣log
pmδ,t(Xt)

pmθ,t(Xt)

∣∣∣∣∣ > Bmy
∣∣∣Ft−1

)
6 e−y a.s.,

with the convention pm⋆ = p⋆. Without loss of generality, we assume Bm > 1 for all m ∈ M.

The second category of assumptions replaces the exponential family assumption of the classic asymp-
totic results on MLE. It states that the parameterization of the models is Lipschitz w.r.t. some
norm that is bounded on Θm.
Assumption 2. For all m ∈ M, there exist a norm ‖ · ‖m on RDm and finite, positive constants
Lm and Mm such that a.s., for all t ∈ [n], for all m ∈ M and all δ, θ ∈ Θm,

∣∣∣∣∣log
pmδ,t(Xt)

pmθ,t(Xt)

∣∣∣∣∣ 6 Lm‖δ − θ‖m

and
‖δ − θ‖m 6 Mm.

Without loss of generality, we assume LmMm > 1 for all m ∈ M.

Likewise, a weaker version of this assumption is
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Assumption 2bis. For all m ∈ M, there exist a norm ‖·‖m on RDm and finite, positive constants
Lm and Mm such that

P

(
∃t ∈ [n], ∃m ∈ M, sup

δ,θ∈Θm

∣∣∣∣∣log
pmδ,t(Xt)

pmθ,t(Xt)

∣∣∣∣∣ > Lm‖δ − θ‖m logn

)
6 n−1

and
‖δ − θ‖m 6 Mm.

Without loss of generality, we assume LmMm > 1 for all m ∈ M.

Finally we will need in the proof to define a supremum of x 7→ p⋆t (x) and pmθ,t(x) over X . The
following assumption ensures that we can define it in a way that is measurable w.r.t. the filtration
Ft−1.
Assumption 3. There exists a countable dense subset Q of X such that almost surely, for all
t ∈ [n], m ∈ M and θ ∈ Θm,

sup
x∈Q

pmθ,t(x) = sup
x∈X

pmθ,t(x)

and
sup
x∈Q

p⋆t (x) = sup
x∈X

p⋆t (x).

Note that if X is discrete and countable, this assumption is automatically verified. Likewise, since
X is separable (because it is assumed to be Polish), if almost surely, for all m ∈ M and θ ∈ Θm,
the (random) functions x 7→ p⋆t (x) and x 7→ pmθ,t(x) are continuous, this assumption holds.

With this small set of assumptions, we can now state our oracle inequalities.

3.2 Oracle inequality, bounded case

Theorem 1. Assume that n > 2 and that Assumptions 1, 2 and 3 hold. There exist positive
numerical constants C and C′ such that the following holds. For each m ∈ M, let Am = LmMm +
2 log(ε−1), and assume that

Σ =
∑

m∈M
log(Am)e−Dm < +∞.

Let κ ∈ (0, 1]. If for all m ∈ M,

pen(m) >
C

κ
A2

m log(ε−1)3/2 log(nAm)2
Dm

n
,

then for all x > 0, with probability at least 1− 18 log(n)Σe−x,

(1− κ)Kn(p̃) 6 inf
m∈M

(
(1 + κ) inf

θ∈ΘDm
Kn(p

m
θ ) + 2 pen(m)

)

+
C′

κ

(
Am log(ε−1)3/2 log(nAm)2 +Am̂ log(ε−1)3/2 log(nAm̂)2

) x

n
.

Proof. See Section A.
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This result is an oracle inequality in probability. The penalty term is proportional to Dm/n, as
in classical oracle inequalities for nested or not too complex families of models. This is ensured
by the summability condition on Σ (see [Birgé and Massart, 2001, Massart, 2007] for instance for
a discussion about the complexity of a family of models). Hence, it can be read as a usual oracle
inequality: the loss is–up to a constant factor and a residual term–smaller than the best bias-
variance trade-off in the family of models, with a variance which is of order Dm/n.

Due to the generality of the result, the penalty is actually a bit larger than in the original AIC
criterion, with additional logarithmic factors, and depends on the lower bound ε and the Lipschitz
constants Lm and Mm. Note the presence of a term depending on m̂ in the residual term: due to
the fact that M might be infinite, additional assumptions are required to get rid of it, such as the
uniform bound on (Am)m∈M introduced in the following corollary.

The next corollary gives a result in expectation under a slightly more restrictive assumption (when
supm LmMm is bounded), and is proved in Section B.
Corollary 2. Under the assumptions and with the same constants and notations of Theorem 1, if
there exists A(n) such that

sup
m∈M

Am 6 A(n),

then

(1− κ)E [Kn(p̃)] 6 E

[
inf

m∈M

(
(1 + κ) inf

θ∈ΘDm
Kn(p

m
θ ) + 2 pen(m)

)]

+
36C′

κ
ΣA(n) log(ε−1)3/2 log(nA(n))2

logn

n
.

3.3 Oracle inequality, unbounded case

The bounded case might be a bit restrictive for some applications, so we can relax the assumptions,
up to additional logarithmic factors.
Theorem 3. Assume that n > 2 and that Assumptions 1bis, 2bis and 3 hold. There exist positive
numerical constants C and C′ such that the following holds. For each m ∈ M, let Am = LmMm +
Bm, and assume that

Σ =
∑

m∈M
log(Am)e−Dm < +∞

Let κ ∈ (0, 1]. If for all m ∈ M,

pen(m) >
C

κ
A2

mB3/2
m log(n)7/2 log(nAm)2

Dm

n
,

then for all x > 0, with probability at least 1− 2n−1 − 18 log(n)Σe−x,

(1− κ)Kn(p̃) 6 inf
m∈M

(
(1 + κ) inf

θ∈ΘDm
Kn(p

m
θ ) + 2 pen(m)

)

+
C′

κ

(
AmB3/2

m log(nAm)2 +Am̂B
3/2
m̂ log(nAm̂)2

) (logn)5/2x

n
.

Proof. See Section A.
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Note that we may replace the term 2n−1 in the probability by 2n−α for any α ∈ [1, n], provided
Assumption 2bis holds with probability n−α for a bound αLm‖δ − θ‖m logn. This changes the
constants C and C′ of Theorem 3 into Cα7/2 and C′α5/2 respectively.

Except for these extra logarithmic factors, the previous result is essentially the same as Theorem
1. An expectation version of this result holds under similar assumptions on the family of models.
Its proof can be found in Section B.
Corollary 4. Under the assumptions and with the same constants and notations of Theorem 3, if
there exist A(n) and B(n) such that

sup
m∈M

Am 6 A(n) and sup
m∈M

Bm 6 B(n),

then

(1− κ)E [Kn(p̃)] 6 E

[
inf

m∈M

(
(1 + κ) inf

θ∈ΘDm
Kn(p

m
θ ) + 2 pen(m)

)]

+
40C′

κ
ΣA(n)B(n)3/2 log(nA(n))2

(logn)7/2

n
.

3.4 Where does the penalty in Dm/n comes from ?

The common crucial point to all non-asymptotic controls of log-likelihood estimators [Massart, 2007,
Castellan, 2003, Spokoiny, 2012, Spokoiny, 2017] lies in the control of the recentered contrast at the
estimation point. In our framework, with the above notation, it means controlling

ν(H) =
1

n

n∑

t=1

[Ht(Xt)− E(Ht(Xt)|Ft−1)],

where Ht is equal to

Ht = Hm
θ,t = − log

(
pmθ,t(Xt)

p⋆t (Xt)

)
.

As long as θ is fixed and deterministic, this is a martingale and various exponential tail bounds are
applicable. Without going into details right now, let us just say that with high probability,

ν(H) = O
(√

V (H)/n
)

(3)

with

V (H) =
1

n

n∑

t=1

E(Ht(Xt)
2|Ft−1).

In particular in the i.i.d. framework, where V (H) is deterministic, of the order of the variance
of H1, we recover what the central limit theorem entails, that is, the fluctuation of the empirical
process are of order n−1/2 multiplied by the standard deviation. In more general settings, V (H)
is random: it is to the bracket of the martingale. It is usually necessary to restrict oneself to an
event where V (H) is bounded to obtain such non asymptotic control of ν(H) (see for instance
[Bercu and Touati, 2008]).

This is still not sufficient to conclude: to understand what happens for the maximum likelihood
estimator, we need to control ν(Hm

θ̂m,t
). The fact that θ̂m depends on the whole trajectory prevents

us from using classical inequalities for centered processes.
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Talagrand inequality and Wilks phenomenon in the i.i.d. setting In the classical i.i.d.
setting, and as a first approach, Talagrand’s inequality (see [Massart, 2007] for various model se-
lection contexts) leads to this kind of control:

sup
θ∈Θm

ν(Hm
θ )

‖θ‖ = O
(
E

(
sup

θ∈Θm,‖θ‖61

ν(Hm
θ )

))
+O



√

supθ∈Θm,‖θ‖61 V (Hm
θ )

n


 .

It turns out that in many models used in [Massart, 2007], ν(Hm
θ ) is in fact linear or close to linear

with respect to θ, so that the first term is of order
√
Dm/n, the dimension of model m. In particular,

this tells us non asymptotically that

ν(Hm
θ̂m

) = O
(
‖θ̂m‖

√
Dm/n

)
.

Beyond the i.i.d. setting, similar results can be obtained by replacing Talagrand’s inequality with
Baraud’s inequality [Baraud, 2010].

In comparison, the Wilks phenomenon predicts that the order of magnitude of ν(Hm
θ̂m

) is in Dm/n,

and not
√
Dm/n (at least if the model m is well specified, that is there exists θ∗m such that p⋆ = pmθ∗

m
):

this non asymptotic Talagrand-like bound is pessimistic. But the trick above with the linearity with
respect to θ shows us that this pessimistic bound can hopefully be multiplied by the norm of θ̂m.
Per se this is not much, but with a careful choice of the set over which the supremum is taken, we
can replace ‖θ̂m‖ by the distance to a pivot θ∗m such that, approximately,

ν(Hm
θ̂m

) = O
(
‖θ̂m − θ∗m‖

√
Dm/n

)
6 O

(
‖θ̂m − θ∗m‖2

)
+O

(
Dm

n

)
.

It remains to be in a nice enough setting (such as Lipschitz parameterization of θ 7→ pmθ ) that

O
(
‖θ̂m − θ∗m‖2

)
is a small fraction of the loss function we are using (here Kn(p

m
θ̂m

)). All in all,

up to constant, the remainder that the penalty is meant to account for is indeed in Dm/n up to
multiplicative constants.

Before going further, let us make a small remark about the pivot θ∗m. If the model m is well
specified, it easy to use the θ∗m such that p⋆ = pmθ∗

m
. If this is not the case, usually people use the

best approximation of p⋆ by a pmθ for a certain loss function (say the Kullback-Leibler divergence).
So in general, and even in non i.i.d. cases, the classical way to choose a pivot is deterministic,
because the loss that is used is deterministic as well.

Non asymptotic Wilks-like results In various models, the approach given above cannot work
as nicely as it mainly relies on linearity, so the brute force concentration inequality "à la Talagrand"
is in fact too pessimistic. What we would like, in an ideal and over-simplified world, is that (3)
holds with a variance term that would be directly V (Hm

θ̂m
), without having to take (and pay for)

the supremum over all Hm
θ .

In [Boucheron and Massart, 2011], the authors restrict the previous supremum to nice small balls,
so that one gets the correct behavior in Dm/n for ν(Hm

θ̂m
) directly. This can be especially useful

when one wants to produce very sharp constants in the penalty [Arlot, 2019].
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Another way to think about this, is to provide an upper function of the process, that is to prove
that

sup
θ∈Θm

[
ν(Hm

θ )−O
(√

V (Hm
θ )/n

)]

is negative with high probability. This is Spokoiny’s approach [Spokoiny, 2012, Spokoiny, 2017],
whose statistical results are the closest approach to ours for their generality, even if the author does
not perform model selection per se.

Self-normalized martingales Note that it is far from obvious to obtain an inequality such as (3)
when V (H) is random. It is possible for martingales, in which case V (H) is usually a random
quantity called the bracket of the martingale. Exponential inequalities for martingales have been
developed, especially for point processes where one can go from a control of the martingale with
deterministic upper bound on the bracket, which already tells a lot on the properties of the maximum
likelihood estimator [van de Geer, 1995], to a control where the bracket of the martingale can replace
the deterministic upper bound in the deviation [Hansen et al., 2015] (up to some corrections).

In the same line, many works on self-normalization of martingales try to directly control the ratio of
the martingale by its bracket [Bercu and Touati, 2008, de la Peña et al., 2009]. To our knowledge,
nothing exists in this direction for a supremum of the ratios (with random renormalization) except
our recent result [Aubert and Lehéricy, 2024].

Deterministically renormalized empirical process From a more deterministic point of view,
several works aim to choose the correct deterministic renormalization of the empirical process in
an i.i.d. setting. There are two main ways to use it for model selection.

On the one hand, if the empirical process itself, once renormalized by a deterministic quantity
of the form d2(θ, θ∗) 1, satisfies a nice exponential inequality, then this can be chained to either
directly obtain a Talagrand-like concentration on the supremum [Baraud, 2010], or used to get nice
upper-functions [Spokoiny, 2012].

On the other hand, one can refine the renormalization inside the supremum and replace

sup
θ∈Θm

ν(Hm
θ )

‖θ‖ by sup
θ∈Θm

ν(Hm
θ )

d2(θ, θ∗) + x2
,

for a positive x to be chosen later. It is with this approach that [Massart, 2007] proposed a fairly
general approach to model selection with penalty proportional to Dm even in non linear settings.
In this setting, we still do not obtain the order of magnitude of the Wilks phenomenon directly, but
because, as previously, d2(θ, θ∗) is close to the loss, we can still get a penalty in Dm/n. The huge
advantage is that we can go further away from the linearity assumption by adding more flexibility
inside the family of models thanks to the use of d2(., .) instead of the Euclidean norm.

Our method and the difference with existing works In our case, even the loss is stochastic
in the most general case. Only the martingale structure remains. As a consequence, we do not have
access to a deterministic d2(., .) and we cannot even properly define a nice deterministic pivot θ∗m
if the model is misspecified. However, we still have access to the bracket of the martingale V (Hθ)

1for a nice deterministic d distance on Θm, that can be linked to V (Hm

θ
), up to possible additional terms
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and it turns out that V (Hm
θ̂m

) is nicely comparable to Kn(p
m
θ̂m

). We recently proved a concentration

inequality for the supremum of stochastically normalized processes [Aubert and Lehéricy, 2024], so
that we can use more or less Massart’s above argument after replacing d2(., .) by the bracket of the
martingales. The problem of the pivot is solved by working directly in the space of probability and
using p⋆ as pivot, thus bypassing the misspecification issue.

Finally, let us compare our set of assumptions to [Spokoiny, 2012, Spokoiny, 2017] which constitutes,
to our knowledge, the most general non asymptotic results on maximum likelihood estimation.
Spokoiny is using the Kullback-Leibler divergence as a reference. It allows him to use a deterministic
pivot defined as the closest point to the truth inside the model for the deterministic distance
[Spokoiny, 2012] or with additional quadratic corrections [Spokoiny, 2017]. His main assumptions
rely on renormalized exponential inequalities on the gradient of the likelihood in a neighborhood of
the pivot, where the normalization is quadratic. It allows him to prove a quadratic-like behavior
for ν(Hm

θ̂m
), in this sense proving the non asymptotic Wilks phenomenon rather sharply, which we

cannot do with our method.

In contrast, our method is applicable in more general settings: we do not need to use a deterministic
loss, nor deterministic parametric pivots, or to assume that the log-likehood is differentiable or
that its gradient satistifies exponential inequalities. We only assume that the parameterization is
Lipschitz. By martingales properties, the log-likelihood (and not its gradient) automatically satisfies
(3), which is the key to prove the results on the supremum. In the end, we obtain a generalized AIC
criterion (that is, a penalty proportional to Dm/n) and prove non asymptotic oracle inequalities in
settings where none of the existing work applies.

4 Applications

The previous oracle inequalities are very general. This section aims to explicit how they compare
to existing results. Let us look at their applications in various settings.

4.1 The i.i.d. sample case

Let us begin with the original AIC setting in its i.i.d. format. Let X1, . . . , Xn be i.i.d. real valued
random variables with density p⋆1. We consider the simple case where the filtration is generated by
the observations, so that all the p⋆t are deterministic and equal to p⋆1.

We also assume that under each model, the variables X1, . . . , Xn are i.i.d., so that pmθ,t = pmθ,1 for
all t and these functions are deterministic.

In this case, Kn(p
m
θ ) is directly KL(p⋆1dµ, p

m
θ,1dµ), the Kullback-Leibler divergence between the

distribution of X1 and the distribution with density pmθ,1.

Validation of the assumptions Assumption 1 is classical in this setting, see e.g. [Massart, 2007],
at least for the lower bound. In [Massart, 2007] or [Castellan, 2003], there is no upper bound as-
sumption but there is a twist: it is not the Kullback-Leibler divergence that is controlled but
the Hellinger distance. Here we can also relax the lower bound assumption by using Assump-
tion 1bis.
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Assumption 2–the Lm part–can be a consequence of the fact that pmθ,1 is Lipschitz with constant
Lmε−1, or of directly assuming that log(pmθ,1) is Lipschitz with constant Lm. It can be relaxed with
Assumption 2bis. Classical asymptotic results (Wilks phenomenon or even just the consistency of
the MLE) require very strong differentiability assumptions, that are not needed here. Note that the
bound Mm in Assumptions 2 and 2bis entails that the models Θm are compact, which is assumed
in general to obtain consistency in M-estimation, whether explicitely or implicitely by assuming
that the estimator converges to some limit, see e.g. [van der Vaart et al., 1996].

The classical model selection "à la Birgé-Massart" for densities assumes that the models are
close to linear to work, so it seems that this is incompatible with our boundedness assump-
tion [Massart, 2007]. However this is not the case because we are forcing the parametrization
to be a density that satisfies Assumption 1. To illustrate this, if we want to compare our as-
sumptions with theirs, let us restrict ourselves to a well known case: the histogram selection
[Massart, 2007, Castellan, 2003]. There, X1, ..., Xn are i.i.d. with density p⋆1 with respect to the
Lebesgue measure on [0, 1] and the model m is based on a partition with Dm intervals of [0, 1] of
equal length. Then, for θ ∈ Θm ⊂ RDm ,

pmθ,1 =
∑

I∈m

θI1I .

Since this must be a density, the model is in fact

Θm =

{
θ = (θI)I∈m such that for all I, ε 6 θI 6 ε−1 and

∑

I∈m

θI
Dm

= 1

}
.

In this particular case, pmθ,1 is Lipschitz with constant Lm = 1 w.r.t. ‖θ‖∞ and Mm = ε−1 − ε is an
upper bound of the diameter of Θm for this norm.

Assumption 3 is automatically fulfilled with Q = Q ∩ [0, 1], the set of rational numbers.

Result Following Theorem 1 and its Corollary, Am does not depend on m anymore. Therefore,
our oracle inequality holds as soon as

pen(m) = O
(
(logn)2

Dm

n

)
.

Our penalty is larger than the one in [Massart, 2007] due to extra logarithmic factors and looks
more like a BIC criterion. At this price we are able to prove an oracle inequality directly on
the Kullback-Leibler divergence, instead of a mixed oracle inequality involving both the Kullback-
Leibler divergence and the Hellinger distance.

4.2 Hidden Markov models

A hidden Markov model is a stochastic process (Ht, Xt)t where only the observations (Xt)t are
observed, such that the hidden process (Ht)t is a Markov chain and such that the Xs are inde-
pendent conditionally to (Ht)t with a distribution depending only on the corresponding Hs. These
models have been widely used since their formalization by [Baum and Petrie, 1966], as they are
able to account for complex dependencies in time processes while keeping a very simple and easily
interpretable structure.
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In this section, we consider finite state space hidden Markov model, in which the process (Ht)t takes
values in a finite space H. The parameters of a hidden Markov model are the initial distribution
π and the transition kernel Q of the hidden process (Ht)t as well as the emission densities, that is
the family ν = (νh)h∈H, where νh is the density of the distribution of X1 conditionally to H1 = h
w.r.t. the Lebesgue measure. The initial distribution π typically cannot be exactly recovered, so,
in general, the parameters we wish to estimate are Q and ν.

The closest result to ours in this setting is the one from [Lehéricy, 2021], who proves an oracle
inequality for a maximum likelihood estimator on misspecified hidden Markov models. Their as-
sumptions and proofs are similar to ours, although they rely on tools that are specific to hidden
Markov models to obtain their oracle inequality.

Validation of the assumptions In what follows, we only assume that the models are HMM,
while the true distribution of (Xt)t may not be one. As such, we treat it separately, before intro-
ducing the models.

Concerning Assumption 1bis for the true distribution, the lower tails of log p⋆t (Xt) are always
automatically sub-exponential by direct application of Markov’s inequality. The control of the upper
tails follows from the assumption that the conditional densities of (Xt)t admit a finite moment, that
is, there exists constants δ > 0 and Mδ > 0 such that almost surely,

sup
t∈[n]

E[p⋆t (Xt)
δ | Ft−1] 6 Mδ < +∞. (4)

Under this assumption, there exists B∗ > 0 depending on δ and Mδ such that for all y > 1 and
t ∈ [n],

P(| log p⋆t (Xt)| > B∗y | Ft−1) 6 e−y.

Let us now introduce the models. Let CQ > 0 and α > 1. For all m, let hm ∈ N∗ be the number
of hidden states of model m. Let Sm = {gη, η ∈ Em ⊂ Rem} be a parametric set of probability
densities on X such that gη > n−α for all η. The model Θm is defined as the set

Θm =
{
(a, q, η) ∈ Rhm−1×Rhm(hm−1) × (Em)hm s.t.

(CQ logn)−1 6 hma(i) 6 CQ logn for all i ∈ [hm − 1],

(CQ logn)−1 6 hmq(j, i) 6 CQ logn for all i ∈ [hm − 1] and j ∈ [hm],

(CQ logn)−1 6 hm


1−

hm−1∑

j=1

a(j)


 6 CQ logn

and (CQ logn)−1 6 hm


1−

hm−1∑

j=1

q(i, j)


 6 CQ logn for all i ∈ [hm]

}
.

This model is of dimension Dm = hmem+h2
m−1, and the parameter θ = (a, q, η) ∈ Θm is associated
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to the HMM parameters




πm
θ (i) = a(i) for all i ∈ [hm − 1],

πm
θ (hm) = 1−

hm−1∑

i=1

a(i),

Qm
θ (i, j) = q(i, j) for all j ∈ [hm − 1] and i ∈ [hm],

Qm
θ (i, hm) = 1−

hm−1∑

j=1

q(i, j) for all i ∈ [hm],

νmθ,i = gηi for all i ∈ [hm].

The inequalities on the parameters a and q ensure that all entries of the initial distribution and
transition matrices are between (CQ logn)−1h−1

m and (CQ logn)h−1
m . Finally, the likelihood of the

observations Xn
1 under the parameter θ ∈ Θm is

pmθ (Xn
1 ) =

∑

(i1,...,in)∈[hm]n

πm
θ (i1)ν

m
θ,i1(X1)

n∏

t=2

Qm
θ (it−1, it)ν

m
θ,it(Xt).

Given the upper and lower bounds on the initial distribution and transition matrix, Assumptions 1
and 1bis can be replaced by an assumption on the average ν̄mθ = 1

hm

∑
i∈[hm] ν

m
θ,i of the emission

densities (νmθ,i)i∈[hm], since

pmθ,t(Xt) =
∑

i,i′∈H
pmθ (Ht−1 = i|Xt−1

1 )Qm
θ (i, i′)νmθ,i′(Xt)

∈
[
(CQ logn)−1ν̄(Xt), (CQ logn)ν̄mθ (Xt)

]
.

Thus, to check Assumption 1bis, we will control the tails of ν̄mθ (Xt). Since all the emission densities
are lower bounded by n−α, it is enough to assume that for all m ∈ M, there exists B′

m > 1 such
that for all t ∈ [n],

∀y > 1 P

(
sup
θ∈Θm

log ν̄mθ (Xt) > B′
my | Ft−1

)
6 e−y, (5)

and then, if (4) holds, Assumption 1bis is satisfied for Bm = 2(B⋆∨B′
m∨log(CQ logn)∨(α logn)).

Assumption 3 holds as soon as the emission densities are continuous.

Assumptions 2 or 2bis require some technical work to verify. They are used in [Aubert and Lehéricy, 2024]
to ensure that the entropy of the class of log-densities is controlled. A weaker sufficient assump-
tion for hidden Markov models is introduced in [Lehéricy, 2021] (Assumptions [Aentropy] and
[Agrowth]) as well as their Section B.2 to see how it relates to the entropy of the class of
log-likelihoods. These two assumptions, together with assuming that the mapping θ ∈ Θm 7−→
(πm

θ , Qm
θ ) is Lipschitz, are enough to obtain an oracle inequality. Note that the approach they use

in Section B.2 also provides a way to control the regularity of the mappings θ 7−→ log pmθ , in the
sense that if the parameters of the HMM are Lipschitz and (4) and (5) hold, then θ 7−→ log pmθ
is α-Hölder, with α ≫ (logn)−2−ǫ for any ǫ > 0. A careful reading of our proofs and those
of [Aubert and Lehéricy, 2024] shows that the oracle inequalities remain valid when assuming
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the mapping α-Hölder instead of Lipschitz in Assumptions 2bis and 2, up to replacing Dm by
Dm/α.

Finally, the criterion K used by [Lehéricy, 2021] is actually the limit of E[Kn] when n → +∞.
Due to the upper and lower bounds on the entries of the transition matrices, the models forget the
past exponentially fast, in the sense that | log pmθ (Xt|Xt−1

t−k)− log pmθ (Xt|Xt−1
t−k′)| 6 ρ(k∧k′)−1/(1−ρ)

where ρ = 1− (CQ logn)−2, see for instance [Lehéricy, 2021, Lemma 15] or [Douc et al., 2004]. If a
similar property holds for the true process (such as [A⋆forget] in [Lehéricy, 2021]), then

|K− E[Kn]| = O((log n)4/n),

which is negligible compared to the remainder term of our oracle inequalities. Thus, we may use
one or the other loss interchangeably.

Result Under the same assumptions as [Lehéricy, 2021], our results provide an oracle inequality
with a penalty that is also of order (logn)α Dm

n for some α > 0. The main difference is that
Assumptions [A⋆mixing] and [A⋆forgetting] of [Lehéricy, 2021], a ρ-mixing assumption used to
obtain concentration inequalities and a forgetting assumption used to truncate the dependencies in
the past respectively, are not required to apply our results, provided the loss Kn is used instead of
K.

4.3 Models of neuronal networks in discrete-time

Neurons are electrical cells that communicate via the emission of action potentials, also called spikes
[Galves et al., 2024]. The shape of the action potential is essentially constant and the important
point is the time at which the spikes are emitted. As such, the network is represented by a process
(X i

t)t∈Z,i∈I , where I is the set of all neurons constituting the network and X i
t = 1 if the neuron i

spikes at time t and X i
t = 0 otherwise. We consider the filtration Ft = σ((X i

s)s6t,i∈I).

Since communication between neurons is not instantaneous, most authors [Galves et al., 2024,
Ost and Reynaud-Bouret, 2020] usually assume that conditionally to Ft−1, the (X i

t)i∈I are in-
dependent, so that the whole activity can be described by just giving the p⋆,it ’s with

∀i ∈ I, ∀t ∈ Z, p⋆,it = P(X i
t = 1 | Ft−1).

We assume the process to be stationary.

One of the main neuronal model in discrete-time is the discrete Hawkes process [Ost and Reynaud-Bouret, 2020],
which can be modeled by

pi,Ht = φi



∑

j∈I

∑

s<t

hj→i(t− s)Xj
s


 ,

where φi is a rate function that is usually assumed to be Lipschitz, increasing and taking values in
[0, 1], and where hj→i are interaction functions: if it is positive at delay δ, neuron j excites neuron
i after a delay δ; if it is negative, neuron j inhibits neuron i after a delay δ. For instance, the linear
case is the situation where φi(x) = µi + x. In the sequel, to simplify, φi(.) is supposed to be fixed
and known. Only the functions hj→i are unknown.
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The Galves-Löcherbach neuronal model [Galves et al., 2024, Galves and Löcherbach, 2013] is slightly
different, here

pi,GL
t = φi



∑

j∈I

t−1∑

s=Li
t

hj→i(t− s)Xj
s


 ,

where Li
t is the time of the last spike of neuron i. In contrast to the Hawkes process, the neurons

of this model essentially reset their memory each time they spike.

In practice, only a small finite subset F of I is observed on a finite time duration, say t = −A, ..., n,
for some positive A. For a fixed i ∈ F , we are interested by estimating (p⋆,it )t∈[n] based on the

observations of (Xj
t )−A6t6n,j∈F .

We are interested in a specific neuron of interest i ∈ F , so the process (Xt)t∈[n] from our oracle
inequalities is taken to be (X i

t)t=1,...,n. The filtration Ft is the one defined above and generated by
the whole network. Finally, in order to define the models, we have access to more information that
(X i

t)t=1,...,n but less than the whole network: we may only use the observations (Xj
t )j∈F,t=−A,...,n,

which are indeed Ft adapted.

Whatever the neuronal model (pH for Hawkes or pGL for Galves-Löcherbach) that we choose, we
need to parameterize it. We define model m by choosing a finite subset of F , called Vm, which
is the proposed neighborhood for neuron i in model m, and by choosing Am 6 A a maximal
lag of interaction. In model m, all the hj→i(u) are null if j /∈ Vm or u > Am, so the model is
parameterized by (θj,u := hj→i(u))j∈Vm,u=1,...,Am ∈ RAm|Vm|. Given this parameterization, the
conditional distributions are defined by

pi,m,H
t = φi


∑

j∈Vm

Am∑

u=1

θj,uX
j
t−u




and

pi,m,GL
t = φi


∑

j∈Vm

min(Am,t−Li
t)∑

u=1

θj,uX
j
t−u


 .

Validation of the assumptions Assumption 1 means that p⋆,it as well as pi,m,H
t or pi,m,GL

t

are in [ε, 1 − ε]. This is a very common assumption in these settings (see [Duarte et al., 2019,
Ost and Reynaud-Bouret, 2020]). In this sense, Assumption 1bis can be seen as a relaxation with
respect to previous works.

The assumption that φi is Lipschitz with constant L is a very classical one [Duarte et al., 2019].
Together with Assumption 1, it implies that log(φi) (probability of a spike) and log(1− φi) (prob-
ability of no spike) are Lipschitz with constant 2ε−1L. Thus, the first part of Assumption 2 is
satisfied with Lm = 2ε−1L and the ℓ1 norm ‖θ‖1.
For the second part of Assumption 2, it depends on φi. Indeed, since φi is increasing, we can
define

Θm =



θ ∈ RAm|Vm| such that ε 6 φi


∑

j,u

θj,u1θj,u<0


 and φi


∑

j,u

θj,u1θj,u>0


 6 1− ε



 ,
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to ensure that Assumption 1 is satisfied. Since φi is increasing and Lipschitz, we can define its
inverse, so that if ε and 1− ε are possible values for φi (as is typically the case for linear or sigmoid
functions) then it automatically follows that for all θ ∈ Θm

‖θ‖1 6 |φ−1
i (ε)|+ |φ−1

i (1 − ε)|,

and so the second part of Assumption 2 is satisfied with Mm = |φ−1
i (ε)|+ |φ−1

i (1− ε)|.

Assumption 3 is automatically fulfilled in each of the models because pi,m,H
t and pi,m,GL

t only depend
on a finite set of Xj

s . Assumption 3 for p⋆ can be solved by assuming the following continuity
assumption, which is standard in this setting (see [Duarte et al., 2019, Galves et al., 2024]). Let x
be a past configuration, i.e. a possible value for (Xj

s )j∈I,s<t, and let us remark that by stationarity,
p⋆,it can be seen as a function of x and not of t:

p⋆,i(x) = P(X i
t = 1|(Xj

s )j∈I,s<t = x).

The continuity assumption of the neuronal model assumes that there exists a nested sequence
(Sk)k>1 of finite subsets of I × Z− such that Sk −→

k→∞
I × Z and such that

sup{|p⋆,it (x)− p⋆,it (y)| such that x|Sk
= y|Sk

} −→
k→∞

0,

where x|Sk
is the configuration restricted to the indices in Sk. Informally, this continuity assumption

states that one can approximate p⋆,i(x) by what happens on a finite number of xj
s’s.

Result Following Theorem 1 or its corollary, and since Am does not depend on m, one can
take

pen(m) = O
(
log(n)2

Dm

n

)
.

Note that under mild conditions (see for instance [Galves et al., 2024] or [Ost and Reynaud-Bouret, 2020]),
these processes are stationary and E(Kn(p

m
θ )) does not depend on n.

Furthermore, since − log(pmθ,t/p
⋆
t ) is upper and lower bounded, one can easily show that

E

(
log2

p⋆t (Xt)

pt(Xt)

∣∣∣Ft−1

)
. E

[
log

p⋆t (Xt)

pt(Xt)

∣∣∣Ft−1

]
. E

(
log2

p⋆t (Xt)

pt(Xt)

∣∣∣Ft−1

)
, (6)

where . means that the inequality holds up to positive multiplicative constant.

Moreover, whatever the neuronal model (Hawkes or Galves-Löcherbach), we can expand θm ∈ Θm

with zeroes so that it is defined on I×N∗. If φi has a derivative that is upper and lower bounded by
some positive constant, so do log(φi) and log(1−φi), and therefore, whatever the value of Xt,

∣∣∣∣∣∣

∑

j∈I

∑

s<t

(hj→i(t− s)− θmj,t−s)X
j
s

∣∣∣∣∣∣
.

∣∣∣∣log
(
pmθm,t(Xt)

p∗t (Xt)

)∣∣∣∣ .

∣∣∣∣∣∣

∑

j∈I

∑

s<t

(hj→i(t− s)− θmj,t−s)X
j
s

∣∣∣∣∣∣

(for the Hawkes case and with a restricted sum in the lower bound in the Galves-Löcherbach case).
Note that both upper and lower bounds are Ft−1 measurable. Hence, going back to the oracle
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inequality, we can express both the upper bound and the lower bound in terms of the average
square distance

1

n

n∑

t=1

∣∣∣∣∣∣

∑

j∈I

∑

s<t

(hj→i(t− s)− θmj,t−s)X
j
s

∣∣∣∣∣∣

2

and the upper bound of the oracle inequality is a trade-off between the bias measured by the average
square distance above and the penalty in Dm/n up to logarithmic terms.

Let us compare this result to the ones in [Ost and Reynaud-Bouret, 2020] for Hawkes and Galves-
Löcherbach process. In [Ost and Reynaud-Bouret, 2020], the authors could only envision linear
models (i.e. φi is linear) and were using least-square loss on the p. They can perform variable
selection thanks to an ℓ1 penalization, whereas in our case the summability condition on Σ makes it
impossible to perform variable selection by considering the full set of subsets of variables. Despite
this difference, their oracle inequality is for the exact same average square distance as mentioned
above with, in the upper bound, a trade-off between the bias and a term in Dm/n up to logarithmic
terms. However, the dimension Dm in their case, had to be smaller than a given a priori level of
sparsity s. Moreover, their constant in front of Dm was given by an RE inequality on the Gram
matrix. In the most general case considered by [Ost and Reynaud-Bouret, 2020], this constant
depend on the size of the observed network F and explodes with the size of F ; in the Hawkes
case, this bound depends on s, and explodes for moderate s, whereas in our case the penalty can
handle large Dm thanks to the summability condition in Σ which ensures that the number of models
remains reasonable.

For the Galves-Löcherbach model, we can also compare this result with the ones of [Duarte et al., 2019].
In [Duarte et al., 2019] (see also [De Santis et al., 2022] for recent improvements), the authors envi-
sion the estimation of the interaction neighborhood of a neuron i. In these two articles, the authors
assume that the set of observed neurons F contains the interaction neighborhood of i. In other
words, with their assumptions on the process, at least one model is well specified. In this case, our
result shows that we can estimate the conditional probability of spiking for i with parametric rate
in Dm/n up to logarithmic terms, as the Wilks phenomenon would predict if it was applicable in
this case, but without even knowing which model is the true one up front. However, it is not clear
if this means that the neighborhood of interaction is correctly estimated by Vm̂. We cannot manage
variable selection per se because the complexity of the family of models would be too large for our
general result. But we can at least hope that Vm̂ would contain the true interaction neighborhood
of neuron i with high probability 2. On the other hand, our procedure is much less computation-
ally intensive than theirs and does not require the precise examination of patterns of 0 and 1’s
as they do, which in practice usually prevents them to use it with more than 4 observed neurons
[Brochini et al., 2016]. As such, our method could at least be used to restrict the set of observed
neurons before using the methods developed in [Duarte et al., 2019, De Santis et al., 2022].

4.4 Adversarial multi-armed bandits as a cognitive learning model

All the previous applications were in the stationary case, so that we were able to compare our
results with existing ones, even if per se our oracle inequalities do apply even if we do not as-
sume stationarity. Let us now look at a setup which cannot be stationary: learning data, in

2This would probably require additional assumptions, such as minimal strength of the interaction inside the
neighborhood as in [Duarte et al., 2019] and [De Santis et al., 2022].

18



which we aim to estimate how an individual or system learns to perform a task by observing
their training as it takes place. In such a setting, the data that are produced cannot, by essence,
be independent or stationary. If in practice many authors have advertised for the use of MLE
[Daw, 2011, Wilson and Collins, 2019], this problem was for the first time studied theoretically in
[Aubert et al., 2023]. In this previous work, only the property of the MLE on one model is studied,
without the model selection part.

The model used in [Aubert et al., 2023] is the Exp3 algorithm [Auer et al., 2002]. In the Machine
Learning literature, this algorithm was originally proposed to solve an the adversarial multi-armed
bandit problem [Bubeck and Cesa-Bianchi, 2012], [Lattimore and Szepesvári, 2020], that is a game
played sequentially between a learner and an adversary (the environment), where at each round the
learner must choose an action k from a set of actions [K] for some integer K > 1 and the adversary
returns a loss gk,t for this action.

Algorithm 1 Exp3 with learning rate η

Initialization: pη,1 =
(

1
K , . . . , 1

K

)
.

for t = 1, 2, . . . do
Draw an action Xt ∼ pη,t and if Xt = k receive a loss gt,k ∈ [0, 1].
Update for all k ∈ [K]:

pη,t+1(k) =
exp

(
−η
∑t

s=1 L̂η,s(k)
)

∑K
j=1 exp

(
−η
∑t

s=1 L̂η,s(j)
) where L̂η,s(j) =

gj,s
pη,s(j)

1Xs=j

The fact that the learner plays as if the environment is adversarial makes it a realistic model for
cognitive processes where humans or animals need to adapt to a changing environment. However
in a cognitive experiment, most of the time, the environment is not adversarial even if the learner
does not know that and still uses an adversarial strategy.

Comparison with [Aubert et al., 2023] [Aubert et al., 2023] consider only cases where gk,t =
gk depends only on k, which is common in cognitive experiments. It has been shown that if the
learning rate θ is fixed, no estimator can achieve polynomial rates of convergence. This is mainly due
to the fact that pη,t(k) can rapidly become absurdly small, and as a consequence, only an extremely
small number of Xt’s are actually relevant to perform the estimation. For instance, if an individual
has finished learning and no longer makes mistakes, then it is impossible to improve our estimation
of their learning behaviour even with continued observation. Therefore, in [Aubert et al., 2023],
another asymptotic in T is proposed. The goal is to estimate θ ∈ [r, R] such that η = θ/

√
T based

on the first

Tε =
⌊( 1

K
− ε

) √
T

R

⌋
,

observations. Indeed up to Tǫ, all the p θ√
T
,t(k) are larger than ε, a fixed constant in (0, 1) meant

to prevent the vanishing of the various probabilities. The choice of the rate
√
T can be relaxed to

other powers of T but for the present illustrative purpose, we only consider this case, which also
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corresponds to the renormalization of the learning rate for which Exp3 satisfies sublinear regret
bounds [Bubeck and Cesa-Bianchi, 2012].

With this renormalization, [Aubert et al., 2023] proved a convergence in T
−1/2
ǫ for

1

Tε

Tε∑

t=1

K∑

k=1

(p θ√
T
,t(k)− p θ̂√

T
,t
(k))2,

with θ the true parameter and θ̂ the MLE.

Let us compare this with Theorem 1 or its corollary in the case of a single, well specified, model.
Take Ft = σ(Xt

1) and n = Tε, so that Assumption 1 is directly satisfied. Since log is Lipschitz on
[ε, 1− ε], Assumption 2 follows as a direct consequence of Lemma 4.3 of [Aubert et al., 2023], with
respect to ‖θ‖∞, with a constant L that only depends on R and ε. Moreover we can always take
M = R. Finally, Assumption 3 is trivial since there is only a finite set of values for Xt.

Thus, Theorem1 shows that Kn(p̃) is of order log(Tε)
2/Tε, which is faster than [Aubert et al., 2023].

Indeed Kn(p) is comparable to the square norm used in [Aubert et al., 2023], which can be proved
as follows:

Kn(p) =
1

Tε

ε∑

t=1

K∑

k=1

p⋆t (k) log
p⋆t (k)

pt(k)
=

1

Tε

ε∑

t=1

K∑

k=1

p⋆t (k)φ(log
pt(k)

p⋆t (k)
),

with φ(u) = eu − u− 1. Since | log p⋆
t (k)

pt(k)
| is bounded, φ(u) & u2. This leads to

Kn(p) &
1

Tε

ε∑

t=1

K∑

k=1

p⋆t (k) log
2 p⋆t (k)

pt(k)
&

1

Tε

ε∑

t=1

K∑

k=1

(p⋆t (k)− pt(k))
2,

since the derivative of the logarithm is positive and lower bounded on [ε, 1− ε].

A model selection framework Theorem 1 or its corollary goes further than [Aubert et al., 2023]
by also allowing for model selection and bias. In particular, this can allow for reward estimation
as well as identifying the granularity or precision the learner is able to have in its actions. This is
of particular importance when performing a cognitive learning experiment, since it is rarely clear
what numerical value to assign to a real-life reward to reflect how much of an impact it has on
the learner (for instance, how much is crab meat worth to an octopus in comparison to shrimp?),
nor how precise the learner is able to be when picking an action, in the case where the number
of possible actions is continuous or very large (since it is impossible to perfectly replicate a given
action; near identical actions should provide near identical rewards, so how dissimilar do actions
have to be to be considered distinct?).

One possibility is to use Exp3 with a different parameterization. For a given model m, consider a
partition Im of the set of possible actions (which may even be continuous). Let Dm be the number
of disjoint sets in Im. The parameters of model m are the rewards of each possible set I of the
partition, that we call gmI . Since the role of the learning parameter η introduced in Algorithm 1 is
redundant with the one of the (unknown) rewards g’s, we remove it from the model. Thus, under
model m, the learner proceeds as follows:

• Initialize pm1 = (1/Dm, ..., 1/Dm)
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• for t > 1,

– pick the set It according to pmt and pick Xt inside It uniformly

– update for all I ∈ Im

pmt+1(I) =
exp

(
−∑t

s=1 L̂
m
s (I)

)

∑Dm

J=1 exp
(
−∑t

s=1 L̂
m
s (J)

) where L̂m
s (J) =

gmJ
pη,s(j)

1Xs∈J

To obtain a meaningful renormalization, as before, we call pmθm,t the distribution of Xt given Ft−1 =

σ(Xt−1
1 ), when gmJ =

θm
J√
T

.

As in the previous single model case, Assumption 1 is straightforward by choosing n of the order of√
T up to multiplicative constants. We can also adapt Lemma 4.3 of [Aubert et al., 2023] to show

that Assumption 2 is satisfied as long as all the θmJ ’s are in [r, R], with a Lipschitz constant L with
respect to ‖θ‖∞ which does not depend on m. One can also take Mm = R. Assumption 3 is again
easily satisfied even if the set of actions is continuous.

Therefore, one can choose a penalty of order

pen(m) = O
(
log(Tǫ)

2Dm

Tε

)
,

and obtain an oracle inequality on Kn(p̃), which as seen above can be implies an oracle inequality
on the square distance. In the end, we obtain a way to estimate at the same time

• with the partition Im̂: the precision in the perception and execution of the actions, that is,
which sets of actions are conflated and which are considered distinct, and how precise the
learner is able to be when choosing its actions,

• with the resulting θ̂m̂J /
√
Tε: the estimated reward, by which we mean the numerical value

that quantifies the average impact of the outcome of the action on the learner’s behaviour,
modeled by a piecewise constant function on the partition Im̂.
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A Proof of Theorems 1 and 3

Both theorems share the same proof, up to differences in notations due to picking Assumptions 1
and 2 or Assumptions 1bis and 2bis, which will be introduced when required.

In the sequel to avoid losing track of important dependance, we denote: for any t ∈ [n], m ∈ M,
θ ∈ Θm, xt 7→ pmθ,t(xt|Ft−1) the density of Xt conditionally to Ft−1 under the parameter θ, and
likewise for p⋆t (xt|Ft−1).

In what follows, fix m ∈ M and θ̄m ∈ Θm. Consider the following functions, defined for all t ∈ [n],
xt
1 ∈ X t, m′ ∈ M and δ ∈ Θm′ by

gm
′

δ,t (xt,Ft−1) = − log

(
pm

′

δ,t (xt|Ft−1)

p⋆t (xt|Ft−1)

)

and write gm
′

δ = (gm
′

δ,t )t∈[n].

For all m′ ∈ M, let θ̂m
′
be a maximizer of θ ∈ Θm′ 7→ 1

nℓn(θ), and let crit(m′) be

crit(m′) = − 1

n
ℓn(θ̂

m′
) + pen(m′),

and define the set M′ as
M′ = {m′ ∈ M, crit(m′) 6 crit(m)}.

For any family h = (ht)t∈[n] of functions Xt that may depend on the past, that is ht(Xt,Ft−1), we
write 




P (h) =
1

n

n∑

t=1

ht(Xt,Ft−1),

C(h) =
1

n

n∑

t=1

E[ht(Xt,Ft−1) | Ft−1] the compensator of P (h),

ν(h) = P (h)− C(h) =
1

n

n∑

t=1

(ht(Xt,Ft−1)− E[ht(Xt,Ft−1) | Ft−1]) .

By definition, for every m′ ∈ M′,

P (gm
′

θ̂m′ ) + pen(m′) 6 P (gm
θ̂m) + pen(m) 6 P (gmθ̄m) + pen(m).

Therefore, since P = C + ν, for every m′ ∈ M′,

C
(
gm

′

θ̂m′

)
+ ν(gm

′

θ̂m′ ) 6 C
(
gmθ̄m

)
+ pen(m) + ν(gmθ̄m)− pen(m′).

Plugging the definition of gm
θ̄m in the above leads to

Kn(p
m′

θ̂m′ ) 6 Kn(p
m
θ̄m) + pen(m)− ν(gm

′

θ̂m′ )− pen(m′) + ν(gmθ̄m). (7)

So far everything is similar to [Massart, 2007]. The goal is now to control −ν(gm
′

θ̂m′ ).

Let us distinguish between the two sets of assumptions. Since the core of the proof is identical in
both cases, we introduce notations to encompass both cases in a single setting.
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• Under Assumptions 1 and 2, for each t ∈ [n] and m′′ ∈ M, let qn = 0, F∞
m′′ = 2 log(ε−1) and

F lip
m′′ = Lm′′ , and for any δ ∈ Θm′′ , let

Vn(p
m′′

δ ) =
1

n

n∑

t=1

E



(
log

p⋆t (Xt|Ft−1)

pm
′′

δ,t (Xt|Ft−1)

)2 ∣∣∣Ft−1


 .

• Under Assumptions 1bis and 2bis, for each t ∈ [n] and m′′ ∈ M, let qn = 2n−1, F∞
m′′ =

Bm′′ logn and F lip
m′′ = Lm′′ logn, and for any δ ∈ Θm′′ , let

Vn(p
m′′

δ ) =
1

n

n∑

t=1

E



(
log

p⋆t (Xt|Ft−1)

pm
′′

δ,t (Xt|Ft−1)

)2

1
∣

∣

∣

∣

∣

log
p⋆t (Xt|Ft−1)

pm
′′

δ,t
(Xt|Ft−1)

∣

∣

∣

∣

∣

6F∞
m′′

∣∣∣Ft−1


 .

Let
Am′ = F lip

m′Mm′ + F∞
m′ and vm′ = Am′

√
2n. (8)

For any m′ ∈ M, let σm′ be the solution of the equation

σ =
(
1 ∧ vm′

σ

)√
(Dm′ + 1) log

(vm′

σ
∨ e
)
+

Am′

σ
(Dm′ + 1) log

(vm′

σ
∨ e
)

(9)

Lemma 5. Assume Assumption 3 holds, as well as either Assumptions 1 and 2 or Assumptions 1bis
and 2bis. For any family (ηm′)m′∈M taking values in (0, 1), letting ym′ = η−1

m′

√
σ2
m′ + x+Dm′ for

each m′ ∈ M, it holds with probability at least 1 − qn − 6e−x
∑

m′∈M
log(vm′)e−Dm′ that for all

m′ ∈ M,

sup
δ∈Θm′

(
|ν(gm′

δ )|
2Vn(pm

′
δ ) + 1

ny
2
m′

)
6 80(2ηm′ + η2m′Am′). (10)

Proof. See Section C.1.

Lemma 6. Under either Assumptions 1 and 2 or Assumptions 1bis and 2bis, almost surely, for all
m′ ∈ M and δ ∈ Θm′ ,

Vn(p
m′

δ ) 6 16(F∞
m′)2Kn(p

m′

δ ).

Proof. See Section C.2.

Fix some sequence (ηm′)m′∈M in (0, 1) to be determined later and let ym′ = η−1
m′

√
σ2
m′ + x+Dm′

for all m′ ∈ M. By Lemma 5, and using the definition of Σ and the fact that since Am′ > 2, n > 2
and x > 0,

log(vm′) = logAm′ +
1

2
log(2n) 6 3 log(n) logAm′ ,

it holds with probability at least 1− qn − 18 log(n)Σe−x, for all m′ ∈ M′,

−ν(gm
′

θ̂m′ ) 6 80(2ηm′ + η2m′Am′)

(
32(F∞

m′)2Kn(p
m′

θ̂m′ ) +
1

n
y2m′

)
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and

ν(gmθ̄m) 6 80(2ηm + η2mAm)

(
32(F∞

m )2Kn(p
m
θ̄m) +

1

n
y2m

)
.

Injecting this result in (7), with probability at least 1− qn− 18 log(n)Σe−x, for all m′ ∈ M′,

(
1− 2560(F∞

m′)2(2ηm′ + η2m′Am′)
)
Kn(p

m′

θ̂m′ )

6
(
1 + 2560(F∞

m )2(2ηm + η2mAm)
)
Kn(p

m
θ̄m)

+ 80

(
2

ηm
+Am

)
1

n
(σ2

m + x+Dm) + pen(m)

+ 80

(
2

ηm′
+Am′

)
1

n
(σ2

m′ + x+Dm′)− pen(m′). (11)

By the definition of σm′ in (9), it is smaller than the solution σ′
m′ of

σ =

√
(Dm′ + 1) log

(vm′

σ
∨ e
)
+

Am′

σ
(Dm′ + 1) log

(vm′

σ
∨ e
)
, (12)

which satisfies

√
Am′(Dm′ + 1) 6 σ′

m′ 6

√
(Dm′ + 1) log

( √
2nAm′√
Dm′ + 1

∨ e

)

+
√
Am′(Dm′ + 1) log

( √
2nAm′√
Dm′ + 1

∨ e

)

6 2
√
Am′(Dm′ + 1) log((nAm′) ∨ e).

Note that nAm′ > e. Let κ ∈ (0, 1] and for all m′ ∈ M, let ηm′ = cκ
Am′ (F∞

m′ )3/2
for some small

enough numerical constant c > 0, and recall that Am′ > F∞
m′ , then there exist numerical constants

Cpen and C such that if for all m′ ∈ M′,

pen(m′) >
Cpen

κ
A2

m′(F∞
m′)3/2 log(nAm′)2

Dm′

n
, (13)

it holds for all x > 0, with probability at least 1− qn − 18 log(n)Σe−x, for all m′ ∈ M′,

(1− κ)Kn(p
m′

θ̂m′ ) 6 (1 + κ)Kn(p
m
θ̄m) + 2 pen(m)

+
C

κ
(Am′(F∞

m′)3/2 log(nAm′)2 +Am(F∞
m )3/2 log(nAm)2)

x

n
. (14)

B Proof of Corollaries 2 and 4

Corollary 2 follows directly from the fact that E[Z] 6
∫
t>0 P(Z > t)dt for any random variable

Z.
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Under Assumptions 1bis, let us first show that Kn(p
m′

δ ) is bounded for all δ and m′ almost surely.
By Assumption 1bis, almost surely, for any m′ ∈ M and δ ∈ Θm′ ,

Kn(p
m′

δ ) 6
1

n

n∑

t=1

E

[∣∣∣∣∣log
p⋆t (Xt|Ft−1)

pm
′

δ,t (Xt|Ft−1)

∣∣∣∣∣
∣∣∣Ft−1

]

6
1

n

n∑

t=1

(
Bm′ +Bm′

∫ +∞

1

P

(∣∣∣∣∣log
p⋆t (Xt|Ft−1)

pm
′

δ,t (Xt|Ft−1)

∣∣∣∣∣ > Bm′y
∣∣∣Ft−1

)
dy

)

6 2Bm′ .

To conclude, assume that there exist A,B > 0 such that supm∈M Bm 6 B(n) and supm∈M Am 6

A(n), so that by Theorem 3, with probability at least 1− 2n−1 − 18 log(n)Σe−x,

(1− κ)Kn(p̃) 6 inf
m∈M

(
(1 + κ) inf

θ∈ΘDm
Kn(p

m
θ ) + 2 pen(m)

)

+
2C′

κ
A(n)B(n)3/2 log(nA(n))2

(logn)5/2x

n
,

and use that for any random variable Z such that Z 6 M a.s. for some constant M > 0, E[Z] 6∫M

t=0
P(Z > t)dt, so that for all κ ∈ (0, 1],

(1− κ)E
[
Kn(p

m̂
θ̂m̂)
]
6 E

[
inf

m∈M

(
(1 + κ) inf

θ∈ΘDm
Kn(p

m
θ ) + 2 pen(m)

)]

+
4B(n)

n
+

36C′

κ
ΣA(n)B(n)3/2 log(nA(n))2

(logn)7/2

n
,

and the last term dominates the second to last one.

C Proof of the Lemmas

C.1 Proof of Lemma 5

Fix m′ ∈ M. Recall that for any δ, η ∈ Θm′ ,

ν(gm
′

δ )− ν(gm
′

η ) =
1

n

n∑

t=1

∫
log

(
pm

′
η,t(xt|Ft−1)

pm
′

δ,t (xt|Ft−1)

)
(dδXt(xt)− p⋆t (xt|Ft−1)dµ(xt)),

where δa is the Dirac measure in a.

We extend Θm′ into Θm′ ∪ {⋆} by defining pm
′

⋆ = p⋆, so that when η = ⋆, ν(gm
′

η ) = 0 and the

formula above becomes ν(gm
′

δ ). We want to control this uniformly over δ, η ∈ Θm′ ∪ {⋆}.
Fix δ, η ∈ Θm′ ∪ {⋆}. For any t ∈ [n], let

∆t =

∫
log

(
pm

′
η,t(xt|Ft−1)

pm
′

δ,t (xt|Ft−1)

)
(dδXt(xt)− p⋆t (xt|Ft−1)dµ(xt)).
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For any t ∈ [n + 1], let Mt =
∑t−1

s=1 ∆s (in particular, M1 = 0), so that 1
nMn+1 = ν(gm

′

δ ) −
ν(gm

′
η ).

(Mt)t>1 is a (σ(Xt−1
1 ))t>1-martingale. For ℓ > 2, let Cℓ

1 = 0 and for t > 2, let

Cℓ
t =

t−1∑

s=1

E[∆ℓ
s | Ft−1].

Note that for all s ∈ [n],

|∆s| 6 2

∫ ∣∣∣∣∣log
pm

′
η,s(xs|Fs−1)

pm
′

δ,s(xs|Fs−1)

∣∣∣∣∣
dδXs(xs) + p⋆s(xs|Fs−1)dµ(xs)

2
,

so that by convexity of x 7→ xℓ,

|Cℓ
t | 6

t−1∑

s=1

E


2ℓ

∫ ∣∣∣∣∣log
pm

′
η,s(xs|Fs−1)

pm
′

δ,s(xs|Fs−1)

∣∣∣∣∣

ℓ
dδXs(xs) + p⋆s(xs|Fs−1)dµ(xs)

2

∣∣∣∣Fs−1




= 2ℓ
t−1∑

s=1

∫ ∣∣∣∣∣log
pm

′
η,s(xs|Fs−1)

pm
′

δ,s(xs|Fs−1)

∣∣∣∣∣

ℓ

p⋆s(xs|Fs−1)dµ(xs). (15)

Let Q be a countable dense subset of X .

Now, let us distinguish two cases:

• Under Assumptions 1 and 2, for each t ∈ [n], let At
n be the event defined by

{
∀s ∈ [t], ∀m′′ ∈ M, ∀δ, θ ∈ Θm′′ ∪ {⋆},

∣∣∣∣∣log
pm

′′

δ (Xs|Fs−1)

pm
′′

θ (Xs|Fs−1)

∣∣∣∣∣ 6 2 log
1

ε

and ∀s ∈ [t], ∀m′′ ∈ M, ∀δ, θ ∈ Θm′′ ,

∣∣∣∣∣log
pm

′′

δ (Xs|Fs−1)

pm
′′

θ (Xs|Fs−1)

∣∣∣∣∣ 6 Lm′′‖δ − θ‖m′′

}
.

Thanks to Assumptions 1 and 2, P(At
n) = 1. Write F∞

m′ = 2 log(ε−1) and F lip
m′ = Lm′′ .

• Under Assumptions 1bis and 2bis, for each t ∈ [n], let At
n be the event defined by

{
∀s ∈ [t], ∀m′′ ∈ M, ∀δ, θ ∈ Θm′′ ∪ {⋆},

∣∣∣∣∣log
pm

′′

δ (Xs|Fs−1)

pm
′′

θ (Xs|Fs−1)

∣∣∣∣∣ 6 2Bm′′ logn

and ∀s ∈ [t], ∀m′′ ∈ M, ∀δ, θ ∈ Θm′′ ,

∣∣∣∣∣log
pm

′′

δ (Xs|Fs−1)

pm
′′

θ (Xs|Fs−1)

∣∣∣∣∣ 6 Lm′′‖δ − θ‖m′′ logn

}

Thanks to Assumptions 1bis and 2bis, P(At
n) > 1 − 2n−1. Write F∞

m′ = 2Bm′′ logn and
F lip
m′ = Lm′′ logn.
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Note that in both cases, At
n depends on Xt and Ft−1. So given Ft−1, we can ask ourselves what

are the possible values x of Xt, so that At
n is true. To simplify notation, we write x ∈ At

n when
this is true. The event {x ∈ At

n} is therefore Ft−1 measurable.

Now, under Assumption 3, we may define

R∞,n(δ, η) = max
16s6n

sup
x∈Q

(∣∣∣∣∣log
pm

′
η,s(x|Fs−1)

pm
′

δ,s(x|Fs−1)

∣∣∣∣∣ 1x∈As
n

)

and

R2,n(δ, η)
2 = 2

n∑

s=1

E



(
log

pm
′

η,s(Xs|Fs−1)

pm
′

δ,s(Xs|Fs−1)

)2

1As
n

∣∣∣∣∣Fs−1


 .

Note that because Q is countable, both R∞,n(δ, η) and R2,n(δ, η) are well defined and random. So
that on the event An

n,

|Cℓ
t | 6 2ℓ−1R∞,n(δ, η)

ℓ−2R2,n(δ, η)
2,

and since 2ℓ−1 6 ℓ! for all ℓ > 2, on the event An
n,

|Cℓ
n+1| 6

ℓ!

2
R2,n(δ, η)

2R∞,n(δ, η)
ℓ−2. (16)

By definition, on the event An
n,

{
∀δ, η ∈ Θm′ ∪ {⋆}, R2,n(δ, η) 6 F∞

m′
√
2n,

∀δ, η ∈ Θm′ , R2,n(δ, η) 6 F lip
m′ ‖δ − η‖m′

√
2n.

(17)

Finally, since R2,n(δ, η) is the Euclidean norm of the vector whose coordinate s ∈ [n] is the
L
2(X , p⋆(·|Fs−1)dµ) distance between log pm

′
η,s(·|Fs−1)1As

n
and log pm

′

δ,s(·|Fs−1)1As
n
, it satisfies the

triangular inequality: for all η, δ, θ ∈ Θm′ ∪ {⋆},

R2,n(δ, η) 6 R2,n(δ, θ) +R2,n(θ, η). (18)

Likewise, on the event An
n,
{
∀δ, η ∈ Θm′ ∪ {⋆}, R∞,n(δ, η) 6 F∞

m′ ,

∀δ, η ∈ Θm′ , R∞,n(δ, η) 6 F lip
m′ ‖δ − η‖m′ .

(19)

and for all η, δ, θ ∈ Θm′ ∪ {⋆}

R∞,n(δ, η) 6 R∞,n(δ, θ) +R∞,n(θ, η). (20)

Identify Θm′ ∪ {⋆} with the subset Θ̃m′ of the vector space RDm′+1 of generic element (δ, u) with
δ ∈ RDm′ and u ∈ R, defined as

Θ̃m′ = {(θ, 0) : θ ∈ Θm′} ∪ {(θ̄m′
, 1)},
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for some fixed θ̄m
′ ∈ Θm′ . Endow the vector space RDm′+1 with the norms

Ñ∞((δ, u)) = F lip
m′ ‖δ‖m′ + F∞

m′ |u| and Ñ2((δ, u)) =
√
2nÑ∞((δ, u)).

Under Assumption 2bis, for any δ, η ∈ Θm′ , by (17) and (19), on the event An
n,

{
R2,n(δ, η) 6 F lip

m′ ‖δ − η‖m′
√
2n = Ñ2((δ, 0)− (η, 0))

R∞,n(δ, η) 6 F lip
m′ ‖δ − η‖m′ = Ñ∞((δ, 0)− (η, 0)),

and both inequalities extend to η = ⋆ since, for R2,n,

R2,n(δ, ⋆) 6 F∞
m′

√
2n

6 F lip
m′ ‖δ − θ̄m

′‖m′
√
2n+ F∞

m′
√
2n

= Ñ2((δ, 0)− (θ̄m
′
, 1))

and likewise for δ = ⋆ and for R∞,n. Let

Am′ = F lip

m′Mm′ + F∞
m′ and vm′ = Am′

√
2n,

so that Ñ2(δ − η) 6 vm′ and Ñ∞(δ − η) 6 Am′ for all δ, η ∈ Θ̃m′ .

We may now apply Theorem 5 of [Aubert and Lehéricy, 2024] to the process Yδ = nν(gm
′

δ ) indexed
by δ ∈ Θm′ ∪ {⋆}, with c = 0 and the event A = An

n: for all σ > 0 and x > 0, let

Ψ(σ, x) = 20

[
(σ ∧ vm′)

√
x+ (Dm′ + 1) log

(vm′

σ
∨ e
)
+Am′

(
x+ (Dm′ + 1) log

(vm′

σ
∨ e
))]

.

Then, for all θ ∈ Θm′ ∪ {⋆}, σ > 0 and x > 0,

P

({
sup

δ∈Θm′∪{⋆}

Yδ − Yθ

R2,n(δ, θ)2 + σ2
> 4σ−2Ψ(σ, x+Dm′)

}
∩ An

n

)

6
(
2 log

(vm′

σ

)
∨ 0 + 1

)
e−(x+Dm′).

In particular, by taking the union bound over m′ ∈ M for θ = ⋆, for any family of positive

numbers (ym′)m′∈M, with probability at least P(An
n)−e−x

∑

m′∈M

(
2 log

(
vm′

ym′

)
∨ 0 + 1

)
e−Dm′ , for

all m′ ∈ M,

sup
δ∈Θm′

(
nν(gm

′

δ )

R2,n(δ, ⋆)2 + y2m′

)

6
80

y2m′

(
ym′

√
x+ (ym′ ∧ vm′)

√
(Dm′ + 1) log

(
vm′

ym′
∨ e

)

+Am′x+Am′(Dm′ + 1) log

(
vm′

ym′
∨ e

))
.
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For each m′ ∈ M, let σm′ be the solution of the equation

σ =
(
1 ∧ vm′

σ

)√
(Dm′ + 1) log

(vm′

σ
∨ e
)
+

Am′

σ
(Dm′ + 1) log

(vm′

σ
∨ e
)
,

which exists since the right hand side is positive and non-increasing on (0,+∞). For any family
(ym′)m′∈M such that ym′ > σm′ for all m′ ∈ M, for any x > 0, it holds with probability at least

P(An
n)− e−x

∑

m′∈M

(
2 log

(
vm′

ym′

)
∨ 0 + 1

)
e−Dm′ that for all m′ ∈ M,

sup
δ∈Θm′

(
nν(gm

′

δ )

R2,n(δ, ⋆)2 + y2m′

)
6

80

ym′

(
σm′ +

√
x+Dm′ +

Am′

ym′
(x+Dm′)

)
.

Let η ∈ (0, 1) and fix for each m′ ∈ M

ym′ = η−1
√
σ2
m′ + x+Dm′ ,

for all x > 0, with probability at least P(An
n) − e−x

∑

m′∈M

(
2 log

(
vm′

ym′

)
∨ 0 + 1

)
e−Dm′ , for all

m′ ∈ M,

sup
δ∈Θm′

(
ν(gm

′

δ )
1
nR2,n(δ, ⋆)2 +

1
ny

2
m′

)
6 80(2η + η2Am′),

where

• the first term on the right hand side is due to the concavity of x ∈ (0,+∞) 7→ √
x,

• the second term on the right hand side holds because x+Dm′ 6 x+Dm′ + σ2
m′ = η2y2m′ .

By definition ym′ > η−1
√
Dm′ > 1, and vm′ = Am′

√
2n > e. Therefore,

2 log

(
vm′

ym′

)
∨ 0 + 1 6 3 log vm′ .

The control of −ν(gm
′

δ ) is identical, hence we may control all |ν(gm′

δ )| with probability at least

P(An
n)−6e−x

∑

m′∈M
log(vm′)e−Dm′ by union bound. To conclude the proof of the Lemma, note that

1
nR2,n(δ, ⋆)

2 6 2Vn(pδ).

C.2 Proof of Lemma 6

Let’s begin with a result proved in [Shen et al., 2013] which we slightly adapt to our situation.
Lemma 7 (Adaptation of Lemma 4 in [Shen et al., 2013]). For any probability measures P and Q
with densities p and q, and any λ ∈ (0, 1/2],

P

{(
log

p

q

)2

1|log( p
q )|6log( 1

λ)

}
6 8

(
1 +

(
log

1

λ

)2
)
P

{(
q1/2

p1/2
− 1

)2

1|log( p
q )|6log( 1

λ )

}
.
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Proof. See Section C.3.

Let us apply Lemma 7 to p = p⋆s and q = pm
′

δ,s with λ = exp(−F∞
m′) for all s ∈ [n] and δ ∈ Θm′ . By

definition of F∞
m′ , λ 6 1/2, so that for all s ∈ [n] and δ ∈ Θm′ ,

∫ ∣∣∣∣∣log
p⋆s(xs|Fs−1)

pm
′

δ,s(xs|Fs−1)

∣∣∣∣∣

2

1∣

∣

∣

∣

∣

log
p⋆s(xs|Fs−1)

pm
′

δ,s
(xs|Fs−1)

∣

∣

∣

∣

∣

6F∞
m′

p⋆s(xs|Fs−1)dµ(xs)

6 16h2
(
p⋆s(·|Fs−1), p

m′

δ,s(·|Fs−1)
∣∣∣Fs−1

)
(1 + (F∞

m′)2),

where

h2
(
pt(·|Ft−1), qt(·|Ft−1)

∣∣∣Ft−1

)
=

1

2

∫ (√
pt(xt|Ft−1)−

√
qt(xt|Ft−1)

)2
dµ(xt).

Let us recall a classical relation between the Hellinger distance and the Kullback-Leibler divergence,
see for instance in [Massart, 2007, Lemma 7.23]: for any probability measures P and Q,

2h2(P,Q) 6 KL(P,Q).

Applying this inequality to the probability measures P = p⋆t (·|Xt−1
1 ) and Q = pm

′

t,θ̂m′ (·|Xt−1
1 )

conditionally to Xt−1
1 for all t ∈ [n] shows that

Vn(p
m′

δ ) 6 8(1 + (F∞
m′)2)Kn(p

m′

δ ) 6 16(F∞
m′)2Kn(p

m′

δ )

since F∞
m′ > 1.

C.3 Proof of Lemma 7

The proof follows exactly the same steps as [Shen et al., 2013]. Let r : (0,+∞) → R be the function
defined implicitly by

log(x) = 2(x1/2 − 1)− r(x)(x1/2 − 1)2.

The function r is non-negative, decreasing, and r(x) 6 2 log(1/x) for all x ∈ (0, 1/2] (see e.g. [Ghosal and van der Vaart, 2007
Let λ ∈ (0, 1/2]. Since for any x > 1, | log(x)| 6 2|x1/2 − 1|,

P

{(
log

p

q

)2

116 q
p6

1
λ

}
6 4P

{(
q1/2

p1/2
− 1

)2

116 q
p6

1
λ

}
.
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Moreover, by definition of r,

P

{(
log

p

q

)2

1λ6 q
p61

}

6 8P

{(
q1/2

p1/2
− 1

)2

1λ6 q
p61

}
+ 2P

{
r2
(
q

p

)(
q1/2

p1/2
− 1

)4

1λ6 q
p61

}

6 8P

{(
q1/2

p1/2
− 1

)2

1λ6 q
p61

}
+ 2r2(λ)P

{(
q1/2

p1/2
− 1

)2

1λ6 q
p61

}

6 8P

{(
q1/2

p1/2
− 1

)2

1λ6 q
p61

}
+ 8

(
log

1

λ

)2

P

{(
q1/2

p1/2
− 1

)2

1λ6 q
p61

}
,

where

• the first inequality holds because for any a, b ∈ R, (a+ b)2 6 2a2 + 2b2,

• the second inequality holds because r is decreasing and since 0 6 q
p 6 1,

(
q1/2

p1/2 − 1
)2

6 1,

• the third inequality holds because r(x) 6 2 log(1/x) for x ∈ (0, 1/2].

All in all,

P

{(
log

p

q

)2

1λ6 q
p6

1
λ

}
6 8

(
1 +

(
log

1

λ

)2
)
P

{(
q1/2

p1/2
− 1

)2

1λ6 q
p6

1
λ

}
.
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