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Nicolas Forien∗

May 29, 2024

Abstract

Activated Random Walk is a system of interacting particles which presents a phase transition and a
conjectured phenomenon of self-organized criticality. In this note, we prove that, in dimension 1, in the
supercritical case, when a segment is stabilized with particles being killed when they jump out of the
segment, a positive fraction of the particles leaves the segment with positive probability.

This was already known to be a sufficient condition for being in the active phase of the model, and
the result of this paper shows that this condition is also necessary, except maybe precisely at the critical
point. This result can also be seen as a partial answer to some of the many conjectures which connect
the different points of view on the phase transition of the model.
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1 Introduction

We begin with a brief informal presentation of some aspects of the model. The reader who is familiar with
Activated Random Walks may skip the two following subsections, passing directly to Subsection 1.3 where
our results are presented. Some illustrated sketches of proofs are given in Subsection 1.5.

1.1 Presentation of the model

The model of Activated Random Walks consists of particles performing independent random walks on a
graph, which fall asleep with a certain rate and get reactivated in the presence of other particles on the same
site. The model was popularized by Rolla, Sidoravicius and Dickman [Rol08, RS12, DRS10], and can be seen
as a variant of the frog model [AMP02a, AMP02b]. Its study is motivated by its connection with the concept
of self-organized criticality, which was introduced by the physicists Bak, Tang and Wiesenfeld [BTW87] to
describe physical systems which present a critical-like behaviour but without the need to tune the parameters
of the system to particular values (like is the case for an ordinary phase transition). To illustrate this concept,
Bak, Tang and Wiesenfeld introduced an interacting particle system called the Abelian sandpile model,
which shares some features with Activated Random Walks. We refer to [LL21, BS22] for a comparison
of the two models in particular for what concerns their mixing properties, indicating that the model of
Activated Random Walks mixes faster. This can explain why Activated Random Walks are expected to
have a behaviour which is more universal, in that it is less sensitive to microscopic details of the system.

Let us now define informally the Activated Random Walk model on Zd. A configuration of the model
consists of a certain number of particles on each site of Zd, each of these particles being in one of two possible
states: active or sleeping.

The model evolves as follows. Each active particle performs a continuous-time random walk on Zd with
jump rate 1, with a certain translation-invariant jump distribution p : Zd → [0, 1]. This means that, after a
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random time distributed as an exponential with parameter 1, the active particle at x jumps to some other
site, the probability of jumping from x to y being p(y − x).

In parallel, each active particle also carries another exponential clock with a certain parameter λ > 0
and, when this clock rings, if there are no other particles on the same site, the particle falls asleep (otherwise,
if the particle is not alone, nothing happens). A sleeping particle stops moving (its continuous-time random
walk is somewhat paused), until it wakes up, which happens when another particle arrives on the same site.
Then, the reactivated particle resumes its continuous-time random walk with jump rate 1. Equivalently,
one may also consider that a particle can fall asleep even when it is not alone on a site but, whenever this
happens, the particle is instantaneously waken up by the presence of the other particles.

Thus, there can never be two sleeping particles at a same site. Hence, at every time t ⩾ 0, the configu-
ration of the model at time t can by encoded into a function ηt : Zd → N ∪ {s}, where ηt(x) = k ∈ N means
that there are k active particles at the site x, while ηt(x) = s means that there is one sleeping particle at x.
Note that, with this notation, particles are indistinguishable: we only keep track of the number and states
of particles on each site, but not of the individual trajectory of each particle.

Regarding the initial configuration η0, various setups are interesting to consider. One possibility is to
take η0 which follows a translation-invariant and ergodic probability distribution on the set of all possible
configurations, with a finite mean number of particles per site. This initial configuration may have only
active particles, or both active and sleeping particles. Another case of interest is that of η0 with only finitely
many particles, for example n particles on the origin. The model can also be defined on different graphs, or
with slight modifications of the dynamics, like for example adding a sink vertex where particles get trapped
forever.

For a rigorous construction of the process (ηt)t⩾0, we refer the reader to [RS12], or to the review [Rol20].
See also [LS24] for a presentation of various different settings of interest and fascinating conjectures connect-
ing these different points of view on the model.

1.2 Phase transition

Let us consider the model on Zd starting with η0 following a translation-ergodic distribution with mean
particle density ζ. Depending on the sleep rate λ, on the jump distribution p and on the particle density ζ,
the model can exhibit very different behaviours. A natural question is: if we start with only active particles,
do they eventually all fall asleep, or is activity maintained forever? Note that, on the infinite lattice Zd,
almost surely there exists no finite time when all the particles are sleeping. However, we have the following
notion of fixation: we say that the system fixates if the origin is visited finitely many times by an active
particle during the evolution of the process. Then, up to events of 0 probability, fixation is equivalent to
the configuration on every finite set of Zd eventually being constant and with only sleeping particles or, if
we follow the trajectory of each individual particle, fixation also turns out to be equivalent to each particle
walking only a finite number of steps, or to one given particle walking only a finite number of steps [AGG10].
If the system does not fixate, we say that the system stays active.

Due to the ergodicity assumption on η0, the probability of fixation can only be 0 or 1 (see [RS12]). Thus,
we can have two different regimes, depending on the sleep rate λ, on the jump distribution p and on the
law of the initial configuration: either the system almost surely fixates (this regime is called the fixating
phase, or stable phase), or the system almost surely stays active (this is called the active phase, or exploding
phase). Moreover, we have the following key result about this phase transition:

Theorem 1 ([RSZ19]). In any dimension d ⩾ 1, for every sleep rate λ ∈ (0,∞] and every jump distribution p
which generates all Zd, there exists ζc such that, for every translation-ergodic initial distribution with no
sleeping particles and an average density of active particles ζ, the Activated Random Walk model on Zd with
sleep rate λ almost surely fixates if ζ < ζc, whereas it almost surely stays active if ζ > ζc.

This result shows in particular that the critical density is in some sense universal, in that it depends on
the initial configuration only through the mean density of particles ζ. Thus, to study this critical density, it is
enough to consider the particular case where the configuration is i.i.d., with a given probability distribution
on N with finite mean.
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An important challenge in the study of this phase transition is to relate the property of fixation, which
concerns the model on the infinite lattice with infinitely many particles, to some finite counterparts of the
model. A key example is the sufficient condition for activity given by Theorem 2 below.

On the finite box Vn = (−n/2, n/2 ]d ∩ Zd, let us consider a variant of the model where particles are
killed and removed from the system when they jump out of Vn (or equivalently, we can consider the model
on Zd where particles are frozen outside Vn, so that particles which start out of Vn or which jump out of Vn

are frozen forever and cannot move any more). Let Mn count the number of particles that jump out of Vn

when we let this system evolve until all the sites of Vn become stable (a site x is called stable if it is either
empty or it contains a sleeping particle).

Theorem 2 ([RT18]). With the notation defined above, for every sleep rate λ and every jump distribution p
which generates all Zd, if the initial configuration η0 is i.i.d. and if

lim sup
n→∞

E
[
Mn

]
|Vn|

> 0 , (1)

then the model on Zd with sleep rate λ, jump distribution p and initial configuration η0 almost surely stays
active.

This result relies on the following intuitive idea: if with positive probability a large box looses a positive
fraction of its particles during stabilization, then a particle starting at the origin in the model on Zd has a
positive probability of walking arbitrarily far away, which shows that the system stays active with positive
probability, and thus with probability 1 (because we have a 0-1 law).

1.3 Main results

The main result of this paper consists in the addition of a reciprocal to the implication of Theorem 2,
in the particular case of dimension 1. Recall that Mn denotes the number of particles that jump out
of Vn = (−n/2, n/2 ] ∩ Z during the stabilization of Vn with particles being killed upon leaving Vn.

Theorem 3. In dimension d = 1, for every sleep rate λ > 0 and every nearest-neighbour jump distribution p,
if the initial configuration η0 is i.i.d. with mean ζ and all particles are initially active, then we have the
equivalence:

ζ > ζc ⇐⇒ lim inf
n→∞

E[Mn]

n
> 0 .

This shows that the sufficient condition for activity given by Theorem 2 is also necessary, except maybe
exactly at the critical point. Indeed, very few things are known rigorously about the critical regime ζ = ζc,
with the exception of the particular case of directed walks in dimension 1 starting with η0 i.i.d., for which a
proof of non-fixation at criticality, due to Hoffman and Sidoravicius, appears in [CRS14].

Theorem 3 answers a conjecture of Levine and Silvestri [LS24] (in the particular case of dimension 1),
showing that the density ζw that they define in Section 5.3, and which corresponds to the infimum of the ζ
for which condition (1) holds when η0 is i.i.d. Poisson, is in fact equal to the critical density ζc.

Our result is made more precise by the following theorem, which indicates an explicit positive fraction
which exits with positive probability, as a function of the sleep rate λ and the density ζ. For every deter-
ministic initial configuration η : Vn → N (with only active particles), let us denote by ∥η∥ =

∑
x∈Vn

η(x) the
total number of particles in the configuration η, and let us write Pη for the probability relative to the system
started with deterministic initial configuration equal to η.

Theorem 4. In dimension d = 1, for every sleep rate λ > 0 and every nearest-neighbour jump distribution p,
for every ζ > ζc we have

∀ ε ∈
[
0,

λ(ζ − ζc)

4(1 + λ)ζc

)
lim inf
n→∞

inf
η:Vn→N :
∥η∥⩾ζn

Pη

(
Mn > εn

)
⩾ 1− ζc

ζ

(
1 +

4(1 + λ)ε

λ

)
> 0 .

To show this, as a first step we prove the following result, which gives an explicit upper bound on the
probability that no particle exits during stabilization: This bound is not optimal but, as explained later, it
allows us to obtain the bound of Theorem 4.
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Theorem 5. In dimension d = 1, for every sleep rate λ > 0 and every nearest-neighbour jump distribution p,
for every ζ > ζc, for every n ⩾ 1 and every initial configuration η : Vn → N with ∥η∥ ⩾ ζn particles, initially
all active, we have

Pη

(
Mn = 0

)
⩽

ζc
ζ
.

Let us stress that the bounds of Theorem 4 and 5 hold for any deterministic initial configuration with
at least ζn particles, which includes in particular the case of interest where all the particles start from the
origin (see comments about this in Section 1.4).

Lastly, in the course of the proof of Theorem 3, to deal with the case ζ = ζc, we establish the following
fact, which might be of independent interest:

Proposition 1. In any dimension d ⩾ 1, for every sleep rate λ > 0 and every jump distribution p on Zd

whose support generates all the group Zd, if η0 is i.i.d. with mean ζc then we have

lim
n→∞

E[Mn]

|Vn|
= 0 .

Notably, this last result shows that, at least in the case of directed walks in dimension 1, for which it
is known that there is no fixation at criticality (see the remark following the statement of Theorem 3), the
sufficient condition for activity given by Theorem 2 is not necessary.

1.4 Some perspectives

Since the seminal works which established general properties of the phase transition, various techniques have
been developed to study Activated Random Walks. In particular, a series of works [RS12, ST18, ARS22,
Tag19, BGH18, HRR23, FG22, Hu22, AFG22] established that the critical density is always strictly between 0
and 1 and obtained bounds on ζc as a function of λ. But many of the techniques used only work far from
criticality, when the density is either much larger or much smaller than ζc, and few results have been proved
to hold up to the critical density. For example, [BGHR19] shows that the model on the torus stabilizes fast
when ζ is very small, and slowly when ζ is close to 1, but we lack sharper results about a transition exactly
at ζc from fast to slow stabilization.

Some exceptions giving insight about the behaviour at or close to ζc are the study of the critical regime in
the case of directed walks in one dimension (see [CRS14], with an argument due to Hoffman and Sidoravicius,
and [CR21]), the continuity of ζc as a function of λ [Tag23], and the recent work [JMT23] which considers
the model on the complete graph and computes the exact value of the critical density.

In this regard, the results of the present article have the merit to hold up to the critical point. However,
the bounds presented here are far from being optimal, and there remains a lot of space for improvement. For
example, Theorem 3 can be seen as a partial answer to the so-called hockey stick conjecture (conjecture 17
in [LS24]), which predicts that Mn/|Vn| should converge in probability to max(0, ζ − ζc), at least in the
particular case when the initial distribution is i.i.d. Poisson.

Similarly, the bound given in Theorem 5 is not optimal, and it is expected that when ζ > ζc, the
probability that Mn = 0 in fact decays exponentially fast with n (see conjecture 20 of [LS24]).

Note that Theorem 5 can also be seen as a partial answer to the so-called ball conjecture (see conjectures 1
and 12 in [LS24]). This conjecture predicts that, when starting with n particles at the origin, if we let these
particles stabilize in Zd, the random set of visited sites An is such that, for every ε > 0, with probability
tending to 1 as n → ∞, the set An contains all the sites of Zd that belong to the origin-centred Euclidean ball
of volume (1−ε)n/ζc and is contained in the origin-centred Euclidean ball of volume (1+ε)n/ζc. Theorem 5
implies that the probability that An is included into the ball of volume (1− ε)n/ζc is less than 1− ε. Note
that another partial result was obtained in this direction in [LS21], also in dimension 1, showing an inner
and an outer bound on An.

Last but not least, the proofs of the present paper are very specific to the one-dimensional case, and it
would be interesting to obtain at least similar results in higher dimension.
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η : Vn → N with
∥η∥
n = ζ > ζc

with prob. p ss s ss ss
Good stabilization:
no particle jumps out of Vn.

with prob. 1− p s s s s
Bad stabilization:
some particles jump out of Vn.

copy of η copy of η copy of η copy of ηempty block empty block empty block
•

origin 0
... ...

Random block configuration on Z with particle density qζ:

Each block starts with a copy of η with probability q.

−→ If q < p, then with positive probability, the origin is never visited, whence qζ ⩽ ζc.

Figure 1: Outline of the proof of Theorem 5: assuming that a given deterministic initial configura-
tion η : Vn → N produces a good stabilization with probability p, we build a block configuration on Z with
density qζ which fixates if q < p, showing that qζ ⩽ ζc. Since this holds for every q < p, we get pζ ⩽ ζc.

1.5 Sketches of the proofs

Let us now summarize the strategy of the proofs. We start with Theorem 5, before explaining how the other
results follow.

1.5.1 Sketch of the proof of Theorem 5:

Let η : Vn → N with ∥η∥/n = ζ > ζc, and let p = Pη(Mn = 0). The main idea is that, if p is too high,
then we can construct a configuration on Z which fixates but which has a supercritical density, which is a
contradiction.

More precisely, we consider a configuration on Z which is obtained by placing a copy of the configuration η
inside each block of length n. When we stabilize each block separately in this periodic configuration, typically
a fraction 1− p of the blocks have particles jumping out. We call these bad stabilizations. This is a problem
because these bad stabilizations can disturb the neighbouring blocks. To counter this, we kill some blocks
by deciding that a fraction q of the blocks start empty instead of starting with configuration η inside the
block (for each block, we draw an independent Bernoulli variable with parameter q to decide whether the
block starts empty or with a copy of η). Thus, we consider the initial configuration represented on Figure 1.

The idea is to take q < p, so that the fraction of blocks which start empty is strictly larger than the
fraction of blocks whose stabilization is bad. Then we can show that, with positive probability, the blocks
can be stabilized sequentially with no particle ever visiting the origin.

This implies that the particle density of the initial configuration, namely qζ, can be at most ζc (sweeping
under the carpet the small issue that the configuration that we constructed on Z is not exactly translation-
invariant, but this problem is easy to overcome, see Section 3.5). This being true for every q < p, we
obtain pζ ⩽ ζc.

To show that with positive probability the blocks can be stabilized sequentially without visiting the
origin, we adapt the strategy that was used in [RS12] to prove that, in dimension 1, if ζ < λ/(1 + λ), with
positive probability the origin is never visited. This strategy consists in stabilizing each particle as close as
possible to the origin, by moving it with acceptable topplings (see Section 2.1 for the definition of acceptable
topplings) and exploring instructions in advance to discover where is the site closest to the origin where
the particle can manage to fall asleep without waking up the particles already sleeping. In our context, we
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copy of η copy of η copy of ηempty block empty block empty block empty block
•0 ...

ss s ss ss
good stab. Here, we see

that the stab.
would be bad.

Forced move

copy of η

ssss ss s
good stab.

Forced move

copy of η

s sss sss
good stab.

Figure 2: Strategy used in the proof of Theorem 5 to stabilize the blocks on one side of the origin without
ever visiting the origin: each block is translated by means of acceptable topplings, to a place where it performs
a good stabilization, as close as possible to the place where the previous block was stabilized. To decide
where each block should be translated, we explore the instructions in advance to see where the stabilization
will be good.

stabilize each block as close as possible to the origin, translating it and looking for the place closest to the
other stabilized blocks where the block can manage to do a good stabilization, i.e., with no particle jumping
out of the block (see Figure 2).

In some sense, our proof strategy amounts to building a coupling between the stabilization of the blocks
on one side of the origin and an Activated Random Walk model on N whose sites are the blocks of the con-
figuration. This coarse-grained model starts with a configuration which is i.i.d. Bernoulli with parameter q,
each particle corresponding to a non-empty block. When we stabilize a block and no particles exit (a good
stabilization), this corresponds to a sleep instruction for the block, thus the coarse-grained model has a sleep
rate λ given by p = λ/(1 + λ). If the stabilization of the block is bad (i.e., particles jump out of the block)
and if the neighbouring block in the direction of the origin is empty, then we can force the particles to move
to this neighbouring block, using acceptable topplings, without disturbing the other blocks already stabilized
around the origin. This means that the jump distribution of our coarse-grained model on N only has jumps
to the left.

Then, the fact that our configuration with blocks fixates with positive probability follows from the fact
that the Activated Random Walk model with a density strictly smaller than λ/(1 + λ) fixates whatever the
jump distribution.

The proof of Theorem 5 is detailed in Section 3, and further illustrated in Figure 4.

Proving that Theorem 5 implies Theorem 4: To deduce Theorem 4 from Theorem 5, the idea is that,
if less than εn particles jump out of the segment, then, taking a slightly larger segment, with enough empty
space around to easily accommodate these particles which jumped out, we can stabilize this larger segment
with no particles jumping out of it.

We proceed in two steps, as represented in Figure 3. We start with a configuration η : Vn → N with
density ∥η∥/n = ζ > ζc and empty strips of length 2αn on each side of Vn.

During the first step, we stabilize Vn+2αn, ignoring the sleeps out of Vn. In other words, we perform legal
toppings in Vn and acceptable topplings in Vn+2αn \ Vn, until the configuration is stable in Vn and empty
in Vn+2αn \ Vn. The number of particles which jump out of Vn+2αn during this step, that we denote by M ′

n,
may differ from Mn, which is the number of particles jumping out of Vn when we just stabilize Vn. Yet, it
turns out that M ′

n is stochastically dominated by Mn: this is the content of Lemma 3.

Then, during the second step, we adapt the trapping procedure of [RS12] to try to stabilize these M ′
n

particles in Vn+4αn\Vn. This procedure is said to be successful if, doing so, no particles jump out of Vn+4αn or
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nαnαn αn αn

initial configuration ηempty empty

sleeps ignored sleeps ignored

Step 1:
Stabilize Vn+2αn with no particle
allowed to sleep in Vn+2αn \ Vn.

ss s s s s

M ′
n particles jumped out of Vn+2αn.

Step 2:
Try to stabilize Vn+4αn \ Vn,
hoping that no particle comes
back in Vn or exits Vn+4αn.

sleeps allowed sleeps allowed

s s s ss ss s s s s s ss

η is stabilized in Vn+4αn.

Figure 3: The two steps of the proof of Theorem 4.

come back in Vn. In this case, we obtain an acceptable toppling sequence which stabilizes the configuration η
in Vn+4αn, with no particle jumping out of Vn+4αn, which entails that Mn+4αn = 0.

Note that the overall density in the enlarged segment with the empty spaces around is ζ/(1+4α). Thus,
if α is chosen small enough so that ζ/(1+4α) > ζc, then Theorem 5 gives an upper bound on the probability
that Mn+4αn = 0.

Then, if we consider ε > 0 small enough so that ε/α < λ/(1 + λ), then we can show that the second
stage succeeds with high probability, conditioned on the event that M ′

n ⩽ εn. Thus, we can translate the
upper bound on Pη

(
Mn+4αn = 0

)
coming from Theorem 5 into an upper bound on Pη(M

′
n ⩽ εn). The

stochastic domination given by Lemma 3 then allows us to translate this into the claimed upper bound
on Pη(Mn ⩽ εn).

The proof of Theorem 4 is the object of Section 4.

Obtaining Theorem 3 and Proposition 1: Given Theorem 4, our Theorem 3 easily follows. The only
detail is that, to show that we have indeed an equivalence, there remains to show Proposition 1, which states
that, at criticality, there is not a positive fraction which jumps out of the box. This is presented in Section 5.

2 Some useful tools

We now describe the site-wise representation of the model, with an array of sleep and jump instructions
above the sites. We refer to the survey [Rol20] for a more detailed presentation.

2.1 The site-wise construction of the model

A key ingredient in the study of Activated Random Walks is the site-wise representation, also known as
Diaconis-Fulton representation [DF91, RS12]. Let λ > 0, let p : Zd → [0, 1] be a jump distribution, and
let η0 : Zd → N ∪ {s} be the (possibly random) initial configuration.

Let us consider an array of i.i.d. variables τ = (τx,j)x∈Zd, j⩾1 where, for every x ∈ Zd and every j ⩾ 1,
the variable τx,j is an instruction which can be either a sleep instruction, with probability λ/(1 + λ), or a
jump instruction to some site y ∈ Zd, with probability p(y − x)/(1 + λ).
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The idea is that we can construct the evolution of the system by looking at these instructions each time
that something happens at some site. As we use instructions of the array, we keep track of which instructions
have already been used, with the help of a function called the odometer h : Zd → N, which counts, at each
site, how many instructions have already been used.

When we use an instruction at a site x, we say that we topple x. For a given fixed configuration η, we
say that it is legal (respectively, acceptable) for η to topple a site x if x contains at least one active particle
(respectively, at least one particle) in η.

If a toppling is legal or acceptable, then this toppling consists in using the next instruction τx, h(x)+1 to
update the configuration η: if this instruction is a sleep instruction, then the particle at x falls asleep if it
is alone (whereas nothing happens if there are at least two particles at x), and if it is a jump instruction to
another site y, one particle at x jumps to site y, waking up the sleeping particle there if there is one. If the
toppling was only acceptable but not legal, we first wake up the particle at x before applying the toppling.
The resulting configuration is denoted by τx, h(x)+1η. Thus, for a fixed realization of the array τ , the toppling
at a site x consists of an operator

Φx : (η, h) 7−→ (τx, h(x)+1η, h+ δx) ,

which is only defined if the toppling is acceptable.

If α = (x1, . . . , xk) is a certain sequence of sites of Zd, we say that the toppling sequence α is legal (resp.,
acceptable) for (η, h) if for every i ∈ {1, . . . , k}, it is legal (resp., acceptable) for Φxi−1

◦ · · · ◦Φx2
◦Φx1

(η, h)
to topple xi, that is to say, if the configuration resulting from the first i− 1 topplings has at least one active
particle (resp., at least one particle) on the site x. If α is acceptable, applying the toppling sequence α means
applying Φα = Φxk

◦ · · · ◦ Φx1 . We define the odometer of a toppling sequence α as mα = δx1 + · · · + δxk
,

which simply counts how many times each site appears in the sequence α. We also define, for every V ⊂ Zd,

mV, η = sup
α⊂V, α legal

mα , (2)

where the notation α ⊂ V means that all the sites appearing in α must belong to V . The total stabilization
odometer associated with the configuration η is defined as:

mη = sup
V⊂Zd, V finite

mV, η . (3)

This stabilization odometer may be infinite and, in fact, when the initial configuration η0 follows a translation-
ergodic distribution, we have (see [RS12])

P
(
the system fixates

)
= P

(
mη0

(0) < ∞
)
. (4)

Thus, to know whether the system fixates or not, it is enough to look at this array of instructions and to
determine whether mη0(0) is finite or not.

2.2 Abelian property and the use of acceptable topplings

A key advantage of the site-wise construction is the following property, which states that the order with
which we perform the topplings is irrelevant, allowing us to choose whatever convenient strategy to choose
which sites to topple. We say that a sequence of topplings α stabilizes η in V if the configuration resulting
from the application of the toppling sequence is stable in V , meaning that there are no active particles in V .

Lemma 1 (Abelian property, Lemma 2 in [RS12]). If α and β are both legal toppling sequences for η that
are contained in V and stabilize η in V , then mα = mβ = mV, η and the resulting configurations are equal.

We also have the following monotonicity property, which shows that acceptable topplings may be used
whenever one is looking for upper bounds on the legal odometer:

Lemma 2 (Lemma 2.1 in [Rol20]). If α is an acceptable sequence of topplings that stabilizes η in V ,
and β ⊂ V is a legal sequence of topplings for η, then mα ⩾ mβ. Thus, if α is an acceptable sequence of
topplings that stabilizes η in V , then mα ⩾ mV, η.
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3 Proof of Theorem 5: the probability that no particle exits

This section is devoted to the proof of Theorem 5. Let λ > 0, let p be a nearest-neighbour jump distribution,
let n ⩾ 1 and consider a fixed deterministic initial configuration η : Vn → N with ∥η∥ = ζn, where ζ > ζc.
Let us write p = Pη

(
Mn = 0

)
. Our aim is to show that p ⩽ ζc/ζ.

3.1 The block configuration

As explained in the sketch of proof in Section 1.5, the idea is to build a random initial distribution on Z
which will fixate with positive probability. As a first step, we define a configuration which is not translation-
invariant, and we will deal with this detail afterwards. Let q ∈ (0, p) (we assume that p ̸= 0, otherwise there
is nothing to prove), and let (Xi)i∈Z be i.i.d. Bernoulli variables with parameter q. We define a random
initial configuration η0 by letting, for every x ∈ Z,

η0(x) = X⌊x/n⌋ × η
(
x− ⌊x/n⌋

)
.

That is to say, the configuration η0 consists in a bi-infinite sequence of blocks of length n, with each block
being, with probability q, a translated copy of the deterministic configuration η and, with probability 1− q,
an empty block. For every i ∈ Z, let us define the block number i as

Bi = Vn + in ,

so that Z = ∪i∈ZBi, this union being disjoint. Also, it will be convenient to enumerate the occupied sites
of η, counted with multiplicity: let us take x1, . . . , x∥η∥ ∈ Vn such that

η =

∥η∥∑
ℓ=1

1{xℓ} . (5)

3.2 Stabilization procedure

We now describe our toppling strategy. We first construct a procedure to stabilize the blocks B1 ∪ · · · ∪Bk,
for k ⩾ 1, using acceptable topplings. Recall that an acceptable toppling sequence is allowed to ignore
some sleep instructions (or, equivalently, to move sleeping particles), and thus gives an upper bound on the
odometer for legal stabilization (see Lemma 2). Recall that our stabilization procedure is inspired by the
method used in [RS12], as explained in the sketch of the proof (see Section 1.5).

Aim of the procedure. We proceed step by step, stabilizing the blocks one after another, with at each
step a certain probability that the procedure fails. For every k ⩾ 1, if the procedure is successful until
step k, we will obtain an acceptable toppling sequence αk which stabilizes the configuration η01B1∪···∪Bk

in Z, only performing topplings on blocks Bi with i ⩾ 1 (so that the origin is never toppled) and which
is such that the resulting configuration has no particles inside the blocks Bi for i > Sk, for a certain
integer Sk ∈ {0, . . . , k}. The idea is that we try to stabilize the successive blocks as close as possible to the
block B0 (but without visiting this block B0), and this index Sk indicates which is the rightmost box where
we left some sleeping particles. Then, in the subsequent steps of the procedure we take care not to visit
any more the blocks B1, . . . , BSk

, so that we do not wake up the particles stabilized before. Note that the
toppling sequence αk not only stabilizes η0 inside B1 ∪ · · · ∪ Bk, but stabilizes all the particles which start
in these blocks.

Corrupted sites. The construction of this toppling sequence αk may look at future instructions at the
sites of the blocks labelled with i < Sk and eventually choose not to use these instructions: we say that such
sites are corrupted. But the sites of the blocks Bi with i ⩾ Sk are not corrupted at step k, meaning that the
procedure until step k is independent of the remaining instructions at these sites. These corrupted sites cause
no problem because, after step k, we no longer perform topplings on the sites of the blocks B1, . . . , BSk

.
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Step 1 of the procedure. Step 1 of the procedure deals with the block B1. If this block is empty, we
do nothing and move on to the next block. In this case, we have S1 = 0 and α1 is an empty sequence.
Otherwise, if this block B1 is not empty (i.e., if X1 = 1), then we stabilize the configuration inside B1 with
legal topplings inside B1 until all sites of this block become stable. We say that this stabilization is a good
stabilization if no particle jumps out of the block. If the stabilization of B1 is good, then we let S1 = 1
and we take α1 to be a legal toppling sequence in B1 which stabilizes the configuration in B1, and we can
proceed, moving on to step 2. Otherwise, if this first stabilization is not good, then we declare the procedure
to fail and we stop everything. This was step 1 of the procedure, let us now describe step k for k ⩾ 1.

Step k of the procedure. For convenience, we let S0 = 0 and we let α0 be the empty sequence. Let k ⩾ 1
and assume that the procedure was successful until step k−1, yielding an acceptable toppling sequence αk−1

and an integer Sk−1 as described above. We now describe step k. First case: if Xk = 0, meaning that the
block Bk is empty, we simply let αk = αk−1 and Sk = Sk−1.

Second case: assume now that Xk = 1. We start with the odometer mαk−1
of the instructions used in the

previous steps. To stabilize the particles of the block Bk, we can use any of the blocks Bi for Sk−1 < i ⩽ k,
on which no sleeping particles are left after step k − 1. Then, for every i ∈ {Sk−1 + 1, . . . , k}, we do the
following trial, which consists in translating the block Bk in block Bi and trying to stabilize Bi:

Recall the enumeration of η defined in (5). With acceptable topplings, we move one particle from the
site x1 + kn until it reaches the site x1 + in (if i = k there is nothing to do). We then repeat this operation
for each particle: for every ℓ ∈ {1, . . . , ∥η∥}, we move one particle from the site xℓ + kn with acceptable
topplings, until it reaches the site xℓ + in. Almost surely, after a finite number of acceptable topplings, we
obtain a copy of the configuration η in the block Bi. Let us denote by βk,i the acceptable toppling sequence
which corresponds to this move of the copy of η from block Bk to block Bi (for i = k, βk,i is empty). Note
that this operation does not topple any site of the blocks Bj for j < i.

Then, we perform a stabilization of the block Bi with legal topplings inside Bi, which can be good or
not. Let us denote by γk,i a toppling sequence which corresponds to this legal stabilization.

We repeat this identical trial for every i = Sk−1 + 1, . . . , k, in this increasing order. For each i, we
start fresh again with the odometer mαk−1

resulting from step k − 1, so that instructions used for example
in βk,i−1 may be used again in βk,i (the different trials need not to be coherent). As soon as we find i such
that the stabilization in block Bi is good, we stop the trials and we define:

Sk = min
{
i ∈ {Sk−1 + 1, . . . , k} : the stabilization of the block Bi is good

}
.

Recall that we say that the stabilization of a block is good if no particle jumps out of this block during
its stabilization with legal topplings. If none of these k − Sk−1 trials leads to a good stabilization, we
declare the procedure to fail and we stop there. Note that, for every i, the event {Sk = i} is independent
of the instructions in the blocks Bj for j > i, since we can interrupt the procedure as soon as we see a
good stabilization happening, without needing to try the subsequent blocks. Here there is a small subtlety
which lies in the fact that during the positioning phase to bring the particles from block Bk to block Bi, we
perform topplings on the blocks Bj with j > i, but the event that the stabilization of the block Bi is good
only depends on the odometer of βk,i inside Bi and not on the instructions used on the right of this block,
since these instructions anyway almost surely have the effect of bringing each particle to the rightmost site
of Bi, and making particles which eventually jump out of Bi by the right side come back inside Bi, so that
we do not even need to reveal these instructions to see whether the stabilization in the block Bi will be good
or not (these instructions that we do not need to reveal are those in the hatched region in Figure 4).

Then, if the procedure does not fail, we define αk to be the concatenation of αk−1 followed by the two
sequences βk,Sk

and γk,Sk
defined above. By construction, this acceptable toppling sequence αk stabilizes

the configuration η01B1∪···∪Bk
in Z, only performing topplings on blocks Bi with i ⩾ 1, and the resulting

configuration has no particle in the blocks Bi for i > Sk, as required. See Figure 4 for an illustration of one
step of the procedure.

3.3 Stabilizing both sides without visiting the origin

Imagine now that we want to stabilize the configuration η0 inside the set V(2k+1)n = B−k ∪ · · · ∪ Bk, for
a certain k ⩾ 1. To do this, we may simply apply the above procedure until step k, then repeat the same

10



Initial configuration η01B1∪···∪B5 :

copy of η

B1

copy of η

B4

copy of η

B5

empty block

B2

empty block

B3

Outcome of the procedure until step 4: odometer α4 and resulting configuration:

α4

empty block empty block copy of ηstable block
ss s ss ss

stable block
ssss sss

S4 = 2 block B5

Step 5, first trial: we try to stabilize the block number k = 5 on the block number i = 3.

α4

β5,3

γ5,3

empty block empty blockstable block
ss s ss ss

stable block
ssss sss

bad stab.
s s s s

Instructions at the sites
of B3 are now corrupted.

Trial unsuccessful: we go back to odometer α4 and never topple again the sites of B3.

Step 5, second trial: we try to stabilize the block number k = 5 on the block number i = 4.

α4
β5,4

γ5,4

empty block empty blockstable block
ss s ss ss

stable block
ssss sss

stable block
ss sss ss

S5 = 4

Trial successful: we let S5 = 4 and α5 = (α4, β5,4, γ5,4), and we do not need to try i = 5.
The resulting configuration Φα5

(η01B1∪···∪B5
, 0) is stable.

Figure 4: Step k = 5 of the procedure used to stabilize the blocks on the right side of the origin. This step
consists in trying to stabilize the block B5 on one of the blocks Bi for S4 < i ⩽ 5. During the trial aimed
at Bi, we move the particles from Bk to Bi, using an acceptable toppling sequence βk,i and we stabilize the
block Bi with a legal toppling sequence γk,i. The trial is successful if this stabilization is a good stabilization.
Note that, to know whether the first trial is successful, we need to reveal only the instructions on B3, and
not all the instructions of β5,3. Therefore, the event that the first trail fails is independent of the instructions
in the hatched part of β5,3.
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procedure on the negative blocks B−1, . . . , B−k. Let us denote by Ak the event that the procedure on
the positive blocks succeeds until step k, and let us denote by A−k its counterpart for the negative blocks.
If both procedures succeed and if moreover the block B0 turns out to be initially empty, then we obtain
an acceptable toppling sequence α which stabilizes the configuration η01V(2k+1)n

in Z, and which is such
that mα(0) = 0. By the monotonicity property given by Lemma 2, this implies that mη01V(2k+1)n

(0) = 0.

Thus, we have

P
(
mη01V(2k+1)n

(0) = 0
)

⩾ P
({

X0 = 0
}
∩ Ak ∩ A−k

)
= (1− q)P

(
Ak

)2
.

Furthermore, recalling the definition (2) of mV, η, note that we always have mV, η ⩽ mη1V
, because any

sequence α ⊂ V which is legal for η is also legal for η1V . Thus, we obtain

P
(
mV(2k+1)n, η0(0) = 0

)
⩾ P

(
mη01V(2k+1)n

(0) = 0
)

⩾ (1− q)P
(
Ak

)2
. (6)

3.4 The success probability

Now recall that, at each step of the procedure, with probability 1− q we find an empty block, and otherwise
we do trials of stabilization for each i ∈ {Sk−1 + 1, . . . , k}, each trial being good with probability p,
independently of everything else. Thus, for k ⩾ 1, for every s ∈ {0, . . . , k− 1} and s′ ∈ {s, . . . , k}, we have

P
(
Ak ∩ {Sk = s′}

∣∣ Ak−1 ∩ {Sk−1 = s}
)

=

{
1− q if s′ = s ,

qp(1− p)s
′−s−1 if s′ > s .

Therefore, for every sequence 0 = s0 ⩽ s1 ⩽ · · · ⩽ sk such that si ⩽ i for every i ⩽ k, we have

P
(
Ak ∩

{
(S1, . . . , Sk) = (s1, . . . , sk)

})
=

k∏
i=1

[
(1− q)1{si=si−1} + qp(1− p)si−si−1−11{si>si−1}

]
= P

(
∀i ∈ {1, . . . , k} , XiGi = si − si−1

)
,

where (Gi)i⩾1 are i.i.d. Geometric variables with parameter p, independent of (Xi)i⩾1. Thus, writing

S′
i =

i∑
j=1

Xj Gj

for every i ⩾ 1, we get

P
(
Ak

)
=

∑
0⩽s1⩽···⩽sk
∀i⩽k , si⩽i

P
(
∀i ∈ {1, . . . , k} , S′

i = si

)
= P

(
∀i ∈ {1, . . . , k} , S′

i ⩽ i
)
.

Plugging this into (6) and recalling the definition (3) of the odometer mη0
, we get

P
(
mη0

(0) = 0
)

= P

( ⋂
k⩾1

{
mV(2k+1)n,η0

(0) = 0
})

= lim
k→∞

P
(
mV(2k+1)n, η0

(0) = 0
)

= lim
k→∞

(1− q)P
(
Ak

)2
= (1− q)P

(
∀i ⩾ 1 , S′

i ⩽ i
)2

.

Yet, the law of large numbers ensures that, almost surely,

S′
i

i

i→∞−→ E
[
X1G1

]
=

q

p
< 1 ,

which implies that

P
(
∀i ⩾ 1 , S′

i ⩽ i
)

> 0 ,

whence
P
(
mη0

(0) = 0
)

> 0 .
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3.5 Making the initial configuration translation-invariant

Now, we would like to deduce that the density of particles in this configuration η0 is at most ζc. But there
remains to deal with a small issue: this configuration η0 does not follow a translation-invariant distribution.
To obtain a random initial configuration that is invariant by translation, we simply apply a translation by
a random offset. Thus, we take Y a uniform variable in Vn = (−n/2, n/2 ] ∩ Z, independent of everything
else, and we define the random initial configuration η̃0 by writing, for every x ∈ Z,

η̃0(x) = η0(x+ Y ) .

Then, this random initial configuration is translation-ergodic and has a density of particles

E
[
η̃0(0)

]
= E

[
X0 η(Y )

]
= q × ∥η∥

n
= qζ . (7)

3.6 Conclusion

To conclude, we simply write

P
(
mη̃0

(0) = 0
)

⩾ P
({

Y = 0
}
∩
{
mη0

(0) = 0
})

=
1

n
P
(
mη0

(0) = 0
)

> 0 .

Recalling the relation (4) between fixation and the odometer mη̃0 , we deduce that the system with initial
distribution η̃0 fixates with positive probability. By virtue of Theorem 1, this implies that the configuration η̃0
is not supercritical, that is to say, E[η̃0(0)

]
⩽ ζc. Given (7), we obtain that qζ ⩽ ζc. This being true for

every q ∈ (0, p), we eventually deduce that pζ ⩽ ζc, which concludes the proof of Theorem 5.

4 Proof of Theorem 4: a fraction jumps out of the segment

The aim of this section is to deduce Theorem 4 from Theorem 5.

4.1 Preliminary: a no man’s land around a segment

The following Lemma tells us that adding empty intervals around the segment Vn where particles are not
allowed to sleep and stabilizing the configuration in Vn and in these intervals does not increase the number
of particles which exit during stabilization, at least in distribution.

Lemma 3. Let λ > 0 and let p be a nearest-neighbour jump distribution on Z. Let n ⩾ 1, let η : Vn → N
be a fixed deterministic initial configuration on Vn with only active particles, and let a, b ∈ Z be such
that W = {a, . . . , b} ⊃ Vn. Starting from the initial configuration η and performing legal topplings in Vn

and acceptable topplings in W \ Vn until the resulting configuration is stable in Vn and empty in W \ Vn, we
denote by MW

n the number of particles which jump out of W . Then Mn stochastically dominates MW
n .

Note that the Lemma only gives a stochastic domination, and it is not always true that MW
n ⩽ Mn for a

given array of instructions, since a particle which leaves Vn and comes back in Vn before jumping out of W
may wake up many sleeping particles and cause more of them to leave W than if we just stabilize Vn.

Proof of Lemma 3. Let λ, p, n, η be as in the statement. Since Mn = MW
n with W = Vn, it is enough to

show that for any a, b, a′, b′ ∈ Z such that Vn ⊂ W ⊂ W ′ where W = {a, . . . , b} and W ′ = {a′, . . . , b′}, we
have that MW

n stochastically dominates MW ′

n . Moreover, it is in fact enough to treat the case b = b′, because
the general case then follows by applying two times the result. Thus, we consider a′ < a ⩽ 0 and b ⩾ n− 1,
and we let W = {a, . . . , b} and W ′ = {a′, . . . , b}.

Now, we consider the following toppling strategy. First, we perform legal topplings in Vn and acceptable
topplings in W \Vn until we reach a configuration which is stable in Vn and has no particles at all in W \Vn.
But the important point is that, doing so, we decide to always topple the leftmost particle that we can
topple, that is to say, we topple either the leftmost non-empty site of W or the leftmost site containing at

13



Vn

W

W ′

empty, sleeps ignored empty, sleeps ignored

jump out of W

forced walk out of W ′
all active

Figure 5: Strategy to prove Lemma 3, which shows that increasing the no man’s lands regions around Vn

leads to a decrease, in distribution, of the number of particles which jump out of the enlarged segment. The
key point is that we always topple the leftmost possible particle, so that whenever a particle jumps out of W
from the left, all the other particles are active, allowing us to force this particle to walk out of W ′ with no
effect on the other particles.

least an active particle in Vn, always choosing the leftmost among these two sites. That way, all the sleeping
particles always remain located on the left of the leftmost active particle. That is to say, at any time of the
procedure, for any two sites x, y ∈ W with x < y, it cannot be that x contains an active particle while y
contains a sleeping one.

In the course of this stabilization, some particles may leave W by the left exit. As soon as one particle
does so, we pause the procedure. Note that, at such a moment, we know that all the particles in W are
active, because we just toppled the leftmost site of W and sleeping particles cannot be on the right site of
this site (see Figure 5).

During this pause of the procedure, we move this particle which jumped out of W , using acceptable
topplings, until it leaves W ′. Doing so, this particle may visit some sites of W (and it may even visit all W ,
for example if it leaves W ′ via the right exit), but this is harmless because, as said above, all the particles
are active at that moment. Once this particle jumped out of W ′, we resume the procedure, toppling again
the leftmost possible site of W which contains a (necessarily active) particle, and we go on until we obtain a
configuration which is stable inside Vn and empty in W ′ \ Vn. Let us call N the number of particles which
jump out of W ′ during the whole process, which is also the number of particles which jumped out of W .

First, we can note that N is equal in distribution to MW
n . Indeed, compared to the procedure defin-

ing MW
n , we just added pauses during which we take a particle which had jumped out of W and we move

it with acceptable topplings until it leaves W ′, on top of the configuration which only has active particles.
Hence, inside W , the situation is the same just before and just after a pause, the only change being that
some instructions have been used, resulting in a change of the odometer.

Since we force every particle which jumps out of W to jump out of W ′, what we obtain is therefore
an acceptable toppling procedure in W ′, whose outcome is a stable configuration in Vn and empty sites
in W ′ \ Vn, and which is such that N , the number of particles which jump out of W ′ is equal in distribution
to MW

n .

Now note that, for a fixed array of instructions, the number of particles which jump out of W ′ when
applying a toppling procedure is an increasing function of the odometer of this procedure. Thus, by the
monotonicity property given by Lemma 2, we deduce that N ⩾ MW ′

n . Thus, we eventually obtain the
claimed stochastic domination.

4.2 If few particles jump out, then no one leaves a slightly larger segment

We now prove the following lower bound on the cost to stabilize in Vm \ Vn all the particles which jump out
of Vn:

Lemma 4. In dimension d = 1, for every λ > 0 and every nearest-neighbour jump distribution p, for
every n ⩾ 1 and every deterministic initial configuration η : Vn → N, for any k, ℓ ∈ N, we have

Pη

(
Mn+4ℓ = 0

)
⩾ Pη

(
Mn ⩽ k

)
× P

(
G1 + · · ·+Gk ⩽ ℓ

)
,

where (Gj)j⩾1 are i.i.d. Geometric variables with parameter λ/(1 + λ).
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Note that, when we write Pη

(
Mn+4ℓ = 0

)
, we implicitly extend the configuration η : Vn → N to the

configuration on Vn+4ℓ which coincides with η on Vn and has only zeros on Vn+4ℓ \ Vn.

Proof. Let λ, p, n, η, k, ℓ and (Gj)j⩾1 be as in the statement. To stabilize η in Vn+4ℓ, we proceed in two
steps, as explained in the sketch of the proof in Section 1.5.

First, we perform legal topplings in Vn and acceptable topplings in Vn+2ℓ \Vn until all the sites of Vn are
stable and all the sites of Vn+2ℓ \ Vn are empty. Let us denote by M ′

n the number of particles which jump
out of Vn+2ℓ during this step. It follows from Lemma 3 that Mn stochastically dominates M ′

n, which, with
the notation of Lemma 3, corresponds to M

Vm+2ℓ
n . Thus, we have

Pη

(
M ′

n ⩽ k
)

⩾ Pη

(
Mn ⩽ k

)
. (8)

Then, in the second stage, we try to stabilize these M ′
n particles inside Vn+4ℓ \ Vn, adapting again the

trapping procedure presented in [RS12]. This procedure shows that, if M ′
n ⩽ k, then with probability at

least P
(
G1 + · · · + Gk ⩽ ℓ

)
, this second stage succeeds, yielding an acceptable toppling sequence which

stabilizes these M ′
n particles inside Vn+4ℓ \ Vn with none of these particles jumping out of Vn+4ℓ \ Vn.

Thus, we deduce that

Pη

(
Mn+4ℓ = 0

)
⩾ Pη

(
M ′

n ⩽ k
)
× P

(
G1 + · · ·+Gk ⩽ ℓ

)
which, combined with (8), concludes the proof of the Lemma.

4.3 Concluding proof of Theorem 4

We now put the pieces together to obtain the claimed bound.

Proof of Theorem 4. Let λ > 0, let p be a nearest-neighbour jump distribution on Z, let ζ > ζc and con-
sider ε, α and β such that

0 ⩽
(1 + λ)ε

λ
< α < β <

ζ − ζc
4ζc

. (9)

Let (Gj)j⩾1 be i.i.d. Geometric variables with parameter λ/(1 + λ). Since (1 + λ)ε/λ < α, the weak law of
large numbers ensures that

lim
n→∞

P
(
G1 + · · ·+G⌊εn⌋ ⩽ αn

)
= 1 .

Thus, we can take n0 ⩾ 1 such that, for every n ⩾ n0,

P
(
G1 + · · ·+G⌊εn⌋ ⩽ αn

)
⩾

1 + 4α

1 + 4β
.

Now, let n ⩾ n0 and let η : Vn → N be a fixed deterministic initial configuration such that ∥η∥ ⩾ ζn.
Applying Lemma 4 with k = ⌊εn⌋ and ℓ = ⌊αn⌋, we get

Pη

(
Mn+4ℓ = 0

)
⩾ Pη

(
Mn ⩽ εn

)
× P

(
G1 + · · ·+G⌊εn⌋ ⩽ αn

)
⩾ Pη

(
Mn ⩽ εn

)
× 1 + 4α

1 + 4β
. (10)

Then, note that
∥η∥

n+ 4ℓ
⩾

ζ

1 + 4α
> ζc ,

by virtue of (9). Thus, applying Theorem 5 to η, seen as a configuration on Vn+4ℓ, we have

Pη

(
Mn+4ℓ = 0

)
⩽

(1 + 4α)ζc
ζ

. (11)

Combining (10) and (11), we get

Pη

(
Mn ⩽ εn

)
⩽

1 + 4β

1 + 4α
× (1 + 4α)ζc

ζ
=

(1 + 4β)ζc
ζ

.
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Taking the supremum over all configurations η : Vn → N with ∥η∥ ⩾ ζn, we obtain that

∀β ∈
(
(1 + λ)ε

λ
,
ζ − ζc
4ζc

)
∃n0 ⩾ 1 ∀n ⩾ n0 sup

η:Vn→N :
∥η∥⩾ζn

Pη

(
Mn ⩽ εn

)
⩽

(1 + 4β)ζc
ζ

,

which is precisely the claim of Theorem 4.

5 Proof of Theorem 3

We now prove the equivalence claimed in Theorem 3. Let λ > 0, let p be a nearest-neighbour jump
distribution on Z and let η0 be an i.i.d. initial distribution with mean ζ and all particles initially active.

5.1 Direct implication

The direct implication is an easy consequence of Theorem 4. It follows from the Central Limit Theorem
that P

(
∥η0∥Vn

⩾ ζn
)
→ 1/2 when n → ∞. Thus, choosing whatever ε > 0 in the range indicated by

Theorem 4, we have

lim inf
n→∞

E
[
Mn

]
n

⩾ lim inf
n→∞

P
(
∥η0∥Vn ⩾ ζ

)
inf

η:Vn→N :
∥η∥⩾ζn

Pη

(
Mn > εn

)
ε ⩾

1

2
× ζc

ζ

(
1 +

2(1 + λ)ε

λ

)
× ε > 0 .

5.2 Reciprocal: proof of Proposition 1

The reciprocal implication of Theorem 3 follows from Theorem 2 and Proposition 1, which deals with the
particular case of ζ = ζc, and which we now prove.

Proof of Proposition 1. Let d, λ, p and η0 be as in the statement. By monotonicity (see for example
Lemma 2.5 of [Rol20]), we can assume without loss of generality that all the particles are active in the
configuration η0. Let ε ∈ (0, ζc). Then, let us consider another i.i.d. initial distribution η′0 with mean ζc− ε,
which is coupled with η0 in such a way that η′0(x) ⩽ η0(x) for every x ∈ Zd. This can be done for example by
taking η′0(x) = Yxη0(x), where (Yx)x∈Zd are i.i.d. Bernoulli variables with parameter (ζc−ε)/ζc, independent
of everything else.

Then, for every n ⩾ 1, denoting by Mn and M ′
n the numbers of particles which jump out of the box Vn

starting respectively with η0 and with η′0, we claim that

E
[
Mn

]
⩽ ε |Vn|+ E

[
M ′

n

]
. (12)

Indeed, starting from the configuration η0, we may first apply acceptable topplings to the configuration η0−η′0,
until all particles exit, leaving us with only the configuration η′0 remaining inside Vn. During this first stage,
the average number of particles which jump out of the box is equal to E

[
∥η0∥ − ∥η′0∥

]
= ε |Vn|. Then, we

stabilize in Vn with legal topplings, which gives a number of particles jumping out of the box which is
distributed as M ′

n. Since we performed acceptable topplings during the first stage, we obtain an upper
bound on Mn, whence (12).

Then, by the contrapositive of Proposition 2, we know that

lim
n→∞

E
[
M ′

n

]
|Vn|

= 0 .

Combining this with (12), we deduce that

lim sup
n→∞

E
[
Mn

]
|Vn|

⩽ ε + lim
n→∞

E
[
M ′

n

]
|Vn|

= ε .

This being true for every ε ∈ (0, ζc), the proof of Proposition 1 is complete.
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