
HAL Id: hal-04578203
https://hal.science/hal-04578203

Submitted on 16 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Correct by design coordination of autonomous driving
systems

Marius Bozga, Joseph Sifakis

To cite this version:
Marius Bozga, Joseph Sifakis. Correct by design coordination of autonomous driving systems. Interna-
tional Journal on Software Tools for Technology Transfer, 2023, 25 (5-6), pp.625-639. �10.1007/S10009-
023-00723-0�. �hal-04578203�

https://hal.science/hal-04578203
https://hal.archives-ouvertes.fr

STTT manuscript No.
(will be inserted by the editor)

Correct by Design Coordination of Autonomous Driving
Systems

Marius Bozga ⋅ Joseph Sifakis

Received: date / Accepted: date

Abstract The paper proposes a method for the cor-

rect by design coordination of autonomous driving sys-

tems (ADS). It builds on previous results on collision

avoidance policies and the modeling of ADS by com-

bining descriptions of their static environment in the

form of maps, and the dynamic behavior of their ve-

hicles. An ADS is modeled as a dynamic system in-

volving a set of vehicles coordinated by a Runtime that

based on vehicle positions on a map and their kinetic

attributes, computes free spaces for each vehicle. Ve-

hicles are bounded to move within the corresponding

allocated free spaces. We provide a correct by design

safe control policy for an ADS if its vehicles and the

Runtime respect corresponding assume-guarantee con-

tracts. The result is established by showing that the

composition of assume-guarantee contracts is an induc-

tive invariant that entails ADS safety. We show that

it is practically possible to define speed control policies

for vehicles that comply with their contracts. Further-

more, we show that traffic rules can be specified in a

linear-time temporal logic, as a class of formulas that

constrain vehicle speeds. The main result is that, given

a set of traffic rules, it is possible to derive free space

policies of the Runtime such that the resulting system

behavior is safe by design with respect to the rules.

Keywords Autonomous driving systems ⋅ Traffic rule

specification ⋅ Map specification ⋅ Collision avoidance

M. Bozga
VERIMAG, Univ. Grenoble Alpes, CNRS, Grenoble INP

⋆

38000 Grenoble, France
E-mail: marius.bozga@univ-grenoble-alpes.fr

J. Sifakis
VERIMAG, Univ. Grenoble Alpes, CNRS, Grenoble INP
38000 Grenoble, France
E-mail: joseph.sifakis@univ-grenoble-alpes.fr

policy ⋅ Assume-guarantee contract ⋅ Correctness by

design

Mathematics Subject Classification (2000) MSC

93A16 ⋅ MSC 93C40 ⋅ 68Q85

1 Introduction

Autonomous driving systems (ADS) are probably the

most difficult systems to design and validate, because

the behavior of their agents is subject to temporal and

spatial dynamism. They are real-time distributed sys-

tems involving components with partial knowledge of

their environment, pursuing specific goals while the col-

lective behavior must meet given global goals.

Development of trustworthy ADS is an urgent and
critical need. It poses challenges that go well beyond

the current state of the art due to their overwhelming

complexity. These challenges include, on the one hand,

modeling the system and specifying its properties, usu-

ally expressed as traffic rules; on the other hand, build-

ing the system and verifying its correctness with respect

to the desired system properties.

Modeling involves a variety of issues related to the

inherent temporal and spatial dynamics as well as to the

need for an accurate representation of the physical envi-

ronment in which vehicles operate. Many studies focus

on formalizing and standardizing a concept of map that

is central to semantic awareness and decision-making.

These studies often use ontologies and logics with asso-

ciated reasoning mechanisms to check the consistency

of descriptions and their accuracy with respect to de-

sired properties [3,2]. Other works propose open source

mapping frameworks for highly automated driving [1,

16]. Finally, the SOCA method [7] proposes an abstrac-

2 Marius Bozga, Joseph Sifakis

tion of maps called zone graph, and uses this abstrac-

tion in a morphological behavior analysis.

There is an extensive literature on ADS validation

that involves two interrelated problems: the specifica-

tion of system properties and the application of val-

idation techniques. The specification of properties re-

quires first-order temporal logics because parameteri-

zation and genericity are essential for the description of

situations involving a varying number of vehicles and

types of traffic patterns. The work in [19,17] formal-

izes a set of traffic rules for highway scenarios in Is-

abelle/HOL. It shows that traffic rules can be used as

requirements to be met by autonomous vehicles and

proposes a verification procedure. A formalization of

traffic rules for uncontrolled intersections is provided in

[12], which shows how the rules can be used by a simu-

lator to safely control traffic at intersections. The work

in [10] proposes a methodology for formalizing traffic

rules in linear temporal logic; it shows how the evalu-

ation of formalized rules on recorded human behaviors

provides insight into how well drivers follow the rules.

Many works deal with the formal verification of con-

trollers that perform specific maneuvers. For example,

in [11], a dedicated multi-way spatial logic inspired by

interval temporal logic is used to specify safety and pro-

vide proofs for lane change controllers. The work in

[18] presents a formally verified motion planner in Is-

abelle/HOL. The planner uses maneuver automata, a

variant of hybrid automata, and linear temporal logic

to express properties. In [10], runtime verification is ap-

plied to check that the maneuvers of a high-level plan-

ner conform to traffic rules expressed in linear temporal

logic.

Of particular interest for this work are correct by

construction techniques where system construction is

guided by a set of properties that the system is guar-

anteed to satisfy. They involve either the application of

monolithic synthesis techniques or compositional rea-

soning throughout a component-based system design

process. There is considerable work on controller syn-

thesis from a set of system properties usually expressed

in linear temporal logic, see for example [13,27,28,21,

26]. These are algorithmic techniques extensively stud-

ied in the field of control. They consist of restricting

the controllable behavior of a system interacting with

its environment so that a set of properties are satisfied.

Nonetheless, their application is limited due to their

high computational cost, which depends in particular

on the type of properties and the complexity of the

system behavior.

An alternative to synthesis is to achieve correct-

ness by design as a result of composing the properties

of the system components. Component properties are

usually ”assume-guarantee” contracts characterizing a

causal relationship between a component and its en-

vironment: if the environment satisfies the ”assume”

part of the contract, the state of the component will

satisfy the ”guarantee” part, e.g. [4,15,8]. The use of

contracts in system design involves a decomposition of

overall system requirements into contracts that provide

a basis for more efficient analysis and validation. In ad-

dition, contract-based design is advocated as a method

for achieving correctness by design, provided that sat-

isfactory implementations of the system can be found

[23]. There are a number of theoretical frameworks that

apply mainly to continuous or synchronous systems, es-

pecially for analysis and verification purposes [22,14,

20]. They suffer computational limitations because, in

the general case, they involve the symbolic solution of

fixed-point equations, which restricts the expressiveness

of the contracts [14]. Furthermore, they are only ap-

plicable to systems with a static architecture, which

excludes dynamic reconfigurable systems, such as au-

tonomous systems.

The paper builds on previous results [6] on a logical

framework for parametric specification of ADS com-

bining models of the system’s static environment in

the form of maps, and the dynamic properties of its

vehicles. Maps are metric graphs whose vertices rep-

resent locations and edges are labeled with segments

that can represent roads at different levels of abstrac-

tion, with characteristics such as length or geometric

features characterizing their shape and size.

An ADS model is a dynamic system consisting of a

map and a set of vehicles moving along specific routes.

Its state can be conceived as the distribution of vehicles

on a map with their positions, speeds and other kine-

matic attributes. For its movement, each vehicle has a

safe estimate of the free space in its neighborhood, ac-

cording to predefined visibility rules. We assume that

vehicle coordination is performed by a Runtime that,

for given vehicle positions and speeds on the map, can

compute the free spaces on each vehicle’s itinerary in

which it can safely move.

We consider without loss of generality, ADS with

a discretized execution time step ∆t. Knowing its free

space, each vehicle can move by adapting its speed in

order to stay in this space, braking if necessary in case

of emergency. At the end of each cycle, taking into ac-

count the movements of the vehicles, the Runtime up-

dates their positions on the map. The cycle iterates by

calculating the free spaces from the new state.

We study a safe control policy for ADS, which is

correct by design. It results from the combination of

two types of assume-guarantee contracts: one contract

for each vehicle and another contract for the Runtime

Correct by Design Coordination of Autonomous Driving Systems 3

taking into account the positions of the vehicles on the

map. The contract for a vehicle states that, assuming

that initially the dynamics of the vehicle allow it to

stay in the allocated free space, it will stay in this free

space. Note that the details of the contract implemen-

tation are irrelevant; only the I/O relationship between

free space and vehicle speed matters. The Runtime con-

tract asserts that if the free spaces allocated to vehicles

at the beginning of a cycle are disjoint, then they can

be allocated new disjoint free spaces provided they have

fulfilled their contract. The combination of these two

contracts leads to a control policy that satisfies an in-

ductive invariant, implying system safety.

We build on this general result by specializing its

application in two directions. First, we show that it is

possible to define speed policies for vehicles that satisfy

their assume-guarantee contract. Second, we show that

it is possible to define free space policies for the Run-

time enforcing safety constraints of a given set of traffic

rules. We formalize traffic rules as a class of properties

of a linear temporal logic. We provide a method that de-

rives from a given set of traffic rules, constraints on the

free spaces chosen by the Runtime such that the result-

ing system behavior is safe with respect to these rules.

This is the main result of the paper establishing cor-

rectness by design of general ADS, provided that their

components comply with their respective contracts.

The paper is structured as follows. In Section 2, we

establish the general framework by introducing the ba-

sic models and concepts for the representation of maps.

In Section 3, we introduce the dynamic model of ADS

involving a set of vehicles and a Runtime for their coor-

dination. We show how a correct by design safe control

policy is obtained by combining assume-guarantee con-

tracts for the vehicles and the Runtime. In Section 4,

we study the principle of speed policies respecting the

vehicle contract and show its application through an ex-

ample. In Section 5, we formalize traffic rules as a class

of formulas of a linear temporal logic and show how it

is possible to generate from a set of traffic rules free

space policies such that the system is safe by design.

In Section 6, we briefly describe the implementation

of the approach and experiments underway. Section 7

concludes with a discussion of the significance of the

results, future developments and applications. A short

version of the paper is available in [5].

2 Map Representation

Following the idea presented in [6], we build contigu-

ous road segments from a set S equipped with a partial

concatenation operator ⋅ ∶ S × S → S ∪ {⊥}, a length

norm ∣∣.∣∣ ∶ S → R≥0 and a partial subsegment extrac-

tion operator .[., .] ∶ S × R≥0 × R≥0 → S ∪ {⊥}. Thus,

given a segment s, ∣∣s∣∣ represents its length and s[a, b]
for 0 ≤ a < b ≤ ∣∣s∣∣, represents the sub-segment start-

ing at length a from its origin and ending at length b.

Segments can be used to represent roads at different

levels of abstraction, from intervals to regions. In this

paper, we consider S as the set of curves obtained by

concatenation of line segments and circle arcs, for rep-

resenting roads of a map as depicted in Fig. 2. More

precisely, for any a, r ∈ R∗≥0, ϕ ∈ R, θ ∈ R∗ the curves

line[a, ϕ], arc[r, ϕ, θ] are defined as

line[a, ϕ](t) def
= (at cosϕ, at sinϕ) ∀t ∈ [0, 1]

arc[r, ϕ, θ](t) def
= (r(sin(ϕ + tθ) − sinϕ),

r(− cos(ϕ + tθ) + cosϕ)) ∀t ∈ [0, 1]

Note that a and r are respectively the length of the line

and the radius of the arc, ϕ is the slope of the curve

at the initial endpoint and θ is the degree of the arc.

Fig. 1 illustrates the composition of three curves of this

parametric form.

s1 = line[5, 10
◦]s3 = line[6, 170

◦]
s2 = arc[1, 10

◦
, 160

◦]

s1 ⋅ s2 ⋅ s3

Fig. 1: Curve segments and their composition

We use metric graphs G
def
= (V,S, E) to represent

maps, where V is a finite set of vertices, S is a set of

segments and E ⊆ V × S⋆ × V is a finite set of edges

labeled by non-zero length segments (denoted S⋆). For

an edge e = (v, s, v′) ∈ E we denote
•
e

def
= v, e

• def
= v

′
,

e.seg
def
= s. For a vertex v, we define

•
v

def
= {e ∣ e• = v}

and v
• def
= {e ∣ •e = v}. We call a metric graph connected

(resp. weakly connected) if a path (resp. an undirected

path) exists between any pair of vertices.

We consider the set PosG
def
= V ∪{(e, a) ∣ e ∈ E, 0 ≤

a ≤ ∣∣e.seg∣∣} of positions defined by a metric graph.

Note that positions (e, 0) and (e, ∣∣e.seg∣∣) are consid-

ered equal respectively to positions
•
e and e

•
. We denote

by p
s
−→G p

′
the existence of an s-labelled edge ride be-

tween succeeding positions p = (e, a) and p
′
= (e, a′)

in the same edge e whenever 0 ≤ a < a
′
≤ ∣∣e.seg∣∣ and

4 Marius Bozga, Joseph Sifakis

s = e.seg[a, a′]. Moreover, we denote by p
s
↝G p

′
the

existence of an s-labelled ride between arbitrary posi-

tions p, p
′
, that is, ↝G

def
= (−→G)+ the transitive

closure of edge rides. Finally, we define the distance dG
from position p to position p

′
as 0 whenever p = p

′
or

the minimum length among all segments labeling rides

from p to p
′

and otherwise +∞ if no such ride exists.

Whenever G is fixed in the context, we will omit the

subscript G for positions PosG, distance dG, and rides

−→G or ↝G .

Fig. 2: A map with junctions (blue edges) and merger

vertices (red edges)

A connected metric graph G = (V,S, E) can be in-

terpreted as a map, structured into roads and junctions,

subject to additional assumptions:

– we restrict to metric graphs which are 2D-consistent

[6], meaning intuitively they can be drawn in the

2D-plane such that the geometric properties of the

segments are compatible with the topological prop-

erties of the graph. In particular, if two distinct

paths starting from the same vertex v, meet at an-

other vertex v
′
, the coordinates of v

′
calculated from

each path are identical. For the sake of simplicity,

we further restrict to graphs where distinct vertices

are located at distinct points in the plane, and more-

over, where no edge is self-crossing (meaning actu-

ally that distinct positions (e, a) of the same edge e

are located at distinct points).

– the map is equipped with a symmetric junction re-

lationship � on edges E which abstracts the geo-

metric crossing (or the proximity) between edges at

positions other than the edge end points. This rela-

tionship is used to define the junctions of the map,

that is, as any non-trivial equivalence class in the

transitive closure of �. Actually, junctions need ad-

ditional signalisation to regulate the traffic on their

edges (e.g., traffic lights, stop signs, etc). In addi-

tion, we assume a partial ordering ≺j on the set of

vertices to reflect their static priorities as junction

entries.

– to resolve conflicts at merger vertices, i.e., vertices

with two or more incident segments which do not

belong to a junction, we assume that the map is

equipped with a static priority relationship. Specif-

ically, for a vertex v, there is a total priority order

≺v on the set of edges
•
v. This order reflects an ab-

straction of the static priority rules associated with

each of the merging edges (e.g., right-of-way, yield-

priority, etc).

– every edge e is associated with a maximal speed

limit e.v ∈ R≥0.

In the remainder of the paper, we consider a fixed

metric graph G = (V,S, E) altogether with the junction

relationship �, static priorities ≺v and edge speed lim-

its as discussed above. Also, we extend the junction and

priority relationships from edges to their associated po-

sitions, that is, consider (e1, a1) ∼ (e2, a2)
def
= e1 ∼ e2

for any relation ∼∈ {�, (≺v)v∈V }. Finally, we denote

by r1 ⊎ r2 the property that rides r1, r2 in G are non-

crossing, that is, their sets of positions are disjoint and

moreover not belonging to the same junction(s), except

for endpoints.

3 The ADS Dynamic Model

3.1 General ADS Architecture

Given a metric graph G representing a map, the state

of an ADS is a tuple ⟨sto⟩o∈O representing the distri-

bution of a finite set of objects O with their relevant

dynamic attributes on the map G. The set of objects

O includes a set of vehicles C and fixed equipment such

as lights, road signs, gates, etc. For a vehicle c, its state

stc
def
= ⟨c.p, c.δ, c.v , c.wt , c.it . . . ⟩ includes respectively

its position on the map (from Pos), its displacement

traveled since c.p (from R≥0), its speed (from R≥0), the

waiting time (from R≥0) which is the time elapsed since

the speed of c became zero, its itinerary (from the set

of segments S) which labels a ride starting at c.p, etc.

For a traffic light lt, its state stlt
def
= ⟨lt .p, lt .cl , . . .⟩ in-

cludes respectively its position on the map (from Pos),

its color (with values red and green), etc.

The general ADS model is illustrated in Fig. 3 and

consists of a set of vehicle models C and a Runtime

that interact cyclically with period ∆t. The Runtime

calculates free space values for each vehicle c which

are lenghts c.f of initial rides on their itineraries c.it

whose positions are free of obstacles. In turn, the vehi-

cles adapt their speed to stay within the allocated free

space. Specifically, the interaction proceeds as follows:

– each vehicle c applies a speed policy for period ∆t

respecting its free space c.f received from the Run-

time. During ∆t, it travels a distance c.δ
′

to some

Correct by Design Coordination of Autonomous Driving Systems 5

new position c.p
′
, and at the end of the period its

speed is c.v
′
, its itinerary c.it

′
, etc. The new state is

then communicated to the Runtime.

– the Runtime updates the system state on the map

taking into account the new vehicle states and time-

dependent object attributes. Then it applies a free

space policy computing the tuple ⟨c.f ′⟩c∈C , the new

free space for all vehicles based on the current sys-

tem state. The corresponding free spaces are then

communicated to vehicles and the next cycle starts.

Runtime
⟨c.f , ...⟩c∈C , ⟨sto⟩o∈O\C

⟨c.f ⟩c∈C ,∆t

⟨c.p, c.δ, c.v , c.it , ...⟩c∈C

Map

stc =
⟨c.p, c.δ, c.v , c.it , ...⟩

Vehicle c

Fig. 3: General ADS architecture

Note that the coordination principle described is in-

dependent of the type of segments used in the map, e.g.

intervals, curves or regions. For simplicity, we take the

free spaces to measure the length of an initial ride with-

out obstacles on the vehicle itinerary. This abstraction

is sufficient to state the basic results. We discuss later

how they can be generalized for richer interpretations

of the map.

3.2 Assume-Guarantee for Safe Control Policies

We give below the principle of a safe control policy for

vehicles, which respects their allocated free space, ap-

plying assume-guarantee reasoning.

We consider the following hypothesis: for a vehicle

c, there exists a function Bc ∶ R≥0 → R≥0 that gives

the minimum braking distance c needs to stop from

speed v, in case of emergency. Furthermore, for a po-

sition p, a segment s labeling a ride starting at p and

non-negative distance f , we denote by Ahead(p, s, f)
the ride consisting of the positions reachable from p

following the segment s within distance f , formally

Ahead(p, s, f) def
= {p′ ∈ Pos ∣ ∃δ ≤ f. p s[0,δ]↝ p

′}.

The following definition specifies a safe control pol-

icy using assume-guarantee reasoning on the compo-

nents of the ADS architecture. We consider assume-

guarantee contracts on components defined as pairs of

propertiesA/G specifying respectively the input-output

component behavior for a cycle, i.e., respectively, what

the component guarantees (G) provided its environ-

ment conforms to given assumption (A).

Definition 1 (safe control policy) A control policy

is safe if

– each vehicle c ∈ C respects the A/G contract:

0 ≤ c.v ∧ Bc(c.v) ≤ c.f /
0 ≤ c.v

′
∧ 0 ≤ c.δ

′
∧ c.δ

′
+Bc(c.v ′) ≤ c.f ∧

c.p
c.it[0,c.δ′]
↝ c.p

′
∧ c.it

′
= c.it[c.δ′,−]

– the Runtime respects the A/G contract:

⋀
c∈C

0 ≤ c.δ ≤ c.f ∧ ⨄
c∈C

Ahead(c.p, c.it , c.f − c.δ) /

⋀
c∈C

c.f − c.δ ≤ c.f
′
∧ ⨄

c∈C
Ahead(c.p, c.it , c.f ′)

The policy is the joint enforcement of safe speed

policies for vehicles and safe free space policies for the

Runtime. Vehicle safe speed policies require that if a

vehicle can brake safely by moving forward within its

allocated free space at the beginning of a cycle, then it

can adapt its speed moving forward within this space.

Runtime safe free space policies require that if the free

spaces of the vehicles are non-crossing at the beginning

of a cycle, then it is possible to find new non-crossing

free spaces for the vehicles provided they move forward

in their allocated free space.

Theorem 1 Safe control policies preserve the follow-

ing invariants:

– the speed is positive and compliant to the free space,

for all vehicles, ⋀c∈C 0 ≤ c.v ∧Bc(c.v) ≤ c.f ,

– the free spaces are non-crossing,⨄c∈C Ahead(c.p, c.it , c.f).

Proof Consider the usual notation {φ}P{ψ} for Hoare

triples denoting that whenever the precondition φ is

met, executing the program P establishes the postcon-

dition ψ. Let AP (X)/GP (X,X ′) be a contract for a

program P whose initial state X satisfies the assump-

tion AP (X) and which when it terminates guarantees

the relation GP (X,X ′) between X and the final state

X
′
. Then, Hoare triples are established by the following

proof rule:

φ(X) ⟹ AP (X)
∃X. φ(X) ∧GP (X,X ′) ⟹ ψ(X ′)

{φ}P{ψ}

We now prove that the conjunction of the two assertions

in the theorem is an inductive invariant, holding at the

beginning of every cycle. First, using the rule above for

the assume-guarantee contract on all vehicles we estab-

lish the following Hoare triple, where ∥c∈C c represents

6 Marius Bozga, Joseph Sifakis

Bc(c.v)
Bc(c.v′)

c.v
Bc(c.v)
c.f

c.f

c.δ

c.f
′

c.p
′

c.p

c.v
′

c.p

c.δ
′

c.v

Fig. 4: Illustration of the Hoare triples for vehicle c

the program executed by the vehicle controllers in one

cycle:

{⋀c∈C 0 ≤ c.v ∧Bc(c.v) ≤ c.f∧
⨄c∈C Ahead(c.p, c.it , c.f)}

∥c∈C c

{⋀c∈C 0 ≤ c.v
′ ∧ 0 ≤ c.δ

′ ∧ c.δ′ +Bc(c.v ′) ≤ c.f∧
⨄c∈C Ahead(c.p ′, c.it ′, c.f − c.δ′)}

The arithmetic constraints on the speed, distance trav-

eled and free space are implied from the guarantee. The

constraint on the free space takes into account the up-

date of the vehicle positions, that is, moving ahead into

their free space by the distance traveled (see Fig. 4,

top). Second, using the assume-guarantee contract on

the Runtime we establish the Hoare triple:

{⋀c∈C 0 ≤ c.v ∧ 0 ≤ c.δ ∧ c.δ +Bc(c.v) ≤ c.f∧
⨄c∈C Ahead(c.p, c.it , c.f − c.δ)}

Runtime

{⋀c∈C 0 ≤ c.v ∧Bc(c.v) ≤ c.f ′∧
⨄c∈C Ahead(c.p, c.it , c.f ′)}

That is, the Runtime re-establishes the invariant essen-

tially by providing at least the same free space as in the

previous cycle (see Fig. 4, bottom). ⊓⊔

Note that this theorem guarantees the safety of the

coordination insofar as the vehicles respecting their con-

tracts remain in their allocated free spaces which are

non-crossing by construction. Nevertheless, the result

leaves a lot of freedom to vehicles and the Runtime

to choose speeds and non-crossing free spaces. In par-

ticular, two questions arise concerning these choices.

The first question is wether the system can reach states

where no progress is possible. One can imagine traffic

jam situations, for example when vehicles do not have

enough space to move. The second question is whether

free space choices can be determined by traffic rules

that actually enforce fairness in resolving conflicts be-

tween vehicles. This question is discussed in detail in

Section 5.

We show below that it is possible to compute non-

blocking control policies by strengthening the contracts

satisfied by the vehicles and the Runtime with addi-

tional conditions. For vehicles, we require that they

move in a cycle if their free space is greater than a min-

imum free space fmin. This constant should take into

account the dimensions of the vehicles and their dy-

namic characteristics, e.g., the minimum space needed

to safely reach a non-negative speed from a stop state.

Additional conditions for the contract of the Runtime

are that if all vehicles are stopped, then it can find at

least one free space greater than fmin.

Definition 2 (non-blocking control policy) A con-

trol policy is non-blocking if there exists non-negative

fmin such that:

– each vehicle c ∈ C respects the A/G contract:

c.f ≥ fmin / c.v ′ > 0

– the Runtime respects the A/G contract:

⋀
c∈C

c.v = 0 / maxc∈C c.f
′
≥ fmin.

Theorem 2 Non-blocking control policies ensure progress

i.e., there is always a vehicle whose speed is positive.

Proof The proof is an immediate consequence of the

two contracts of Def. 2. If all vehicles stop moving dur-

ing a cycle, the Runtime will necessarily find at least

fmin free space for at least one of them. Then, at the

next cycle, at least one vehicle will move again with

positive speed, which concludes the proof. ⊓⊔

4 Speed Policies abiding by the Vehicle

Contract

In this section, we show that it is possible for vehi-

cles to compute speed policies in accordance with their

contract. The behavior of each vehicle is defined by a

controller, which given its current speed and its free

space, computes the displacement for ∆t so that it can

safely move in the free space. Such safe speed policies

have been studied in [24,25].

We illustrate the principle of safe speed policy with

respect to f considering that each vehicle is equipped

with a controller that receives a free space value and

adjusts its speed adequately. For the sake of simplicity,

assume the controller can select among three different

constant acceleration values {−bmax, 0, amax} ∈ R re-

spectively, the negative value −bmax for decreasing, the

zero value for maintaining and the positive value amax
for increasing the speed. At every cycle, the controller

will select the highest acceleration value for which the

vehicle guarantee holds as defined by its contract in

Def. 1. Nonetheless, an exception applies for the partic-

ular case where the vehicle stops within the cycle, which

cannot be actually handled with constant acceleration.

Correct by Design Coordination of Autonomous Driving Systems 7

Definition 3 (region-based speed policy) The region-

based speed policy defines the new speed v
′

and dis-

placement δ
′

using a region decomposition of the safe

v × f space (that is, where v ≥ 0 and f ≥ B(v)) as

follows:

v
′
, δ

′ def
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, f if f ≥ B(v), f − v∆t < B(v),
v − bmax∆t < 0

v − bmax∆t, v∆t − bmax∆t
2/2

if f ≥ B(v), f − v∆t < B(v),
v − bmax∆t ≥ 0

v, v∆t if f − v∆t ≥ B(v),
f − v∆t − amax∆t

2/2 <

B(v + amax∆t)
v + amax∆t, v∆t + amax∆t

2/2

if f − v∆t − amax∆t
2/2 ≥

B(v + amax∆t)

(1)

Intuitively, the regions are defined such that, when the

corresponding acceleration is constantly applied for ∆t

time units, the guarantee on the vehicle is provable

given the assumptions and the region boundary condi-

tions. For illustration, the regions are depicted in Fig. 5

for some concrete values of ∆t = 1 sec, amax = 2.5m/s2
and bmax = −3.4m/s2.

Fig. 5: Region decomposition for safe speed policy

Moreover, the vehicle position and the itinerary are

updated according to the travelled distance by taking

c.p
′

such that c.p
c.it[0,c.δ′]
↝ c.p

′
and c.it

′
= c.it[c.δ′,−].

Furthermore, the waiting time c.wt is updated by tak-

ing c.wt
′ def
= c.wt +∆t if c.v = c.v

′
= 0 and c.wt

′ def
= 0

otherwise.

Proposition 1 The region-based speed policy respects

the safety contract for vehicles if the braking function

is B(v) = v2/2bmax.

Proof According to Def. 1 let assume that 0 ≤ v and

B(v) ≤ f . The policy must guarantee that 0 ≤ v
′
, 0 ≤ δ

′
,

δ
′+B(v′) ≤ f , c.p

c.it[0,c.δ′]
↝ c.p

′
, c.it

′
= c.it[c.δ′,−]. Ob-

viously, the last two constraints are explicitely enforced.

For the remaining constraints, the proof is made on a

case by case basis for the four regions:

(i) Immediate as v
′
= 0, δ

′
= f in this case.

(ii) The constraint v
′
≥ 0 is equivalent to v−bmax∆t ≥ 0

which is one of the region boundaries. The con-

straint δ
′
≥ 0 holds as δ

′
= v∆t − bmax∆t

2/2. Con-

sider the constraint δ
′ + B(v′) ≤ f . The term δ

′ +
B(v′) can be successively rewritten as follows:

v∆t − bmax∆t
2/2 +B(v − bmax∆t) =

v∆t − bmax∆t
2/2 + (v − bmax∆t)2/2bmax =

v
2/2bmax = B(v)

Henceforth, δ
′+B(v′) ≤ f is equivalent to B(v) ≤ f

and holds from the assumption.

(iii) The constraint v
′
≥ 0 holds because v

′
= v. The

constraint δ
′
≥ 0 holds because δ

′
= v ⋅ ∆t. The

constraint δ
′ + B(v′) ≤ f is equivalent to v∆t +

B(v) ≤ f which is one of the region boundaries.

(iv) The constraint v
′
≥ 0 holds because v

′
= v+amax∆t

and v, amax, ∆t are all positive. Similarly, the con-

straint δ
′
≥ 0 holds as δ

′
= v∆t + amax∆t

2/2. The

constraint δ
′ + B(v′) ≤ f is equivalent to v∆t +

amax∆t
2/2 + B(v + amax∆t) ≤ f and is the region

boundary.

⊓⊔

Proposition 2 The region-based speed policy respects

the non-blocking contract for vehicles for any fmin ≥

B(amax∆t) + amax∆t2/2.

Proof Actually, the value B(amax∆t)+amax∆t2/2 rep-

resents the minimal amount of space for which the pol-

icy will select acceleration amax when the speed is zero,

as defined by the condition of the 4th region. ⊓⊔

Note that the speed policy works independently of

the value of the parameter ∆t, which is subject only

to implementation constraints, e.g., it must be large

enough to allow the controlled electromechanical sys-

tem to realize the desired effect. A large ∆t may imply

low responsiveness to changes and jerky motion, but

will never compromise the safety of the system.

The proposed implementation of the speed policy

is ”greedy” in the sense that it applies maximum ac-

celeration to move as fast as possible in the available

8 Marius Bozga, Joseph Sifakis

space. We could have ”lazy” policies that do not move

as fast as possible, and simply extend the travel time.

We have shown in [24] that the region-based speed pol-

icy approaches the optimal safety policy, i.e., the one

that gives the shortest travel time, when we refine the

choice of acceleration and deceleration rates in the in-

terval [−bmax, amax].

5 Free Space Policies implied by Traffic Rules

In this section, we study free space safety policies for

a given set of global system properties describing traf-

fic rules. We formalize traffic rules as a class of linear

temporal logic formulas and provide a method for com-

puting free space values for vehicles that allow them to

meet a given set of traffic rules.

5.1 Writing Specifications of Traffic Rules

Traffic rules are a special class of properties that can be

reliably applied by humans. They involve the responsi-

bility of a driver who can control the speed and direc-

tion of a vehicle on the basis of an approximate knowl-

edge of its kinetic state. They do not include condi-

tions that are difficult to assess by the subjective judg-

ment of human drivers, whereas they could be verified

by properly instrumented computers. Thus, traffic rules

are based on topological considerations rather than on

quantitative information, such as an accurate compari-

son of vehicle speeds. Furthermore, they can be formu-

lated as implications where the implicant is a condition

that is easy to check by a driver and the conclusion

is a constraint on controllable variables that call for a

possible corrective action by the driver.

Given a map G and a set of objects O, we specify

traffic rules as formulas of a linear time logic of the

following form, where □ is the always time modality

and N is the next time modality:

□ ∀c1. ∀o2. . . . ∀ok.

φ(c1, o2, . . . , ok) ⟹ N ψ(c1, o2, . . . , ok) (2)

A rule says that for any run of the system, the satisfac-

tion of the precondition φ implies that the postcondi-

tion ψ holds at the next state. Both φ and ψ are boolean

combinations of state predicates as defined below. Fur-

thermore, we assume that ψ constrains the speed of a

single vehicle c1 for which the property is applicable,

and which we call for convenience the ego vehicle.

The rules involve state predicates φ in the form of

first-order assertions built from variables and object at-

tributes (denoting map positions, segments, reals, etc)

using available primitives on map positions (e.g., rides

↝ , edge rides −→ , distance d, equality =), on segments

(e.g., concatenation and subsegment extraction), in ad-

dition to real arithmetic and boolean operators.

Moreover, we define auxiliary non-primitive location

and itinerary predicates proven useful for the expres-

sion of traffic rules. For a vehicle c ∈ C and x either an

object o ∈ O, a vertex u or an edge e of the map,

we define the predicates c@x (c is at x), c −→ x (c

meets x along the same edge), c ↝ x (c meets x)

as in Table 1. Furthermore, for a vehicle c ∈ C and

non-negative δ let c.p ⊕c δ denote the future position

of c after traveling distance δ, that is, either c.p if

δ = 0 or the position p
′

such that c.p
c.it[0,δ]
↝ p

′
. We

extend ⊕c to arbitrary future positions of c by taking

(c.p ⊕c δ) ⊕c δ′
def
= c.p ⊕c (δ + δ′) and we consider the

total ordering ≤c defined as c.p ⊕c δ ≤c c.p ⊕c δ
′
if and

only if δ ≤ δ
′
.

Table 1: Location and itinerary predicates.

c@x
x = o ∶ c.p = o.p

x = u ∶ c.p = u

x = e ∶ ∃a. c.p = (e, a)
c −→ x

x = o ∶ ∃δ. c.p
c.it[0,δ]
−−−−−−→ o.p

x = u ∶ ∃δ. c.p
c.it[0,δ]
−−−−−−→ u

x = e ∶ ∃δ. ∃a > 0. c.p
c.it[0,δ]
−−−−−−→

•
e ∧ c.p

c.it[0,δ+a]
↝ (e, a)

c↝ x

x = o ∶ ∃δ. c.p
c.it[0,δ]
↝ o.p

x = u ∶ ∃δ. c.p
c.it[0,δ]
↝ u

x = e ∶ ∃δ. ∃a > 0. c.p
c.it[0,δ]
↝

•
e ∧ c.p

c.it[0,δ+a]
↝ (e, a)

We define the semantics of state predicates φ in the

usual way, by providing a satisfaction relation σ, st ⊢ φ,

where σ is an assignment of free variables of φ and st

is a system state. A complete formal definition can be

found in [6]. The semantics of rules is defined on pairs

σ, [st(ti)]i≥0 consisting of a function σ assigning objects

instances to object variables of the formulas and a run

[st(ti)]i≥0 for a finite set of objects O. For initial state

st
(t0) we define runs as sequences of consecutive states

[st(ti)]i≥0 obtained along the cyclic ADS execution as

described in section 3.1 and parameterized by the se-

quence of time points ti
def
= t0 + i ⋅∆t, that is, equal to

the time for reaching the i
th

system state.

Correct by Design Coordination of Autonomous Driving Systems 9

Table 2: Traffic rules

1 enforcing safety distance between following vehi-
cles c1 and c2

□ ∀c1. ∀c2. c1 ↝ c2 ⟹ N Bc1(c1.v) ≤ d(c1.p, c2.p)

2 coordination within all-way-stop junctions
(i) safe braking of vehicle c1 approaching a stop so1 □ ∀c1. ∀so1. c1 −→ so1 ⟹ N Bc1(c1.v) ≤ d(c1.p, so1.p)
(ii) vehicle c1 obeys a stop sign when another vehicle

c2 crosses the junction
□ ∀c1. ∀so1. ∀c2. c1@so1 ∧ c1.v = 0 ∧ c2.v > 0 ∧ c1.p �
c2.p ⟹ N c1.v = 0

(iii) if two vehicles c1, c2 are waiting before the respec-
tive stops so1, so2 and c2 waited longer than c1
then c1 has to stay stopped

□ ∀c1. ∀so1. ∀c2. ∀so2. c1@so1 ∧ c1.v = 0 ∧ c2@so2 ∧ c2.v =
0 ∧ c1.p � c2.p ∧ c1.wt < c2.wt ⟹ N c1.v = 0

(iv) if two vehicles c1, c2 are waiting before the respec-
tive stops so1, so2 the same amount of time and c2
is at an entry with higher priority then c1 has to
stay stopped

□ ∀c1. ∀so1. ∀c2. ∀so2. c1@so1 ∧ c1.v = 0 ∧ c2@so2 ∧ c2.v =
0 ∧ c1.p � c2.p∧c1.wt = c2.wt∧so1.p ≺j so2.p ⟹ N c1.v = 0

3 coordination using traffic-lights: if vehicle c1 meets
a red traffic light lt1, it will remain in safe distance

□ ∀c1. ∀lt1. c1 −→ lt1 ∧ lt1.color = red ∧ Bc1(c1.v) ≤

d(c1.p, lt1.p) ⟹ N Bc1(c1.v) ≤ d(c1.p, lt1.p)
4 priority-based coordination of two vehicles c1 and

c2 whose itineraries meet at merger vertex u

(i) if c2 cannot stop at u then c1 must give way □ ∀c1. ∀c2. ∀u. c1 −→ u ∧ Bc1(c1.v) ≤ d(c1.p, u) ∧ c2 −→
u ∧Bc2(c2.v) > d(c2.p, u) ⟹ N Bc1(c1.v) ≤ d(c1.p, u)

(ii) if c1, c2 are reaching u and c1 has less priority than
c2 then c1 must give way

□ ∀c1. ∀c2. ∀u. c1 −→ u ∧ Bc1(c1.v) = d(c1.p, u) ∧ c1.p ≺u

c2.p ∧ c2 −→ u ∧ Bc2(c2.v) = d(c2.p, u) ⟹ N Bc1(c1.v) ≤
d(c1.p, u)

5 enforcing speed limits for vehicle c1
(i) if c1 is traveling in an edge e then its speed should

be lower than the speed limit
□ ∀c1. ∀e. c1@e ⟹ N c1.v ≤ e.v

(ii) if c1 is approaching an edge e then it controls its
speed so that it complies with the speed limit at
the entrance of e

□ ∀c1. ∀e. c1 −→ e ⟹ N Bc1(c1.v) ≤ d(c1.p,
•
e) +Bc1(e.v)

We provide examples of traffic rules in Table 2.

We restrict ourselves to safety rules that characterize

boundary conditions that should not be violated by the

driver controlling the vehicle speed. Therefore, the pre-

conditions characterize potential conflict situations oc-

curring at intersections as well as other constraints im-

plied by the presence of obstacles or speed rules, e.g.,

traffic lights or speed limit signals. The preconditions

may involve various itinerary and location predicates

and constraints on the speed of the ego vehicle. More-

over, the latter are limited to constraints maintained

by the vehicle and involving braking functions in the

form Bc(c.v) # k where k is a distance with respect to

a reference position on the map and # is a relational

symbol # ∈ {<,≤,=,≥,>}. Furthermore, the postcon-

ditions involve two types of constraints on the speed

of the ego vehicle: either speed regulation constraints

that limit the distance to full stop, that is Bc1(c1.v),
or speed limitation constraints requiring that the speed

c1.v does not exceed a given limit value.

Note the difference with other approaches using un-

restricted linear temporal logic, with ”eventually” and

”until” operators, to express traffic rules, e.g. [6]. We

have adopted the above restrictions because they closely

characterize the vehicle safety obligations in the pro-

posed model. Furthermore, as we show below, traffic

rules of this form can be translated into free space rules

that can reinforce the policy managed by the Runtime.

5.2 Deriving Free Space Rules from Traffic Rules

We show that we can derive from traffic rules limiting

the speed of vehicles, rules on free space variables con-

trolled by the Runtime such that both the traffic rules

and the free space contract hold.

To express constraints on the free space variables

c.f , we use, for vehicles c, auxiliary limit position vari-

ables ⟨c.π⟩c∈C such that c.π = c.p⊕cc.f . In other words,

the limit position c.π defines the position beyond which

a vehicle should not be according to its contract. It is

clear that for given c.π and c.p, c.f is defined as the

distance from c.p to c.π.

Using the limit position variables ⟨c.π⟩c∈C we can

transform structurally any state formula φ into a free

space formula φπ by replacing constraints on speeds by

induced constraints on limit positions as follows, for

relational symbol # and t a non-negative real constant:

Bc(c.v) # d(c.p, x) + t ↦ c.π #c x⊕c t

c.v # t ↦ c.π #c c.p ⊕c Bc(t)

10 Marius Bozga, Joseph Sifakis

The first case concerns speed regulation constraints

bounding the limit position c.π relatively to the posi-

tion x of a fixed or moving obstacle ahead of c, that

is, a stop or traffic light sign, a vehicle, etc. The second

case concerns speed limitation constraints bounding c.π

relatively to the current vehicle position c.p and the al-

lowed speed.

Given a state formula φ, the following theorem guar-

antees preservation between properties involving speed

constraints and properties involving limit positions, in

relation to the vehicle speed contracts.

Theorem 3 The following equivalences hold:

(i) φ⟺ (∃ c.π)c∈C φπ ∧⋀c∈C Bc(c.v) = d(c.p, c.π)
(ii) ↙φ⟺ (∃ c.π)c∈C φπ ∧⋀c∈C Bc(c.v) ≤ d(c.p, c.π)
where ↙φ is the speed-lower closure of φ, that is, φ

where speed constraints of the form c.v # t and Bc(c.v)
d(c.p, x) + t for # ∈ {≥,>} are removed. (In the

above, we used the notation (∃ c.π)c∈C to denote the

quantifier prefix ∃c1.π...∃cn.π whenever C = {c1, ..., cn}).

Proof (i) Assuming Bc(c.v) = d(c.p, c.π) the following

equivalences between constraints on speed c.v and de-

rived constraints on limit position c.π hold trivially, for

any # ∈ {<,≤,=,≥,>}:

Bc(c.v) # d(c.p, x) + t ∧ Bc(c.v) = d(c.p, c.π)
⟺ d(c.p, c.π) # d(c.p, x) + t ∧ Bc(c.v) = d(c.p, c.π)
⟺ c.π # x⊕c t ∧ Bc(c.v) = d(c.p, c.π)

c.v # t ∧ Bc(c.v) = d(c.p, c.π)
⟺ Bc(c.v) # Bc(t) ∧ Bc(c.v) = d(c.p, c.π)
⟺ d(c.p, c.π) # Bc(t) ∧ Bc(c.v) = d(c.p, c.π)
⟺ c.π # c.p ⊕c Bc(t) ∧ Bc(c.v) = d(c.p, c.π)

This implies, assuming ⋀cBc(c.v) = d(c.p, c.π) that

any state formula φ is equivalent to the derived con-

straint φπ on limit positions, that is:

φ ∧⋀c∈C Bc(c.v) = d(c.p, c.π)
⟺ φπ ∧⋀c∈C Bc(c.v) = d(c.p, c.π)
Then, as φ does not involve limit positions we have:

φ⟺ φ ∧ (∃c.π)c ⋀c∈C Bc(c.v) = d(c.p, c.π)
⟺ (∃c.π)c φ ∧⋀c∈C Bc(c.v) = d(c.p, c.π)
⟺ (∃c.π)c φπ ∧⋀c∈C Bc(c.v) = d(c.p, c.π)

(ii) Immediate consequence of (i) by applying ↙ on

both sides. ⊓⊔

Re-calling Thm. 1, notice that Bc(c.v) ≤ d(c.p, c.π)
is enforced by safe control policies as d(c.p, c.π) = c.f .

Therefore, any property φ is preserved through equiv-

alence only when all the vehicles run with the maxi-

mal allowed speed by the distance to their limit po-

sitions. Otherwise, the speed-lower closure ↙φ is pre-

served through equivalence, that is, only the upper bounds

Table 3: Free space rules derived from traffic rules

1 □ ∀c1. ∀c2. c1 ↝ c2 ⟹ N c1.π ≤c1 c2.p

2 (i) □ ∀c1. ∀so1. c1 −→ so1 ⟹ N c1.π ≤c1 so1.p

2 (ii) □ ∀c1. ∀so1. ∀c2. c1@so1∧c1.π =c1 c1.p∧c2.π >c2
c2.p ∧ c1.p � c2.p ⟹ N c1.π =c1 c1.p

2 (iii) □ ∀c1. ∀so1. ∀c2. ∀so2. c1@so1 ∧ c1.π =c1 c1.p ∧
c2@so2 ∧ c2.π =c2 c2.p ∧ c1.p � c2.p ∧ c1.wt <

c2.wt ⟹ N c1.π =c1 c1.p

2 (iv) □ ∀c1. ∀so1. ∀c2. ∀so2. c1@so1 ∧ c1.π =c1 c1.p ∧
c2@so2 ∧ c2.π =c2 c2.p ∧ c1.p � c2.p ∧ c1.wt =
c2.wt ∧ so1.p ≺j so2.p ⟹ N c1.π =c1 c1.p

3 □ ∀c1. ∀lt1. c1 −→ lt1 ∧ lt1.color = red ∧ c1.π ≤c1
lt1.p ⟹ N c1.π ≤c1 lt1.p

4 (i) □ ∀c1. ∀c2. ∀u. c1 −→ u ∧ c1.π ≤c1 u ∧ c2 −→
u ∧ c2.π >c2 u ⟹ N c1.π ≤c1 u

4 (ii) □ ∀c1. ∀c2. ∀u. c1 −→ u ∧ c1.π =c1 u ∧ c1.p ≺u

c2.p ∧ c2 −→ u ∧ c2.π =c2 u ⟹ N c1.π ≤c1 u

5 (i) □ ∀c1. ∀e. c1@e ⟹ N c1.π ≤c1 c1.p⊕c1 Bc1(e.v)
5 (ii) □ ∀c1. ∀e. c1 −→ e ⟹ N c1.π ≤c1

•
e⊕c1 Bc1(e.v)

on speeds as derived from corresponding bounds on

limit positions.

Therefore, all traffic rules of form (2) which, for

states satisfying the precondition φ, constrain the speed

of vehicle c1 at the next cycle according to constraint ψ,

are transformed into free space rules on limit positions

of the form:

□ ∀c1. ∀o2. . . .∀ok.

φπ(c1, o2, . . . , ok) ⟹ N ψπ(c1, o2, . . . , ok) (3)

Notice that the postcondition ψπ is of the form c1.π ≤c1
bψ(c1, o2, . . . , ok) for a position term bψ obtained by

the transformation of ψ. For illustration, in Table 3 we

provide the corresponding free space rules derived from

the traffic rules in Table 2.

We are now ready to define the Runtime free space

policy based on traffic rules.

Definition 4 (free space policy based on traffic

rules) Let R denotes the set of traffic rules of interest

e.g., the ones defined in Table 2. For a current ADS

state st and current limit positions and free spaces

⟨c.π, c.f ⟩c∈C the policy computes new limit positions

and new free spaces ⟨c.π′, c.f ′⟩c∈C as follows:

c.π
′ def
= min

≤c
{ σbψ ∣ [□∀c1.∀o2...∀ok. φ ⟹

N ψ] ∈ R, σ[c/c1], st ⊢ φπ}
∪ { e• ∣ ∃a < ∣∣e∣∣, c.π = (e, a), c↝ e} (4)

c.f
′ def
= δ such that c.p ⊕c δ = c.π

′
(5)

Actually, that means computing for every vehicle c

the new limit position c.π
′
as the nearest position with

Correct by Design Coordination of Autonomous Driving Systems 11

respect to ≤c from two sets of bounds. The first set con-

tains the bounds σbψ computed for all the free space

rules derived from the traffic rules in R and applica-

ble for c at the given state st. The second set contains

the endpoint e
•

of the edge e where the current limit

position c.π is located. It is needed to avoid ”jumping”

over e
•
, even though this is allowed by application of

the rules, as e
•

may be a merger node and should be

considered for solving potential conflicts. Then, we de-

fine the new free space c.f
′

as the distance δ from the

current position c.p to the new limit position c.π
′
mea-

sured along the itinerary of c.

Note that if the free space policy respects the assume-

guarantee contract of the Runtime from Def. 1 then it

will moreover guarantees the satisfaction of all traffic

rules from R where both the pre- and the postcondition

φ and ψ are speed-lower closed formulas. First, confor-

mance with respect to the contract is needed to ob-

tain the invariants Bc(c.v) ≤ c.f = d(c.p, c.π) accord-

ing to Thm. 1. Second, these invariants ensure preser-

vation through equivalence between speed-lower closed

formula and derived formula on limit positions, accord-

ing to Thm. 3. Third, the free space policy ensures the

satisfaction of the derived free space rules, that is, by

construction it chooses limit positions ensuring post-

conditions ψπ hold whenever preconditions φπ hold.

As these formulas are preserved through equivalence,

it leads to the satisfaction of the original traffic rule.

5.3 Correctness with respect to the Free Space

Contract

We prove correctness, that is, conformance with the

assume-guarantee contract of Def. 1, of the free space

policy obtained by the application of the traffic rules

from Table 2 excluding the one concerning traffic lights.

For this rule we need additional assumptions taking into

account the light functioning and the behavior of the

crossing vehicles.

First, we assume that the vehicle braking dynamics

are compatible with the speed limits associated with

the map segments, that means:

– for any edge e leading to a junction (and henceforth

a stop sign) or a merger vertex holds Bc(e.v) ≤ ∣∣e∣∣,
for any vehicle c ∈ C (see Figure 6(a)),

– for any consecutive edges e1, e2 holds Bc(e1.v) ≤
∣∣e1∣∣ + Bc(e2.v), for any vehicle c ∈ C (see Fig-

ure 6(b)) i.e., between two consecutive speed limit

changes, there is sufficient space to adapt the speed.

Second, we call an ADS state ⟨sto⟩o∈O consistent

with limit positions ⟨c.π⟩c∈C iff for every vehicle c ∈ C:

Bc(v)

e v

(a)

e1 e2v1 v2

Bc(v1) Bc(v2)

(b)

Fig. 6: Explaining restrictions on speed limits

– the limit position is ahead of the current vehicle

position, that is, c.p ≤c c.π,

– there is no stop sign located strictly between the

current vehicle position and the limit position, that

is, c.p <c so.p <c c.π does not hold for any stop so,

– the limit position conforms to the speed limits of the

current edge (e1) and next edge (e2) on the itinerary

of c, that is, d(c.p, c.π) ≤ Bc(e1.v) and d(c.p, c.π) ≤
d(c.p, •e2) +Bc(e2.v).

For vehicle c and position p located ahead of c on its

itinerary we denote by aheadc(p)
def
= Ahead(c.p, c.it , f)

for f = d(c.p, p), that is, the space ahead of c until posi-

tion p. In particular, aheadc(c.π) = Ahead(c.p, c.it , c.f)
holds as c.π = c.p⊕c c.f . The following lemma provides

the basic conditions that guarantee the correctness of

the free space policy.

Lemma 1 Let st be an ADS state and ⟨c.π⟩c∈C be limit

positions such that:

– the state st is consistent with the limit positions

⟨c.π⟩c∈C,

– the spaces ahead up to the limit positions are non-

crossing, that is, ⨄c∈C aheadc(c.π).

Let ⟨c.π′⟩c∈C be the new limit positions computed for

state st and ⟨c.π⟩c∈C according to the free space policy.

Then, the following hold:

(a) c.π ≤c c.π
′
, for every vehicle c ∈ C,

(b) the state st is consistent with the new limit positions

⟨c.π′⟩c∈C,

(c) the spaces ahead up to the new limit positions are

non-crossing, that is, ⨄c∈C aheadc(c.π′).

Proof (a) Let fix an arbitrary vehicle c. According to

the free space policy the limit position c.π
′

is defined

as the nearest position among several bounds on the

itinerary of c. We will show that, in all situations, these

bounds b are at least as far as the current limit position

c.π, that is c.π ≤c b and hence the result. First, consider

all applicable traffic rules and their associated bounds,

as presented in Table 3:

– rule 1: The bound b is defined as the position c2.p

of the heading vehicle c2. The constraint c.π ≤c c2.p

12 Marius Bozga, Joseph Sifakis

holds because the spaces ahead to the limit positions

are assumed non-crossing,

– rule 2(i): The bound b is defined as the position so.p

of the stop sign located ahead of c. The constraint

c.π ≤c so.p holds because the state st is assumed

consistent, that is, no stop sign between the vehicle

and the current limit position,

– rules 2(ii, iii, iv): The bound b is defined as the cur-

rent position c.p, which is equal to the current limit

c.π due to the constraint c.v = 0 in their respective

preconditions, therefore obviously c.π ≤c c.π,

– rules 4(i, ii): The bound b is defined as the merger

node u and the preconditions of the rules contain

respectively c.π ≤c u and c.π = u,

– rules 5(i, ii): Assume c is located on some edge e1
and the next edge is e2. As st is consistent with

current limit positions, this implies d(c.p, c.π) ≤

B(e1.v) and d(c.p, c.π) ≤ d(c.p, •e2) + Bc(e2.v).
This is equivalent to c.π ≤c c.p ⊕c Bc(e1.v) and

c.π ≤c
•
e2 ⊕c Bc(e2.v) which are the constraints for

speed limit rules.

Second, we consider the position e
•
, where the edge e

contains the limit position c.π. That is, c.π = (e, a) for

some a < ∣∣e∣∣ and hence c.π ≤c (e, ∣∣e∣∣) = e•.
(b) We know that c.p ≤c c.π for all vehicles c. Then,

from (a) above we obtain immediately that c.p ≤c c.π
′

for all vehicles c. Moreover, according to traffic rule

2(i), new limit positions c.π
′

cannot move over a stop

sign so unless the vehicle c is at so. That means, stop

signs cannot be inserted between a vehicle and their

limit positions. Finally, according to traffic rules 5(i, ii),
the new limit positions are at most as far as the bounds

for the current and next edge speed limits. The restric-

tion on speed limits from Figure 6(b) is needed when-

ever vehicles are located at vertices, because of the tran-

sition from the current to the next edge.

(c) We have seen that limit positions can either stay

unchanged or move forward on the itineraries of their

respective vehicles. In order to show that spaces until

the new limit positions are non-crossing, we need to

focus on moving limit positions. We prove the following

facts, which guarantee that these spaces remain indeed

non-crossing:

– no limit position exceeds the current position of a

vehicle. Actually, this is explicitly excluded by the

traffic rule 1. Therefore, no space is extended so as

to overlap with an existing space,

– two limit positions never move simultaneously so

that the corresponding spaces cross each other. First,

crossing may happen at junctions i.e., if two limit

positions will simultaneously enter the same junc-

tion. Such situations are excluded by traffic rules

2(i, ii, iii, iv) which force vehicles to stop and then

solve conflicts between them in a deterministic man-

ner. Second, crossing may happen at merger nodes

i.e., if two limit positions will simultaneously move

over a merger node. These situations are explicitly

excluded by traffic rule 4(i, ii) which solve conflicts

at merger nodes based on priorities, plus the extra

rule forbidding limit positions to jump over map

vertices. ⊓⊔

The next proposition states the correctness of the

free space policy constructed from traffic rules.

Proposition 3 The free space policy respects the safety

contract for the Runtime provided the initial ADS state

is consistent with initial limit positions.

Proof Let consider a state st consistent with limit po-

sitions ⟨c.π⟩c∈C and satisfying the assumptions stated

in Def. 1. We are therefore satisfying the premises of

Lemma 1 and then the new limit positions ⟨c.π′⟩c∈C will

satisfy the conclusions (a)-(c) as stated by the Lemma 1.

Then, for any vehicle c, using (a) we know that the

new limit position satisfies c.π ≤c c.π
′
. Consequently,

the new free space c.f
′

which is the distance from the

current vehicle position to the next limit position sat-

isfies c.f
′
≥ c.f − c.δ, that is, the first assertion of the

Runtime guarantee in Def. 1. This inequality can be un-

derstood from Fig. 7 which depicts the generic situation

for a vehicle c.

c.f

c.δ

c.π c.π
′

c.p

c.f
′

Fig. 7: Update of limit position and free space along

the itinerary of c

Moreover, using (c) we obtain the second assertion

of the Runtime guarantee, that is, ⨄c∈C Ahead(c, c.f ′,).
Finally, using (b) we know that the state st is consis-

tent with new limit positions ⟨c.π′⟩c∈C . Then, as long as

the vehicles move forward into their free spaces accord-

ing to their contract, the system state st
′

is consistent

with respect to these new limit positions. So, eventu-

ally, at the beginning of the next Runtime cycle we are

back to the initial situation considered for st and limit

positions ⟨c.π⟩c∈C . That means essentially that state

consistency with respect to limit positions is an induc-

tive invariant in the system, so it can be safely assumed

to hold at any time provided it holds initially. ⊓⊔

Correct by Design Coordination of Autonomous Driving Systems 13

5.4 Non-blocking Free Space Policies

The free space policy based on traffic rules is not non-

blocking. While continuously meeting traffic rules, an

ADS can potentially evolve into a blocking state. For

example, when a subset of vehicles is blocked in a round-

about so that none of them can move further and even-

tually exit the roundabout and all other vehicles are

waiting to enter the same roundabout. The non-blocking

contract can be however fulfilled if the Runtime moni-

tors the traffic from a global point of view and prevents

situations as described above.

Let consider that there exists a constant fmin such

that for all map edges e, ∣∣e∣∣ > fmin and e.v > B
−1(fmin).

Furthermore, let E� ⊆ E be the subset of edges be-

longing to junctions. An elementary directed path γ =

e1e2 . . . em ∈ E
∗

is critical either if (i) it is a circuit

visiting at most once every junction or (ii) it ends and

returns at the same junction, while visiting at most

once every other junction. Let #j(γ) be the number

of distinct junctions of a critical path γ. We define the

capacity w(γ) of a critical path γ as the least number

of vehicles that could ”block” the critical path γ minus

one:

w(γ) def
= #j(γ) + (∑

e∈γ\E�
⌊∣∣e∣∣ / fmin⌋) − 1 (6)

That is, we assume that a junction can be blocked by

one vehicle, and a non-junction edge e can be blocked

by ⌊∣∣e∣∣ / fmin⌋ vehicles.

Proposition 4 The free space policy derived from traf-

fic rules respects the non-blocking contract for the Run-

time as long as the number of vehicles on every critical

path γ is lower than the path capacity w(γ).

Proof Consider a state where all vehicles are stopped.

Consider an arbitrary vehicle c0. Two situations can

happen, respectively (i) c0 is waiting at an entry of a

junction since another vehicle is already in or (ii) c0 is

waiting behind another stopped vehicle. That means,

in both cases, some other vehicle c1 is actually blocking

c0. We continue the same reasoning for c1, and can find

another vehicle c2 blocking it and so on. As the number

of vehicles is finite, we finally find a circular chain ci,

ci+1, . . . , cn, ci of vehicles that block each other succes-

sively.

Any chain of vehicles as above is located on some

critical path γ, that is, either a circuit or a path going

twice through the same junction of the map. Assume

the number of vehicles on the path γ is lower than the

path capacity w(γ). We distinguish two situations:

– the critical path contains only junction edges: Then,

as the path capacity is #j(γ) − 1 at least one of

the junctions must be clear of vehicles. Therefore,

at least one of the vehicles waiting at that junction

entries will obtain the free space to proceed. That

is, the vehicle in the preceding junction or another

one waiting at some other entry, depending on the

applicable traffic rules.

– the critical path contains both junction and non-

junction edges: If at least one of the junctions is

not empty, we can reason as in the previous case

and find a vehicle that can proceed. Otherwise, as

every junction contains one vehicle, then the num-

ber of vehicles on the remaining non-junction edges

is at most∑e∈γ\E�
⌊∣∣e∣∣/fmin⌋−1. That means, one

can find a non-junction edge with more than fmin
unused space. That space is eventually allocated to

either one of the vehicles waiting on the edge, or to

a vehicle waiting to enter the edge (that is, exiting

from a junction, entering through a merger node,

etc), depending on applicable rules. ⊓⊔

6 Experiments

We are currently developing a prototype for ADS sim-

ulation implementing the speed and free space policies

introduced. It takes as inputs (i) a map defined as an

annotated metric graph with segments that are para-

metric lines or arcs and (ii) an initial state containing

the positions, the initial speeds and the itineraries of a

number of vehicles. The simulation proceeds then as ex-

plained in section 3 by using the specific control policies

from sections 4 and 5. The prototype uses the SFML
1

library for graphical rendering of states. Fig. 8 presents

simulation snapshots for two simple examples running

respectively 5 and 18 vehicles. Note that performance

scales up smoothly as the number of vehicles increases

because each rule is applied on a linear finite horizon

structure. Furthermore, compared to simulators that

particularize an ego vehicle, the Runtime treats all ve-

hicles the same and ignores their speed control policy

as long as they fulfill their contract.

7 Discussion

The paper studies results for the correct by design coor-

dination of ADS based on assume-guarantee contacts.

The coordination follows a two-step synchronous inter-

action protocol between vehicles and a Runtime that,

based on the distribution of vehicles on a map, com-

putes the corresponding free spaces. A first result char-

1
Simple and Fast Multimedia Library, https://www.

sfml-dev.org/

14 Marius Bozga, Joseph Sifakis

Fig. 8: Snapshots of ADS simulation

acterizes safe control policies as the combination of assume-

guarantee contracts for vehicles and the Runtime. This

result is then specialized by showing how policies con-

sistent with their respective contracts can be defined for

vehicles and the Runtime. In particular, for vehicles, we

provide a principle for defining speed policies and, for

the Runtime, we compute free space policies that con-

form to a set of traffic rules. The results are general

and overcome the limitations of a posteriori verifica-

tion. They can be applied to ADS involving a dynami-

cally changing number of vehicles. In addition, they rely

on a general map-based environment model, which has

been extensively studied in [6]. Control policies for ve-

hicles and the Runtime can be implemented efficiently.

In particular, the speed policy has been tested in var-

ious implementations [24,25] and found to be not only

safe, but also closer to the optimum when refining the

space of possible accelerations.

Note that the results can be extended with slight

modifications to maps where the segments are curves

or regions to express traffic rules involving properties

of two-dimensional space, for example for passing ma-

neuvers. For example, if we consider region maps, their

segments will be regions of constant width centered on

curves. Itineraries, free spaces and B(v) will be regions.

The relationship B(v) ≤ f becomes B(v) ⊆ f and the

addition of lengths of segments should be replaced by

the disjoint union of the regions they represent. The

speed control policy will remain unchanged in principle

but will need a function computing the distance trav-

elled in a region. Finally, the runtime verification of the

disjointness of free spaces may incur a computational

cost depending on the accuracy of the region represen-

tation.

The presented results provide a basis for promising

developments in several directions. One direction is to

extend the results to achieve correctness by design for

general properties. We have shown that traffic rules,

which are declarative properties of vehicles, can be ab-
stracted into safety constraints on free spaces. In this

way, we solved a simple synthesis problem by trans-

forming a “static” constraint on vehicle speed into a

“dynamic” constraint on shared resources.

An interesting question that should be further in-

vestigated, is whether the method can be extended to

more general properties involving the joint obligation of

many vehicles. For example, we can require that for any

pair of vehicles c1 and c2 that are sufficiently close, the

absolute value of the difference between their speeds is

less than a constant k, i.e., abs(c1.v − c2.v) ≤ k. This

can be achieved by a free space constraint that gives

more free space to the vehicle with the lower speed, as-

suming that vehicle speed policies are not ”lazy” and

use as soon as possible the available space.

For general properties involving more than one ve-

hicle, it seems realistic to translate them directly into

free space constraints that will enforce the constraints

processed by the Runtime to ensure the safe control

Correct by Design Coordination of Autonomous Driving Systems 15

policy. In particular, in addition to safety properties,

we could devise free space policies that optimize crite-

ria such as road occupancy and uniform separation for

a given group of vehicles e.g. platoon systems studied

in [9]. Note that achieving non-blocking control is such

a property that involves the application of occupancy

criteria.

Another direction is to move from centralized to

distributed coordination with many runtimes. It seems

possible to partition traffic rules according to the geo-

metric scope of their application, e.g., a specific runtime

could control access to each junction. Finally, the Run-

time can be used as a monitor to verify that the vehicle

speed policies of an ADS are safe and respect the given

traffic rules.

References

1. ASAM OpenDRIVE® - open dynamic road information
for vehicle environment. Tech. Rep. V 1.6.0, ASAM e.V.
(2020). URL https://www.asam.net/standards/detail/

opendrive

2. Bagschik, G., Menzel, T., Maurer, M.: Ontology based
scene creation for the development of automated vehicles.
In: Intelligent Vehicles Symposium, pp. 1813–1820. IEEE
(2018)

3. Beetz, J., Borrmann, A.: Benefits and limitations of
linked data approaches for road modeling and data ex-
change. In: EG-ICE, Lecture Notes in Computer Science,
vol. 10864, pp. 245–261. Springer (2018)

4. Benveniste, A., Caillaud, B., Nickovic, D., Passerone,
R., Raclet, J., Reinkemeier, P., Sangiovanni-Vincentelli,
A.L., Damm, W., Henzinger, T.A., Larsen, K.G.: Con-
tracts for system design. Found. Trends Electron. Des.
Autom. 12(2-3), 124–400 (2018)

5. Bozga, M., Sifakis, J.: Correct by design coordination
of autonomous driving systems. In: ISoLA (3), Lecture

Notes in Computer Science, vol. 13703, pp. 13–29. Springer
(2022)

6. Bozga, M., Sifakis, J.: Specification and validation of au-
tonomous driving systems: A multilevel semantic frame-
work. In: Principles of Systems Design, Lecture Notes in

Computer Science, vol. 13660, pp. 85–106. Springer (2022)
7. Butz, M., Heinzemann, C., Herrmann, M., Oehlerking,

J., Rittel, M., Schalm, N., Ziegenbein, D.: SOCA: domain
analysis for highly automated driving systems. In: ITSC,
pp. 1–6. IEEE (2020)

8. Chatterjee, K., Henzinger, T.A.: Assume-guarantee syn-
thesis. In: TACAS, Lecture Notes in Computer Science,
vol. 4424, pp. 261–275. Springer (2007)

9. El-Hokayem, A., Bensalem, S., Bozga, M., Sifakis, J.:
A layered implementation of DR-BIP supporting run-
time monitoring and analysis. In: SEFM, Lecture Notes
in Computer Science, vol. 12310, pp. 284–302. Springer
(2020)

10. Esterle, K., Gressenbuch, L., Knoll, A.C.: Formalizing
traffic rules for machine interpretability. In: CAVS, pp.
1–7. IEEE (2020)

11. Hilscher, M., Linker, S., Olderog, E., Ravn, A.P.: An ab-
stract model for proving safety of multi-lane traffic ma-
noeuvres. In: ICFEM, Lecture Notes in Computer Science,
vol. 6991, pp. 404–419. Springer (2011)

12. Karimi, A., Duggirala, P.S.: Formalizing traffic rules for
uncontrolled intersections. In: ICCPS, pp. 41–50. IEEE
(2020)

13. Kress-Gazit, H., Pappas, G.J.: Automatically synthesiz-
ing a planning and control subsystem for the DARPA
urban challenge. In: CASE, pp. 766–771. IEEE (2008)

14. Mavridou, A., Katis, A., Giannakopoulou, D., Kooi, D.,
Pressburger, T., Whalen, M.W.: From partial to global
assume-guarantee contracts: Compositional realizability
analysis in FRET. In: FM, Lecture Notes in Computer

Science, vol. 13047, pp. 503–523. Springer (2021)
15. Meyer, B.: Applying ”design by contract”. Computer

25(10), 40–51 (1992)
16. Poggenhans, F., Pauls, J., Janosovits, J., Orf, S., Nau-

mann, M., Kuhnt, F., Mayr, M.: Lanelet2: A high-
definition map framework for the future of automated
driving. In: ITSC, pp. 1672–1679. IEEE (2018)

17. Rizaldi, A., Althoff, M.: Formalising traffic rules for ac-
countability of autonomous vehicles. In: ITSC, pp. 1658–
1665. IEEE (2015)

18. Rizaldi, A., Immler, F., Schürmann, B., Althoff, M.: A
formally verified motion planner for autonomous vehicles.
In: ATVA, Lecture Notes in Computer Science, vol. 11138,
pp. 75–90. Springer (2018)

19. Rizaldi, A., Keinholz, J., Huber, M., Feldle, J., Immler,
F., Althoff, M., Hilgendorf, E., Nipkow, T.: Formalising
and monitoring traffic rules for autonomous vehicles in
isabelle/hol. In: IFM, Lecture Notes in Computer Science,
vol. 10510, pp. 50–66. Springer (2017)

20. Saoud, A., Girard, A., Fribourg, L.: Assume-guarantee
contracts for continuous-time systems. Autom. 134,
109910 (2021)

21. Schwarting, W., Alonso-Mora, J., Rus, D.: Planning and
decision-making for autonomous vehicles. Annual Re-
view of Control, Robotics, and Autonomous Systems
1, 187–210 (2018). Https://doi.org/10.1146/annurev-
control-060117-105157

22. Sharf, M., Besselink, B., Molin, A., Zhao, Q., Jo-
hansson, K.H.: Assume/guarantee contracts for dynam-
ical systems: Theory and computational tools. CoRR
abs/2012.12657 (2020)

23. Sun, M., Bakirtzis, G., Jafarzadeh, H., Fleming,
C.: Correct-by-construction: a contract-based semi-
automated requirement decomposition process. CoRR
abs/1909.02070 (2019)

24. Wang, Q., Li, D., Sifakis, J.: Safe and efficient collision
avoidance control for autonomous vehicles. In: MEM-
OCODE, pp. 1–6. IEEE (2020)

25. Wang, Q., Zheng, X., Zhang, J., Sifakis, J.: A hybrid
controller for safe and efficient collision avoidance control.
CoRR abs/2103.15484 (2021). URL https://arxiv.org/

abs/2103.15484

26. Waqas, M., Murtaza, M.A., Nuzzo, P., Ioannou, P.:
Correct-by-construction design of adaptive cruise control
with control barrier functions under safety and regula-
tory constraints (2022). URL https://arxiv.org/abs/

2203.14110

27. Wongpiromsarn, T., Karaman, S., Frazzoli, E.: Synthesis
of provably correct controllers for autonomous vehicles
in urban environments. In: ITSC, pp. 1168–1173. IEEE
(2011)

28. Wongpiromsarn, T., Topcu, U., Murray, R.M.: Receding
horizon temporal logic planning. IEEE Trans. Autom.
Control. 57(11), 2817–2830 (2012)

