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Abstract—Piezoelectric actuators are widely used in several 
applications and are becoming increasingly attractive in aircraft 
and industrial contexts, mainly when efficiency and economical 
energy conversion are required. One of these applications is the 
Avionic Piezoelectric Deicing System. Piezoelectric actuators are 
considered as a potential solution for developing a low-energy ice 
protection system for aircraft. This type of system applies 
vibration to the structure by activating its own resonant 
frequencies to generate sufficient stress to break the ice and cause 
it to delaminate from the substrate. The deicing mechanism 
depends strongly on the chosen excitation mode, whether it's 
flexural (bending) mode, extension (stretching) mode, or a 
combination in between, hence affecting the efficiency and 
effectiveness of the deicing process. 
However, it is essential to note that designing the power supply of 
the deicing system presents a major challenge, since piezoelectric 
actuators exhibit a distinct capacitive behavior in almost all 
frequencies, and eventually for deicing applications requiring high 
operational frequency. 
In this contribution, a proof of concept of a deicing system utilizing 
lightweight piezoelectric actuators with minimal power 
requirement is proposed. Deicing was demonstrated with a power 
input density of 0.074 W/cm² and a surface ratio of 0.07 
piezoelectric actuator per cm². First, a numerical method for 
positioning piezoelectric actuators and choosing the proper 
resonance mode was validated to assist in the system’s design. 
Then, the numerical method was used to implement piezoelectric 
deicing on a more representative structure of an aircraft wing or 
nacelle. Finally, a converter topology adapted for deicing 
application was proposed. 
 
Keywords—Deicing, piezoelectric actuator, extensional mode, 
resonant inverter, PWM inverter, soft-switching converter, 
reactive energy compensation.  
 

NOMENCLATURE 
u displacement, m 
σ stress tensor, Pa 
λ wavelength 
c wave propagation speed in the medium, m/s 
n resonant mode number 
f resonance frequency, Hz 
ω resonance angular frequency, rad/s 
k angular wave  number 
ε strain tensor, Pa 
E Young's modulus, MPa 
υ Poisson’s ration  
ρ volumetric mass density 
L plate length, m 

PWM Pulse Width Modulation 
EMC Electromagnetic Compatibility 
ZVS Zero Voltage Switching 
ZCS Zero Current Switching 
GaN Gallium Nitride 

I. INTRODUCTION 
NVIRONMENTAL constraints and their impact on 
public opinion have led the aircraft industry to 
accelerate the energy transition in aeronautics towards a 
"More Electric Aircraft" (MEA). We are therefore 

witnessing a gradual increase in the role of electrical energy in 
onboard applications. This electrification trend aims to replace 
all non-propulsive systems (hydraulic and pneumatic) with 
electromechanical alternatives in order to optimize aircraft 
performance, decrease operating and maintenance costs, 
increase dispatch reliability, and reduce gas emissions. Among 
the systems underscored by this transition is the deicing system. 
Since ice accretion on aircraft wings and nacelles can 
significantly impact aerodynamic efficiency and balance, 
resulting in reduced lift and increased drag, aircraft require an 
ice protection system capable of meeting the demands of 
various certifications for full icing clearance. A variety of 
deicing methods, that defer by the energy used, are employed 
today to prevent ice formation. These include: turbine engine 
bleed air, pneumatic deicing  boot system, chemical fluid, and 
electrically heated systems [1]. However, these methods are 
classified as very energy-consuming and are only suitable for 
some aircraft categories. Concerning electromechanical 
technologies such as electro-impulsive [2], electro-expulsive 
[3], and piezoelectric [4], the latter stands out as the most 
promising solution in terms of power consumption, weight, and 
cost effectiveness. 
In the literature, different approaches using piezoelectric 
actuators have been explored. First it was investigated by 
Ramanathan et al [5], where experiments on resonant deicing 
systems were performed at very high frequencies to generate 
ultrasonic surface waves to produce shear stress at the 
ice/substrate interface. However, the deicing occurred through 
a thermal action. Experiments of deicing on low frequencies 
were carried out in the studies of Venna et al. [6], and Struggl 
et al. [7]. Yet, limited deicing performance. Kandagal and 
Venkatraman [8] partially deiced a simple flat plate with 
piezoelectric actuators by exciting resonant frequencies. 
Villeneuve et al. [9] worked on deicing a rotorcraft blade by 
studying actuator positioning and activation strategies. Partial 
deicing was achieved. Budinger et al. [10] compared different 
architectures of deicing based on piezoelectric actuators and on 
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the use of structural resonance modes. However, only tests with 
Langevin piezoelectric transducers were performed and where 
some delamination has occurred. In Budinger et al. [11], 
fracture mechanisms were analyzed. Key performance 
indicators were proposed to analyze the performance of such 
systems regarding fracture propagation. 
This paper aims to produce a numerical model of a piezoelectric 
system in order to investigate crucial design parameters such as 
actuator positioning and sequencing, and then validate it 
through an experimental setup.  
A converter topology adapted to piezoelectric actuators for 
deicing applications was selected and developed to drive the 
deicing system.  

II.  PIEZOELECTRIC DEICING SYSTEM 
The operating principle of the piezoelectric deicing system is to 
create microscopic ultrasound mechanical vibrations based on 
the converse effect (reverse piezoelectric effect). Depending on 
the resonance mode, these electromechanical vibrations 
produce a stress field that initiates cohesive fractures in the ice, 
adhesive fracture at the interface leading edge/ice, or both [11]. 
Two configurations were introduced in the literature for using 
piezoelectric actuators. The first configuration with the 
Langevin transducer was used for its ease of installation using 
bolts, and the lower risk of mechanical failure due to their 
prestressed structure which allows them to withstand higher 
stresses during operation. However, the utilization of 
prestressed PZT ceramics, mainly designed to stimulate 
structural flexural modes, can, in the best cases result in some 
ice delamination [12]. This issue, coupled with their substantial 
weight, make them less advantageous. The second 
configuration with piezoelectric patches which can be glued to 
the mechanical structure was the most commonly tested in the 
literature and seemed to be more promising (Erreur ! Source 

du renvoi introuvable.). 

A. Ice characterization 
Numerous studies and experiments have been carried out to 
determine the adhesive and cohesive strength of ice on various 
materials and under diverse icing conditions [7] 
[13],[14],[15],[16],[17],[18]. These studies revealed that the 
expected adhesive shear strength value of refrigerated glaze ice 
can be estimated to be between 0.24 MPa and 1.7 MPa. The 

average adhesion shear strength of freezer ice to steel at -10°C 
was experimentally measured to be 1.5 MPa and the maximum 
was found to be at 1.66 MPa [19] while the cohesive tensile 
strength was found to be between [0.6 – 3] MPa [20],[21] [22]. 
Glaze ice characteristics are listed in table TABLE I.  
 
 

TABLE I 
GLAZE ICE CHARACTERIZATION 

Glaze ice 
Young’s modulus (E)  9.3 GPa 
Poisson’s ratio (υ) 0.325 
Density (ρ) 900 kg/m3 
Cohesive strength [0.6 - 3] MPa 
Adhesive strength [0.24 – 1.7] MPa 

B. Deicing mechanisms 
The propagation of fractures after their initiation depending on 
the deicing mechanism has been stated in [23]. The first 
mechanism starts when tensile stress exceeds ice tensile 
strength leading to a cohesive fracture at the top of the ice layer 
which then propagates through the ice until the bottom at the 
ice/substrate interface. Consequently, adhesive fractures occur 
at this point, leading to ice delamination (Fig. 2). Cohesive 
fractures alone are insufficient for deicing as ice can stick to the 
surface on which it is accreted. Therefore, they should always 
be coupled with adhesive fractures to allow ice debonding. 
The second mechanism starts when shear stress exceeds the 
ice/substrate interface shear strength leading to the initiation of 
an adhesive fracture and then the propagation of this adhesive 
fracture. 
The examination of these two mechanisms has been conducted 
in the context of flexural and extensional modes. It has been 
shown that, in flexural modes, tensile stresses initiates fractures 
which is subsequently followed by cohesive and adhesive 
fractures [23], [24], whereas the second mechanism has been 
reported for extensional modes at high frequencies (32 kHz) 
[25], [26]. 
This contribution concentrates on the second mechanism of 
deicing using extensional modes. 
 

 
Fig. 2. Cohesive and adhesive fracture illustration. 

 
 

 
Fig. 1. Configuration of a piezoelectric de-icing system 

with piezoelectric patches and transducers. 
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C. Analytical and finite element analyses 
In order to demonstrate the concept of piezoelectric deicing 
through the second fracture mechanism, validation of a 
numerical model of a piezoelectric deicing system applied to a 
simple flat plate structure had to be done. An aluminum alloy 
A5 1050 plate (150 mm × 50 mm × 1.5 mm) with one round 
hard PZT (PIC181) piezoelectric ceramic (ø 20 mm, 1 mm) 
bonded underneath in the center using epoxy resin, was 
modeled numerically in 3D using the finite element software 
COMSOL, its impedance was calculated and compared to the 
measured one (Fig. 3 & Fig. 4). The sample is held in free 
boundary conditions. The round shape of piezoelectric ceramic 
was chosen since it suffers less stress on the edges than a 
rectangular shape (any shape with angles) [27].  
Since we are interested in the second fracture mechanism 
triggered by extensional modes, the latter is only being studied 

and tested. To simplify the problem, the actuator is considered 
to be as a point stress source and also displacements along the 
y and z axes will be neglected. This leads us to solve a one-
dimensional problem.  

 
Wave equation: 

∆𝐸#⃗ =
1
𝐶²
𝜕²𝑢#⃗
𝜕𝑡²

																																	(1) 
𝜕²𝑢"⃗
𝜕𝑥²

+
𝜕²𝑢"⃗
𝜕𝑦²

+
𝜕²𝑢"⃗
𝜕𝑧²

=
1
𝐶²
𝜕²𝑢"⃗
𝜕𝑡²

																						(2) 

Where 𝐸""⃗  is the vector mechanical wave, 𝑢"⃗  is the displacement 
vector and C is the wave propagation speed in the medium. 
We are only looking for extension modes along the length of 
the plate: 

𝜕²𝑢"⃗
𝜕𝑥²

=
1
𝐶2
𝜕2𝑢"⃗
𝜕𝑡2

																																(3) 
For a standing wave:  

𝑢(𝑥, 𝑡) = 𝑓(𝑥). 𝑔(𝑡)		with	 =
	𝑓(𝑥) = cos(𝑘𝑥 + Ψ)

	
	𝑔(𝑡) = sin	(𝜔𝑡 + 𝜑)

												(4) 

Derived Hooke’s law for shear stress of a uniform bar: 
 

𝜎 = 𝐸. 𝜀 = 𝐸
𝜕𝑢
𝜕𝑥 																												(5) 

Since the plate has free boundary conditions:  
𝜎(0, 𝑡) = 0	, 𝜎(𝐿, 𝑡) = 0																								(6) 

From (5) and (6): 
sin(Ψ) = sin(𝑘𝐿 + Ψ) = 0																					(7) 

With	𝑘 = "
#
= $%

&
 is the angular wave number. 

Then, from (7): 
Ψ = 0								and							kL = nπ																					(8) 

Condition for the existence of a standing wave: 

𝜆 =
2𝐿
𝑛 					with			𝑛 ∈ ℝ∗ →	𝑓( =

𝑛. 𝑐
2𝐿 													(9) 

 
General stationary solution: 

𝑢(𝑥, 𝑡) = Z𝐴(. cos \
𝑛𝜋
𝐿 𝑥^ . sin \

𝑛𝜋
𝐿 𝑐. 𝑡 + 𝜑(^

)*

(+,

									(10) 

𝜎(𝑥, 𝑡) = Z𝐵(. sin \
𝑛𝜋
𝐿 𝑥^ . sin \

𝑛𝜋
𝐿 𝑐. 𝑡 + 𝜑(^

)*

(+,

										(11) 

Case 1: only one actuator 

%
𝜎&𝑥𝑝, 𝑡' = 𝜎𝑝. 𝑔(𝑡)

	
∀𝑛,						𝜑𝑛 = 0	

																									(12)	

 

𝑔(𝑡) = sin a𝑁𝜋
𝑐. 𝑡
𝐿 c 

From (11) and (12): 

𝜎𝑝. sin *𝑁𝜋
𝑐. 𝑡
𝐿
+ =,𝐵𝑛. sin *

𝑛𝜋
𝐿
𝑥𝑝+ . sin *

𝑛𝜋
𝐿
𝑐. 𝑡+

+∞

𝑛=1

 

Then:  

⎩
⎨

⎧ 𝑛 = 𝑁, 𝜎𝑝 = 𝐵𝑛. sin 0
𝑁𝜋
𝐿
𝑥𝑝1

	

∀𝑛 ≠ 𝑁, 0 = 𝐵𝑛. sin 0
𝑁𝜋
𝐿
𝑥𝑝1	

 

Finally: 

 
  
Fig. 3. Measured impedance vs. simulated impedance of the 

structure (plate + piezoelectric ceramic). 

 

 
Fig. 4. 3D finite element modeling and reel image of the 

plate. 
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𝜎𝑝 = %
−1

𝑁−1
2 . 𝐵𝑛									𝑖𝑓	𝑁	𝑜𝑑𝑑

	
					0																						𝑖𝑓	𝑁	𝑒𝑣𝑒𝑛

 

 
For this study case, only the fundamental extension mode and 
its odd harmonics will appear in the plate.  
In simulations, in order to filter all other resonance modes 
except extension modes, zero displacements are imposed along 
the y and z axes. According to computations, the first 
extensional mode (fundamental) is found around 20 kHz which 
verifies the equation (9) where c = 6300 m/s for aluminum (Fig. 
5). 
 

 
Fig. 5. Shear stress level at the 1st extension mode at 20 kHz 

with zero displacement imposed on the y and z axes. 

 
Fig. 6. Stress level at the 1st extension mode around 20 kHz 

with free displacement on the x, y and z axes. 
 
However, when the displacement is set to be free on the three 
axes, the extensional mode will be coupled with flexural modes 
and other parasitic modes, making it difficult to be observable 
around 20 kHz (Fig. 6). At the first extensional mode coupled 
with other modes, stress level (shear + tensile) was not 
sufficient for cracking or debonding the 2 mm glaze ice layer 
and nothing happened experimentally. On the other hand, at the 
3rd extensional mode around 60 kHz (Fig. 7 and Fig. 8), stress 
level (mainly shear stress) was higher, leading to some cohesive 
fractures but mainly adhesive fractures as illustrated in Fig. 9. 
In order to amplify the 3rd extensional mode, two other ceramics 
were bonded to the plate at the extensional wave crests as in 
Fig. 10. 

 
Fig. 7. Shear stress level at the 3rd extension mode at 59 kHz 

with zero displacement imposed on the y and z axes. 

 
Fig. 8. Shear stress level at the 3rd extension mode at 59 kHz 

with zero displacement imposed on the y and z axes. 

 
Fig. 9. Cohesive fractures and propagation of adhesive fracture 

at the 3rd extension mode. 
 
Case 2: For three actuators placed at: 

𝑥1 =
𝐿
6
	, 𝑥2 =

𝐿
2
	and	𝑥3 =

5𝐿
6
	 ∶ 

From (11) and (12): 

⎩
⎪
⎨

⎪
⎧ 𝜎(𝑥1, 𝑡) = 𝜎1. 𝑔(𝑡) 		→ 			 𝜎1 = 𝐵1. sin *𝑛

𝜋
6
+

𝜎(𝑥2, 𝑡) = 𝜎2. 𝑔(𝑡) 		→ 			 𝜎2 = 𝐵2. sin *𝑛
𝜋
2
+

		𝜎(𝑥3, 𝑡) = 𝜎3. 𝑔(𝑡) 		→ 			 𝜎3 = 𝐵3. sin 0𝑛
5𝜋
6
1

 

Were 𝐵1 = 𝐵2 = 𝐵3 = 𝐵, since the three actuators are the 
same. 
Then: 

TABLE II 
STRESS DISTRIBUTION BASED ON ACTUATOR POSITIONING 

AND THEIR FEEDING DIRECTION 
𝒏 𝝈𝟏 𝝈𝟐 𝝈𝟑 Feeding 

direction 
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1 𝐵/2	 𝐵 𝐵/2 ↑			↑			↑ 
2 𝐵. √3/2 0 -𝐵. √3/2 ↑			×			↑ 
3 𝐵 -𝐵 𝐵 ↑			↓			↑ 
4 𝐵. √3/2 0 -𝐵. √3/2 ↑			×			↓ 
5 𝐵/2 𝐵 𝐵/2 ↑			↑			↑ 
6 0 0 0 ×	×	×	 

 
Fig. 10. Positioning and feeding direction of the three 

ceramics. 
 
Feeding direction refers to the polarity of the applied voltage. 
The applied voltage on the three actuators will be like indicated 
in the 3rd case (mode 3) of Table TABLE II like indicated in 
Fig. 10. Computation results show as expected, a zero shear 
stress level for the first mode (Fig. 11) and a shear stress level 
approximately three times higher for the 3rd mode compared to 
when only one actuator is used (Fig. 12). As a result, we get in 
experimentation tests for the 3rd mode a multiple cohesive 
fracture at the beginning due to parasitic modes, followed by 
adhesive fractures and then a complete debonding of the ice. 
These three steps occur instantaneously at 200 V, taking place 
within a span of approximately 5 seconds as shown in Fig. 15.  
 

 
Fig. 11. Shear stress level traced along a line that runs the 

length of the plate at the 1st extension mode for one actuator 
at a time, and then all three together. 

 

 
Fig. 12. Shear stress level traced along a line that runs the 

length of the plate at the 3rd extension mode for one actuator 
at a time, and then all three together. 

 

 
Fig. 13. Shear stress level at the 3rd extension mode at 59 
kHz with zero displacement imposed on the y and z axes. 

 
Fig. 14. Shear stress level at the 3rd extension mode around 

59 kHz with free displacement on the x, y and z axes. 
 

 
Fig. 15. Experimental result of deicing a 2 mm glaze ice 
layer at the 3rd extension mode of the rectangular plate. 

REPRESENTATIVE MODEL: 
Following the validation of the numerical model of the small 
plate with the experimental setup, a more representative model 
was made. A large plate of aluminum of 350 mm × 250 mm × 
1.5 mm dimension with 20 actuators with the same dimensions 
and material as used previously were employed to create the 
finale setup. The same strategy was used for driving and placing 
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the actuators. As illustrated in Figure 15, actuators were placed 
in a way to amplify the 7th extension mode at 55 kHz where we 
get enough stress and thus enough displacement to crack and 

delaminate the ice. At the same resonant frequency and with the 
same power by cm²? 
 

III. ELECTRICAL SPECIFICATIONS OF THE SYSTEM 
In order to properly drive a piezoelectric actuator and improve 
its performance, it is essential to know its electrical 
characteristics. The most common equivalent circuit that 
characterizes a piezoelectric actuator around its resonance 
frequency is the Van Dyke model. In this model, we identify 
the static capacitance Cs paralleled with a motional branch (Lm, 
Cm, Rm). Each piezoelectric actuator has several resonance 
frequencies in which its impedance has a lower magnitude as 
compared to non-resonance frequencies. To attain higher 
efficiency and deliver more power to the ultrasound system, 
actuators should be excited at their dominant resonance 
frequency which corresponds in our case to the 7th extension 
mode at 55 kHz (Fig. 17). 
The deicing system and its power supply must comply with the 

aviation regulations and standards (DO 160), as well as the 
installation constraints of the equipment (safety, space 
requirements), while allowing its proper operation. 
The power supply should deliver a sinusoidal voltage to the 
actuators in order to excite the desired mode. Otherwise, 
undesired harmonics (low-quality signal) can deteriorate the 
actuator’s performance and increase power consumption in the 
system. 
Finally, given the space constraints that do not allow to place 
the converter to be as close as possible to the load (actuators), 
the latter will be fed through 2 meters long cables (Fig. 18). 

IV. DISCUSSION ON THE DRIVING POWER SUPPLY FOR 
OPTIMIZED FEEDING OF THE PZT ACTUATORS STATE OF 
THE ART 
Since the electrical behavior depends on the mechanical load 

and the temperature [27], it is essential to consider some aspects 
when designing the power supply. One is the driving frequency 
which must correspond to the mechanical resonance frequency 
of the actuators attached to the leading edge. In fact, at this 
resonance, the power transfer is better, and the reactive energy 
consumption is reduced (less losses). Another important aspect 
is the quality of the excitation signal, which has an important 
role in the piezoelectric actuator’s performance and lifetime 
[28]. 

 

 
Fig. 16. Computation result of the 7th extension mode and its corresponding experimentation results. 

 
Fig. 17.  Van Dyke circuit model of the setup in Fig. 16 

around the 7th extension mode.    
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In this context, several techniques are proposed in the literature 
[29],[30],[31]. Linear power amplifiers (A, B, AB, ...) are 
used to feed piezoelectric loads because they can generate 
signals with low harmonic distortion rates. However, they 
have low efficiency and are often bulky and heavy. 
Therefore, switched-mode power supplies are more and 
more used and dominate the market because of their good 
efficiency and high-power density. 
In this regard, various literature has focused on driving 
piezoelectric actuators using voltage source inverters. 
Resonant inverters (LC or LLCC) and PWM inverters (LC 
or LLCC) are the most commonly used. Other topologies 
have been used, such as the three-level NPC inverter and the 
current inverter [7]. The main disadvantages of resonant 
inverters are the volume and weight of the magnetic 
elements of the resonant filter and a very limited variation 
of the operating frequency. To overcome these drawbacks, 
PWM-controlled inverters (LC or LLCC) have been 
proposed [32]. The disadvantages of PWM control are often 
related to the switching frequency, which generates high 
switching losses and EMC (Electromagnetic Compatibility) 
problems. These issues can be particularly limiting in some 
cases, especially when GaN transistors are employed. 
In [27], an investigation of three interesting topologies for 
driving ultrasound piezoelectric actuators under 
aeronautical constraints was conducted. The study revealed 
the predominance of the ARCPI (Auxiliary Resonant 
Commutated Pole Inverter) structure over the current source 
inverter (CSI) and the Energy Recovery "Resonant" 
structure.  

AUXILIARY RESONANT COMMUTATED POLE INVERTER 
(ARCPI): 
Several soft-switching inverter topologies have been 
proposed in the literature [33], [34], [35]. This type of 
inverter aims to achieve high-frequency operation with 
reduced switching losses and electromagnetic interference 
(EMI). An interesting example of soft-switching inverters 
of the "Resonant Pole Inverter (RPI)" family is the 
Auxiliary Resonant Commutated Pole Inverter (ARCPI) 
[36], [37],[38]. The circuit topology, and its theoretical 
waveforms, are  illustrated in Fig. 20. 
The inverter consists of two main arms and an auxiliary 
circuit connected to a capacitive divider bridge. In order to 
limit losses as well as the number of components, one arm 
is switched at Low Frequency (LF) synchronized to the 
transducer frequency, and the other is switched at High 
Frequency (HF), on which the auxiliary circuit is connected. 
The role of this circuit is to charge and discharge the parasitic 
capacitances 𝐶𝑜𝑠𝑠 to ensure ZVS condition on the HF arm. On 
the other hand, the control law of the auxiliary circuit implies 
zero current switching (ZCS) of its transistors. Moreover, since 
the auxiliary circuit is not in the main power path, the power 
rating of its switches will be reduced compared to that of the 
main switches. The control applied is a unipolar PWM which 
reduces the output voltage harmonics. 
The experimental setup of the ARCP Inverter was built in the 

laboratory, as shown in Fig. 21, in order to drive the 

piezoelectric deicing system while respecting aeronautical 
constraints. The control of the inverter has been implemented 
in an FPGA to achieve a high precision on the driving 
frequency. The LF arm is switched at low frequency (55 kHz) 
synchronized to the output voltage while the HF arm is 
switched at high frequency at 2 MHz, under 270 Vdc bus 
voltage. 
A more representative model of a wing’s or nacelle’s leading 
edge was created. An aluminum plate with the same dimension 

 
Fig. 18. Synoptic board of the complete system. 

 

 
Fig. 19.  ARCPI theoretical waveforms. 

Fig. 20. Circuit topology of the ARCP Inverter. 

 
Fig. 21. Experimental setup of the complete deicing system. 
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as in figure 20 and the same number and distribution of 
actuators was used. The aluminum plate was then curved to 
replicate a section of a leading edge. With this new setup, we 
still have the 7th extension mode at 55 kHz. 
At this frequency, an instantaneous cracking and delamination 
of 2 mm-thick-ice occurred with power input density of 0.074 
W/cm² and a surface ratio of 0.07 piezoelectric actuators per 
cm². However, the driving power converter should be sized to 
deliver at least 0.41 VA/cm² o the actuators due to their 
capacitive behavior and the voltage level needed to initiate 

fractures in the ice. 
 
 
 
 
 
 
 
 

 
 

 
Fig. 22. Computation result of the 7th extension mode and its corresponding experimentation results. 

 

CONCLUSION 
The concept of deicing of wing’s or nacelle’s leading edge 

using piezoelectric actuators was demonstrated. Deicing was 
achieved using structural extension modes to ensure a sufficient 
shear stress level for ice delamination and complete deicing. It 
was shown through finite element simulation that it is difficult, 
and even impossible, to excite a resonance mode alone 
(extension or flexural) without having parasitic modes. This 
was confirmed through multiple experimentation tests where 
deicing always involved cohesive and adhesive fractures before 
achieving a complete deicing.  

Analytical models, supported by COMSOL finite element 
simulations, were used to determine the proper excitation mode 
and the positioning of piezoelectric actuators.  

A converter topology adapted to drive piezoelectric actuators 
was chosen and developed in the laboratory, through which, an 
adequate amount of power was delivered to ensure deicing. 
Experimental results showed complete deicing with a power 
input density of 0.074W/cm² and a ratio of 0.07 piezoelectric 
actuator par cm². 
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