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Résumé Nous présentons un algorithme de clustering pour données longitudinales mixtes.
En supposant que les variables non continues sont la discrétisation de variables contin-
ues latentes, le modele s’appuie sur un mélange de lois normales matricielles, capable
de prendre en compte simultanément des structures de dépendance entre variables et
temporelles. Le modele est ainsi capable de modéliser simultanément 1’hétérogénéité des
données, 'association entre les réponses et la structure de dépendance temporelle. Un
algorithme EM est développé pour I'estimation des parametres.

Mots-clés Clustering probabiliste. Données longitudinales mixtes. Données a trois voies.
Modeles de mélange. Lois Gaussiennes matricielles.

Abstract. We present a model-based clustering algorithm to cluster longitudinal mixed
data. Assuming that the non-continuous variables are the discretization of underlying
latent continuous variables, the model relies on a mixture of matrix-variate normal distri-
butions, accounting simultaneously for within- and between-time dependence structures.
The model is thus able to concurrently model the heterogeneity, the association among
the responses and the temporal dependence structure. An EM algorithm is developed for
parameters estimation.

Keywords. Model-based Clustering. Mixed longitudinal data. Three-way data. Mixture
models. Matrix-variate Gaussians.

1 Context

In many areas of humanities and social sciences, the studies are based on questionnaires
completed by participants. Often, these questionnaires are completed several times over
the study period. The researchers then analyse these questionnaires to determine typical
behaviours within the studied population.

However, the statistical analysis of these questionnaires is far from simple, for several
reasons. First, the answers to the questions are often of different types. The analysis
of such mixed data is a current research problem in the fields of statistics and machine
learning. The second scientific obstacle is the modelling of the temporal evolution of the
answers to the questions. Currently, too frequently the analyses are done independently at
each temporal phase, then researchers try a posteriori to find links between these different
analyses, by seeking from one phase to the other to find similar typical behaviour. We can



for example cite Selosse et al., 2019 in the case of clustering of longitudinal ordinal data
for an application in psychology. The ideal way to model these data would be through
modelling all the responses to the questionnaires at the same time.

In this work we aim at providing a tool to perform model-based clustering on question-
naires repeated over time. Probabilistic (or model-based) clustering offers the advantage
of clearly stating the assumptions behind the clustering algorithm, and allows cluster
analysis to benefit from the inferential framework of statistics to address some of the
practical questions arising when performing clustering (Bouveyron et al., 2019).

2 Related work

While several approaches exist for the clustering longitudinal and mixed data separately,
literature is poor when they are to be dealt with simultaneously.

An approach to clustering longitudinal data consists in arranging the data in a three-
way format and modelling them through a matrix-variate mixture model. This approach
offers the advantage of accounting for the overall time-behavior, grouping together the
units that have a similar pattern across and within time. While not being new (Bas-
ford and McLachlan, 1985), matrix-variate distributions have recently gained attention,
and mixtures of matrix-normals (MMN) have been developed and applied both in a fre-
quentist framework in Viroli, 2011a and within a Bayesian one by Viroli, 2011b. These
models represent a natural extension of the multivariate normal mixtures to account for
temporal (or even spatial) dependencies, and have the advantage of being also relatively
easy to estimate by means of EM algorithm (a nice short description of the EM appli-
cation to MNN is provided in §2.1 of Wang and Melnykov, 2020). More recently, in
Gallaugher and McNicholas, 2018 and Melnykov and Zhu, 2018, 2019 extensions for non-
normal skewed cases have been proposed and applied. However, matrix-variate models
suffer from over-parametrization that leads to estimation issues. To overcome this issue
a more parsimonious model (Sarkar et al., 2020) and a new R package (Zhu, Sarkar, and
Melnykov, 2022) has been proposed. Despite their efficacy, up to now these methods have
only been applied to continuous data.

Our model expands the use of matrix-variate mixtures to mixed data, by building on the
framework proposed by McParland and Gormley, 2016 and further developed by Choi,
Ahn, and Kim, 2023.

3 Preliminaries

Let Z ~ MN (jxr)(M,®,%), that is a matrix-variate normal distribution where M €
R7*T"is the matrix of means, ® € RT*7T is a covariance matrix containing the variances
and covariances between the 7" occasions or times and ¥ € R7*7 is the covariance matrix



containing the variance and covariances of the J variables. The matrix-normal probability
density function (pdf) is given by

F(ZIM,®,%) = (27) 2 |®| 28| 2 exp {—%u«[z—%z — M) Y (Z - M)T]} )

The matrix-normal distribution represents a natural extension of the multivariate normal
distribution, since if Z ~ MN (jxr)(M,®,%), then vec(Z) ~ MVN jr(vec(M),d &
Y)), where vec(.) is the vectorization operator, that is the function mapping from a a
J x T matrix to a J7T-dimensional vector, and ® denotes the Kronecker product. The
property of rewriting the general covariance matrix ¥ € R/7*7/ a5 ¥ = & ® ¥ is called
separability condition. Then, the mean and the variance of the multivariate normal normal
distribution are:

E(vec(Z)|M,®,¥) =vec(M) and V(vec(Z)|M,P,%) =X ® . (2)

Being a special case of the multivariate normal distribution, the matrix-normal distribu-
tion shares the same properties, like, for instance, closure under marginalization, condi-
tioning and linear transformations (Gupta and Nagar, 2000). The separability condition
of the covariance matrix has two advantages. First, it allows the modeling of the tempo-
ral pattern of interest directly on the covariance matrix ®. Second, it represents a more
parsimonious solution than that of the unrestricted ® ® .

Introduced by Viroli, 2011a, the pdf of the finite Mixture of Matrix-Normals (MMN)

model is given by
K

[(ZIm,©) = > " mo! N (Z| My, B, S,

k=1

where ¢/*T) represents the density function of a J x T-dimensional matrix-variate normal,
K is the number of mixture components, w = {7 }X_, is the vector of mixing proportions,
subject to constraint Y. n 7, = 1 and @ = {©;}K | is the set of component-specific
parameters with Oy = { M, Ox, 3 }.

4 Model

Denote by y;;; the observation of the j-th (j = 1,.., J) variable for the i-th (i =1,..., N)
unit at time ¢ (¢ = 1,...,7), that is: imagine to observe N units and measuring J
different mixed variables 7" times throughout the course of the study. We can divide the
J mixed variables into C' continuous variables and O the non-continuous ones, such that
C + O = J. Let us reorganize this data in a random-matrix form such that Y = {V;}}¥,
is a sample of J x T-variate matrix observations Y; = (y;;;) € [ROT NO*T]1J = C + O.
The ordered classes are coded by positive integers such that each ordinal variable o the
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ordinal levels are {1,2,...,C,}, while the binary classes are coded as 0 and 1.

Assuming our population is heterogeneous and partitioned into K clusters, we define
l; = (U, ..., lix) as a one-hot encoding representation of group membership, such that
l;r, = 1 if the i-th unit belongs to the k-th cluster.

Then, we can assume that each variable y;;; is the manifestation of an underlying latent
continuous variable z;j;.

4.1 Modelling continuous variables

We assume that the observed continuous variables y;;; match exactly the latent variable:
Yijt = Zijt

4.2 Modelling ordinal variables

To map ordinal data, we follow Amato, Jacques, and Prim-Allaz, 2024. Let the generic
ordinal o-th variable have C, levels. Let 7, denote a C, 4+ 1 -dimensional vector of thresh-
olds that partition the real line for the corresponding o-th underlying continuous variable,
and let the threshold parameters be constrained such that —oo = 7,90 < 7,1 < ... <
Yo.c, = 00. If the latent z;,; is such that v,. 1 < 2o+ < Yo then the observed ordinal
response, Y ¢ = C.

Moreover, let define OY*T the set of ordinal matrices of size J x T whose row o takes
values in {1,...,C,}. Each element of O9*7 is called a response pattern. Let R be the
cardinality of O°*T. Each response pattern Y, € O°%*T is generated by a portion (2,
of the latent space RO*T according to thresholds v := {7,}9_,. Let the binary vector

Y, = (Y, ... ,YQR) be one-hot encoding of Y; such that if the r-th pattern is observed then
Y, = 1 and any other entry in the vector equals zero.

A key point is of course the choice of the thresholds v = {7;}9_;. To avoid identifiability
and computational complexity issues, thresholds are fixed and not considered as param-
eters. There are different ways to do it. We decide to follow Corneli, Bouveyron, and
Latouche, 2020, where the thresholds are chosen as v, = (—00,1.5,2.5,...,C, —0.5,00) .

4.3 Modelling categorical variables

For non-ordered categorical data with P levels we can consider a one-hot encoding for
P — 1 levels and treat them as binary variables. Binary variables can be considered as
a special case of ordinal variables where the number of classes C, = 2. The threshold
cutting the underlying continuous variable is set to 0.



4.4 Joint model

At this point, we can assume that each observed matrix Y; is indeed the manifestation
of a latent random matrix Z;, and that this underlying random matrix is linked through
different relations to the observed matrix Y;, depending on the type of variable each ele-
ment y; ;, as described in Section 4.

So, we can think of Y; as a block matrix, and conveniently split it between the first
C rows, representing the observed continuous variables, and the remaining J — C' = O
rows, representing the observed ordinal and categorical variables. Notice that the slicing
happens just over rows but not over columns. Then, for notation’s sake we can write
Y; = [V, YP]T, where Y € RO*T is the block containing the continuous variables and
Y;ﬁ € NO*T' gathers the ordinal and categorical ones (that we coded via integers).

Yiiax -~ Yixe - YilT Zi11 o ottt Rl ot RilT
RCXT . . . AR . . . . .
— _ JXT
<NOXT SYi=Yig1 0 Yige 0 Yigr | = Zi= | ziga oo Zige 0 zigr | €R
Yigr - Yigr - YigT Zi g1 ot ZiJgp ot R JT

Again, we can write Z = [Z¢, Zf |7, applying the same logic as for Y;. Then, we assume
a mixture of matrix-normal distributions on the latent space Z;.

Assuming that:

gi ~ M(l,ﬂ'), = (7T1,...,7TK)
Zillige = 1 ~ MN (151 (Zi|O%), O := { My, Py, Xy},

we get:
K
Hw,;k  1(Zi6) = T [0V (Zi1en)] ™
k=1
where M indicates the multlnomlal distribution.

In the following, Z := {Z;}¥ |, £ := {{;}}¥, will indicate the ensembles of Z;, ¢;. Finally,
let Y := {Y;}, be the collection of the observed matrices ;.

5 Estimation

To estimate the model, since we do not observe neither Z nor ¢, we resort to the EM
algorithm (Dempster, Laird, and Rubin, 1977).
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The EM algorithm is an iterative algorithm alternates two steps: the expectation step

~ (0
(E-step) and the maximization step (M-step). It start from an initialization 6" of the
parameters. Then, let denote with the superscript (s + 1) the parameters estimated in
the current step and with (s) the ones computed in the previous step.

The E-step consists of evaluating Q(©, (:)(S)) =E(log Lo(©;Y, Z, £)|(:)(S), Y), that is the
expectation of the complete log-likelihood conditioned on the parameters computed in the
previous step and on the observed data.

In the M-step the parameters are updated by maximizing the expected complete log-

likelihood found on the E step, that is @(S+1) = arg max Q(@,(':)(S)). The iteration
e

process is repeated until convergence on the log-likelihood is met.

5.1 Complete log-likelihood

The complete log-likelihood can be written, up to some constant c, as:

Y& TJ J
log Lo(©:;Y,Z,€) =) Y b |log(m) — — log(2m) — o log(|Pk])—
T 1 -1 -1 T
108 (I%]) = 5tr[S (7 — M@ (Z = Mi)T] |+ (3)

The unknown parameters to be estimated are © := {m;,, My, ®p, 3p }H< |

5.2 E-step

Looking at 3, keeping in time the block-structure of Z; and the links we defined in 4, it is
easy to see that the expected values to be computed are ]E(Zik]é)(s), Y), E(&kZﬂ@(s),Y)
and of E(0;, 200" 20716 Y) or E(, 2772 2716, Y) by the cyclic property of
the trace. We will compute both as they are both needed in the M-step.

The first involves computing a cumulative probability of a matrix-variate normal distribu-
tion according to the thresholds described in Section 4. This in turn means solving a com-
plex high-dimensional integral, which is hardly tractable analytically. However, it can be
approximated through a Monte-Carlo approach applied on the vectorized reparametriza-
tion of the matrix-variate distribution according to Section 3.

The remaining three require the computation of the first and second moments of a trun-
cated matrix-variate distribution. However, again that is a complex task with no close
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solution, so we will need to work the issue around. We can bypass the problem by again
working on the vectorized version of the distribution through the use of a Monte Carlo
approach and specifically the use of a Gibbs sampler to sample from a truncated mul-
tivariate normal distribution. The samples generated to calculate the first moment can
be reused to compute the second moment by calculating the inner product of the vectors
used to compute the first then calculating the sample mean of these inner products.

5.3 M-step

To maximize the expected complete log-likelihood we can take the derivatives of Equation
3 with respect to the parameters. All updating equations have closed form and can be
computed thanks to the expectations found in the E-step.

6 Conclusions

Mixture of matrix-variate normal distributions can be an efficient way to cluster longi-
tudinal continuous data. Assuming that non-continuous variables are a discretization of
latent continuous variables allows us to extend the use of these MMN to cluster longi-
tudinal mixed data sets. Numerical study on synthetic data sets as well as real data
application concerning diet choice during the pandemic (Frangois-Lecompte et al., 2020)
will be presented.
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