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Abstract—The Squirrel Prover is a proof assistant designed

for the computational verification of cryptographic protocols. It
implements a probabilistic logic that captures cryptographic and
probabilistic arguments used in security proofs. This logic operates
in the asymptotic security setting, which limits the expressiveness
of formulas and proofs. As a consequence, it can only prove
security for finite interactions with a protocol, falling outside of the
polynomial-level of security usually expected by cryptographers.
We lift all these limitations by moving to a concrete security
setting. We extend the logic with concrete security predicates,
and design a corresponding proof system. We show the usefulness
of these extensions on a case study, and through a novel proof-
transformation result which shows that a large class of asymptotic
logic security proofs can be automatically rewritten into concrete
logic security proofs, improving security bounds exponentially.

I . I N T R O D U C T I O N

Cryptographic protocols are crucial to get secure communica-
tions, e.g. for online payment or messaging. Strong guarantees
on their security can be provided through cryptographic proofs,
via formal mathematical analyses of the protocols and the
targetted security properties. Unfortunately, properly designing
a protocol remains challenging [1], [2], as cryptographic
proofs can be involved and error-prone [3], [4], because of
the complexity of the protocol and the intricacies of the
cryptographic arguments needed. Theses issues have lead
to the development of verification tools allowing for the
mechanization of cryptographic proofs (see [5] for a survey).

In more details, the principle of a cryptographic proof is
to show that no adversary — assumed to be an arbitrary
probabilistic polynomial Turing machine (PPTM) — can break
the protocol security. Pen-and-paper proofs usually proceed as
follows. First, the security of the protocol is expressed as a
game between the adversary and a challenger, modeling the
security of the protocol. Then, this game is iteratively modified
by a sequence of game hops [6], where each hop is justified by
a cryptographic reduction or some other probabilistic argument.
Finally, the proof concludes when the prover manages to obtain
a game in which security trivially holds.

Example 1. The Private Authentication (PA) protocol [7] is
a two-message protocol in which agents A and B attempt to
authenticate each other and establish a shared session key. It
aims to ensure privacy in the sense that an outside observer
cannot tell whether B accepts to communicate with A. To do
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so, A sends to B the message enc(⟨pkA, nA⟩, pkB, rA), i.e. a
randomized asymmetric encryption of A’s identity (represented
by its public key) and of a fresh random nonce nA of
length η, under the public key of B — rA is the randomness
needed by the randomized asymmetric encryption enc. When
he receives this message, B decrypts it and replies with
enc(⟨nB, nA⟩, pkA, rB). If the received message is not valid, B
replies with enc(⟨nB, 0η⟩, pkA, rB). Notice that B’s two possible
answers are encryptions of same-length plaintexts, and will thus
be indistinguishable for an outside observer. In this example,
we want to prove that the adversary cannot know if B wanted
to talk to A or not. This property holds thanks to B’s second
possible answer, which is a decoy message sent when B doesn’t
accept the communication with A. Note that this is independent
from proving that A is able to know whether B has accepted
her message or not (which is actually the case here, up to
negligible probability).

Several techniques have been developed to mechanize the
analysis of such cryptographic arguments. The CryptoVerif [8]
tool proceeds by the automatic application of game transforma-
tions. While this tool is highly automated on simple examples,
more complex protocols often require heavy user guidance. It
must also be noted that CryptoVerif does not support generic
mathematical reasoning: when such arguments are needed, they
must be assumed in the tool through axioms, and externally
proven. Probabilistic Relational Hoare Logics [9] (pRHL),
upon which several tools are based (e.g. EasyCrypt [10],
CryptHOL [11], and SSProve [12]), encodes games as impera-
tive programs, and allows to express cryptographic reductions
as relational properties of these programs. This is a very
expressive logic, but this comes at a cost: reasoning is done
at a relatively low level, which can lead to long and tedious
proof developments.

In this paper, we are interested in another approach for
cryptographic protocol verification called the Computationally
Complete Symbolic Attacker (CCSA) model. This approach,
initially introduced in [13], is based on a logic with a
probabilistic semantics that can be used to encode a protocol
security as an indistinguishability formula u⃗ ∼ v⃗ where,
essentially, u⃗ and v⃗ model messages exchanged over the
network (typically, u⃗ corresponds to an execution of the
protocol studied, while v⃗ is for an idealized version of this
protocol). Then, the formula u⃗ ∼ v⃗ can be shown valid using
reasoning rules, therefore proving that the protocol is secure.
The CCSA logic — modified to internalize the notion of
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protocol execution and of inductive reasoning — has been
implemented into a proof assistant called Squirrel [14]. Since
then, Squirrel and its logic have been extended and used several
times, to support and analyze stateful protocols [15], to be
adapted to a post-quantum cryptography setting [16], and to
support higher-order reasoning [17]. As the logic of [17] is
the most expressive one, we will rely on it in this paper.

Example 2. We consider a simple scenario with two agents A
and B willing to talk to each other, where each agent plays an
arbitrary number of sessions. Our encoding uses some mutually
recursive functions: output (X,N) is the output of agent X ∈
{A,B} for the N-th interaction with the adversary; choose N
lets the adversary decide whether the N-th interaction is with
A or B; input N is the N-th input sent by the adversary; and
frame N is the sequence of the first N outputs of the protocol,
extended with the public values pkA and pkB.

The N-th input input N is any value that can be computed
by the adversary using its current knowledge, i.e. the sequence
frame (N−1) of the first N−1 outputs of the protocol. We model
the adversary’s computation using the adversarial function atti,
and define choose (N−1) using the adversarial function attc:

input N
def
= atti(frame (N − 1)) choose N

def
= attc(frame (N − 1))

The sequence of outputs frame N is easily defined as:

frame N
def
=

{
⟨ frame (N − 1), output (choose N, N)⟩ if N ≥ 0

pkA, pkB if N = 0

To model the freshness of the random nonce nA and
encryption randomness rA in A’s message, we index these
values by the interaction number N. We do the same for B.

output (A,N)
def
= enc(⟨ pkA, nA N⟩, pkB, rA N)

output (B,N)
def
=

if fst (dec(input N, skB)) = pkA &&

len (snd (dec(input N, skB))) = η

then enc(⟨ nB N, snd (dec(input N, skB))⟩, pkA, rB N)

else enc(⟨ nB N, 0η⟩, pkA, rB N)

Here, fst and snd denote the first and second projections w.r.t.
⟨ ·,·⟩, and len denotes the length function.

The CCSA approach operates in the asymptotic security
model, which considers that a protocol is secure if the
probability that an adversary breaks it is a negligible function
of the security parameter η — where η can be, e.g., the length
of the keys, and a function is negligible if it is asymptotically
smaller than the inverse of any polynomial. In particular,
predicate u⃗ ∼ v⃗ states that the advantage of any PTIME
adversary in distinguishing u⃗ from v⃗ is negligible in η.

Example 3. Following our running example of the PA protocol,
we can express the fact that it preserves user A’s privacy with
the unlinkability property [18] frame N ∼ frameid N which
states that no adversary can distinguish an execution of the
protocol from an idealization of the protocol where, each time A
sends a new message, we change its identity by using a different

public key pk'A N in each output. This idealized protocol is
defined as the normal protocol, except for A’s output which
is replaced by: outputid (A,N)

def
= enc(⟨ pk'A N, nA N⟩, pkB, rA N).

The identity verification in B remains the same, but it may not
pass anymore even when an output of A is forwarded to B:
pkA may or may not be equal to pk′A N depending on N.

If the encryption function is IND-CCA1, it can be shown
that the PA protocol is unlinkable for any constant number of
sessions. More precisely, we can prove by induction over N:

∀̃N. const(N) ⇒̃ frame N ∼ frameid N (1)

a) Limitations: The asymptotic model allows for simple,
high-level CCSA logic that completely hides probabilities and
security parameter from the user. However, this limits the logic
in several ways:

1) Expressivity: precise security bounds cannot be expressed
by the logic, limiting the practical applicability of the
logic [19]. E.g., the logic cannot be used to determine
what should be the size the keys in a concrete application.

2) Reasoning: some cryptographic arguments cannot be
captured in their full generality by the logic. For example,
the most general version of the hybrid argument [20], [21]
states that t0 ∼ tP (η) (where P is a polynomial) if it can
be proved that, for every i < P (η), we have ti ∼ ti+1 with
a uniform advantage w.r.t. the security parameter. Since
the asymptotic CCSA logic cannot express precise security
bounds, the uniformity conditions cannot be checked,
putting such arguments out-of-reach.

3) Security guarantees: as a consequence of 2), the adversary
must usually be restricted to a constant (i.e. independent
from η) number of interactions with the protocol. For
example, this is the case for the formula in Eq. (1)
of Example 3, as it is proved by induction over N —
induction is essentially an hybrid argument. Said otherwise,
asymptotic CCSA logic can usually only be used to
prove that a protocol provides a parametric level of
security, instead of the stronger polynomial level of
security expected by cryptographers.
b) Contributions: We lift all these limitations by moving

to the concrete security setting. As a first contribution, we
extend the asymptotic CCSA logic of [17] with concrete
security variants of the security predicates: e.g., the new
predicate u ∼ε v states that the distinguishing advantage of
any adversary against u ∼ v is at most ε. Then, we design a
new proof system for these new concrete security predicates,
and show its usefulness through a case study.

Unfortunately, translating idiomatic asymptotic CCSA proofs
in the concrete logic yields advantage upper-bounds which are
exponential in the number of interactions with the adversary.
Because of this, it could be feared that the idiomatic CCSA
proof strategy — and all existing proofs relying on it — should
be abandoned. We argue that this is not the case through our
second contribution, a novel theoretical result which shows that
a large class of (asymptotic) CCSA proofs can be automatically
rewritten into concrete security proofs with an optimized
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advantage which reaches the sought-after polynomial level
of security. Crucially, this result is not a simple rule-by-rule
translation, but involves a whole-proof transformation through
non-trivial rule commutations. Finally, we show a representative
practical example proof which falls in our class of proofs, and
can thus be transformed to obtain polynomial security.

c) Outline: We describe our CCSA logic for concrete
security in Section II, and its proof system in Section III. We
illustrate this system on the Private Authentication protocol
in Section IV. We then present in Section V our proof-
transformation result, allowing to derive polynomial security
from any proof in a significant fragment of our system.

I I . L O G I C

We now present our extension of the probabilistic logic for
cryptographic reasoning of [17] to a concrete security setting.

Terms of the logic, which are the same as in [17] (extended
with let in constructor), are simply-typed higher-order terms
with special symbols (called names) used to denote random
samplings. A key feature of the logic is that all terms are
interpreted using the same set of random bits, from which they
retrieve exactly the randomness they need. This allows to track
probabilistic dependencies between terms.

Formulas of [17] are first-order formulas built on top of
a set of predicates capturing probabilistic and computational
properties of terms. Mainly, our new logic extends the formulas
of [17] with two new concrete security predicates: [ϕ]ε
states that the probability that ϕ does not hold is at most
ε, and t0 ∼ε t1 states that the probability that an adversary
distinguishes t0 from t1 is at most ε.

A. Terms
We first recall the types and terms of our logic.

a) Types: We consider simple types, noted τ , generated
from base types τb ∈ T using the arrow construct · → ·. The set
of base types T must contain at least the types bool,message,
int, int (modeling the set N ∪ {+∞}), bint (modeling the set
of integers [0, Nη] where Nη is an arbitrary integer fixed by
the model), and real (modeling the set R ∪ {−∞,+∞}).

We identify a subset B ⊆ T of bit-string encodable base
types, that contains at least bool, message, bint, int, and int.
We say that a type has order 0 when it belongs to B, and that
it has order n+ 1 when it is of the form τ → τ ′ where τ has
order at most n and τ ′ has order at most n+ 1. For example,
intk → message = int → . . .→ int → message has order 1.

The semantics of types is described by a type structure M

which assigns to each base type τb ∈ T and each value of the
security parameter η ∈ N an interpretation domain JτbK

η
M. The

interpretation of a type in B must be a subset of {0, 1}∗. We
force the interpretation of standard types to be the expected
one, e.g. JintKηM is the set of (bit-string encodings of) integers
N and JmessageKηM = {0, 1}∗ (for every η). Arbitrary types are
then interpreted by defining Jτ0 → τ1K

η
M = Jτ0K

η
M → Jτ1K

η
M.

We say that a type is finite if its interpretation is finite for
every η. For example, the type bint is finite since for every
η ∈ N, it contains Nη + 1 elements for some arbitrary integer
Nη fixed by the model.

b) Terms: Our terms are simply-typed λ-terms built upon
a set of variables X :

t ::= x | t t | λ(x : τ). t | ∀(x : τ). t | let (x : τ) = t in t

where x ∈ X . Terms are considered modulo α-renaming, and
we let fv(t) be the free variables of t. A variable x in X
can be used to denote a function argument coming from a λ
binder, a logical variable quantified by a ∀, but also a function
symbol (e.g. integer addition +). We write λx1, . . . , xn. t for
λx1. . . . .λxn. t, and t u⃗ stands for ((t u1) . . . un) when
u⃗ = u1, . . . , un.

An environment E is a finite sequence of variable declara-
tions (x : τ) and definitions (x : τ = t). A declared or defined
variable is said to be bound in E, and we require that no
environment declares a variable twice. We consider the same
standard type system as [17], and we write E ⊢ t : τ (resp.
⊢ E) if t has type τ in E (resp. if E is well-typed). As usual,
we require that terms and environments are well-typed.

We only consider environments containing at least the
declarations of a number of standard functions such as Boolean
connectives (e.g. ∧,∨,→), integer operations (+,×, . . . ), etc.

Environments support (mutually) recursive definitions. In
our examples, this is used when defining frame N. We refer
the reader to [17] for a presentation of the well-foundedness
conditions guarding recursive definitions.

A term structure M for E is a type structure extended with:
• a set TM,η = T a

M,η × T h
M,η where T a

M,η (resp. T h
M,η) is

the finite set of all random tapes of a given length. For
example, T a

M,η can be the set {0, 1}P (η) of all random
tapes of length P (η) for some polynomial P . Tapes in
T a
M,η are used for the adversarial randomness, while tapes

in T h
M,η are used for honest randomness (e.g. for names).

• for any defined or declared variable x in E of type τ , M
defines its interpretation M(x) ∈ RVM(τ) where RVM(τ)
is the set of η-indexed random variables from TM,η to the
sampling space JτKηM.

Variables interpretation is lifted to term interpretation J·Kη,ρM :

JxKη,ρM

def
= M(x)(η)(ρ) Jt t′Kη,ρM

def
= JtKη,ρM (Jt′Kη,ρM )

Jλ(x : τ0). tK
η,ρ
M

def
=

{
Jτ0K

η
M → JτKηM
a 7→ JtKη,ρ

M[x 7→1
η
a]

where, in the last case, t is of type τ and 1ηa ∈ RVM(τ) is a
random variable such that 1ηa(η)(ρ) = a for every ρ.

A model M for E is a term structure such that, for any
definition (x : τ = t) ∈ E, JxKη,ρM = JtKη,ρM . The existence
of models is non-trivial due to recursive definitions, but
[17, Theorem 1] guarantees it, thanks to well-foundedness
conditions.

c) Names: We assume a subset N ⊆ X of symbols called
names, used to denote random samplings. A name n ∈ N can
only be declared in E, and must be of type τ0 → τ1. The
semantics JnKM of [17] interprets a name n as a sequence
(indexed by values in τ0) of independent identically distributed
random samplings over τ1. For example, Jn 0KM and Jn 1KM

3



are independent random variables. This is also true for distinct
name symbols: Jn iKM and Jn′ jKM are always independent.

To guarantee that all instances of a name can be sampled
with finite randomness, we require that τ0 is a finite type.

When indices are not needed, we allow names of base types,
corresponding to a single random sampling (independent of
other names, as before). For instance, Example 2 uses indexed
names rA : bint → message but also name skA : message to
model the secret key from which pkA = pk skA is derived.

B. Execution and Cost Model

Many rules of our logic will be proven by reductions and
will thus have a time overhead, i.e. the additional time taken by
the adversary involved in the reduction. In a concrete security
setting, this time overhead needs to be tracked, leading to two
difficulties: first, accumulated time overheads can clutter the
proof, making it hard to analyze; second, bounding the time
overhead in a reduction step may require proving additional
cost-related sub-goals, which can be tedious. We alleviate these
issues by fine-tuning our execution and cost model. The model
described below is a key ingredient to obtain a simple proof
system: it allows to reduce (and sometimes entirely remove)
time overheads in proof rules.

We now describe PPTM, our set of machines. A machine
A ∈ PPTM with l bit-string inputs and k oracles is a Turing
machine over the binary alphabet with a special read-only input
tape used to receive the security parameter in unary, at least
l working tapes, a special oracle input tape, and a read-only
randomness tape. The working tapes of the machine also serve
as input and output tapes, as well as output tapes for the oracles.
If w⃗ is a vector of l bit-strings and f⃗ is a vector of k bit-string
oracles, i.e. functions from bit-strings to bit-strings:

w⃗ = (w1, . . . , wl) where ∀i. wi ∈ {0, 1}∗

f⃗ = (f1, . . . , fk) where ∀i. fi ∈ {0, 1}∗ → {0, 1}∗

then the result Af⃗ (1η, w⃗, ρa) of the execution of A on inputs
w⃗, f⃗ with security parameter η and randomness ρa is the bit-
string obtained as follows:

• A’s security parameter tape is initialized to 1η, its
randomness tape to ρa, its first l working tapes to w⃗.
The rest of the tapes are all initially empty.

• Then, A starts its execution, modifying the content of its
tapes according to its transition table.

• At any point, A can make a special transition to call oracle
fi, as follows. A selects a working tape T (T cannot be
the oracle input tape). Then, in one step fi(x) is written
on tape T, where x is the content of the oracle input tape
and the oracle input tape is reset to the empty tape.

• When it ends, A returns the content of its output tape.
We allow A to have several heads, also allowing multiple heads
on the same tape, we require that all heads start at the begining
of the tape when the execution of A start. The layout of the
machine A is static: in particular, no new tape (or head) can be
spawned during the execution, and A’s output tape is always

the same. We require that A’s transitions are deterministic —
any source of randomness must come from the random tape ρa.

The time cost timeA(1
η, w⃗, f⃗ , ρa) is the number of compu-

tation steps of Af⃗ (1η, w⃗, ρa).
One of the consequences of our model choice, which helps

to simplify overhead expressions in several rules, is that a
machine A running in time t cannot call an oracle on an input
of size larger than t. Indeed, such an input would have to be
written on the oracle input tape. This relies on the fact that the
oracle input tape is not a working tape, and therefore cannot
be selected by A to hold the result of an oracle call. However,
we do not make any assumption on oracles, which can return
arbitrarily large bit-strings in one step.

C. Global Formulas

We now present the formulas of our logic and their semantics.
We use a standard first-order logic over our higher-order terms,
with predicates that are specific to concrete security reasoning.
We consider, in particular, a predicate ∼ for computational
indistinguishability and a predicate [·] for almost-always truth.
The syntax is as follows, where u, u⃗, v⃗, ϕ, ε, l and t are
(sequences of) terms (see below for constraints on their types):

F ::= F ⇒̃ F | ¬̃F | ∀̃(x : τ). F

| const(u) | advt,o⃗(u) | [ϕ]ε | u⃗ ∼ε v⃗ | blenl(u)

We write M |= F when F holds in M. This is defined as usual
in first-order logic for Boolean connectives and quantifiers, and
we give below the semantics of our specific predicates. As
usual, we obtain ∧̃, ∨̃, ∃̃ from ⇒̃, ¬̃ and ∀̃. Remark that we use
a special notation to distinguish global Boolean connectives and
quantifiers ⇒̃, ∀̃, . . . from their local counter-parts ⇒,∀, . . . .

We now describe and give the semantics of our predicates.
a) Almost-always truth: The predicate [ϕ]ε states that ϕ

(a term of type bool) is true with a probability of error that is
bounded by ε (a term of type real). In order to ease equational
reasoning in our proof system, we will more specifically use
the expectation of the random variable ρ 7→ JεKη,ρM . Formally,

M |= [ϕ]ε iff Prρ (JϕKη,ρM ) ≥ 1− Eρ(JεK
η,ρ
M ) for all η

For example if n0, n1 are names drawn uniformly at random
from {0, 1}η , both [n0 = n0]0 and [n0 ̸= n1] 1

2η
hold (where 0

and 1
2η are terms interpreted as their real counterpart).
b) Indistinguishability: The indistinguishability predicate

only makes sense when the terms on both sides of the
equivalence can be passed to a distinguisher A ∈ PPTM, either
as inputs or as oracles. The former case corresponds to order
0 terms (i.e. terms with order 0 types) and the latter to order 1
terms. We thus only consider instances u⃗l, f⃗l ∼ε u⃗r, f⃗r where:

• u⃗l and u⃗r are two same-length sequences of order 0 terms,
where the kth terms of each sequence have the same type;

• f⃗l, f⃗r are two sequences of order 1 terms, of length m,
with similarly matching types for kth elements;

• ε has type int → int
k → real: intuitively, the bound ε is

a function of (a) the execution time of the distinguisher
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A and (b) the number of calls to each of the k oracles in
the execution of A.

The predicate u⃗l, f⃗l ∼ε u⃗r, f⃗r states that ε upper-bounds the
probability that an adversary distinguishes two scenarios: in
the left scenario, the adversary receives the bit-strings u⃗l and
has access to the oracles f⃗l; while in the right scenario, it
receives u⃗r and has access to oracles f⃗r. We require that
the probability that any adversary A distinguishes these two
scenarios is bounded by the expectation of ε(t, o⃗), where t
is an upper-bound on A’s running time and o⃗ is a vector of
integers representing the maximal numbers of calls that A can
make for each oracle. Formally, for an adversary A with no
inputs, we let timeηA ∈ N ∪ {+∞} be the maximal run-time
of A for a fixed η:

timeηA
def
= supu⃗,f⃗ ,ρa

timeA(1
η, u⃗, f⃗ , ρa)

Similarly, we let callsηA ∈ (N ∪ {+∞})m be the vector of the
maximal numbers of oracle calls of A for security parameter η
on any oracles and random tape. All these upper bounds may
be infinite for some adversaries A: in that case, the bound on
the advantage of A will typically be uninformative, but this is
an expected feature of concrete security. Then, M |= u⃗l, f⃗l ∼ε

u⃗r, f⃗r iff for any A with |u⃗l| inputs and m oracles,∣∣∣∣∣∣ Pr
(
AJf⃗lKη,ρ

M

(
1η, Ju⃗lK

η,ρ
M , ρa

))
−Pr

(
AJf⃗rKη,ρ

M

(
1η, Ju⃗rK

η,ρ
M , ρa

))
∣∣∣∣∣∣ ≤ Eρ

(
JεKη,ρM (timeηA, calls

η
A)

)
where the probabilities are taken over ρ = (ρa, ρh) in TM,η .

Example 4. Let us assume that enc is interpreted as an IND-
CPA encryption with associated public key derivation pk, over a
type of plaintexts that is finite. Assuming that 0len : message →
message is interpreted as the function x 7→ 0|x|, we have

λi.enc(i, pk k, r i) ∼ε λi.enc(0len i, pk k, r i)

provided that ε : int → int → real is such that ε t n upper-
bounds the concrete advantage of an IND-CPA adversary
against enc, running in time at most t and making at most n
calls to the CPA oracle.

c) Constancy: The predicate const(u) states that the
semantics of an arbitrary term u does not depend on the security
parameter η or the random tape ρ. Formally, M |= const(u)
iff. there exists c such that JuKη,ρM = c for all η and ρ ∈ TM,η .

d) Deterministic values: For any term u of any type
and order, the predicate det(u) states that u is a deterministic
value that, as opposed to const(u), can depend on the security
parameter η. More precisely, for any model M, we have M |=
det(u) iff. there exists a sequence of values (cη)η∈N such that
JuKη,ρM = cη for any η and ρ.

e) Bounded length: The predicate blenl(u) states that the
interpretation of u is of length at most l. Its precise meaning
depends on the order of u, which must be at most 1.

When u is of order 0, l must have type int, and we have
M |= blenl(u) if for all η and ρ, Jlen(u)Kη,ρM ≤ infρ JlKη,ρM .
Note that we handle the possible dependency of JlK on ρ by

taking the infimum of JlKη,ρM over all tapes (for a given η). In
practice, proofs only need constant length values.

When u has order 1, l must also be a function: intu-
itively, it provides a bound on the length of u v⃗, for all
v⃗, as a function of the lengths of v⃗. For example, we have
M |= blenλn,m.n+m(λx, y. ⟨x, y⟩) in models where tupling is
interpreted as concatenation.

f) Adversarial computability: Predicate advt,o⃗(u) roughly
expresses that u is computable by an adversary in time at most
t, with at most o⃗ oracle calls. Again, its meaning depends on
the order of u, which must be at most 2; o⃗ must be empty
when u is of order at most 1.

When u has order 0, term t must have type int, and
M |= advt(u) means that there exists a machine A ∈ PPTM
such that JuKη,ρM = A(1η, ρa) for all η and ρ, such that
timeA(1

η) ≤ infρ(JtK
η,ρ
M ). Importantly, the adversary cannot

access the honest tape ρh here.
This is then generalized to order 1 by asking that a machine

can compute the output of the function for each input, in time
that depends on the size of order 0 inputs (Meaning that the
bound on time t become of type int → int). We further extend
adversarial computability to order-2 terms by making use of
oracles: for example, λf, x. f x where x has order 0 and f
has order 1 is computable by an adversary taking a function f
as oracle and an input x, and returns the output of f on x. The
term t in that case imposes a bound on the execution time, as a
function of the length of order-0 inputs and of length-bounding
functions (of type int → int) for each of the order-1 inputs.
Terms o⃗ bound the number of calls to each order-1 input. See
Appendix A for more details.

I I I . P R O O F S Y S T E M

We now adapt the proof system given for asymptotic
computational security in [17] to a concrete security setting.
Our logic supports reasoning at two different levels, local and
global, according to the kind of formulas being manipulated.
This is reflected by the judgement of our logic. A global
judgement E; Θ ⊢ F is composed of an environment E, a set
of global formulas Θ (the hypotheses), and a global formula F
(the conclusion). A local judgement E; Θ; Γ ⊢ε ϕ is composed
of an environment E, a set of global formulas Θ (the global
hypotheses), a set of local formulas Γ (the local hypotheses),
a local formula (i.e. a term of type bool) ϕ (the conclusion),
and a term ε of type real (the advantage upper-bound). All
formulas (local and global) occurring in a judgement (local
and global) must be well-typed in the judgement environment.
The validity of global and local judgements is defined by:

|= E; Θ ⊢ F iff. |= (∧̃Θ) ⇒̃ F

|= E; Θ; Γ ⊢ε ϕ iff. |= (∧̃Θ) ⇒̃ [(∧Γ) ⇒ ϕ]ε

Our global judgements are the same as in [17] since the global
logic remains unchanged (we only added new predicates).
However, local judgements have been extended with an explicit
advantage upper-bound, reflecting the move from [ϕ] to [ϕ]ε.

Example 5. Recall that choose N represents the agent the
adversary decides to interact with at step N of the protocol
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execution. We can model the fact that there are only two agents
in our protocol by adding the following global formula as an
axiom:

[∀N.(choose N = A) ∨ (choose N = B)]0 .

The validity of this formula amounts to that of the local
judgement:

⊢0 (choose N = A) ∨ (choose N = B).

This formula means that choose N is always either equal to
A or B. Remark that this is not equivalent to the following
global formula:

∀̃N. [choose N = A]0 ∨̃ [choose N = B]0 ,

which states that choose N is either always equal to A or
always equal to B, and is an unrealistic assumption, as it
prevents the adversary from choosing A or B in a randomized
fashion.

A. Local Proof System

Our local proof system provides a set of generic reasoning
rules allowing to deal with Boolean connectives and higher-
order quantification, and is essentially an extension of the rules
of [17] with an explicit advantage upper-bound. Most local
rules of our concrete security proof system are straightforward
adaptations of the corresponding asymptotic rules, simply
propagating probabilities in the expected way. As an example,
we show two typical rules below:

Lε . R -∧
E; Θ; Γ ⊢ε0 ϕ E; Θ; Γ ⊢ε1 ψ

E; Θ; Γ ⊢ε0+ε1 ϕ ∧ ψ

Lε . R 1 -∨
E; Θ; Γ ⊢ε ϕ

E; Θ; Γ ⊢ε ϕ ∨ ψ

The Lε . R -∧ rule states that the probability that two formulas
do not jointly hold is bounded by the sum of the probabilities
that each formula does not hold; while Lε . R 1 -∨ states that the
probability that a disjunction ϕ ∨ ψ does not hold is bounded
by the probability that the left disjunct ϕ does not hold (the
corresponding right rule is not shown here).

The probability that a formula does not hold lies in the real
interval [0; 1]. Nonetheless, we choose to bound such probabil-
ities using the type real corresponding to R ∪ {−∞,+∞}, as
having a set that is stable by the standard arithmetic operations
(+, −, and countable sums) usually allows for simpler and
more elegant rules. E.g., if we use [0; 1], then the probability
upper-bound ε+ ε′ in the Lε . R -∧ rule should be replaced by
min(ε+ ε′, 1). Still, there are a few cases where this requires
additional checks on the probability bounds, as in the right
weakening rule shown below:

Lε . W E A K0

E; Θ; Γ ⊢ε ψ
E; Θ; ∅ ⊢0 ε ≤ ε′

E; Θ; Γ ⊢ε′ ψ

Lε . W E A Ks
ε

E; Θ; Γ ⊢ε ψ
E; Θ; ∅ ⊢ε0 ε ≤ ε′ E; Θ; ∅ ⊢0 ε ≤ 1

E; Θ; Γ ⊢ε′+ε0 ψ

The Lε . W E A K0 rule allows to replace a probability upper-
bound ε by ε′ as long as ε′ is always greater or equal to ε. The
Lε . W E A Ks

ε rule can be used if the inequality ε ≤ ε′ does not
hold unconditionally, simply by adding to ε the bound ε0 on

the probability that ε ≤ ε′ does not hold. Moreover, because
of the usage of probabilistic expectation in the logic semantics
(recall that [ϕ]ε holds if Pr(¬JϕK) is bounded by E(JεK)), we
also need to check that the bound in the premises is smaller
than one. We show that such a check is necessary below.

Example 6. Let n be a name (without argument) of type
message, and assume that names over message are uniform
random samplings among bit-strings of length η. Considering
the term ε

def
= 2η · 1n=0, where 1ϕ is syntactic sugar for

(if ϕ then 1 else 0), we have

E(JεKη,ρM ) = 2η · Pr(JnKη,ρM = 0) = 2η · 1
2η = 1

and E; ∅; ∅ ⊢ε ⊥ holds. Moreover, E; ∅; ∅ ⊢ 1
2η
ε ≤ 1

2η holds.
If the Lε . W E A Ks

ε rule did not require that the probability
bound in the premises is smaller that 1, we would obtain that
E; ∅; ∅ ⊢2· 1

2η
⊥ is valid, stating that ⊥ is true with non-zero

probability. This is absurd.

For the full set of local rules, see Fig. 9 and Fig. 7 in
appendix.

B. Global Proof System

Our global proof system comprises the usual generic rea-
soning rules (for Boolean connectives and quantifiers), as well
as rules dedicated to the predicates of our logic (such as
computational indistinguishability). Our global formulas and
the semantics of their connectives are the same as in [17] —
we only added new predicates. Thus, the generic logical global
rules of [17] remain valid in our extension. We recall them in
Appendix B for the sake of completeness, but do not describe
them any further. The situation is different for rules related to
specific predicates, which must be adapted.

a) Notation: Recall that in an indistinguishability formula
u⃗ ∼ε w⃗, the advantage bound ε is a function of the adversary
time t and of the number of oracle calls o⃗, where o⃗ contains as
many entries as there are terms of order 1 in u⃗. For the sake
of clarity, we lift the usual mathematical operations to this
kind of function terms: e.g., if ε and ε′ are two such bounding
terms, then ε+ ε′ denotes the term λt, o⃗. ε t o⃗+ ε′ t o⃗.

b) Rewriting: Any equality, possibly with some error
probability, can be used to rewrite terms occurring in a predicate
of the logic, by adding the error probability of the equality to
the bound in the predicate. For instance, we can rewrite the
terms involved in an indistinguishability formula:

E; Θ ⊢ u⃗{v0} ∼ε w⃗ E; Θ ⊢ [v0 = v1]ε0
E; Θ ⊢ u⃗{v1} ∼ε+ε0 w⃗

This rule only allows to rewrite terms on one side, as rewriting
on both sides requires to pay the error probability twice.

Remark 1. Let us show that, when rewriting terms in an
equivalence formula, we cannot simultaneously rewrite on the
left and right side of the equivalence without paying the equality
error twice. Said otherwise, the following rule is unsound:

E; Θ ⊢ u⃗{v0} ∼ε w⃗{v0} E; Θ ⊢ [v0 = v1]ε0
E; Θ ⊢ u⃗{v1} ∼ε+ε0 w⃗{v1}

(2)
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To fix this rule, it is necessary to pay ε0 twice, i.e. to replace
the bound in the conclusion by ε+2 ε0. Now, considering three
names n0, n1, n2 of type message and 0 : message the zero
bitstring, Assuming that names are uniform random samplings
among bitstrings of length η, we get that:(
(n0 ̸= 0) ∨

(
(n1 = 0) ∧ (n2 = 0)

))
∼α ¬(n1 = 0 ∧ n2 = 0)

(3)
with α def

= 1
2η − 1

23∗η − 1
22∗η as the exact optimal upper-bound.

Indeed since any adversary cannot be better than the statistical
difference between the two underlining distribution. (And the
adversary that accept when the boolean it gets is true and
reject otherwise as this exact advantage). Therefore, for any
η ∈ N∗,

α = |
Prρ∈TM,η (Jn0 ̸= 0Kη,ρM ∨ (Jn1 = 0Kη,ρM ∧ Jn2 = 0Kη,ρM ))

−Prρ∈TM,η (Jn1 ̸= 0Kη,ρM ∨ Jn2 ̸= 0Kη,ρM )
|

= |
Prρ∈TM,η (Jn0 ̸= 0Kη,ρM )Prρ∈TM,η (n1 ̸= 0 ∨ n2 ̸= 0)

−Prρ∈TM,η

(
Jn1 = 0 ∨ Jn2 = 0Kη,ρM Kη,ρ

M

) |

=
1

2η
− 1

23∗η
− 1

22∗η

and
((n0 ̸= 0)) ∼ 1

2η
⊤ (4)

and this bound is tight. We know that the probabilty that both
n1 and n2 are equal to 0 at the same time is exactly 1

22η , so
[(n1 = 0) ∧ (n2 = 0)] 1

22η
holds. Rewriting this equality with

help of the rule given in Eq. (2) on both the left and right side of
Eq. (3), we get ((n0 ̸= 0) ∨ ⊥) ∼α+ 1

2η
¬⊥, which is equivalent

to ((n0 ̸= 0)) ∼α+ 1
2η

⊤ which is exactly the formula of Eq. (4),
but with a tighter bound since α+ 1

22η = 1
2η − 1

2(k+1)η <
2
2η .

This contradicts the tightness of the bound of Eq. (4), showing
that the rule in Eq. (2) is unsound.

Moreover, this rule does not allow to rewrite in the advantage
upper-bound ε. Allowing such rewritings can be done, but it
requires an additional check to ensure that the initial bound is
no greater than 1 (for the same reason than the one given in
Example 6):

E; Θ ⊢ u⃗ ∼ε0 v⃗ E; Θ ⊢ [ε0 = ε1]εe [ε0 ≤ 1]0
E; Θ ⊢ u⃗ ∼ε1+εe w⃗

We present our generalized global rewriting rules at the
bottom of Fig. 10, which includes rewriting rules in several
concrete security predicates of the logic. Rewriting rules for
other predicates of the logic are similar, and are thus omitted.
Remark that there is no approximated version of the rule that
allows to rewrite in a length predicate, as this predicate does
not allow for an error probability.

c) Indistinguishability Rules: We designed concrete secu-
rity versions of the rules provided for asymptotic computational
indistinguishability in [17]. We show a selected set of our rules
in Fig. 1 (the full set is in Fig. 11 in appendix).

Gε . E : T R A N S
E; Θ ⊢ u⃗ ∼ε0 w⃗
E; Θ ⊢ w⃗ ∼ε1 v⃗

E; Θ ⊢ u⃗ ∼ε0+ε1 v⃗

Gε . E : FA - B A S E
E; Θ ⊢ u⃗l ∼ε u⃗r E; Θ ⊢ advtv (v)

E; Θ ⊢ u⃗l, v ∼ε′ u⃗r, v

where ε′ def
= λt, o⃗. ε (t+ tv) o⃗

E; Θ ⊢ u⃗l, fl ∼ε u⃗r, fr
E; Θ ⊢ u⃗l, fl, fl ∼ε′ u⃗r, fr, fr

Gε . E : D U P - F U N

where ε′ def
= λt, o⃗, o1, o2. ε t o⃗ (o1 + o2)

E; Θ ⊢ u⃗l ∼ε u⃗r
E; Θ ⊢ u⃗l, nf ∼ε′ u⃗r, nf

Gε . E : FA - N A M E S

where ε′ def
= λt, o⃗, on. ε (t+ on · tn) o⃗

Gε . E : C S
E; Θ ⊢ u⃗l, bl, vl ∼ε1 u⃗r, br, vr
E; Θ ⊢ u⃗l, bl, wl ∼ε2 u⃗r, br, wr

E; Θ ⊢ u⃗l, if bl then vl else wl ∼ε1+ε2 u⃗r, if br then vr else wr
In the rules above, v is an order-0 and fl, fr are order-1.
In Gε . E : FA - N A M E S , nf only occurs in its declaration in E, and
tn is an upper-bound on the time needed by nf for a single sampling.

Figure 1. Selected concrete security rules for indistinguishability.

The Gε . E : T R A N S states that advantage bounds must be
added in a transitive step, and Gε . E : C S allows to perform
a case study over the branching test of a conditional term,
summing the advantage bounds of both branches. Remaining
rules of Fig. 1 capture reduction-based arguments, and are
more interesting as they require to carefully track bounds on
running time, number of oracle calls, and error probabilities.

Gε . E : FA - B A S E allows to remove a term v (of order zero)
appearing on both sides of an equivalence as long as v can be
computed by the adversary. To understand this rule’s advantage
bound, let us consider an adversary A against the conclusion,
running in time at most t and calling its oracles at most o⃗
times. By hypothesis, there exists a machine M computing v
in time at most tv . We can thus build an adversary B against
the premise u⃗l ∼ε u⃗r by composing M with A. This adversary
runs in time t+ tv , and calls its oracle o⃗ times (as did A). We
conclude that B’s advantage must be at most ε (t+ tv) o⃗ .

The other reduction-based rules have similar features. The
rule Gε . E : D U P - F U N allows to get rid of a duplicated oracle,
by having the total number of calls to this oracle be the
sum of the number of calls to each of its copies. The rule
Gε . E : FA - N A M E S removes a name nf from an equivalence
by letting the adversary sample it itself, at the cost of a time
overhead on · tn in the advantage bound, where on is the
maximal number of adversary calls to the name oracle nf .

Example 7. The bound on the case-study rule is tight, and
cannot be improved. To see why this is the case, let us consider
two Booleans b and b′ representing two independent coin-flips
(i.e. both have 50/50 chance to be true or false). Let us show
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that:

if b then (if b ∧ b′ then ⊥ else ⊤) else ⊤
∼ if b then ⊤ else (if ¬b ∧ b′ then ⊥ else ⊤)

is valid using the case-study rule. After the application of the
rule, we are left to prove:

b, if b ∧ b′ then ⊥ else ⊤ ∼ b,⊤
and b, if ¬b ∧ b′ then ⊥ else ⊤ ∼ b,⊤

It is easy to check that both premises hold with an upper-
bound of 1

4 , since the adversary with the best advantage is
the one returning its second input unchanged. Summing both
advantages yields a probability upper-bound of 1

2 , as does
our rule.

d) Bi-deduction: To ease the proof transformations that
we will presented in Section V, it is desirable to reduce the
number of different rules while keeping the same expressive
power. To that end, we designed a single rule, called Gε . E : B I -
D E D U C E, that captures many rules relying on reduction-based
arguments of our proof-system. As the full bi-deduction rule
is very technical, we only present a simplified version of the
rule which is sufficient to show most of its key aspects. The
full rule is described in Appendix B-B.

Let u⃗ def
= u1, . . . , um, v⃗ def

= v1, . . . , vm and l⃗
def
= l1, . . . , lm

be three sequences of terms of the same length. Let E be an
environment such that any declared symbol x in E is only used
in eta-long form and is such that E; Θ ⊢ adv+∞(x) is valid.
Then the following rule is valid:

Gε . E : B I - D E D U C Es

E; Θ ⊢ u⃗ ∼ε v⃗ E; Θ ⊢ advtc,o⃗c(C)

E; Θ ⊢
∧̃
i≤n blenli(ui) ∧̃ blenli(vi)

E; Θ ⊢ C u⃗ ∼ε′ C v⃗

where ε′ must precisely account for the simulation times:

ε′
def
=

{
λt. ε

(
t+ tc l⃗

) (
o⃗c
)

((C u⃗) of order 0)

λt, o. ε
(
t+ o · tc l⃗

) (
o · o⃗c

)
((C u⃗) of order 1)

Recall that C u⃗ stand for ((t u1) . . . un) when u⃗ =
u1, . . . , un.

This rule subsumes the Gε . E : FA - B A S E rule, and has a
similar structure. It allows to remove a computable (by the
adversary) context C from both side of an equivalence. Here,
since C can be of order at most two (u⃗ and v⃗ contains terms
of order 0 or 1), the predicate adv(C) take two subscripts
arguments t and o⃗C . The first argument is the computation
time of C and in particular take the length of the terms in u⃗
and v⃗ as argument. Those length are bounded by the vector l⃗
and the premise on blen(·). The second one takes into account
the number of calls to the first-order terms in u⃗ and v⃗.

Example 8. Consider name symbols k, k′, r, n, n′ of type
message, representing independent samplings of length η. We
show the following toy formula:

enc(0len n, r, pk k) ∼ε′ enc(0len n
′, r, pk k′).

First, the formula above can be rewritten without error into:

(λx, y, z. enc(0len x, y, pk z)) n r k

∼ε′ (λx, y, z. enc(0len x, y, pk z)) n
′ r k′

Let C be the context defined by:

C
def
= λx, y, z. enc(0len x, y, pk z)

Applying Gε . E : B I - D E D U C Es leaves us with the main
premise

n, r, k ∼ε n
′, r, k′.

and additional premises advtC (C) (for some tC to be deter-
mined), and blenη(m) for m any of the previous names. The
blenη(m) premise can be easily proven under our assumptions
on the size of names. For the advtC (C) premise, assume that
tenc, t0 and tpk are upper-bounds on the computation times of
the underlying functions, and also that l0 and lpk represent the
lengths of the outputs of the functions. We can prove advtC (C)
with:

tC
def
= λlx, ly, lz. tenc(l0 lx) ly lpk lz + t0 lx + tpk lz

(Here, since all of input terms of C are of order 0, o⃗C does
not appear.) Finally, we obtain:

ε′
def
= λt. ε(t+ tC η η η).

The full bi-deduction rule (in Appendix B-B) generalizes
the rule above in several ways: i) we provide additional fresh
names to the contexts; ii) we allow for an arbitrary number
of contexts instead of a single one. These two extensions
make our bi-deduction rule general enough to subsume many
reduction-based CCSA rules: e.g. adding names captures
the Gε . E : FA - N A M E S rule capabilities, while having many
contexts captures the duplication rules (such as Gε . E : D U P -
F U N).

C. Global Induction

The asymptotic logic of [17] only supports induction for a
constant number of steps, which can be expressed using the
following asymptotic logic induction rule:

E; Θ ⊢ well-foundedτ (<) ∧ det(<)

E; Θ ⊢ ∀̃(x : τ). const(x)⇒̃
(∀̃(x1 : τ). const(x1) ⇒̃ [x1 < x]negl ⇒̃ F{x 7→ x1}) ⇒̃ F

E; Θ ⊢ ∀̃(x : τ).const(x) ⇒̃ F

where [ϕ]negl holds iff the probability that ϕ does not hold is
negligible, i.e. Prρ(J¬ϕKη,ρM ) ∈ negl(η), and well-foundedτ (<)
is a global formula stating that (JτKηM, J<KηM) is well-founded
for every η (see Appendix A for details).

Remark 2. Actually, the asymptotic logic induction rule of
[17] is not restricted to values x such that const(x) holds.
This is a mistake, as the rule is unsound without this, as shown
in the example below.

Example 9. Consider a model M such that type nat is
interpreted as the set of natural numbers, and < as the standard
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order over N. For all i ∈ N, we let (Xi(η))η∈N be the η-indexed
sequence of random variables over N defined by:

Xi(η)(ρ)
def
= max(η − i, 0). (for any ρ ∈ TM,η)

For every i < j, there exists a rank η0 such that for every
η ≥ η0, we have Xi(η) > Xj(η) (e.g. η0 = j). Thus:

Prρ
(
Xi(η)(ρ) > Xj(η)(ρ)

)
= 1. (for η large enough)

Hence, the set of η-indexed sequence of random variables
RVM(nat) ordered by: “X is smaller than Y ” iff.:

Prρ
(
J¬(x < y)Kη,ρM[x7→X,y 7→Y ]

)
∈ negl(η)

is not well-founded, even though < is well-founded over N.

a) Hybrid arguments: Actually, the issue shown above is
a well-known pitfall of hybrid arguments, which are the way
inductions are usually used in cryptographic proofs. Essentially,
an hybrid argument is the specialization of the induction
principle to the case where the property to be shown is of the
form u⃗(n) ∼ u⃗(n+ 1). Informally, it says that:

u⃗(1) ∼ u⃗(2) ∼ · · · ∼ u⃗(n) implies u⃗(1) ∼ u⃗(n).

In its asymptotic formulation, the above argument is sound
if n is constant, or more generally if the bound ε(η, i) on
the advantage of any adversary against u⃗(i) ∼ u⃗(i + 1) is
uniformly bounded by a negligible function ε′(η) — here,
uniformly means independently from i. The counter-example
shown in Example 9 shows a typical case of the issues arising
when uniformity does not hold. (We refer the reader to [20]
for a detailed discussion of uniformity and hybrid arguments.)

Since asymptotic CCSA logics do not provide explicit
advantage bounds, they cannot capture the more expressive
variant of the hybrid argument, and must restrict themselves
to the constant case where the number of induction steps does
not depend on the security parameter η. This limits the logics
applicability: e.g., they can only be used to prove the security
of a protocol for a constant number of sessions, instead of
the stronger polynomial-level of security (this is exactly what
happens in Example 3).

b) Concrete security induction: Our concrete logic does
not suffer from such a restriction, as the advantages can be
explicitly established during an induction proof. More precisely,
our logic allows for the following global induction principle:

Gε . I N D U C T I O N
E; Θ ⊢ well-foundedτ (<)

E; Θ ⊢ ∀̃(x : τ). (∀̃(x1 : τ). [x1 < x]0 ⇒̃ F{x 7→ x1}) ⇒̃ F

E; Θ ⊢ ∀̃(x : τ). F

Note that we require [x1 < x]0, avoiding the pitfall described
in Example 9.

D. Freshness and Cryptographic Rules

A fourth class of rules deals with cryptographic assumptions
and reasoning about probabilistic independence. We present
here two examples of such rules.

A crucial tool for such rules are freshness conditions, as
defined in [17]. Intuitively, the formula ϕn,vfresh(u⃗) is an approxi-
mation of the conditions under which the name n v can appear
in the generalized subterms of u⃗, i.e. subterms considering the
expansion of (recursive) definitions. If

q
ϕn,vfresh(u⃗)

yη,ρ

M
holds,

then the term u can be computed without sampling the name n
at index JvKη,ρM . A full definition can be found in Appendix B-D.

The general idea of the fresh rule is that a name that is not
used anywhere can be replaced by another one. In addition to
adding explicit advantages, we generalize the rule from [17]
to work under a context (to ease proof transformations):

Gε . E : F R E S H

E; Θ ⊢
[
ϕn,ifresh(u⃗, C (nfresh ())) ∨̃ ϕnfresh,ifresh (u⃗, C (nfresh ()))

]
ε′

E; Θ ⊢ u⃗, C (nfresh ()) ∼ε v⃗

E; Θ ⊢ u⃗, C (n i) ∼ε+ε′ v⃗

The freshness premise ensures that n i and nfresh() are not
sampled at the same time in any evaluation of C (with an error
at most ε′). E.g., we can rewrite (if b then n i else n t) into
(if b then n i else nfresh ()) as, in this context, nfresh is only
sampled under condition ¬b, and n i is only sampled under
condition b.

We present in Fig. 2 a simplified version of the rule for
indistinguishability against chosen-ciphertext attack (CCA1),
that states that an attacker cannot learn anything about the
content of a ciphertext except its length. We model it by
replacing the plaintext inside the ciphertext with the same
length of zeros. The full version can be found in Fig. 12 with
other cryptographic rules.

A key ingredient for this rule is the ability to simulate all
relevant terms during the reduction for the soundness proof.
This is done through the predicate ⊢c

t , which has a lot of
similarity with the advt predicate since they both represent the
ability of the adversary to compute something. However, in the
⊢c
t predicate, the adversary can simulate the randomness of the

protocol, while it cannot in the advt function. This predicate
is an adaptation of the ⊢pptm of [17] to the explicit advantage
settings. Details can be found in Appendix B-C.

We also need some condition on key and randomness usage
in the context. We reuse the conditions from [17]: intuitively,
ϕkey means that all needed terms can be computed without
using the secret key except for decryption, while ϕrand ensures
that the randomness used in the ciphertext is fresh, and ϕdec
ensures that the context does not decrypt with the secret key.
Formal definitions can be found in Appendix B-D.

This rule is a generalization of the rule in [17] since it allows
to apply the CCA1 hypothesis under a context. Again, this
will be important in our proof transformation result.

I V. A P P L I C AT I O N T O P R I VAT E AU T H E N T I C AT I O N

In this section, we prove the unlinkability of the PA protocol
with our proof system. We first describe an idiomatic CCSA
proof, without specifying upper-bounds on advantages. Then
we analyze these bounds and explain why the usage of case
studies in proofs by induction yields advantage upper-bounds
which are exponential in the number of inductive steps, failing
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Gε.C C A 1s

E; Θ; ∅ ⊢c
t⃗0
u⃗, b,m, ir, ik E; Θ; ∅ ⊢c

tC C E; Θ ⊢ det(ir) ∧̃ det(ik)

E; Θ ⊢ blenle (enc m (r ir) (pk(k ik))) ∧̃ blenle (enc (0len(m)) (r ir) (pk(k ik)))

E; Θ; ∅ ⊢εϕ ϕ
k,ik
key (w⃗, C) ∧ ϕ

r,ir
rand(w⃗, C) ∧ ϕ

k,ik
dec (C) E; Θ ⊢ u⃗, if b then C (enc (0len(m)) (r ir) (pk(k ik))) else ue ∼ε v⃗

E; Θ ⊢ u⃗, if b then C (enc m (r ir) (pk(k ik))) else ue ∼εf v⃗

where v⃗ is of order 0 and w⃗ def
= u⃗, b,m, ir, ik (note that ue is not in w⃗) and εf

def
= λt, o⃗. ε t o⃗+εϕ+εCCA

(
t+tC le+1⃗ · t⃗0

)
,⃗1 ·w⃗ =∑

i wi is the scalar product of w⃗ with the sequence 1, . . . , 1 of the same length.

Figure 2. Simplified rule for the CCA1 cryptographic game.

to provide a polynomial level of security. Finally, we describe
how our proof can be modified to fix this issue, hinting at the
general result of the next section.

A. Idiomatic Proof by Case Study

Following up on Example 2, we are going to prove, in
our concrete security logic, that PA is unlinkable for any
deterministic number of sessions N that can be computed
by the adversary in time (t N). More precisely, we must derive

E; Θ ⊢ ∀̃ t,N. det(N) ⇒̃ advt N(N) ⇒̃ FN

where FN
def
= frame N ∼ε N frameid N and where det(t) is a new

predicate of the logic that states that t is a deterministic value
that can depend on the security parameter η (see Appendix A).
The bound ε N will be described in the next subsection. In
fact, all bounds are omitted for now.

Using an induction principle specialized on integers that
only applies to deterministic variables N, it suffices to prove,
after some minor book-keeping, that

E; Θ, det(0), advt 0(0) ⊢ F0 and E0; Θ0 ⊢ FN+1

where E0 declares N : bint and Θ0
def
=

Θ, det(N), advt N(N), FN.
We focus on the proof of FN+1, which is the interesting case.

From definition of frame and frameid, and using bi-deduction
(i.e. the Gε . E : B I - D E D U C Es rule) to remove the tupling
function ⟨ ·,·⟩, we must show that:

E0; Θ0 ⊢ frame N, output (choose (N + 1), N + 1)
∼ frameid N, outputid (chooseid (N + 1), N + 1)

(5)

From now on, we omit E0 and Θ0, as they remain unchanged
throughout the rest of the proof. We assume that the adversary
can only choose to interact with A or B, i.e. we use the
modeling axiom:

∀̃N0. [choose N0 = A ∨ choose N0 = B]0 .

Using this axiom for N0 = N+ 1, and by rewriting (with no
error) in the terms on the left of the equivalence in Eq. (5),
we obtain the (left) terms:

frame N, if choose (N + 1) = A then output (A, N + 1)
else output (B, N + 1)

We do the same on the terms on the right of ∼, which yields
the same conditional term, except that it uses the idealized
versions of frame, output, and choose.

Then, doing a case study with Gε . E : C S
on b

def
=

(
choose (N + 1) = A

)
on the left and

bid
def
=

(
chooseid (N + 1) = A

)
on the right, we get the

two equivalences:

frame N, b, output (A, N + 1)
∼ frameid N, bid, outputid (A, N + 1)

(†-A)

frame N, b, output (B, N + 1)
∼ frameid N, bid, outputid (B, N + 1)

(†-B)

We focus on case (†-A) (case (†-B) is similar). By definition,
choose (N + 1) and chooseid (N + 1) are equal to, resp.,

attc(frame N) and attc(frameid N).

Using bi-deduction to remove the computation
λx, y.

(
x = attc(y)

)
, and replacing the outputs by their

definitions, we get:

frame N, enc(⟨ pkA, nA (N+1)⟩, pkB, rA (N+1))
∼ frameid N, enc(⟨ pk'A (N+1), nA (N+1)⟩, pkB, rA (N+1))

We apply the CCA1 rule twice, once per side, to zero-out the
content of both encryptions using 0len(·) — the verification of
the premises that are not an indistinguishability predicate of
this rule is not central, and we omit it. To prove the calculability
premise, before applying the CCA1 rule, we apply rewriting
without error, to change the definition of frame and frameid

to another one that use let in to be able to compute it in
polynomial time. (and we reverse it after.) Thanks to some
basic modeling assumptions on lengths, we then get that both
plaintexts are of the same length ulen, which we assume to be
a publicly known quantity (i.e. such that advtu(ulen) holds for
some efficient time tu). Then, using bi-deduction and rewriting
without error to remove the encryption computation, the zeroing
function 0len(·) and the publicly known length ulen, we get:

frame N, pkB, rA (N+1) ∼ frameid N, pkB, rA (N+1).

The name rA (N+1) is fresh in this context, as it is never
sampled in frame N and frameid N, and thus can be sampled
by the adversary itself. This reasoning can be captured using
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the freshness rules Gε . E : F R E S H and Gε . E : FA - N A M E S ,
which yields, after discharging some minor proof obligations:

frame N, pkB ∼ frameid N, pkB

Observe that pkB can be obtained by computation from the
frame on both sides, as it is included in frame 0 and frameid 0.
Thus, by bi-deduction, it remains to prove that frame N ∼
frameid N, which follows from the induction hypothesis FN.

The proof of the branch (†-B) follows very similar steps,
and also uses the CCA1 cryptographic rule exactly once.

B. Analysis of the Advantage Upper-Bound

We now analyze the advantage bound obtained from the
previous proof. We are not interested in its precise expression,
but seek to analyze how it grows with the number of sessions.

FN

ΠA

FA
N+1

FN

ΠB

FB
N+1

Π

FN+1

Figure 3. Shape of the
proof of the inductive step
for the PA protocol.

As this is a proof by induction,
we need to find the recurrence re-
lation between the advantages ε N
and ε (N + 1) (the initial value ε 0
is of little interest here). Our proof
of the inductive step is of the form
described in the figure on the right,
where FA

N+1 and FB
N+1 are, resp., the

formulas in Eq. (†-A) and Eq. (†-B),
and the branching comes from the
case study on whether choose = A
or choose = B.

The advantage bounds are modified by the proof as follows,
when descending from the induction hypothesis FN to the
conclusion FN+1:

• Both leaves start at advantage ε N.
• Simple reduction-based steps (e.g. bi-deductions) add

a time overhead to the current advantage: roughly, the
advantage λt. ε0 t in premise is changed into λt. ε0 (t+t0),
where t0 is the time needed to evaluate the added
computations.

• Cryptographic steps increase the advantage by the ad-
vantage in breaking the cryptographic assumption under
consideration: e.g, here, the advantage is increased by
εCCA(t+tCCA), where tCCA is a bound on the time needed
to simulate the particular context used in our proof.

• Logical steps, such as rewriting without error or the logical
reasoning rules, leave the advantage (mostly) unchanged.

• Last but not least, the case study rule Gε . E : C S adds the
advantages of both premises.

Putting everything together, we get the relation:

ε(N+ 1) = λt.
(
ε N (t+ tA) + 2 εCCA (t+ tACCA)

)
+

(
ε N (t+ tB) + 2 εCCA (t+ tBCCA)

) (6)

where, very roughly, tA is the sum of the time overheads in ΠA

and Π, tACCA is the time needed to simulate the context when
the CCA1 rule is applied (plus any time overhead added later);
tB and tBCCA are similar, but for the right branch corresponding
to the case choose = B. The top quantity of Eq. (6) comes
from the left branch of the proof in Fig. 3, while the bottom

quantity comes from the right branch. Any advantage ε N
satisfying the recurrence relation in Eq. (6) is exponential in N
(as it must contain 2N CCA1 advantages upper-bounds εCCA).

To summarize, our idiomatic proof yields the parametric level
of security that is today’s standard with Squirrel: the advantage
is negligible in η for any N that does not depend on η. However,
it is not satisfying when N is polynomial in η, i.e. when the
attacker can dynamically choose for how long it interacts with
the protocol: in that case, the CCA1 advantage is multiplied by
2η , canceling out assumption that this cryptographic advantage
is negligible. To obtain a polynomial level of security, we need
a proof with (in particular) an at-most polynomial factor for
the CCA1 advantage.

C. Fixing the PA Proof

The crucial problem in our previous proof is the fact that
the induction hypothesis is used twice. This stems from the
fact that we use a case study to split the (†-A) and (†-B) cases.
In order to fix this problem, we do away with the case study
and apply the Gε . C C A 1 rule under the context.

Starting from the equivalence goal we have in the naive
proof, between the terms

frame N, if choose (N + 1) = A then output (A, N + 1)
else output (B, N + 1)

and their idealized versions, we need to define contexts under
which we can apply the Gε . C C A 1 rule.

Replacing the output by its definition, the Gε . C C A 1 rule
is applied for the A side with the trivial context C = (λx.x),
condition (b = choose (N + 1) = A), ignored term (ue =
output (B, N + 1)), and vector of outside terms frame N. We
obtain the left side of the equivalence goal where the encryption
in the A branch is zeroed out. We do the same transformation
in the B branch, and on the right side of the equivalence.
Finally, using some lengths reasoning and bi-deduction, we
get the goal:

frame N, choose (N + 1), pkB, pkA, rA (N+1), rB (N+1)
∼ frameid N, choose (N + 1), pkB, pkA, rA (N+1), rB (N+1).

We conclude by remarking that choose (N + 1), pkB, pkA can
be computed from frame N and the fact that rA (N+1), rB (N+1)
are not used in frame N and therefore are fresh sampling. We
can now directly use the induction hypothesis exactly once.

Summing up the advantages of the proof, and taking tCCA
as an upper-bound of all time overheads in the different uses
of the CCA rule, we get the relation:

ε(N+ 1) = λt. (ε N (t+ t′AB) + 4 · εCCA (t+ tCCA)) .

This relation is satisfied by an ε that uses a linear number (in
N) of εCCA and with some polynomial time overheads in both
N and η, and is thus negligible for N polynomial in η.

More generally, the technique we used in this proof, applying
cryptographic rules under context rather than using case studies
(i.e. commuting case studies and cryptographic rules) can be
generalized to a general proof rewriting strategy applicable to
most existing idiomatic proofs, as shown in the next section.
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V. P R O O F R E W R I T I N G S T R AT E G Y

We now present our proof transformation result, which can
be used to improve the advantage bound of a large class of
proofs, allowing to reach a polynomial level of security. Our
result proceeds by rewriting the proof to be improved: i) we
design a set of local proof transformations; ii) we design a proof
transformation strategy that terminates on admissible proofs —
a syntactic proof fragment defined below — and guarantees
that normalized proofs only use their induction hypothesis
once; and iii), we prove that if Π is an admissible proof that
only features terms that can be computed in polynomial-time,
and if Π only relies on cryptographic assumptions that hold
with a negligible advantage, then a normalization of Π by our
proof transformation strategy provides polynomial security.

Our proof transformation strategy operates on the proof of
the inductive step of a proof of security of a protocol, and is
based on two key ideas, exposed below.

i) Proof commutations: we move the applications of the
case study rule Gε . E : C S upward across the proof-tree using
proof commutations. There are some rules that do not commute
with Gε . E : C S, most notably the bi-deduction rule Gε . E : B I -
D E D U C E: such rules also need to be moved upward, pushed
by rising case study rules. This naturally separates our
rules in two disjoint sets, ascending rules and descending
rules, For each pair of ascending rule A and descending
rule D, there must exists a proof commutation ▶AD. An
ideal commutation would look like the figure on the right.

F3

F2

D

F1

A
▶AD

F3

F ′
2

A

F1

D

Of course, our commutations are al-
most never that simple, as the rules to
commute can have several premises,
and the proof transformation may
need to introduce new rules when
modifying the proof.

ii) Collapsing case-studies: once all ascending rules,
and thus application of the case-study rule, are at
the top of the proof-tree, we start a second round
of proof transformations ▶col, this time with the
goal of collapsing applications of the case study rule.

F
I

F2

B
F

I

F3

B

F1

C S
▶col

F
I

F ′
1

B

Figure 4. A case-study collapse.

For example, a case study
C S followed by an appli-
cation of the bi-deduction
B and induction I rules
in both branches is an un-
necessary detour, that can
be replaced by a single
application of a bi-deduction and induction hypothesis. We
schematize this in the figure on the right, where F1 = F ′

1 up-to
some errorless rewriting.

A. The Proof Fragment of Admissible Proofs

We now define the proof fragment our result applies to. To
that end, we first partition rules according to their behavior
during the proof transformations. Then, we describe the
restrictions defining the proof fragment of admissible proofs.

a) Rule partitioning: We partition our set of rules in three:
leaf rules are the leaves of our proofs, ascending rules are the
rules that will be pushed upwards by our proof transformations,
while descending rules will be moved downwards.

We have four leaf rules: the reflexivity of equivalence
Gε . E : R E F L , the application of an axiom G . A X I O M , and
the trivial rules G . L -⊥̃ and Gε . L - L O C :⊥. We have three as-
cending rules: the case study rule Gε . E : C S, the bi-deduction
rule Gε . E : B I - D E D U C E and the hypothesis weakening rule
G . W E A K . Finally, descending rules are any other rule of
the logic that can have an equivalence in conclusion, at
the exception of: induction Gε . I N D U C T I O N , transitivity
Gε . E : T R A N S, rewriting with errors Gε . E : R E W R I T E, the
upper-bound weakening rules, the left disjunction rules for ∨̃
and ∨, and the G . A B S U R D rule.

Moreover, all rules subsumed by the bi-deduction rule are
excluded from consideration here, without loss of generality.
We quickly discuss why we do not support some rules in our
proof-transformation result, and the impact that removing these
rules has, in Appendix C-B.

All ascending or descending rule (except Gε . E : C S,
G . C U T and G . L -⇒̃) have at most one indistinguishability
premise, which we call the principal premise of the rule. The
rest of the premises are the auxiliary premises of the rule. For
the G . C U T and G . L -⇒̃ rules, the premise with the larger
context is the principal one, the other premise is auxiliary.
Finally, Gε . E : C S is the only rule with two principal premises.

b) Admissible proofs: We present and justify the class of
proofs to which our result applies using our running example.
We can identify in our example proof in Section IV-A a proof
structure which is standard in CCSA proofs (e.g. [15], [22],
[23]). Looking at the proof of the induction step from the top to
the bottom, we see that we start with the induction hypothesis
frame N ∼ frameid N which is then iteratively augmented with
additional elements (say, u⃗0 on the left and v⃗0 on the right)
and surrounded by a computing context (say C), which yields
intermediate equivalences of the form C (frame N) u⃗0 ∼
C (frameid N) v⃗0. Then, the proof modifies the context C
or the elements in u⃗0 and v⃗0, e.g. by rewriting, bi-deduction,
application of cryptographic rules, and by merging distinct
branches using the case study rule. The proofs ends when it
reaches the target equivalence frame (N+1) ∼ frameid (N+1).

Interestingly, We add the induction hypothesis frame N ∼
frameid N to ours hypothesis at the beginning of our proof and
only use it at the end to close our induction. Further, we can
observe that the case study over choose = A in Section IV-A
deals with a condition that can be computed by the adversary
from the induction hypothesis terms frame N and frameid N.
Essentially, our proof fragment is the subset of proofs of this
form. Roughly, we say that a proof is (u⃗; v⃗)-admissible if:

• it is only a single leaf rule with u⃗ ∼ε v⃗ (for some arbitrary
term ε) or its root is a ascending or descending rule,
and the principal premise of this rule is proven by an
(u⃗; v⃗)-admissible proof.
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C S : Gε . E : C S B : Gε . E : B I - D E D U C E W : G . W E A K R D : Gε . E : R E W R I T E0 and G . D U P A : any rule

Convention: Ascending rules in purple. Auxiliary sub-proofs are denoted by Aux.

Figure 5. Shapes of the proof transformations commuting descending and ascending rules on the trunk of an admissible proof.

• The application of the case study rule must only be done
on a branching condition that can be computed (i.e. bi-
deduced) from u⃗ in the left side of ∼, (respectively v⃗ in
right side)

• All intermediate equivalences along the main trunk (i.e.
the part of the proof-tree which only considers principal
premises of rules, starting from the root) of the proof
are of the form u⃗, u⃗0 ∼ε v⃗, v⃗0 where u⃗0, v⃗0 and ε are
arbitrary terms. Said otherwise, u⃗ and v⃗ are not modified
in the main trunk.

The full definition of (u⃗; v⃗)-admissibility is in Appendix C-A.
A proof is said to be admissible if it is (u⃗; v⃗)-admissible
for some terms (u⃗; v⃗). Finally, an auxiliary sub-proof of an
admissible proof Π is any proof anchored in auxiliary premises
of the trunk of Π.

B. Commuting Ascending and Descending Rules

We design a set of proof transformations ▶AD which can be
used to commute any pair of descending and ascending rules
occurring in the main trunk of an admissible proof: if Π1 is
an admissible proof then Π1 ▶AD Π2 if Π2 can be obtained
from Π1 using one of our proof commutations applied on a
rule on the trunk of Π1. We can notice that in this case Π2 is
also an admissible proof since ▶AD preserve admissible proofs.
The shapes of our transformation steps ▶AD, omitting the
formulas to improve readability, are shown in Fig. 5 (detailed
transformations are given in Appendix E).

Lemma 1. The relation ▶AD terminates on any admissible
proof Π. Moreover, if Π is an admissible proof irreducible w.r.t.
▶AD then no ascending rule appears below a descending rule
on the trunk of Π.

We prove this by showing that admissibility is preserved
by ▶AD, and that some well-chosen numerical quantity
Value▶AD

(Π) (see Fig. 13) strictly decreases after each proof
transformation of the shape described in Fig. 5. See Ap-
pendix C-C for a proof sketch .

C. Collapsing Proofs

We consider a proof of the main inductive step of a larger
proof with induction hypothesis u⃗ ∼ v⃗. W.l.o.g., we assume that
u⃗ ̸= v⃗ (otherwise, the hypothesis is a triviality). Our goal is to
reduce the number of applications of the induction hypothesis
until there remains only one, through a sequence of proof
transformation collapsing applications of the case-study rule.

A proof is (u⃗, v⃗)-collapsible if it is (u⃗; v⃗)-admissible and if
Gε . E : R E W R I T E0 is the only descending rule appearing in
its trunk. This represents the top of a normalized proof w.r.t.
▶AD, where all descending rules have been moved down the
proof-tree. We allow the (descending) rule Gε . E : R E W R I T E0

to appear in collapsible proofs as new occurrences of this rule
may be added by collapse proof transformations.

We design a set of collapsing proof transformations ▶col

that applies on the trunk of a collapsible proof, transforming it
into another collapsible proof. For example, we show the shape
of a key transformation for the case study rule in Fig. 4, which
allows to merge two occurrences of the axiom rule above a case
study into a single axiom rule. We refer the reader to Fig. 14
for an overview of the shapes of the ▶col transformations, and
Appendix E for more details.

Lemma 2. Let u⃗ ∼ε v⃗ be an equivalence predicate such
that u⃗ ̸= v⃗. Let Π be an (u⃗, v⃗)-collapsible proof where all
occurrences of G . A X I O M in the trunk are on u⃗ ∼ε v⃗. Then,
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the rewrite relation ▶col terminates on Π and yields proofs
with at most one application of this axiom rule in the trunk.

See Appendix C-D for a proof sketch.

D. Polynomial security

We now seek to find conditions on proof by induction over
natural numbers that make it possible to derive polynomial
security from it. In essence, we will adapt the proof in order to
obtain better advantage upper-bounds. This is done in the key
lemma presented below, which relies on a specialized version
of induction that we introduce first.

Consider the following induction rule specialized to integers:

E′; Θ, u n ∼xε v n ⊢
u n, u′ (n+ 1) ∼εih v n, v

′ (n+ 1)
E; Θ ⊢ u0 ∼ε0 v0

E; Θ ⊢ ∀̃(n : bint). det(n) ⇒̃ u n ∼ε n v n
N- I N D

where E′ declares xε and n : bint. As for u, v and ε, they are
defined by recurrence:

u 0
def
= u0 v 0

def
= v0 ε 0

def
= ε0

u (n+ 1)
def
= ⟨u n, u′(n+ 1)⟩ v (n+ 1)

def
= ⟨v n, v′ (n+ 1)⟩

ε (n+ 1)
def
= λt. (εih{xε 7→ ε n}) (t+ t⟨⟩) (7)

and where the main inductive premise has already been
simplified by removing the top-level pair in u (n + 1) and
v (n+ 1) (remark that we account for the time of simulating
the pair computation in the advantage ε n, where t⟨⟩ must
bound the time needed to compute each application of ⟨⟩).

Lemma 3. Let Π be an (u n; v n)-admissible proof proving the
inductive premise of the rule above where: the only occurrence
of G . A X I O M in the trunk is on the induction hypothesis
u n ∼ε n v n; and where the induction hypothesis and xε are
only used in the trunk.

Then there exists Πpoly proving the inductive case of N- I N D

with an improved upper-bound εneglih , i.e. Πpoly proves:

E′; Θ, u n ∼xε v n ⊢ u n, u′ (n+ 1) ∼εneglih
v n, v′ (n+ 1)

where εneglih is such that the final advantage εnegl, defined from
εneglih as described in Eq. (7), is such that for any M where:

• Π is in ε/polyxε,nM , i.e. (roughly) the advantage terms
(resp. time and length terms) appearing in all auxiliary
sub-proofs of Π are negligible (resp. polynomial) in M, for
any number of session n and adversarial time t which are
polynomial in η. See Appendix C-E for a formal definition
of ε/polyxε,nM .

• The initial advantage bound ε0 and the cryptographic
advantages εCCA1 and εPRF must be negligible for adver-
saries running in time polynomial in η.

Then the term εnegl is a negligible term w.r.t. n and M, i.e. for
any polynomials Pn, Pt ∈ N[η] bounding, resp., the number of
sessions and the execution time of the adversary:

Eρ(
q
εnegl n

yη,ρ

M[n 7→Pn(η)]
)(Pt(η)) ∈ negl(η).

A proof sketch is given in Appendix C-F.
We can check that this result applies to the proof of

Section IV-A establishing the main inductive step of the security
of PA. This shows that PA provides a polynomial-level of
security, though the initial proof did not.

V I . C O N C L U S I O N

The CCSA approach has already been studied and extended
in many directions, but always for asymptotic analyses and
estimations. In this paper, we propose the first concrete logic
for this approach, providing precise advantages bounds inside
the proofs reasoning steps. Also, whereas it is of major interest
in many papers to improve the tightness of the estimation of
the adversary advantages, it is usually done in ad-hoc ways,
and mainly for pen-and-paper proofs. To our knowledge, it
is the first time that such precise advantages are managed in
an automatic and generic way for the derivation of security
proofs. As a future work, we plan to tackle the sizeable
task of implementing our concrete security logic in Squirrel.
Another line of future work could be to extend the class of
admissible proofs, one possible extension is the proof with
mutual inductions, that are out of scope for now.

R E F E R E N C E S

[1] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Pironti, and P. Strub,
“Triple handshakes and cookie cutters: Breaking and fixing authentication
over TLS,” in IEEE Symposium on Security and Privacy. IEEE Computer
Society, 2014, pp. 98–113.

[2] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A.
Halderman, N. Heninger, D. Springall, E. Thomé, L. Valenta, B. Van-
derSloot, E. Wustrow, S. Z. Béguelin, and P. Zimmermann, “Imperfect
forward secrecy: how diffie-hellman fails in practice,” Commun. ACM,
vol. 62, no. 1, pp. 106–114, 2019.

[3] V. Shoup, “OAEP reconsidered,” J. Cryptol., vol. 15, no. 4, pp. 223–249,
2002.

[4] M. Barbosa, G. Barthe, C. Doczkal, J. Don, S. Fehr, B. Grégoire,
Y. Huang, A. Hülsing, Y. Lee, and X. Wu, “Fixing and mechanizing the
security proof of fiat-shamir with aborts and dilithium,” in CRYPTO (5),
ser. Lecture Notes in Computer Science, vol. 14085. Springer, 2023,
pp. 358–389.

[5] M. Barbosa, G. Barthe, K. Bhargavan, B. Blanchet, C. Cremers, K. Liao,
and B. Parno, “Sok: Computer-aided cryptography,” in 2021 IEEE
Symposium on Security and Privacy (SP), 2021, pp. 777–795.

[6] V. Shoup, “Sequences of games: a tool for taming complexity in security
proofs,” Cryptology ePrint Archive, Paper 2004/332, 2004, https://eprint.
iacr.org/2004/332. [Online]. Available: https://eprint.iacr.org/2004/332

[7] M. Abadi and C. Fournet, “Private authentication,” Theor. Comput. Sci.,
vol. 322, no. 3, pp. 427–476, 2004.

[8] B. Blanchet, “A computationally sound mechanized prover for security
protocols,” in IEEE Symposium on Security and Privacy. IEEE Computer
Society, 2006, pp. 140–154.

[9] G. Barthe, B. Grégoire, and S. Z. Béguelin, “Formal certification of
code-based cryptographic proofs,” in POPL. ACM, 2009, pp. 90–101.

[10] G. Barthe, B. Grégoire, S. Heraud, and S. Z. Béguelin, “Computer-aided
security proofs for the working cryptographer,” in CRYPTO, ser. Lecture
Notes in Computer Science, vol. 6841. Springer, 2011, pp. 71–90.

[11] D. A. Basin, A. Lochbihler, and S. R. Sefidgar, “Crypthol: Game-based
proofs in higher-order logic,” J. Cryptol., vol. 33, no. 2, pp. 494–566,
2020.

[12] C. Abate, P. G. Haselwarter, E. Rivas, A. V. Muylder, T. Winterhalter,
C. Hritcu, K. Maillard, and B. Spitters, “Ssprove: A foundational
framework for modular cryptographic proofs in coq,” in CSF. IEEE,
2021, pp. 1–15.

[13] G. Bana and H. Comon-Lundh, “A computationally complete symbolic
attacker for equivalence properties,” in CCS. ACM, 2014, pp. 609–620.

14

https://eprint.iacr.org/2004/332
https://eprint.iacr.org/2004/332
https://eprint.iacr.org/2004/332


[14] D. Baelde, S. Delaune, C. Jacomme, A. Koutsos, and S. Moreau, “An
interactive prover for protocol verification in the computational model,”
in SP. IEEE, 2021, pp. 537–554.

[15] D. Baelde, S. Delaune, A. Koutsos, and S. Moreau, “Cracking the stateful
nut: Computational proofs of stateful security protocols using the squirrel
proof assistant,” in CSF. IEEE, 2022, pp. 289–304.

[16] C. Cremers, C. Fontaine, and C. Jacomme, “A logic and an interactive
prover for the computational post-quantum security of protocols,” in SP.
IEEE, 2022, pp. 125–141.

[17] D. Baelde, A. Koutsos, and J. Lallemand, “A higher-order indistinguisha-
bility logic for cryptographic reasoning,” in LICS, 2023, pp. 1–13.

[18] M. Arapinis, L. I. Mancini, E. Ritter, and M. D. Ryan, “Analysis of
privacy in mobile telephony systems,” Int. J. Inf. Sec., vol. 16, no. 5, pp.
491–523, 2017.

[19] M. Bellare, “Practice-oriented provable security,” in Lectures on Data
Security, ser. Lecture Notes in Computer Science, vol. 1561. Springer,
1998, pp. 1–15.

[20] M. Fischlin and A. Mittelbach, “An overview of the hybrid argument,”
IACR Cryptol. ePrint Arch., p. 88, 2021.

[21] M. Bellare, A. Boldyreva, and S. Micali, “Public-key encryption in a
multi-user setting: Security proofs and improvements,” in EUROCRYPT,
ser. Lecture Notes in Computer Science, vol. 1807. Springer, 2000, pp.
259–274.

[22] H. Comon and A. Koutsos, “Formal computational unlinkability proofs of
RFID protocols,” in CSF. IEEE Computer Society, 2017, pp. 100–114.

[23] A. Koutsos, “The 5G-AKA authentication protocol privacy,” in EuroS&P.
IEEE, 2019, pp. 464–479.

A P P E N D I X A
S E M A N T I C S O F P R E D I C AT E S

We give here the full definitions of the predicates decribed
in Section II and in rules of Section III.

a) Bounded length: For u an order-1 term of type τ0 →
τ1, l a term of type int → int, the predicate blenl(u) holds if,
for any η and a ∈ Jτ0K

η
M of length na ∈ N, and for every ρ ∈

TM,η, we have | JuKη,ρM (a)| ≤ infρ JlKη,ρM (na). The definition
extends naturally to order-1 terms with more than one argument.

b) Adversarial computability: Let u be a term of type
τ⃗1 → τ⃗0 → τ with τ⃗1 are types of order 1, τ⃗0 and τ have
order 1. Let t be a term of type (int → int)n → int

m → int,
and o⃗ of type int

n
, with n = |τ⃗1| and m = |τ⃗0|. The predicate

advt,o⃗(u) holds if there exists a Turing machine A with n
oracles and m inputs such that, for all

• η ∈ N and ρ ∈ TM,η ,
• f⃗ ∈ Jτ⃗1K

η,ρ
M and l⃗ such that

|fi(x)| ≤ li(|x|) for all i and x,
• w⃗ ∈ Jτ⃗0K

η,ρ
M and s⃗ such that wi = |si| for all i,

we have:

JuKη,ρM (f⃗ , w⃗) = Af⃗ (1η, w⃗, ρa)

timeA(1
η, w⃗, f⃗) ≤ inf

ρ

r
t l⃗ s⃗

zη,ρ

M

callsηA ≤ inf
ρ

Jo⃗Kη,ρM

c) Well-foundedness: Let τ be a type and <τ be a symbol
of type τ → τ → bool. We let well-foundedτ (<τ ) be the
following global formula, which checks if type τ , ordered by
<τ , is well-founded :

well-foundedτ (<τ )
def
=

[∀(l : nat → τ).¬(∀i, j. i < j → l j <τ l i)]0

where nat and <: nat → nat → bool are always interpreted
as, resp., the set of natural numbers and the standard order
over natural numbers.

A P P E N D I X B
P R O O F S Y S T E M

A. Permutation Rule

Let u1l , . . . , u
n
l and u1r, . . . , u

n
r be two sequences of terms

of the same length, whose types are compatible. Let π be a
permutation of {1, . . . , n}. Then we can permute terms in an
equivalence formula with the permutation rule:

Gε . E : P E R M

E; Θ ⊢ uπ(1)l , . . . , u
π(n)
l ∼π(ε) u

π(1)
r , . . . , uπ(n)r

E; Θ ⊢ u1l , . . . , unl ∼ε u
1
r, . . . , u

n
r

,

where π(ε) permutes oracle calls in ε according to π, and is
defined by:

π(ε)
def
= λt, o1, . . . , or. ε t oπ′(1) . . . oπ′(r)

where, if we let r be the number of terms of order 1 in
u1l , . . . , u

n
l , then π′ is the permutation of {1, . . . , r} defined

by:

π′(i)
def
=

∣∣∣{j | π(j) ≤ π(i) and π(ujl ) is of order 1
}∣∣∣ .

B. Bi-Deduction

The bi-deduction rule shown in Section III-B is a generaliza-
tion of several reductionistic rules of our proof system. More
precisely, this rule captures the Function Applications rules
Gε . E : FA - A P P, Gε . E : FA - F U N and Gε . E : FA - B A S E , as
well as the weakening rule Gε . E : W E A K.

We now present our full bi-deduction rule, which generalizes
the rule presented in the body of this paper in several ways:

• we provide additional fresh names to the contexts;
• we allow for an arbitrary number of contexts instead of a

single context.
These two extensions make our bi-deduction rule general
enough to subsume more standard CCSA rules: adding names
captures the Gε . E : FA - N A M E S rule capabilities, while hav-
ing many contexts captures the duplication rules Gε . E : D U P -
B A S E and Ge.Equiv:Dup-Fun , as well as Gε . E : P E R M. The
rules subsumed by the generalized bi-deduction rule are clearly
marked in Fig. 11.

a) Generalized bi-deduction: We now describe our first
generalization of the bi-deduction rule. Let E be an environment
such that any declared symbols x in E is only used in eta-long
form and is such that E; Θ ⊢ adv+∞(x) is valid, and let Θ be
a set of global hypotheses.

Let u⃗ def
= u1, . . . , um and v⃗ def

= v1, . . . , vm be two sequences
of terms of the same length such that, for every i, terms ui
and vi have the same types. Let l⃗ def= l1, . . . , lm be a sequence
of length terms for u⃗ and v⃗:

• we assume that the types of l⃗ are compatible with u⃗ and
v⃗, i.e. li has type int if ui and vi are of order 0, and has
type int → int if ui and vi are of order 1;
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• we will require blenli(ui) ∧̃ blenli(vi) for every i.
Similarly, let w⃗0 and w⃗1 be two sequences of terms of the

same length with compatible types, and let l⃗w be a sequence
of length terms for w⃗0 and w⃗1.

Let C1, . . . , Cn be sequences of terms representing the
contexts that are to be simulated by the adversary. To account
for the cost aspects of the rule, we consider, for every i ≤ n:

• a term ti representing the execution time of Ci;
• a sequence of terms o⃗i representing the number of calls

that Ci makes to its arguments of order 1.
We will require that advti,o⃗i(Ci) holds for every i ≤ n, and
that the terms C1, . . . , Cn are without names.

Let n⃗
def
= n1, . . . , np a sequence of names that are to be

provided to C1, . . . , Cn. We require that:
• names in n⃗ are fresh, i.e. we require that no name in n⃗

appears in w⃗0, w⃗1, u⃗, v⃗, C1, . . . , Cn, and Θ;
• names in n⃗ do not appear in E, except in their declarations;
• we are provided, for every i ≤ p, with a term tnj upper-

bounding the time needed by nj to do a single sampling
in any model;

• we are given a sequence of length terms l⃗n = ln1, . . . , l
n
p

for n⃗, where we will require that blenlni(ni) holds for
every i ≤ p.

We let ji, . . . , jq be such that

(Cj1 w⃗0 u⃗ n⃗), . . . , (Cjq w⃗0 u⃗ n⃗)

is the sub-sequence, in the same order, of terms of order 1 in
(C1 w⃗0 u⃗ n⃗), . . . , (Cn w⃗0 u⃗ n⃗). Furthermore, for every context
Ci, we decompose o⃗i into o⃗ ai , o⃗

n
i where: o⃗ ai bounds the number

of calls from Ci to each order-1 argument in w⃗0, u⃗ (or w⃗1, v⃗);
o⃗ni is of length p and bounds the number of calls from Ci to
each name symbol in n⃗.

Then, we have the rule:
Gε . E : B I - D E D U C E

E; Θ ⊢ w⃗0, u⃗ ∼ε w⃗1, v⃗ E; Θ ⊢
∧̃

i≤n advti,o⃗i(Ci)

E; Θ ⊢ blenl⃗w (w⃗0) ∧̃ blenl⃗w (w⃗1)
E; Θ ⊢ blenl⃗ (u⃗) ∧̃ blenl⃗ (v⃗) E; Θ ⊢ blenl⃗n(n⃗)

E; Θ ⊢ w⃗0, (C1, . . . , Cn) w⃗0 u⃗ n⃗ ∼ε′ w⃗1, (C1, . . . , Cn) w⃗1 v⃗ n⃗

where (C1, . . . , Cn) w⃗0 u⃗ n⃗ denotes the sequence terms

C1 w⃗0 u⃗ n⃗, . . . , Cn w⃗0 u⃗ n⃗,

and ε′ is the advantage bound term:

λt, a1, . . . , aq.

ε
(
t+ toracle +

∑
i≤n

cpti · ti l⃗w l⃗ l⃗
n
) (∑

i≤n

cpti · o⃗
a
i

)
(8)

where toracle is the time needed to compute all random
samplings for names n⃗ defined by:

toracle
def
=

∑
i≤n,j≤p

tnj · o⃗ni [j]

and where, for every i ≤ n, the term cpti represents the number
of times we need to simulate Ci, and is defined as:

cpti
def
=

{
1 if (Ci u⃗ n⃗) is of order 0
ar if (Ci u⃗ n⃗) is of order 1, where r is s.t. jr = i.

C. The Computability Predicate E; Θ; a⃗ ⊢c
t,o⃗ u

For u a term of order at most 2, the computability predicate
E; Θ; a⃗ ⊢c

t,o⃗ u represents the fact that JuKη,ρM can be simulated
from a⃗, in time t and calling its first order arguments at most
o⃗ times (where t and o⃗ are well-type in E). It is an extension
of the ⊢pptm predicate from [17]. Practically this predicate is
similar to advt,o⃗(u) with two major differences:

• we allow for simulation of names, that is the distribution
of the simulation should be equal to the distribution of
JuKη,ρM , as opposed to adv() where we require equality
for every ρ;

• we fix the evaluation strategy for the simulation, i.e. the
simulation evaluates u in a standard way, as opposed to
adv() where we only require that a simulator exists.

In order to be able to provide a proof system that allows
for simulating quantifiers, we need a new predicates. For any
type τ of order 0, we consider an additional global predicate
enumτ (te), which is satisfied in a model M iff. there exists
a machine M ∈ PPTM such that, for any η, M enumerates
all elements of type τ in time at most infρ(JteK

η,ρ
M ). By

enumerating, we mean that there exists a particular working
tape T of M such that, during an execution of M, the tape T
will successively contains all values of type τ , where M enters
a special state each time it emits a value of type τ on tape T
(and M enter this state only when it emits such a value).

We provide a proof system for E; Θ; a⃗ ⊢c
t,o⃗ u in 6.

D. Generalized Subterms and Freshness Conditions

To recall the definition of the ϕn i
fresh(u) (This condition can

be any formula that imply the freshness of n i in u, meaning
that the sampling of n i isn’t necessary to compute u), we
first recall the notion of generalize subterms STE(u) in Fig. 8,
that represent all subterm v necessary to compute a given term
u in a given environment E with the conditions ψ require to
have to compute v and the variables α⃗ bound in u that can
be found in v. The formal definition of ϕn,vfresh(C(n v)) is any
well-typed formula in E such as for all model M of Θ, and
for all η ∈ N, ρ ∈ TM,η:

q
ϕn,vfresh(u⃗)

yη,ρ

M
= 1 implies

J∀α⃗.ψ =⇒ v ̸= v0K
η,ρ
M = 1

for every (α⃗, ψ, n v0) ∈ STE(u⃗)

We recall the definition given for ϕkey() and ϕrand() in [17],
starting by some extra cases to add to the generalized subterms:

ST cca
E,k,ik

(pk(k i0))
def
= {(ε,⊤, pk(k i0))}
∪ ST cca

E,k,ik
(i0) ∪ [i0 ̸= ik]ST cca

E,k,ik
(k i0)

and

ST cca
E,k,ik

(adec u (k ik))

def
= {(ε,⊤, adec u (k ik)), (ε,⊤, adec)}
∪ ST cca

E,k,ik
(u) ∪ ST cca

E,k,ik
(i0) ∪ [i0 ̸= ik]ST cca

E,k,ik
(k i0)

Those represent the added capacity of the adversary given the
oracles of the CCA1 game. And then, we can define ϕkey() and
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In C . N A M E, and tn and ln are upper-bounds on, resp., the time needed by n for a single sampling, and the length of a single sampling.

C . I N P U T0

τ of order 0
E; Θ; a⃗, (x : τ :- l) ⊢c

l x :- l

C . I N P U T1

τ of order 1
E; Θ; a⃗, (f : τ :- l, 0) ⊢c

0 f :- l

C . L E T
Θ;E, lv : int; a⃗, (x : τ :- lv) ⊢c

tu,o⃗u u :- lu E; Θ; a⃗ ⊢c
tv,o⃗v v :- lv τ of order 0

E; Θ; a⃗ ⊢c
tu+tv,o⃗u+o⃗v let (x : τ) = v in u :- lu

C . A P P0

E; Θ; a⃗ ⊢c
tu,o⃗ u :- lu E; Θ; a⃗ ⊢c

tv v :- lv E, a⃗ ⊢ v : τ τ of order 0 u ̸∈ a⃗

E; Θ; a⃗ ⊢c
tu lv+tv,o⃗ u v :- lu lv

C . A P P1n

E; Θ; a⃗, (u :- lu, j) ⊢c
tv v :- lv E, a⃗ ⊢ v : τ τ of order 0

E; Θ; a⃗, (u :- lu, j + 1) ⊢c
tu lv+tv u v :- lu lv

C . A P P21i

E; Θ; a⃗ ⊢c
tu,(o1,...,on) u :- lu E; Θ; a⃗ ⊢c

tv v :- lv v ̸∈ a⃗ E, a⃗ ⊢ v : τ τ of order 1
E; Θ; a⃗ ⊢c

tu lv+tv,(o2,...,on) u v :- lu lv

C . A P P21n

E; Θ; a⃗ ⊢c
tu,(o1,...,on) u :- lu τ of order 1

E; Θ; a⃗, (v : τ :- lv, o1) ⊢c
tu lv+tv,(o2,...,on) u v :- lu lv

C . N A M E
n ∈ N E; Θ; a⃗ ⊢c

t i :- l
E; Θ; a⃗ ⊢c

t+tn n i :- ln

C . A D V
E; Θ ⊢ advt,o⃗(u) E; Θ ⊢ blenl(u)

E; Θ; ∅ ⊢c
t,o⃗ u :- l

C . Q U A N T0

Q ∈ {∃; ∀} τ of order 0
E; Θ ⊢ enumτ (te) E; Θ ⊢ ∀̃(x : τ). blenlτ (x)

E; Θ; a⃗, (x : τ :- lτ ) ⊢c
t ϕ :- 1

E; Θ; a⃗ ⊢c
te+

∑
x:τ (t+lτ )

Q(x : τ). ϕ :- 1

C . D E F : D E LTA
(x : τ = u) ∈ E
E; Θ; a⃗ ⊢c

t u :- l
E; Θ; a⃗ ⊢c

t x :- l

C . L A M B D A0

E, lx : int; Θ; a⃗, (x : τ :- lx) ⊢c
t,o⃗ u :- l

τ of order 0
E; Θ; a⃗ ⊢c

λlx. t,o⃗ λx. u :- λlx. l

C . L A M B D A1

E, lx : int → int; Θ; a⃗, (x : τ :- lx, i) ⊢c
t,o⃗ u :- l τ of order 1

E; Θ; a⃗ ⊢c
λlx. t,(i,o⃗) λx. u :- λlx. l

C . H Y P S W E A K
E0 well-typed E0 ⊢ Θ0 E0 ⊢ u : τ E0; Θ0; a⃗ ⊢c

t,o⃗ u

E0,E1; Θ0,Θ1; a⃗ ⊢c
t,o⃗ u

C . I N D U C T I O N
E = E0, (f : bint → τ = λy.b) τ of order 0

E0, ly : int; Θ; a⃗, (y :- l), (g :- lf ) ⊢c
t b{f 7→ g} :- lf ly ly ̸∈ fv(t) E; Θ; a⃗ ⊢c

tu u :- lu E; Θ ⊢ det(u)

E; Θ; a⃗ ⊢c
tu+u·t f u :- lf lu

Figure 6. Rules for the computability predicate E; Θ; a⃗ ⊢c
t u.

ϕrand(). For all model M of Θ, for all η ∈ N and ρ ∈ TM,η,
we have that:

if
r
ϕk,ikey(u)

zη,ρ

M
= 1 then

J∀α⃗.ψ =⇒ i ̸= i0K
η,ρ
M = 1

for all (α⃗, ψ, k i0) ∈ ST cca
E,k,i(u)

and

if
r
ϕk,irand(u)

zη,ρ

M
= 1 then

J∀α⃗.ψ =⇒ i ̸= i0K
η,ρ
M = 1

for all (α⃗, ψ, r i0) ∈ ST cca
E,k,i(u).

Finally, the formula ϕdec() is defined as follows:

if
r
ϕk,idec(u)

zη,ρ

M
= 1 then

J∀α⃗.ψ =⇒ i ̸= i0K
η,ρ
M = 1

for all (α⃗, ψ, adec u (k i0)) ∈ ST cca
E,k,i(u).

A P P E N D I X C
P R O O F T R A N S F O R M AT I O N S

A. Admissible Proofs

a) Notation: For any b, u⃗ = u1, . . . , un and v⃗ =
v1, . . . , vn, we let if b then u⃗ else v⃗ be the sequence of terms:

if b then u1 else v1, . . . , if b then un else vn

b) Restricting the case-study rule: We use a restricted
version of the Gε . E : C S rule that can only be used if the
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Mixed judgements rules.
Lε . B Y G L O B

E; Θ ⊢ [ψ]ε
E; Θ; ∅ ⊢ε ψ

Gε . B Y L O C

E; Θ; ∅ ⊢ε ψ

E; Θ ⊢ [ψ]ε

Lε . L O C A L I S E

E; Θ; Γ, ϕ ⊢ε0 ψ

E; Θ, [ϕ]ε1 ; Γ ⊢ε0+ε1 ψ

Lε . R E W R I T E - E Q U I V

E; Θ; Γ1 ⊢ε1 ψ1 E; Θ ⊢ (Γ0 ⇒ ψ0) ∼ε0 (Γ1 ⇒ ψ1)

E; Θ; Γ0 ⊢ε1+ε0(1) ψ0

Figure 7. Mixed judgements rules.

STE(x)
def
= {(ε,⊤, x)} (when (x : τ) ∈ E or x /∈ E)

STE(x)
def
= STE(u) (when (x : τ = u) ∈ E)

STE(u u′)
def
=

{
STE(u0{y 7→ u′}) (when u ≡ x and (x : τ = λy.u0) ∈ E)
{(ε,⊤, (u u′))} ∪ STE(u) ∪ STE(u′) (otherwise)

STE(λ(x : τ).u)
def
= {(ε,⊤, λ(x : τ).u)} ∪ (x : τ).STE(u) (where x is fresh)

STE(if ϕ then u1 else u0)
def
= {(ε,⊤, if ϕ then u1 else u0)} ∪ STE(ϕ) ∪ [ϕ]STE(u1) ∪ [¬ϕ]STE(u0)

STE(let (x : τ) = u0 in u1)
def
= {(ε,⊤, let (x : τ) = u0 in u1)} ∪ STE(u0) ∪ (x : τ).[x = u0]STE(u1)

Where [ϕ]S
def
= {(α⃗, ψ ∧ ϕ, u) | (α⃗, ψ, u) ∈ S} and (x : τ).S

def
= {(α⃗, x : τ), ψ, u | (α⃗, ψ, u) ∈ S}

Figure 8. Generalised subterms.

branching condition is bi-deducible from the unmodified part
of the equivalence:

Gε . E : C SR

E; Θ ⊢ u⃗l, v⃗l ∼ε1 u⃗r, v⃗r E; Θ ⊢ u⃗l, w⃗l ∼ε2 u⃗r, w⃗r

E; Θ ⊢ advt,o⃗(C) E; Θ ⊢ blenl⃗ (u⃗l) ∧̃ blenl⃗ (u⃗r)

E; Θ ⊢ u⃗l, if C u⃗l then v⃗l else w⃗l

∼ε′ u⃗r, if C u⃗r then v⃗r else w⃗r

where C is a context without names and the bound ε′ is:

ε′
def
= λt, a⃗. ε1 (t+ tC l⃗) (⃗a+ o⃗) + ε2 (t+ tC l⃗) (⃗a+ o⃗) + 1

c) (u⃗; v⃗)-admissible proofs: Let u⃗ and v⃗ be two same-
length sequence of terms with compatible types. We define the
set of proofs that are (u⃗; v⃗)-admissible by induction:

• If
Π

E; Θ ⊢ u⃗, u⃗0, u⃗1 ∼ε v⃗, v⃗0, v⃗1

is (u⃗, u⃗0; v⃗, v⃗0)-admissible then it is also
(u⃗; v⃗)-admissible.

• If L is a leaf rule then
E; Θ ⊢ u⃗ ∼ε v⃗

L is

(u⃗; v⃗)-admissible.

• If
Π

E; Θ ⊢ u⃗, u⃗0 ∼ε v⃗, v⃗0
is (u⃗; v⃗)-admissible then

Π

E; Θ ⊢ u⃗, u⃗0 ∼ε v⃗, v⃗0
· · ·

E; Θ ⊢ u⃗, (C1, . . . , Cn) u⃗ u⃗0 n⃗

∼ε′ v⃗, (C1, . . . , Cn) v⃗ v⃗0 n⃗

Gε . E : B I - D E D U C E

is (u⃗; v⃗)-admissible. Note that the immutable components
of the proof u⃗ and v⃗ must be exactly the part of the
conclusion that is not touched by the bi-deduction rule.

• If
Π0

E; Θ ⊢ u⃗, u⃗0 ∼ε v⃗, v⃗0
and

Π1

E; Θ ⊢ u⃗, u⃗1 ∼ε v⃗, v⃗1
are

(u⃗; v⃗)-admissible then the following application of the
Gε . E : C SR rule:

Π0

E; Θ ⊢ u⃗, u⃗0 ∼ε0 v⃗, v⃗0
Π1

E; Θ ⊢ u⃗, u⃗1 ∼ε1 v⃗, v⃗1
· · ·

E; Θ ⊢ u⃗, if C u⃗ then u⃗0 else u⃗1

∼ε′ u⃗, if C v⃗ then v⃗0 else v⃗1

is (u⃗; v⃗)-admissible, where C is a context without names.
Note that the case-study branching conditions C u⃗ and C v⃗
must be fully computable from the immutable components
u⃗ and v⃗.

• If
Π

E; Θ ⊢ u⃗, u⃗0 ∼ε v⃗, v⃗0
is (u⃗; v⃗)-admissible then

Π

E; Θ ⊢ u⃗, u⃗0 ∼ε v⃗, v⃗0 Π⃗Aux

E; Θ ⊢ u⃗, u⃗1 ∼ε′ v⃗, v⃗1
R

is (u⃗; v⃗)-admissible, where the auxiliary premises Π⃗Aux
of rule R (if there are any) are arbitrary proofs, and u⃗1
and v⃗1 are arbitrary terms (such that the derivation above
is valid).

d) Positions, paths: We define the path to a position in a
proof as the set of all prefix positions of this position. Given an
admissible proof Π, we denote Trunk(Π) its trunk, AuxProof(Π)
the multi-set of the auxiliary proof of Π. Also, given a position
p ∈ Trunk(Π), we let PathΠ(p) the path from the root of Π
to position p, and RΠ(p) the rule at position p.
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B. Discussion: Rule Restrictions

We quickly discuss why we do not support some rules in
our proof-transformation result, and the impact that removing
these rules has.

We do not support the transitivity rule because of the
completely new terms that appear in the premises, which cannot
be linked to the terms in the conclusion. This prevent us from
commuting this rule, notably with the bi-deduction rule, as
we do not know how to establish the new auxiliary proof
obligations appearing after commutation. Removing transitivity
has a limited impact on expressivity, as rules that need it
already incorporate a (single, controlled) transitivity step. For
example, this is the case for cryptographic rules, and explains
some differences in presentation between our Gε . C C A 1 rule
and the CCA1 rule of [17].

We believe our result could have been extended to support
the upper-bound weakening rules and the left disjunction
rules could have been, but at the cost of a more complicated
presentation.

C. Termination of ▶AD

We now sketch the proof of Lemma 1.

Lemma 1. The relation ▶AD terminates on any admissible
proof Π. Moreover, if Π is an admissible proof irreducible w.r.t.
▶AD then no ascending rule appears below a descending rule
on the trunk of Π.

Proof sketch. Let Π be a transformable proof.
Given a position p in the trunk of Π, we define HW(p),

CB(p), then Value▶AD
(Π) in Fig. 13. We can show that this

value strictly decreases (for the lexicographic ordering) for any
proof transformation in ▶AD. Thus the proof-transformation
relation ▶AD terminate.

Let ΠT a proof in normal form for ▶AD. Assume by
contradiction that there exists a position p ∈ Trunk(Π) at
which a descending rule is applied, and such as there exists
q ∈ PathΠ(p) such that the rule applied at q is ascending.

We can assume without lost of generality that q is the greatest
strict prefix of p. To conclude, we observe that if q is the
greatest strict prefix of p, then the proof transformation ▷RΠ(q)

RΠ(p)
applies. Thus, Π is not in normal form. Contradiction.

D. Termination of the Collapse Proof Transformations

We now sketch the proof of Lemma 2 which we omitted
from the body.

Lemma 2. Let u⃗ ∼ε v⃗ be an equivalence predicate such
that u⃗ ̸= v⃗. Let Π be an (u⃗, v⃗)-collapsible proof where all
occurrences of G . A X I O M in the trunk are on u⃗ ∼ε v⃗. Then,
the rewrite relation ▶col terminates on Π and yields proofs
with at most one application of this axiom rule in the trunk.

Proof sketch. First, we can show that Π doesn’t contain any
Gε . E : R E F L leaf in it trunk: indeed, if that happens, we can
show that u⃗ = v⃗ just by looking at all the cases of the rule
before it.

We reuse the new numerical quantity Count-CBΠ(p) defined
in Fig. 13. Then, we let:

AR0(Π) =
∑

p∈Trunk(Π)

Count-CBΠ(p).

Notice that:

AR0(Π) =
∑

p∈Trunk(Π)∧RΠ(p)=Gε . E : R E W R I T E0

Count-CBΠ(p)

since Gε . E : R E W R I T E0 is the only ascending rule allowed
in a collaspable proof.

We define a new quantity Count-HWcol
Π (p) similarly to

Count-HWΠ(p) but for all rules that are not G . W E A K instead
of just the ascending rules.

Now, We can define the decreasing quantity for the ▶col

w.r.t the lexicographic order, as such :



∣∣∣
p ∈ Trunk(Π) | RΠ(p) =

Gε . E : C SR

or
Gε . E : B I - D E D U C E


∣∣∣

, AR0
(Π),

∑
p∈Trunk(Π)

Count-HWcol
Π (p),∣∣∣ {p ∈ Trunk(Π) | RΠ(p) = G . W E A K}

∣∣∣


Finally, we analyze what are the possible shapes of proofs

in normal form w.r.t ▶col by case study.
Indeed, we can notice that it cannot have any G . W E A K

since it has a transformation with every rule, and all the
Gε . E : R E W R I T E0 are at the bottom since it have a com-
mutation with every ascending rule. Therefore, it there is
a Gε . E : C S Consider the higher such rule (meaning that it
doesn’t have any Gε . E : C S above it), then it cannot have
G . A X I O M above it since a proof obligation of Gε . E : C S
cannot be u⃗ ∼ v⃗ directly. And it cannot have any other leaf as
one of it proofs since it can be transformed. Therefore, both rule
directly above the Gε . E : C S is a Gε . E : B I - D E D U C E, which
at it turn cannot have anything above it except a G . A X I O M
and therefore collapse. So, there is not any Gε . E : C S rule. As
this is the only rule with two principal premises, there cannot
remain more than one application of the axiom rule.

E. Proof Fragment ε/polyxε,nM

a) Definition of negligibility for ε and of polynomial for
t and l: We define a semantical notion of polynomial-time for
the time, oracles calls and length annotations, and a notion of
of negligibility for the upper-bound annotations. Note that it
is given relatively to a formal variable N of type bint, used
to interpret the number of inductive steps of the proof.

We say that a term ε is a negligible term w.r.t. N in a model
M, which we write neglNM (ε), if one of the following case
holds:

• ε is of type real and for any P ∈ N[η],

Eρ(JεK
η,ρ
M[N 7→P (η)]) ∈ negl(η).
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• ε is of type int
l → real and for any, P ∈

N[η], P1, . . . , Pl ∈ Z[η]

Eρ(JεK
η,ρ
M[N 7→P (η)] (P1(η), . . . , Pl(η))) ∈ negl(η).

We say that a term u is a polynomial term w.r.t. N in a
model M, which we write polyNM (u), if one of the following
case holds:

• u is of type int and for any P ∈ N[η],

sup
ρ
(JuKη,ρM[N 7→P (η)]) ∈ Z[η].

• u is of type int
l → int and for any P ∈ N[η], P1, . . . , Pl ∈

Z[η],

sup
ρ

(
JuKη,ρM[N 7→P (η)] (P1(η), . . . , Pl(η))

)
∈ Z[η].

Such a term is called an order one polynomial, and the
set of such functions is noted Z1[η].

• u is of type

(int
ki → int)m → int

l → int

and for any

P ∈ N[η] f1, . . . , fm ∈ Z1[η]

P1,1, . . . , P1,k1
, . . . , Pm,1, . . . , Pm,km ∈ Z[η]

P1 . . . , Pl ∈ Z[η],

the following quantity is a polynomial in Z[η]:

sup
ρ

JuKη,ρ
M[N 7→P (η)]

 f1(P1,1(η), . . . , P1,k1),

. . . , fm(Pm,1(η), . . . , Pm,km(η)),

P1(η), . . . , Pl(η)




b) Definition of ε/poly :: Let n be a variable of type bint.
We say that a global formula F is poly-secure compatible w.r.t.
n and a model M when all the advantages, time and length
terms appearing in its predicates are polynomial or negligible
(according to their type) w.r.t n and M.

Similarly, a judgement is poly-secure compatible (w.r.t. n and
M) if its conclusion is poly-secure compatible. If we consider a
local or a time judgement, we also require that the advantage or
time term labeling the judgement are poly-secure compatible.

Let εx be variable of a type compatible with u⃗; v⃗, in the sense
that u⃗ ∼xε v⃗ is a well-typed predicate. We say that a proof Π
which is (u⃗; v⃗)-admissible proof is ε-linear with polynomial
overhead w.r.t. xε, n and M, which we write ε/polyxε,nM , if all
its auxiliary judgements are poly-secure compatible w.r.t. n
and M, and if the advantage at the conclusion of Π is of the
form:

λt, o⃗. ε0 +
∑
i

xε (t+ ti) (o⃗+ o⃗i)

where t and o⃗ do not occur in ti and o⃗i (for any i), and where
xε does not occur in ε0. The crucial point, here, is that the
time over-heads ti and the oracle calls overheads o⃗i do not
depend on the execution time of the adversary, tough they can
of course depends on the protocol. Without this, it would not

be possible to bound the time in the full inductive proof by a
polynomial.

Remark 3. If Π is ε/polyxε,nM , then any transformation of Π by
the transformation relations ▶AD and ▶col is also ε/polyxε,nM .
This can be checked by a simple case analysis of all proof
transformations.

Proposition 1. Let Π be a (u⃗; v⃗)-admissible proof that only use
G . A X I O M as its leafs in it trunk and only on one particular
conclusion u ∼xε v, where xε is a variable.

The advantage of its conclusion εfinal is of the form:

εfinal = λt, o⃗. ε0 +

k∑
i=1

(xε (t+ ti) (o⃗+ o⃗i)

where k is the number of G . A X I O M in the trunk of Π.
Furthermore, if M is such that Π is ε/polyxε,nM (for some

n), then:
∀i, polynM(ti) ∧ polynM(o⃗i)

where a vector is polynomial if each of its component is.
Finally, if M is a model such that neglnM(εCCA1) and

neglnM(εPRF) holds, then neglnM(ε0) holds as well.

This can be proven by induction on the inductive definition
of admissible proof, by case analysis over all possible rules
involved

F. Obtaining a Polynomial Level of Security

We now recall and prove Lemma 3.

Lemma 3. Let Π be an (u n; v n)-admissible proof proving the
inductive premise of the rule above where: the only occurrence
of G . A X I O M in the trunk is on the induction hypothesis
u n ∼ε n v n; and where the induction hypothesis and xε are
only used in the trunk.

Then there exists Πpoly proving the inductive case of N- I N D

with an improved upper-bound εneglih , i.e. Πpoly proves:

E′; Θ, u n ∼xε v n ⊢ u n, u′ (n+ 1) ∼εneglih
v n, v′ (n+ 1)

where εneglih is such that the final advantage εnegl, defined from
εneglih as described in Eq. (7), is such that for any M where:

• Π is in ε/polyxε,nM , i.e. (roughly) the advantage terms
(resp. time and length terms) appearing in all auxiliary
sub-proofs of Π are negligible (resp. polynomial) in M, for
any number of session n and adversarial time t which are
polynomial in η. See Appendix C-E for a formal definition
of ε/polyxε,nM .

• The initial advantage bound ε0 and the cryptographic
advantages εCCA1 and εPRF must be negligible for adver-
saries running in time polynomial in η.

Then the term εnegl is a negligible term w.r.t. n and M, i.e. for
any polynomials Pn, Pt ∈ N[η] bounding, resp., the number of
sessions and the execution time of the adversary:

Eρ(
q
εnegl n

yη,ρ

M[n 7→Pn(η)]
)(Pt(η)) ∈ negl(η).
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Proof sketch. Since Π is a (u n; v n)-admissible proof, we
can rewrite it into another (u n; v n)-admissible proof that
use the induction hypothesis only once in it trunk (we apply
the transformation ▶AD until we have a normal form then we
apply ▶col on the only (u n, v n)-collapse proof at the top of
the tree (there is only one since all the descending rules have
only one principal premise)).

Therefore, we now have a proof Π′ such that:
• Π′ is a (u n; v n)-admissible proof
• Π′ is a ε/polyxε,nM (since it a transformation of a
ε/polyxε,nM proof)

• G . A X I O M is the only leaf in the trunk of Π′ and it only
appear once.

By Proposition 1, we get that the upper-bound derived by Π′

is of the form λto⃗.xε(t+ tn)(o⃗+ o⃗n) + εn.
Finally, we take εpoly to be

λn. if n = 0 then ε 0 else λto⃗.εpoly(t+ tn)(o⃗+ o⃗n) + εn

which is well-defined since all the terms in it are well-defined
in Π′ and it is well-founded. And it is negligable w.r.t n and
M since Π′ is ε/polyxε,nM .

Therefore, we take the proof Πpoly to be Π′ and ε by εpoly
to conclude the proof.
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Local judgement: left local rules.
Lε . L -∀
E; Θ; Γ, ψ{x 7→ t} ⊢ε ϕ E ⊢ t : τ

E; Θ; Γ,∀(x : τ).ψ ⊢ε ϕ

Lε . L -∃
E, x : τ ; Θ; Γ, ψ ⊢ε ϕ

E; Θ; Γ,∃(x : τ).ψ ⊢ε ϕ

Lε . L -⇒
E; Θ; Γ ⊢ε0 ϕ0 E; Θ; Γ, ϕ1 ⊢ε1 ψ

E; Θ; Γ, ϕ0 ⇒ ϕ1 ⊢ε0+ε1 ψ

Lε . L -∧
E; Θ; Γ, ϕ0, ϕ1 ⊢ε ψ

E; Θ; Γ, ϕ0 ∧ ϕ1 ⊢ε ψ

Lε . L -∨
E; Θ; Γ, ϕ0 ⊢ε0 ψ E; Θ; Γ, ϕ1 ⊢ε1 ψ

E; Θ; Γ, ϕ0 ∨ ϕ1 ⊢ε0+ε1 ψ

Lε . L -⊥

E; Θ; Γ,⊥ ⊢0 ϕ

Local judgement: left global rules.

Lε . L -∀̃
E; Θ, F{x 7→ t}; Γ ⊢ε ϕ E ⊢ t : τ

E; Θ, ∀̃(x : τ).F ; Γ ⊢ε ϕ

Lε . L -∃̃
E, x : τ ; Θ, F ; Γ ⊢ε ϕ

E; Θ, ∃̃(x : τ).F ; Γ ⊢ε ϕ

Lε . L -⇒̃
E; Θ ⊢ F0 E; Θ, F1; Γ ⊢ε ψ

E; Θ, F0 ⇒̃ F1; Γ ⊢ε ψ

Lε . L -∧̃
E; Θ, F0, F1; Γ ⊢ε ψ

E; Θ, F0 ∧̃ F1; Γ ⊢ε ψ

Lε . L -∨̃
E; Θ, F0; Γ ⊢ε0 ψ E; Θ, F1; Γ ⊢ε1 ψ

E; Θ, F0 ∨̃ F1; Γ ⊢ε0+ε1 ψ

Lε . L -⊥̃

E; Θ, ⊥̃; Γ ⊢0 ϕ

Local judgement: right rules.
Lε . R -∀
E, x : τ ; Θ; Γ ⊢ε ϕ

E; Θ; Γ ⊢ε ∀(x : τ).ϕ

Lε . R -∃
E; Θ; Γ ⊢ε ϕ{x 7→ t} E ⊢ t : τ

E; Θ; Γ ⊢ε ∃(x : τ).ϕ

Lε . R -⇒
E; Θ; Γ, ϕ ⊢ε ψ

E; Θ; Γ ⊢ε ϕ⇒ ψ

Lε . R -∧
E; Θ; Γ ⊢ε0 ϕ E; Θ; Γ ⊢ε1 ψ

E; Θ; Γ ⊢ε0+ε1 ϕ ∧ ψ

Lε . R0 -∨
E; Θ; Γ ⊢ε ϕ

E; Θ; Γ ⊢ε ϕ ∨ ψ

Lε . R 1 -∨
E; Θ; Γ ⊢ε ψ

E; Θ; Γ ⊢ε ϕ ∨ ψ

Lε . R - T R U E

E; Θ; Γ ⊢0 ⊤

Local judgement: other rules.
Lε . R E W R I T E

E; Θ; Γ ⊢ε0 ϕ{s} E; Θ; Γ ⊢ε1 s = t

E; Θ; Γ ⊢ε0+ε1 ϕ{t}

Lε . A X I O M

E; Θ; Γ, ϕ ⊢0 ϕ

Lε . A B S U R D

E; Θ; Γ, ψ ⇒ ⊥ ⊢ε ⊥
E; Θ; Γ ⊢ε ψ

Lε . C U T- L O C

E; Θ; Γ ⊢ε0 ϕ E; Θ; Γ, ϕ ⊢ε1 ψ

E; Θ; Γ ⊢ε0+ε1 ψ

Lε . C U T- G L O B

E; Θ ⊢ F E; Θ, F ; Γ ⊢ε ψ

E; Θ; Γ ⊢ε ψ

Lε . W E A K

E; Θ0; Γ0 ⊢ε ψ

E; Θ0,Θ1; Γ0,Γ1 ⊢ε ψ

Local judgement: ε weakening rules.
Lε . W E A K0

E; Θ; Γ ⊢ε ψ E; Θ; ∅ ⊢0 ε ≤ ε′

E; Θ; Γ ⊢ε′ ψ

Lε . W E A Kε
E; Θ; Γ ⊢ε+ε0 ψ E; Θ; ∅ ⊢εl ε0 ≤ ε′0 E; Θ; ∅ ⊢0 ε0 ≤ 1

E; Θ; Γ ⊢ε+ε′0+εl ψ

Figure 9. Local judgement rules.
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Global judgements: left rules.

G . L -∀̃
E; Θ, F0{x 7→ t} ⊢ F1 E ⊢ t : τ

E; Θ, ∀̃(x : τ).F0 ⊢ F1

G . L -∃̃
E, x : τ ; Θ, F0 ⊢ F1

E; Θ, ∃̃(x : τ).F0 ⊢ F1

G . L -⇒̃
E; Θ ⊢ F0 E; Θ, F1 ⊢ F

E; Θ, F0 ⇒̃ F1 ⊢ F

G . L -∧̃
E; Θ, F0, F1 ⊢ F
E; Θ, F0 ∧̃ F1 ⊢ F

G . L -∨̃
E; Θ, F0 ⊢ F E; Θ, F1 ⊢ F

E; Θ, F0 ∨̃ F1 ⊢ F

G . L -⊥̃

E; Θ, ⊥̃ ⊢ F

Global judgements: right rules.

G . R -∀̃
E, x : τ ; Θ ⊢ F

E; Θ ⊢ ∀̃(x : τ).F

G . R -∃̃
E; Θ ⊢ F{x 7→ u} E ⊢ u : τ

E; Θ ⊢ ∃̃(x : τ).F

G . R -⇒̃
E; Θ, F0 ⊢ F1

E; Θ ⊢ F0 ⇒̃ F1

G . R -∧̃
E; Θ ⊢ F0 E; Θ ⊢ F1

E; Θ ⊢ F0 ∧̃ F1

G . R0 -∨̃
E; Θ ⊢ F0

E; Θ ⊢ F0 ∨̃ F1

G . R1 -∨̃
E; Θ ⊢ F1

E; Θ ⊢ F0 ∨̃ F1

G . R -⊤̃

E; Θ ⊢ ⊤̃

Global judgement: other rules.

G . A X I O M

E; Θ, F ⊢ F

G . A B S U R D
E; Θ, F ⇒̃ ⊥̃ ⊢ ⊥̃

E; Θ ⊢ F

G . C U T
E; Θ ⊢ F1 E; Θ, F1 ⊢ F0

E; Θ ⊢ F0

G . W E A K
E; Θ0 ⊢ F

E; Θ0,Θ1 ⊢ F

G . D U P
E; Θ, F0, F0 ⊢ F1

E; Θ, F0 ⊢ F1

Global judgement: local and global relations.

Gε . L - L O C :⇒
E; Θ, [ϕ]0 ⇒̃ [ψ]ε ⊢ F

E; Θ ⊢ const(ϕ)

E; Θ, [ϕ⇒ ψ]ε ⊢ F

Gε . L - L O C :∨
E; Θ, [ϕ]ε ⊢ F E; Θ, [ψ]ε ⊢ F

E; Θ ⊢ const(ϕ) ∨̃ const(ψ)

E; Θ, [ϕ ∨ ψ]ε ⊢ F

Gε . L -∀̃-∀
E; Θ, ∀̃(x : τ). [ψ]ε ⊢ F
E; Θ, [∀(x : τ).ψ]ε ⊢ F

Gε . L -∀-∀̃
E; Θ, [∀(x : τ).ψ]ε ⊢ F
E; Θ, ∀̃(x : τ). [ψ]ε ⊢ F

Gε . L - L O C :∀
E; Θ, [ψ{x 7→ u}]ε ⊢ F E ⊢ u : τ

E; Θ, [∀(x : τ).ψ]ε ⊢ F

Gε . L - L O C :∧
E; Θ, [ψ]ε , [ϕ]ε ⊢ F
E; Θ, [ψ ∧ ϕ]ε ⊢ F

Gε . L - L O C :⊥

E; Θ, [⊥]0 ⊢ F

Global judgement: ε weakening rules.
Weakening rules for other predicates of the logic are similar. We omit them here.

Gε . R E A C H :ε- W E A K0

E; Θ ⊢ [ψ]ε E; Θ ⊢
[
ε ≤ ε′

]
0

E; Θ ⊢ [ψ]ε′

Gε . R E A C H :ε- W E A K
E; Θ ⊢ [ψ]ε+ε0 E; Θ ⊢

[
ε0 ≤ ε′0

]
εl

E; Θ ⊢ [ε0 ≤ 1]0

E; Θ ⊢ [ψ]ε+ε′0+εl

Gε . E :ε- W E A K0

E; Θ ⊢ u⃗ ∼ε v⃗ E; Θ ⊢
[
ε ≤ ε′

]
0

E; Θ ⊢ u⃗ ∼ε′ v⃗

Gε . E :ε- W E A K
E; Θ ⊢ u⃗ ∼ε+ε0 v⃗ E; Θ ⊢

[
ε0 ≤ ε′0

]
εl

E; Θ ⊢ [ε0 ≤ 1]0

E; Θ ⊢ u⃗ ∼ε+ε′0+εl v⃗

Global judgement: rewrite rules.
Rewriting rules for other predicates of the logic are similar. We omit them here.

Gε . E : R E W R I T E0

E; Θ ⊢ u⃗{s} ∼ε{s} v⃗{s} E; Θ ⊢ [s = r]0
E; Θ ⊢ u⃗{r} ∼ε{r} v⃗{r}

Gε . E : R E W R I T E
E; Θ ⊢ u⃗{s} ∼ε1{s}+ε0 v⃗{s} E; Θ ⊢ [s = r]ε2

if {} ∈ fv(ε1) then E; Θ ⊢ [ε1{s} ≤ 1]0
i
def
= (1{}∈fv(u⃗) + 1{}∈fv(v⃗) + 1{}∈fv(ε1))

E; Θ ⊢ u⃗{r} ∼ε1{r}+ε0+i·ε2 v⃗{r}

Gε . R E A C H : R E W R I T E0

E; Θ ⊢ [ψ{s}]ε{s} E; Θ ⊢ [s = r]0
E; Θ ⊢ [ψ{r}]ε{r}

Gε . R E A C H : R E W R I T E
E; Θ ⊢ [ψ{s}]ε1{s}+ε0 E; Θ ⊢ [s = r]ε2

if {} ∈ fv(ε1) then E; Θ ⊢ [ε1{s} ≤ 1]0
i
def
= (1{}∈fv(ψ) + 1{}∈fv(ε1))

E; Θ ⊢ [ψ{r}]ε1{r}+ε0+i·ε2

Gε . B L E N : R E W R I T E0

E; Θ ⊢ blenl{s}(u⃗{s}) E; Θ ⊢ [s = r]0
E; Θ ⊢ blenl{s}(u⃗{r})

Figure 10. Gobal judgement rules.
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Equivalence relation rules.

Gε . E : R E F L

E; Θ ⊢ u⃗ ∼0 u⃗

Gε . E : S Y M

E; Θ ⊢ u⃗l ∼ε u⃗r

E; Θ ⊢ u⃗r ∼ε u⃗l

Gε . E : T R A N S

E; Θ ⊢ u⃗ ∼ε0 w⃗ E; Θ ⊢ w⃗ ∼ε1 v⃗

E; Θ ⊢ u⃗ ∼ε0+ε1 v⃗

Structural rules included in the Gε . E : B I - D E D U C E rule.
In all the rules below, v, vl, vr are order-0 terms and f, fl, fr are order-1 terms.
In Gε . E : FA - N A M E S, nf only occurs in its declaration in E, and tn is an upper-bound on the time needed by nf for a single sampling.

Gε . E : FA - B A S E

E; Θ ⊢ u⃗l ∼ε u⃗r E; Θ ⊢ advtv (v)

E; Θ ⊢ u⃗l, v ∼ε′ u⃗r, v

where ε′ def
= λt, o⃗. ε (t+ tv) o⃗

Gε . E : FA - F U N

E; Θ ⊢ u⃗l ∼ε u⃗r E; Θ ⊢ advtf (f)

E; Θ ⊢ u⃗l, f ∼ε′ u⃗r, f

where ε′ def
= λt, o⃗, of . ε (t+ of · (t+ tf (t))) o⃗

Gε . E : FA - A P P

E; Θ ⊢ u⃗l, fl, vl ∼ε u⃗r, fr, vr
E; Θ ⊢ blenl(vl) ∧̃ blenl(vr)

E; Θ ⊢ u⃗l, (fl vl) ∼ε′ u⃗r, (fr vr)

where ε′ def
= λt, o⃗. ε (t+ l + 1) o⃗ 1

Gε . E : FA - N A M E S

E; Θ ⊢ u⃗l ∼ε u⃗r

E; Θ ⊢ u⃗l, nf ∼ε′ u⃗r, nf

where ε′ def
= λt, o⃗, on. ε (t+ on · tn) o⃗

Gε . E : D U P - B A S E

E; Θ ⊢ u⃗l, vl ∼ε u⃗r, vr

E; Θ ⊢ u⃗l, vl, vl ∼ε u⃗r, vr, vr

Gε . E : D U P - F U N

E; Θ ⊢ u⃗l, fl ∼ε u⃗r, fr

E; Θ ⊢ u⃗l, fl, fl ∼ε′ u⃗r, fr, fr

where ε′ def
= λt, o⃗, o1, o2. ε t o⃗ (o1 + o2)

Gε . E : W E A K

E; Θ ⊢ u⃗l, vl ∼ε u⃗r, vr

E; Θ ⊢ u⃗l ∼ε u⃗r

Gε . E : P E R M

E; Θ ⊢ uπ(1)l , . . . , u
π(n)
l ∼π(ε) u

π(1)
r , . . . , uπ(n)r

E; Θ ⊢ u1l , . . . , unl ∼ε u
1
r, . . . , u

n
r

where π is a permutation of {1, . . . , n}
and π(ε) is defined in Appendix B-A

Reduction rules.
G .β

E; Θ ⊢ [(λ(x : τ).t) t1 = t{x 7→ t1}]0

G .δ

E, x : τ = t; Θ ⊢ [x = t]0

G . L E T

E; Θ ⊢ [let (x : v) = u in = u{x 7→ v}]0
Induction rules.
Lε . I N D U C T I O N

E; Θ ⊢ well-foundedτ (<)
E; Θ; Γ ⊢ε ∀(x : τ).(∀(x1 : τ).x1 < x⇒ ψ{x 7→ x1}) ⇒ ψ

E; Θ; Γ ⊢ε ∀(x : τ).ψ

Gε . I N D U C T I O N

E; Θ ⊢ well-foundedτ (<)
E; Θ ⊢ ∀̃(x : τ). (∀̃(x1 : τ). [x1 < x]0 ⇒̃ F{x 7→ x1}) ⇒̃ F

E; Θ ⊢ ∀̃(x : τ). F

Case-study and bi-deduction rules.
See Appendix B-B for a description of Gε . E : B I - D E D U C E side-conditions, as well as the advantage bound ε′.

Gε . E : C S
E; Θ ⊢ u⃗l, bl, vl ∼ε1 u⃗r, br, v⃗r E; Θ ⊢ u⃗l, bl, wl ∼ε2 u⃗r, br, w⃗r

E; Θ ⊢ u⃗l, if bl then v⃗l else w⃗l ∼ε1+ε2+1 u⃗r, if br then v⃗r else w⃗r

Gε . E : B I - D E D U C E

E; Θ ⊢ w⃗0, u⃗ ∼ε w⃗1, v⃗

E; Θ ⊢
∧̃

i≤n advti,o⃗i(Ci) E; Θ ⊢ blenl⃗w (w⃗0) ∧̃ blenl⃗w (w⃗1) E; Θ ⊢ blenl⃗ (u⃗) ∧̃ blenl⃗ (v⃗) E; Θ ⊢ blenl⃗n(n⃗)

E; Θ ⊢ w⃗0, (C1, . . . , Cn) w⃗0 u⃗ n⃗ ∼ε′ w⃗1, (C1, . . . , Cn) w⃗1 v⃗ n⃗

Figure 11. Remaning of the rules rules.
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Probabilistic independence rules.
In the Lε . F R E S H, cn is a bound on the probability that the name n selects any precise value. For simplicity we give the rule for one context,
but it can easily be extended to vectors of contexts containing the same name.

Gε . E : F R E S H

E; Θ ⊢
[
ϕn,ifresh(u⃗, C(nfresh ())) ∨̃ ϕ

nfresh,()
fresh (u⃗, C(nfresh ()))

]
ε1

E; Θ ⊢ u⃗, C(nfresh ()) ∼ε0 v⃗

E; Θ ⊢ u⃗, C(n i) ∼ε0+ε1 v⃗

Lε . F R E S H

E; Θ; Γ ⊢cn n i = u⇒ ¬ϕn,ifresh(u, i)

Cryptographic rules.
For simplicity we give the cryptographic rules for one context, but it can easily be extended to vectors of contexts containing the same
encryption or hash. If u⃗ = u1, . . . , un and v⃗ = v1, . . . , vn are two vectors of the same length, then u⃗ · v⃗ def

=
∑
i ui · vi denotes the scalar

product of u⃗ and v⃗. Moreover, 1⃗ · u⃗ def
=

∑
i ui is the scalar product of u⃗ with the sequence 1, . . . , 1 of n copies of 1 (⃗1 is implicitly of length

u⃗).
In the Gε . P R F and Gε . C C A 1 rules, a⃗ def

= a⃗0, a⃗1 where a⃗0 is of order 0 and a⃗1 of order 1 and u⃗ def
= u⃗0, u⃗1 where u⃗0 is of order 0 and u⃗1

of order 1.
Lε . E U F
E; Θ; ∅ ⊢c

t⃗
s,m, i E; Θ; Γ,¬(ϕk,ikey(s,m, t) ∨ ϕ

k,i
sign(s,m, t)) ⊢ε ψ E; Θ ⊢ det(i)

E; Θ; Γ, verify s m (pk (k i)) ⊢ε+εEUF (⃗1·⃗t) ψ

Gε . P R F
E; Θ; ∅ ⊢c

t⃗u⃗1
u⃗1 E; Θ; ∅ ⊢c

t⃗a⃗1
a⃗1 E; Θ; ∅ ⊢c

t⃗0
u⃗0, a⃗0, b,m, i

E; Θ; ∅ ⊢c
tC ,o⃗C

C E; Θ ⊢ det(i)
E; Θ ⊢ blenl⃗ (⃗a) E; Θ ⊢ blenlh(hash m (k i)) ∧̃ blenlh(nfresh ())

E; Θ; ∅ ⊢εϕ ψ
k,i
key(w⃗, C) ∧ ψ

k,i
msg(w⃗, C) E; Θ ⊢ u⃗, if b then C a⃗ (nfresh ()) else ue ∼ε v⃗

E; Θ ⊢ u⃗, if b then C a⃗ (hash m (k i)) else ue ∼εf v⃗

where w⃗ def
= u⃗, a⃗, b,m, i (note that ue is not in w⃗) and:

t′C
def
= tC l⃗ lh and εf

def
= λt, o⃗. ε t o⃗+ εϕ + εPRF

(
t+ t′C + o⃗ · (⃗tu⃗1

t) + o⃗C · (⃗ta⃗1
t′C) + 1⃗ · t⃗0

)

Gε . C C A 1
E; Θ; ∅ ⊢c

t⃗u⃗1
u⃗1 E; Θ; ∅ ⊢c

t⃗a⃗1
a⃗1 E; Θ; ∅ ⊢c

t⃗0
u⃗0, a⃗0, b,m, ir, ik

E; Θ; ∅ ⊢c
tC ,o⃗C

C E; Θ ⊢ det(ir) ∧̃ det(ik)
E; Θ ⊢ blenl⃗ (⃗a) E; Θ ⊢ blenle (enc m (r ir) (pk(k ik))) ∧̃ blenle (enc (0len(m)) (r ir) (pk(k ik)))

E; Θ; ∅ ⊢εϕ ϕ
k,ik
key (w⃗, C) ∧ ϕ

r,ir
rand(w⃗, C) ∧ ϕ

k,ik
dec (C, u⃗1, a⃗1)

E; Θ ⊢ u⃗, if b then C a⃗ (enc (0len(m)) (r ir) (pk(k ik))) else ue ∼ε v⃗

E; Θ ⊢ u⃗, if b then C a⃗ (enc m (r ir) (pk(k ik))) else ue ∼εf v⃗

where w⃗ def
= u⃗, a⃗, b,m, ir, ik (note that ue is not in w⃗) and:

t′C
def
= tC l⃗ le and εf

def
= λt, o⃗. ε t o⃗+ εϕ + εCCA

(
t+ t′C + o⃗ · (⃗tu⃗1

t) + o⃗C · (⃗ta⃗1
t′C) + 1⃗ · t⃗0

)
Figure 12. Probabilistic independence and cryptographic rules.
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Count-CBΠ(p) is the number of Gε . E : C SR or Gε . E : B I - D E D U C E rules appearing below position p in Π:

Count-CBΠ(p)
def
=

{∣∣∣ {p0 ∈ PathΠ(p) | RΠ(p0) ∈ {Gε . E : C SR, Gε . E : B I - D E D U C E}}
∣∣∣ if RΠ(p) is a descending rule

0 otherwise

Count-HWΠ(p) is the number of G . W E A K rules appearing below position p in Π:

Count-HWΠ(p)
def
=

{∣∣∣ {p0 ∈ PathΠ(p) | RΠ(p0) = G . W E A K}
∣∣∣ if RΠ(p) is descending rule

0 otherwise

We partition Trunc(Π) into the set of positions TRD where the Gε . E : R E W R I T E0 or G . D U P rules are applied, and the
remaining set of position TA, i.e.:

TRD
def
= {p ∈ Trunc(Π) | RΠ(p) ∈ {Gε . E : R E W R I T E0, G . D U P}}

TA
def
= {p ∈ Trunc(Π) | RΠ(p) ̸∈ {Gε . E : R E W R I T E0, G . D U P}}

The value Value▶AD
(Π) ∈ N3 of a proof Π is defined as:

Value▶AD
(Π)

def
=

( ∑
p∈TA

Count-CBΠ(p),
∑

p∈TRD

Count-CBΠ(p),
∑

p∈Trunc(Π)

Count-HWΠ(p)
)

Our goal is to obtain proofs where no ascending rule appear below a descending rule of the trunk, i.e. a proof such that
Value▶AD

(Π) = (0, 0, 0).

Figure 13. Definitions of Count-HWΠ(p), Count-CBΠ(p) and Value▶AD (Π).
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Legend:

C S : Gε . E : C SR B : Gε . E : B I - D E D U C E W : G . W E A K R : Gε . E : R E W R I T E0 ⊥̃ : G . L -⊥̃

⊥ : Gε . L - L O C :⊥ Ax : G . A X I O M A : any rule

Figure 14. Shape of the collapsing proof transformations.
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A P P E N D I X D
S O U N D N E S S O F T H E P R O O F S Y S T E M

A. Sketch of the soundness proofs

In this section, we give the key ingredients which are necessary to check the soundness of our proof system. Later on, in
following sections, we will provide complete proofs for most of the rules that do not use the indistinguishability predicate.

a) Global indistinguishability rules: We sketch the proof of the rules given in Fig. 11:

• Gε . E : R E F L and Gε . E : S Y M. Proofs are trivial.
• Gε . E : T R A N S. The proof relies on the triangular inequality.
• Gε . E : FA - B A S E. We present this first (simple) reductionistic rule with more details, to serve as an example proof.

Consider a machine A against u⃗l, v ∼ u⃗r, v. By hypothesis, we have a machine M computing v in time tv with error
probability at most εv . Then, we build B against u⃗l ∼ u⃗r as follows: 1) run M, which yields v (up-to error εv) on some
tape; 2) then, B simulates A, using its own input tapes in-place (containing u⃗l or u⃗r) for the first input tapes of A, and
M’s output tape (which should contain v) as the last input tape of A; finally, B returns A’s answer.
B provides fresh working tapes for M and for A, without re-using tapes, to ensure that M and A working tapes are
initially empty.
Machine B can forward all oracle calls from A to its own oracles without any overhead: if A want to call oracle fi using
T as output tape, then B does exactly the same. Thus, B runs in time t+ tv where t is the running time of A.
We conclude by observing that its advantage is at most A’s advantage, plus two times the error εv of M, once per side of
the equivalence ∼.

• Gε . E : FA - F U N . Let A be a machine against u⃗l, f ∼ u⃗r, f . By hypothesis, let M be a machine running in time tf (|x|)
(on input x), and such that M correctly computes f(x) on all inputs x, with a probability of error at most εf .
We now build B against u⃗l ∼ε u⃗r. B simulates A, using its input tapes as input tapes for A (thus incurring no copy
overhead), forwarding all oracle calls different from f to its own oracles.
At this step, it only remains to simulate a call to oracle f . If A calls f with output tape T, then B first copies the content
x of A’s oracle input tape to an additional tape Ti, and then executes M using Ti as input tape and T as output tape
(which is always possible, even if M’s input and output tapes are identical, i.e. Ti = T).
B running time is the running time of A, plus the cost of simulating calls to f . We know that, since A runs in time at
most t, all its oracle calls are on inputs of size at most t. Thus, each call to f is simulated in time t (to copy the input)
plus tf (t) (to run M). Assuming that A calls f at most of times, this yields an overall running time of t+ of · (t+ tf (t)).
Finally, we conclude by observing that, as for the previous rule, we need to pay twice the error εf of M.

• Gε . E : FA - A P P. Consider a machine A against u⃗l, (fl vl) ∼ u⃗r, (fr vr). We build a machine B against u⃗l, fl, vl ∼
u⃗r, fr, vr: on input u⃗, f, v (which is either u⃗l, fl, vl or u⃗r, fr, vr, depending on the side), B copies v to the oracle input
tape; calls oracle f on this oracle tape, which yields f(v) on an additional working tape T; and simulates A, using the
tapes containing u⃗ as first inputs tapes, and T as last input tape.
B’s running time is t+ l + 1, decomposed as: A’s running time t, plus the cost of copying v (which is at most l), plus a
cost 1 to trigger the special oracle call transition.

• Gε . E : FA - N A M E S . Adversary B against the premise simulates Adversary A against the conclusion, except that it samples
values according to the distribution of nf itself.

• Gε . E : D U P - B A S E . Consider an adversary A against u⃗l, vl, vl ∼ u⃗r, vr, vr. We build an adversary B against u⃗l, vl ∼ u⃗r, vr
by simulating A using, in place, B’s inputs tapes. The missing input tape T of A, that should contain v (which is vl or vr,
depending on the side), is copied on-the-fly, as described next.
Let T0 be B’s input tape initially containing v. B uses an additional working tape for T, initially empty, to which it will
gradually copy v from T0, copying i-th bit of v to T at the i-th step of A’s simulation. This is possible by simply having
two additional heads, one on T0 and the other on T, continually advancing to the right, until the head of T0 reaches the
end of v. As far as A is concerned, T0 contains v from the beginning, as a bit has always been set before it can reach it.
This construction has no running-time overhead, and yields Adversary B with the same advantage as A.

• Gε . E : D U P - F U N. Consider an adversary A against u⃗l, fl, fl ∼ u⃗r, fr, fr. Adversary B against u⃗l, fl ∼ u⃗r, fr simply
simulates A in-place, on the same input tapes, forwarding each call to the first or second oracle f to its own version of f .

• Gε . E : W E A K . The proof is immediate: B against the premise simulates A against the conclusion, in-place, ignoring the
inputs that A does not use.

• Gε . E : P E R M. The proof is also straightforward: B against the premise simulates A against the conclusion, in-place,
permuting input tapes in A’s transition table according to π.

• G .β and G .δ are trivially proven as properties of our term semantics.
• Gε . E : C S is a standard CCSA rule. E.g. see [13] for a proof.
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• Gε . E : B I - D E D U C E is proved through a cryptographic reduction simulating the contexts and the sampling of the names,
carefully accounting for cost aspects.

• For the two cryptographic rules Gε . C C A 1 and Gε . P R F, we perform a reduction to the cryptographic game. First,
we use the ϕ-condition as an up-to-bad argument in order to ensure that we can compute our terms without needing
to compute the key under the cryptograhic hypothesis. (see [17, Propostion 8] for more details about this point). Then,
we compute the Boolean and the challenge (along with some other stuff that can be computed at the same time). If the
Boolean returns 0, we also abort and return 0. Otherwise, we call the challenge oracle with our challenge, and after that
we compute the context that uses the return of the oracle (that is why in the CCA1 game, we have the extra condtion
ϕdec() in order to ensure that our context can be computed without calling the decryption oracle (since we do not have
access to it anymore). Finally, we can call the attacker against our assumption and return the same result.

B. Auxillary Lemmas

Proposition 2. Let E a valid environment, ϕ a boolean term and ε a term of type real such that E ⊢ ∀(x : τ).ϕ : bool. For all
model M of E, we have:

M : E |= [∀(x : τ).ϕ]ε iff. M : E |= ∀̃(x : τ). [ϕ]ε

Proof. The proof is exactly the same than the one of the analogue properity in [17, Proposition 2]. Notice that the exact same
proof work since x cannot appear in ε since [∀(x : τ).ϕ]ε is well-typed.

C. Local Judgement: Left Local Rules

• Lε . L -∀:
Let M be a model such that M : E |= Θ.
Let η ∈ N, ρ ∈ TM,η:
J∀(x : τ).ϕKη,ρM = 1 imply that Jϕ{x 7→ t}Kη,ρM = 1 since E ⊢ t : τ .
Therefore, since J¬((∧Γ) ∧ ∀(x : τ).ϕ⇒ ψ)Kη,ρM = J(∧Γ) ∧ ∀(x : τ).ϕ ∧ ¬ψKη,ρM and
J¬((∧Γ) ∧ ϕ{x 7→ t} ⇒ ψ)Kη,ρM = J(∧Γ) ∧ ϕ{x 7→ t} ∧ ¬ψKη,ρM .
So, J¬((∧Γ) ∧ ∀(x : τ).ϕ⇒ ψ)Kη,ρM = 1 imply that J¬((∧Γ) ∧ ϕ{x 7→ t} ⇒ ψ)Kη,ρM = 1.
Therefore, for every η ∈ N,

Prρ∈TM,η (¬((∧Γ) ∧ ∀(x : τ).ϕ⇒ ψ))

≤ Prρ∈TM,η (¬((∧Γ) ∧ ϕ{x 7→ t} ⇒ ψ))

≤ Eρ(JεK
η,ρ
M ),

which clearly imply the soundness of the rule Lε . L -∀.
• Lε . L -∃:

Let M be a model of E.
We have to show that, assuming:

M |= ∀̃(x : τ).(∧̃Θ) ⇒̃ [((∧Γ) ∧ ϕ) ⇒ ψ)]ε

(This is equivalent to have that the premise of the rule holds for all model that are extension of M for the new declaration
in E, x : τ ) We have:

M |= (∧̃Θ) ⇒̃ [((∧Γ) ∧ (∃(x : τ).ϕ) ⇒ ψ)]ε

In fact, this is even a equivalence Indeed, the last equation holds iff.

M |= (∧̃Θ) ⇒̃ [∀(x : τ).((∧Γ) ∧ ϕ) ⇒ ψ)]ε

holds (since x doesn’t appear in Γ or ψ). By Proposition 2, that holds iff.

M |= (∧̃Θ) ⇒̃ ∀̃(x : τ). [((∧Γ) ∧ ϕ) ⇒ ψ)]ε

holds, and that finally if and only if our assumption holds since x doesn’t appear in Θ.
• Lε . L -⇒:

Let M be a model such that M : E |= Θ.
Let η ∈ N, ρ ∈ TM,η . We have that:

J¬((∧Γ) ∧ (ϕ0 ⇒ ϕ1) ⇒ ψ)Kη,ρM

= J((∧Γ) ∧ ¬ϕ0 ∧ ¬ψ) ∨ ((∧Γ) ∧ ϕ1 ∧ ¬ψ)Kη,ρM
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is equal to 1 when either J¬((∧Γ) ⇒ ϕ0)K
η,ρ
M = J(∧Γ) ∧ ¬ϕ0Kη,ρM is equal to 1 or J¬(((∧Γ) ∧ ϕ1) ⇒ ψ)Kη,ρM =

J(∧Γ) ∧ ϕ1 ∧ ¬ψKη,ρM is equal to 1. Therefore, for every η ∈ N:

Prρ∈TM,η (J¬((∧Γ) ∧ (ϕ0 ⇒ ϕ1) ⇒ ψ)Kη,ρM )

≤
Prρ∈TM,η (J¬((∧Γ) ⇒ ϕ0)K

η,ρ
M )

+Prρ∈TM,η (J¬(((∧Γ) ∧ ϕ1) ⇒ ψ)Kη,ρM )

≤ Eρ(Jε0K
η,ρ
M ) + Eρ(Jε1K

η,ρ
M )

which clearly imply the soundness of the rule Lε . L -⇒.
• Lε . L -∧: The premise and the conclusion clearly have the exact same semantic.
• Lε . L -∨:

Let M be a model such that M : E |= Θ.
Let η ∈ N, ρ ∈ TM,η . Then:

J¬(((∧Γ) ∧ (ϕ0 ∨ ϕ1)) ⇒ ψ)Kη,ρM = J((∧Γ) ∧ ϕ0 ∧ ¬ψ) ∨ ((∧Γ) ∧ ϕ1 ∧ ¬ψ)Kη,ρM .

Therefore, for every η ∈ N:

Prρ∈TM,η (J¬(((∧Γ) ∧ (ϕ0 ∨ ϕ1)) ⇒ ψ)Kη,ρM )

≤
Prρ∈TM,η (J¬((∧Γ) ∧ ϕ0) ⇒ ψKη,ρM )

+Prρ∈TM,η (J¬(((∧Γ) ∧ ϕ1) ⇒ ψ)Kη,ρM )

≤ Eρ(Jε0K
η,ρ
M ) + Eρ(Jε1K

η,ρ
M )

which clearly imply the soundness of the rule Lε . L -∨.
• Lε . L -⊥:

Let M be a model such that M : E |= Θ.
Let η ∈ N, ρ ∈ TM,η . Then:

J(∧Γ) ∧ ⊥ ⇒ ψKη,ρM = 1.

Therefore, for every η ∈ N:
Prρ∈TM,η (¬ J(∧Γ) ∧ ⊥ ⇒ ψKη,ρM ) ≤ 0

which clearly imply the soundness of the rule Lε . L -⊥.

D. Local Judgement: Left Global Rules

• Lε . L -∀̃:
Let M be a model such that M : E |= (∧Θ) ∧ ∀(x : τ).F
Then M |= (∧Θ) ∧ F{x 7→ t} (since E ⊢ t : τ ).
Therefore, Prρ∈TM,η (J¬(∧Γ ⇒ ϕ)Kη,ρM ) ≤ Eρ(JεK

η,ρ
M ).

• Lε . L -∃̃:
Let M be a model of E.
We want to show that:

M |= (∧Θ ∧ ∃̃(x : τ).F ) ⇒̃ [(∧Γ) ⇒ ϕ]ε ,

which is equivalent to (since x does not appear in Θ,Γ and ϕ)

M |= ∀̃(x : τ).((∧Θ ∧ F ) ⇒̃ [(∧Γ) ⇒ ϕ]ε).

That is exactly the premise of the rule Lε . L -∃̃.
• Lε . L -⇒̃:

Let M be a model such that M : E |= Θ, (F0 ⇒̃ F1).
Then, by the first premise, we have M |= F0, then we have M |= F1 since M |= F0 ⇒̃ F1.
Therefore, by the second premise, M |= [∧Γ ⇒ ψ]ε which prove the soundness of Lε . L -⇒̃

• Lε . L -∧̃: The premise and the conclusion clearly have the exact same semantic.
• Lε . L -∨̃:

Let M be a model such that M : E |= Θ, (F0 ∨̃ F1).
Then M |= Θ, F0 or M |= Θ, F1.
Therefore, by the premises, M |= [∧Γ ⇒ ψ]ε.

• Lε . L -⊥̃:
Let M be a model such that M : E |= Θ, ⊥̃.
Then, M |= [∧Γ ⇒ ψ]ε.
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E. Local Judgement: Right Rules

• Lε . R -∀:
Let M be a model such that M : E |= ∀̃(x : τ).(∧Θ) ⇒̃ [(∧Γ ⇒ ϕ)]ε.
By Proposition 2, M : E |= (∧Θ) ⇒̃ ∀̃(x : τ). [(∧Γ ⇒ ϕ)]ε.
Therefore gives: M : E |= (∧Θ) ⇒̃ [∀(x : τ).(∧Γ ⇒ ϕ)]ε.
Then (since x doesn’t appear in Γ), M : E |= (∧Θ) ⇒̃ [∧Γ ⇒ ∀(x :).ϕ]ε.
which is exactly the conclusion

• Lε . R -∃:
Let M be a model such that M |= Θ.
Let η ∈ N, ρ ∈ TM,η .
Assume that J¬((∧Γ) ⇒ ϕ{x 7→ t})Kη,ρM = 0.
Then J∧ΓKη,ρM = 0 and J¬ϕ{x 7→ t}Kη,ρM = 0.
Therefore, J¬∃(x : τ).ϕKη,ρM = 0.
So, J¬((∧Γ) ⇒ ∃(x : τ).ϕ)Kη,ρM = 0.
Finally, for every η ∈ N:

Prρ∈TM,η (J¬((∧Γ) ⇒ ∃(x : τ).ϕ)Kη,ρM )

≤ Prρ∈TM,η (J¬((∧Γ) ⇒ ϕ{x 7→ t})Kη,ρM )

≤ Eρ(JεK
η,ρ
M ).

• Lε . R -⇒:
Let M be a model such that M |= Θ.
Let η ∈ N, ρ ∈ TM,η .

J¬(∧Γ ⇒ (ψ ⇒ ϕ))Kη,ρM = J¬(∧Γ ∧ ψ ⇒ ϕ)Kη,ρM

F. Local Judgement: Other Rules

• Lε . R E W R I T E:
Let M be a model such that M |= Θ.
Let η ∈ N,

Prρ∈TM,η (J¬((∧Γ) ⇒ ϕ{t})Kη,ρM )

= Prρ∈TM,η (J¬((∧Γ) ⇒ ϕ{t})Kη,ρM ∧ J¬((∧Γ) ⇒ s = t)Kη,ρM ) + Prρ∈TM,η (J¬((∧Γ) ⇒ ϕ{t})Kη,ρM ∧ J¬((∧Γ) ⇒ ¬(s = t))Kη,ρM )

= Prρ∈TM,η (J¬((∧Γ) ⇒ (ϕ{t} ∧ s = t))Kη,ρM ) + Prρ∈TM,η (J¬((∧Γ) ⇒ (ϕ{t} ∧ ¬s = t))Kη,ρM )

= Prρ∈TM,η (J¬((∧Γ) ⇒ (ϕ{s} ∧ s = t))Kη,ρM ) + Prρ∈TM,η (J¬((∧Γ) ⇒ (ϕ{t} ∧ ¬s = t))Kη,ρM )

≤ Prρ∈TM,η (J¬((∧Γ) ⇒ ϕ{s})Kη,ρM ) + Prρ∈TM,η (J¬((∧Γ) ⇒ ¬s = t)Kη,ρM )

≤ Eρ(Jε0K
η,ρ
M ) + Eρ(Jε1K

η,ρ
M )

• Lε . A X I O M:
Let M be a model such that M |= Θ, then Prρ∈TM,η (J¬(∧Γ ∧ ϕ⇒ ϕ)Kη,ρM ) ≤ 0.

• Lε . A B S U R D:
Let M be a model such that M |= Θ, then:

J¬((∧Γ) ∧ (ϕ⇒ ⊥) ⇒ ⊥)Kη,ρM

= J¬((∧Γ) ⇒ (ϕ⇒ ⊥) ⇒ ⊥)Kη,ρM

= J¬((∧Γ) ⇒ ¬¬ϕ)Kη,ρM

= J¬(∧Γ ⇒ ϕ)Kη,ρM .

• Lε . C U T- L O C:
Let M be a model such that M |= Θ, then

Prρ∈TM,η (¬ J∧Γ ⇒ ψKη,ρM )

= Prρ∈TM,η (¬(J∧Γ ⇒ ψKη,ρM ∧ J∧Γ ⇒ ϕKη,ρM )) + Prρ∈TM,η (¬(J∧Γ ⇒ ψKη,ρM ∧ ¬ J∧Γ ⇒ ϕKη,ρM ))

= Prρ∈TM,η (¬(J∧Γ ∧ ϕ⇒ ψKη,ρM ) ∧ J∧Γ ⇒ ϕKη,ρM ) + Prρ∈TM,η (¬(J∧Γ ⇒ ψKη,ρM ) ∧ ¬(J∧Γ ⇒ ϕKη,ρM ))

≤ Prρ∈TM,η (¬(J∧Γ ∧ ϕ⇒ ψKη,ρM )) + Prρ∈TM,η (¬J∧Γ ⇒ ψKη,ρM )

≤ Eρ(Jε0K
η,ρ
M ) + Eρ(Jε1K

η,ρ
M )
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• Lε . C U T- G L O B:
Let M be a model such that M |= Θ, then by the first premise, M |= F . Therefore Prρ∈TM,η (¬ J∧Γ ⇒ ψKη,ρM ) ≤ Eρ(JεK

η,ρ
M )

• Lε . W E A K:
Let M be a model such that M |= Θ0,Θ1, then M |= Θ0. Therefore:

Prρ∈TM,η (¬ J∧Γ0Γ1 ⇒ ϕKη,ρM ) ≤ Prρ∈TM,η (¬ J∧Γ0 ⇒ ϕKη,ρM ) ≤ Eρ(JεK
η,ρ
M ).

G. Local Judgement: ε Weakening Rules

• Lε . W E A K0:
Let M be a model such that M |= Θ, then Prρ∈TM,η

(
¬ Jε ≤ ε′Kη,ρM

)
≤ 0 by the second premise, and since for every η ∈ N,

we have that TM,η are finite, and we use the uniform metric, this is equivalent to:

∀η ∈ N,∀ρ ∈ TM,η, JεK
η,ρ
M ≤ Jε′Kη,ρM

Thus:
Prρ∈TM,η (¬ J∧Γ ⇒ ϕKη,ρM ) ≤ Eρ(JεK

η,ρ
M ) ≤ Eρ(Jε′K

η,ρ
M ).

• Lε . W E A Kε:
Let M be a model such that M |= Θ, then ∀η ∈ N,∀ρ ∈ TM,η, ε0 ≤ 1 by the third premise. Then, for every η ∈ N,

Prρ∈TM,η (¬ J∧Γ ⇒ ϕKη,ρM )

≤ Eρ(JεK
η,ρ
M ) + Eρ(Jε0K

η,ρ
M )

≤ Eρ(JεK
η,ρ
M ) + Eρ(Jε0K

η,ρ
M 1Jε0≤ε′0K

η,ρ

M

) + Eρ(Jε0K
η,ρ
M 1¬Jε0≤ε′0K

η,ρ

M

)

≤ Eρ(JεK
η,ρ
M ) + Eρ(Jε′0K

η,ρ
M 1Jε0≤ε′0K

η,ρ

M

) + Eρ(1¬Jε0≤ε′0K
η,ρ

M

)

≤ Eρ(JεK
η,ρ
M ) + Eρ(Jε′0K

η,ρ
M 1Jε0≤ε′0K

η,ρ

M

) + Prρ∈TM,η

(
Jε0 ≤ ε′0K

η,ρ
M

)
≤ Eρ(JεK

η,ρ
M ) + Eρ(Jε′0K

η,ρ
M ) + Eρ(Jε1K

η,ρ
M )

≤ Eρ(Jε+ ε′0 + ε1K
η,ρ
M )

H. Mixed Judgement Rules

• Lε . B Y G L O B and Gε . B Y L O C:
The premise and the conclusion have the exact same semantic.

• Lε . L O C A L I S E:
Let M be a model such that M |= Θ, [ϕ]ε1 , then Prρ∈TM,η (¬ JϕKη,ρM ) ≤ Eρ(Jε1K

η,ρ
M ) and since, M |= Θ by the premise,

Prρ∈TM,η (¬ J∧Γ ∧ ϕ⇒ ψKη,ρM ) ≤ Eρ(ε0).
Therefore,

Prρ∈TM,η (¬ J∧Γ ⇒ ψKη,ρM )

= Prρ∈TM,η (¬ J∧Γ ⇒ ψKη,ρM ∧ JϕKη,ρM ) + Prρ∈TM,η (¬ J∧Γ ⇒ ψKη,ρM ∧ ¬ JϕKη,ρM )

≤ Prρ∈TM,η (¬ J∧Γ ∧ ϕ⇒ ψKη,ρM ) + Prρ∈TM,η (¬ JϕKη,ρM )

≤ Eρ(Jε0K
η,ρ
M ) + Eρ(Jε1K

η,ρ
M )

• Lε . R E W R I T E - E Q U I V:
Let M be a model such that M |= Θ. Since the adversary Abool, that get a boolean as input, and send back the opposite
boolean, is a adversary against the equivalence in the second premise in time 1. Then,

|Prρ∈TM,η (¬ J∧Γ0 ⇒ ϕ0K
η,ρ
M )− Prρ∈TM,η (¬ J∧Γ1 ⇒ ϕ1K

η,ρ
M )| ≤ Eρ(Jε0K

η,ρ
M (1)).

Therefore,

Prρ∈TM,η (¬ J∧Γ0 ⇒ ϕ0K
η,ρ
M )

= Prρ∈TM,η (¬ J∧Γ0 ⇒ ϕ0K
η,ρ
M ) + Prρ∈TM,η (¬ J∧Γ1 ⇒ ϕ1K

η,ρ
M )− Prρ∈TM,η (¬ J∧Γ1 ⇒ ϕ1K

η,ρ
M )

≤ Prρ∈TM,η (¬ J∧Γ1 ⇒ ϕ1K
η,ρ
M ) + |Prρ∈TM,η (¬ J∧Γ0 ⇒ ϕ0K

η,ρ
M )− Prρ∈TM,η (¬ J∧Γ1 ⇒ ϕ0K

η,ρ
M )|

≤ Eρ(Jε1K
η,ρ
M ) + Eρ(Jε0(1)K

η,ρ
M ).

I. Global Judgement: Left and Right Rules

We omit the proofs of the left and right rules for the global judgements, as they are standard.
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J. Global Judgement: Local and Global Relations

All those rules could be deduced form the case analysis on boolean rules
const(ϕ)

[ϕ]0 ∨̃ [¬ϕ]0
and the other rules. (As well, as their

right counterpart that we omit.)
• Gε . L - L O C :⇒:

Let M a model such that M |= Θ.
By the second premise, there exists c ∈ ∩η∈NJboolKηM = {0, 1} such that ∀η ∈ N,∀ρ ∈ TM,η, JϕKη,ρM = c Then,
by case disjonction:
– case c = 0: For every η ∈ N, Prρ∈TM,η (¬ JϕKη,ρM ) = Prρ∈TM,η (⊤) = 1

Therefore, Prρ∈TM,η (¬ JϕKη,ρM ) ≤ 0 ⇒ Prρ∈TM,η (¬) ≤ Eρ(JεK
η,ρ
M ) holds

i.e M |= [ϕ]0 ⇒̃ [ψ]0.
And, by the first premise, M |= F .

– case c = 1: We want to show that M |= [ϕ⇒ ψ]ε ⇒̃ F . So assuming that M |= [ϕ⇒ ψ]ε, let’s show that M |= F .
For every η ∈ N, we have Prρ∈TM,η (¬ Jϕ⇒ ψKη,ρM ) = Prρ∈TM,η (JψKη,ρM ) ≤ Eρ(JεK

η,ρ
M ).

Therefore, Prρ∈TM,η (¬ JϕKη,ρM ) ≤ 0 ⇒ Prρ∈TM,η (¬ JψKη,ρM ) ≤ Eρ(JεK
η,ρ
M ) holds

i.e M |= [ϕ]0 ⇒̃ [ψ]ε.
And, by the first premise, M |= F .

• Gε . L - L O C :∨:
Let M a model such that M |= Θ.
By the third premise, there exists c ∈ ∩η∈NJboolKηM = {0, 1} such that ∀η ∈ N,∀ρ ∈ TM,η, JϕKη,ρM = c (by symmetry of ψ
and ϕ here, we can only consider the case where const(ϕ) holds).
We want to show that M |= [ϕ ∨ ψ]ε ⇒̃ F . Therefore, we assume M |= [ϕ ∨ ψ]ε Then, by case disjonction:
– case c = 0: For every η ∈ N,
Prρ∈TM,η (¬ JpsiKη,ρM ) = Prρ∈TM,η (J¬ϕ ∧ ¬ψKη,ρM ) = Prρ∈TM,η (¬ Jϕ ∨ ψKη,ρM ) ≤ Eρ(JεK

η,ρ
M ) holds

i.e M |= [ψ]ε
And, by the second premise, M |= F

– case c = 1: For every η ∈ N,
Therefore, Prρ∈TM,η (¬ JϕKη,ρM ) = Prρ∈TM,η (⊥) = Prρ∈TM,η (J¬ϕ ∧ ¬ψKη,ρM ) = Prρ∈TM,η (¬ Jϕ ∨ ψKη,ρM ) ≤ Eρ(JεK

η,ρ
M )

holds
i.e M |= [ϕ]ve
And, by the first premise, M |= F

• Gε . L -∀̃-∀and Gε . L -∀-∀̃:
Direct by Proposition 2

• Gε . L - L O C :∀:
Let M a model such that M |= Θ.
We want to prove that M |= [∀(x : τ).ψ]ε ⇒̃ F .
Then, we can assume M |= [∀(x : τ).ψ]ε to prove M |= F
Which imply by Proposition 2, M |= ∀̃(x : τ). [ψ]ε
Therefore, in particular, M |= [ψ]ε {x 7→ u} since E ⊢ u : τ .
And since, x cannot appear in ε,M |= [ψ{x 7→ u}]ε
Finally, by the premise, M |= F .

• Gε . L - L O C :∧:
Let M a model such that M |= Θ.
We want to prove that M |= [ψ ∧ ϕ]ε ⇒̃ F .
Then, we can assume M |= [ψ ∧ ϕ]ε to prove M |= F
Therefore we have that, for every η ∈ N,

Prρ∈TM,η (¬ JψKη,ρM ) ≤ Prρ∈TM,η (J¬ψ ∨ ¬ϕKη,ρM ) = Prρ∈TM,η (¬ Jψ ∧ ϕKη,ρM ) ≤ Eρ(JεK
η,ρ
M )

and
Prρ∈TM,η (¬ JϕKη,ρM ) ≤ Prρ∈TM,η (J¬ψ ∨ ¬ϕKη,ρM ) = Prρ∈TM,η (¬ Jψ ∧ ϕKη,ρM ) ≤ Eρ(JεK

η,ρ
M )

So, M |= [ϕ]ε , [ψ]ε.
Then, by the premise, M |= F .

• Gε . L - L O C :⊥:
Let M a model such that M |= Θ.
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For every η ∈ N, we have Prρ∈TM,η (¬ J⊥Kη,ρM ) = Prρ∈TM,η (⊤) = 1.
Therefore,Prρ∈TM,η (¬ J⊥Kη,ρM ) ≤ 0 ⇒ F holds. i.e M |= [⊥]0 ⇒̃ F .

K. Global Judgement: ε-Weakening Rules

• Gε . R E A C H :ε- W E A K0:
This rule can be deduced by some other rules Lε . B Y G L O B,Gε . B Y L O C and Lε . W E A K0.

• Gε . R E A C H :ε- W E A K0:
This rule can be deduced by some other rules Lε . B Y G L O B,Gε . B Y L O C and Lε . W E A Kε.

• Gε . E :ε- W E A K0:
Let M be a model such that M |= Θ.
By the first premise, we have that ∀η ∈ N,∀ρ ∈ TM,η, ε ≤ ε′. where ≤ is the pointwise order on function.
Let η ∈ N, Let A be a attacker against the game (u⃗,⃗v). we denote u⃗ = u⃗0, u⃗1 for the term of order 0 and 1 in u⃗. (And we
do the same for v⃗) Then, by the second premise,∣∣∣Prρ∈TM,η

(
AJu⃗1Kη,ρM (1η, Ju⃗0K

η,ρ
M , ρa)

)
− Prρ∈TM,η

(
AJv⃗1Kη,ρM (1η, Jv⃗0K

η,ρ
M , ρa)

)∣∣∣ ≤ Eρ(JεK
η,ρ
M (timeηA, calls

η
A))

Therefore, we have:∣∣∣Prρ∈TM,η

(
AJu⃗1Kη,ρM (1η, Ju⃗0K

η,ρ
M , ρa)

)
− Prρ∈TM,η

(
AJv⃗1Kη,ρM (1η, Jv⃗0K

η,ρ
M , ρa)

)∣∣∣ ≤ Eρ(Jε′K
η,ρ
M (timeηA, calls

η
A)).

So, M |= u⃗ ∼ε′ v⃗
• Gε . E :ε- W E A K0:

Let M be a model such that M |= Θ.
By the third premise, we have that ∀η ∈ N,∀ρ ∈ TM,η, ε ≤ 1′. where ≤ is the pointwise order on function.
By the second premise, we have that ∀η ∈ N,∀ρ Let η ∈ N, Let A be a attacker against the game (u⃗,⃗v). we denote
u⃗ = u⃗0, u⃗1 for the term of order 0 and 1 in u⃗. (And we do the same for v⃗).

Then, by the first premise,∣∣∣Prρ∈TM,η

(
AJu⃗1Kη,ρM (1η, Ju⃗0K

η,ρ
M , ρa)

)
− Prρ∈TM,η

(
AJv⃗1Kη,ρM (1η, Jv⃗0K

η,ρ
M , ρa)

)∣∣∣ ≤ Eρ(Jε0K
η,ρ
M (timeηA, calls

η
A))

And we have that:

Eρ(Jε0K
η,ρ
M (timeηA, calls

η
A))

= Eρ(Jε0K
η,ρ
M (timeηA, calls

η
A)1Jε0Kη,ρM ≤Jε′0K

η,ρ

M

) + Eρ(Jε0K
η,ρ
M (timeηA, calls

η
A)1¬(Jε0Kη,ρM ≤Jε′0K

η,ρ

M
))

≤ Eρ(Jε′0K
η,ρ
M (timeηA, calls

η
A)1Jε0Kη,ρM ≤Jε′0K

η,ρ

M

) + Eρ(1¬(Jε0Kη,ρM ≤Jε′0K
η,ρ

M
))

= Eρ(Jε′0K
η,ρ
M (timeηA, calls

η
A)) + Prρ∈TM,η

(
¬(Jε0 ≤ ε′0K

η,ρ
M )

)
Therefore, by the second premise, we have:∣∣∣Prρ∈TM,η

(
AJu⃗1Kη,ρM (1η, Ju⃗0K

η,ρ
M , ρa)

)
− Prρ∈TM,η

(
AJv⃗1Kη,ρM (1η, Jv⃗0K

η,ρ
M , ρa)

)∣∣∣ ≤ Eρ(Jε′0K
η,ρ
M (timeηA, calls

η
A))+Eρ(Jε1K

η,ρ
M ).

So, M |= u⃗ ∼ε′0+ε1 v⃗.

L. Induction Rules

• Gε . I N D U C T I O N:
Let M be a model such that M |= Θ.
Then by the first premise of the rule, we have that M |= well-foundedτ (<τ ). So, we have that

M |= [∀(l : nat → τ).¬(∀(i, j : nat).i < j → l j <τ l i)]0

Therefore, since the interpretation of < is always <, and the one of nat is N,

∀η ∈ N,∀ρ ∈ TM,η,∀l ∈ F(N, JτKη,ρM ),∃i ∈ JτKη,ρM ,∃j ∈ JτKη,ρM , i < j ∧ ¬(l j J<Kη,ρM l x)

Which exactly mean that for every η in N and every ρ in TM,η, J<Kη,ρM is well-founded. Recall that RV (τ) is the set of
random variables over τ . (i.e RV (τ) is equal to

∏
η∈N(TM,η → JτKη,ρM )).

Therefore we can define the order <SPW over RV (τ) as such: for every X,Y in RV (τ), X <SPW Y , if and only if,
∀η ∈ N,∀ρ ∈ TM,η, Xη(ρ) J<Kη,ρM Yη(ρ). We can notice, that it is in fact an well-founded function when for every η in N
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and every ρ in TM,η , J<Kη,ρM is also well-founded.

By the second premise, we have that

M |= ∀̃(x : τ).(∀̃(y : τ). [x <τ y]0 ⇒̃ F{x 7→ y}) ⇒̃ F

That give,

∀X ∈ RV (τ), (∀Y ∈ RV (τ).(∀η ∈ N,∀ρ ∈ TM,η, Xη(ρ) J<Kη,ρM Yη(ρ)) ⇒ JF KMM[x 7→ Y ]) ⇒ JF KM

which is exactly the induction principle on RV (τ) over the well-founded order <SPW . Therefore, we have that ∀X ∈
RV (τ).F holds, and this is exactly the conclusion of the rule.

• Lε . I N D U C T I O N:
Let M be a model such that M |= Θ.
Then by the first premise of the rule, we have that M |= well-foundedτ (<τ ). So, we have that M |= det(<τ ). Therefore,
there exists (<η)η∈N such that ∀η ∈ N,∀ρ ∈ TM,η, J<τ K

η,ρ
M =<η .

We also have that
M |= [∀(l : nat → τ).¬(∀(i, j : nat).i < j → l j <τ l i)]0

Therefore, since the interpretation of < is always <, and the one of nat is N,

∀η ∈ N,∀ρ ∈ TM,η,∀l ∈ F(N, JτKη,ρM ),∃i ∈ JτKη,ρM ,∃j ∈ JτKη,ρM , i < j ∧ ¬(l j <η l x)

Which exactly mean that for every η in N, <η is well-founded.
Let η ∈ N, ρ ∈ TM,η such that J∧ΓKη,ρM = 1 and J∀(x : τ).(∀(y : τ).(x <τ y) ⇒ ψ{x 7→ y}) ⇒ ψKη,ρM = 1. Then, we have
that ∀x ∈ JτKη,ρM .(∀y ∈ JτKη,ρM .(x <η y) ⇒ (Jψ{x 7→ y}Kη,ρM = 1)) ⇒ (JψKη,ρM = 1). Which, by induction on JτKη,ρM over
the well-founded order <η give that ∀x ∈ JτKη,ρM . JψKη,ρM = 1. Therefore we have that:

J∧Γ ⇒ ∀(x : τ).(∀(y : τ).(x <τ y) ⇒ ψ{x 7→ y}) ⇒ ψ}Kη,ρM = 1

implies that:
J∧Γ ⇒ ∀(x : τ).ψKη,ρM = 1

Which is equivalent to say that:
¬(J∧Γ ⇒ ∀(x : τ).ψKη,ρM ) = 1

which implies that:
¬(J∧Γ ⇒ ∀(x : τ).(∀(y : τ).(x <τ y) ⇒ ψ{x 7→ y}) ⇒ ψKη,ρM ) = 1

Which finally give that, for every η in N:

Prρ∈TM,η (¬(J∧Γ ⇒ ∀(x : τ).ψKη,ρM )) ≤ Prρ∈TM,η (¬(J∧Γ ⇒ ∀(x : τ).(∀(y : τ).(x <τ y) ⇒ ψ{x 7→ y}) ⇒ ψKη,ρM ))

≤ Eρ(ε)

A P P E N D I X E
P R O O F T R A N S F O R M AT I O N S : C O M M U TAT I O N S

In this section, we present the detail of ▶AD, which is constitued of the commutation of Gε . E : C SR, Gε . E : B I - D E D U C E
and G . W E A K with:

• Gε . E : R E W R I T E0

• Gε . E : F R E S H
• The cryptographic rules : Gε . P R F, Gε . C C A 1
• the rules in Fig. 10 in section left rules and the section local and global relations (except for G . L -∨̃ and Gε . L - L O C :∨)
• G . C U T, G . D U P

We show the commutation in detail of Gε . E : R E W R I T E0, Gε . E : F R E S H and Gε . C C A 1. We don’t show it for Gε . P R F
since it is almost identical to Gε . C C A 1. Same, the rest of the rules, we show some examples but not all of them since most
of them are almost identical or with very little change.

We will use G . W E A K and G . D U P without mention it (except in the commutation of G . L -∧̃ and Gε . E : C S as an
example). Same with the use rule of the familly of rewritting without error, we will not mention the equality we are rewritting
for the sake of readability (except in the commutation of Gε . E : R E W R I T E0). . We also simplify quite a lot the expression
of the upper-bound given by the Gε . E : B I - D E D U C E rule in order to make the rules readable (see Appendix B-B for more
details)
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As for the ▶col, we limit ourself the Fig. 14 since this level of detail is enough to see and be able to complete it. For a bit
more detail, in most compicated collasping rule, the one with G . A X I O M and Gε . E : C SR. The term at the conclusion is of
the form

u⃗, if b u⃗ then C u⃗ n⃗ else C ′u⃗ n⃗′

(and the same thing with v⃗ on the other side of the equivalece), with the assumption that b, C and C ′ can be computed by the
adversary form u⃗ in polynomial time. Then we can show that the term

λx⃗ y⃗.if b x⃗ then C x⃗ y⃗ else C ′ x⃗ y⃗

can also be computed by the adversary in polynomial time. Therefore, we can collapse the case-study as shown in the sketch in
Fig. 14
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Commutation between Gε . E : R E W R I T E0 and the ascending rules
With Gε . E : C SR

Π0

E; Θ ⊢ u⃗0, v⃗0{s} ∼εr{s} u⃗1, v⃗1{s}
Π=

E; Θ ⊢ [s = r]0
E; Θ ⊢ u⃗0, v⃗0{r} ∼εr{r} u⃗1, v⃗1{r}

Gε . E : R E W R I T E0

Π1

E; Θ ⊢ u⃗0, w⃗0 ∼εl u⃗1, w⃗1

ΠC

E; Θ ⊢ advtC ,o⃗C (C)

Πl

blenl⃗(u⃗0) ∧̃ blenl⃗(u⃗1)

E; Θ ⊢ u⃗0, if C u⃗0 then v⃗0{r} else w⃗0 ∼λto⃗.εr{r}(t+tC)(o⃗+o⃗C)+εl(t+tC)(o⃗+o⃗C) u⃗1, if C u⃗1 then v⃗1{r} else w⃗1
Gε . E : C SR

▶C S
R E W R I T E0

Π0

E; Θ ⊢ u⃗0, v⃗0{s} ∼εr{s} u⃗1, v⃗1{s}
Π1

E; Θ ⊢ u⃗0, w⃗0 ∼εl u⃗1, w⃗1

ΠC

E; Θ ⊢ advtC ,o⃗C (C)

Πl

blenl⃗(u⃗0) ∧̃ blenl⃗(u⃗1)

E; Θ ⊢ u⃗0, if C u⃗0 then v⃗0{s} else w⃗0 ∼λto⃗.εr{s}(t+tC)(o⃗+o⃗C)+εl(t+tC)(o⃗+o⃗C) u⃗1, if C u⃗1 then v⃗1{s} else w⃗1
Gε . E : C SR

Π=

E; Θ ⊢ [s = r]0
E; Θ ⊢ u⃗0, if C u⃗0 then v⃗0{r} else w⃗0 ∼λto⃗.εr{r}(t+tC)(o⃗+o⃗C)+εl(t+tC)(o⃗+o⃗C) u⃗1, if C u⃗1 then v⃗1{r} else w⃗1

Gε . E : R E W R I T E0

With Gε . E : B I - D E D U C E
For lisibility reason, we don’t show the derivation of ε along the transformation

Π0

E; Θ ⊢ w⃗0, u⃗{s} ∼ε0{s} w⃗1, v⃗{s}
Π=

E; Θ ⊢ [s = r]0
E; Θ ⊢ w⃗0, u⃗{r} ∼ε0{r} w⃗1, v⃗{r}

Gε . E : R E W R I T E0

ΠC

E; Θ ⊢ ∧̃1≤i≤nadvti,o⃗i(Ci)
Πl

E; Θ ⊢ blenl⃗(u⃗{r}) ∧ E; Θ ⊢ blenl⃗(v⃗{r})
Πlw⃗

E; Θ ⊢ blenlw⃗ (w⃗0) ∧ E; Θ ⊢ blenlw⃗ (w⃗1)

Πln⃗

E; Θ ⊢ blenln⃗(n⃗)

E; Θ ⊢ w⃗0, (C1, . . . , Cn)(w⃗0, u⃗{r}, n⃗) ∼ε′{r} w⃗1, (C1, . . . , Cn)(w⃗1, v⃗{r}, n⃗)
Gε . E : B I - D E D U C E

▶B I - D E D U C E
R E W R I T E0

Πl

E; Θ ⊢ blenl⃗(u⃗{r}) ∧ E; Θ ⊢ blenl⃗(v⃗{r})
Π=

E; Θ ⊢ [s = r]0
E; Θ ⊢ E; Θ ⊢ blenl⃗(u⃗{s}) ∧ E; Θ ⊢ blenl⃗(v⃗{s})

Gε . B L E N : R E W R I T E0

Π0

E; Θ ⊢ u⃗{s} ∼ε0{s} v⃗{s}
ΠC

E; Θ ⊢ ∧̃1≤i≤nadvti,o⃗i(Ci)
Πl

E; Θ ⊢ blenl⃗(u⃗{r}) ∧ E; Θ ⊢ blenl⃗(v⃗{r})
Πlw⃗

E; Θ ⊢ blenlw⃗ (w⃗0) ∧ E; Θ ⊢ blenlw⃗ (w⃗1)

Πln⃗

E; Θ ⊢ blenln⃗(n⃗)

E; Θ ⊢ w⃗0, (C1, . . . , Cn)(w⃗0, u⃗{s}, n⃗) ∼ε′{s} w⃗1, (C1, . . . , Cn)(w⃗1, v⃗{s}, n⃗)
Gε . E : B I - D E D U C E

Π=

E; Θ ⊢ [s = r]0
E; Θ ⊢ w⃗0, (C1, . . . , Cn)(w⃗0, u⃗{r}, n⃗) ∼ε′{r} w⃗1, (C1, . . . , Cn)(w⃗1, v⃗{r}, n⃗)

Gε . E : R E W R I T E0

With G . W E A K

Π0

E; Θ0 ⊢ u⃗{s} ∼ε{s} v⃗{s}
Π=

E; Θ0 ⊢ [s = r]0
E; Θ0 ⊢ u⃗{r} ∼ε{r} v⃗{r}

Gε . E : R E W R I T E0

E; Θ0,Θ1 ⊢ u⃗{r} ∼ε{r} v⃗{r}
G . W E A K ▶W E A K

R E W R I T E0

Π0

E; Θ0 ⊢ u⃗{s} ∼ε{s} v⃗{s}
E; Θ0,Θ1 ⊢ u⃗{r} ∼ε{r} v⃗{r}

G . W E A K

Π=

E; Θ0 ⊢ [s = r]0
E; Θ0 ⊢ [s = r]0

G . W E A K

E; Θ0,Θ1 ⊢ u⃗{r} ∼ε{r} v⃗{r}
Gε . E : R E W R I T E0
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Commutation between Gε . E : F R E S H and the ascending rules
We omit the commutation with G . W E A K since it is exactly the kind as one with Gε . E : R E W R I T E0 where the G . W E A K is move upward in all the premises of
Gε . E : F R E S H

With Gε . E : C SR

Since the auxilary proofs of case-study are not changed by the transformation, we don’t write them, same thing for the upper-bound. And we also show the transformation
for only one case-study since it is very similar with multiples case-studies.

Πl

E; Θ ⊢ u⃗0, C(nfresh ()) ∼ u⃗1, v

Πn

E; Θ ⊢
[
ϕn,i

fresh(u⃗0, C(nfresh ())) ∨ ϕnfresh
fresh (u⃗0, C(nfresh ()))

]
E; Θ ⊢ u⃗0, C(n i) ∼ u⃗1, v1

Gε . E : F R E S H
Πr

E; Θ ⊢ u⃗0, w0 ∼ u⃗1, w1

E; Θ ⊢ u⃗0, if b u⃗0 then C(n i) else w0 ∼ u⃗1, if b u⃗1 then v else w1
Gε . E : C SR ▶C S

F R E S H

Πl

E; Θ ⊢ u⃗0, C(nfresh ()) ∼ u⃗1, v

Πr

E; Θ ⊢ u⃗0, w0 ∼ u⃗1, w1

E; Θ ⊢ u⃗0, if b u⃗0 then C(nfresh ()) else w0 ∼ u⃗1, if b u⃗1 then v else w1
Gε . E : C SR

Πn

E; Θ ⊢

ϕ
n,i
fresh(u⃗0, if b u⃗0 then C(nfresh ()) else w0)

∨
ϕ
nfresh
fresh (u⃗0, if b u⃗0 then C(nfresh ()) else w0)


E; Θ ⊢ u⃗0, if b u⃗0 then C(n i) else w0 ∼ u⃗1, if b u⃗1 then v else w1

Gε . E : F R E S H

Since we can take b u⃗0 ∧ ϕn,ifresh(u⃗0, C(nfresh ()))for ϕn,ifresh(u⃗0, if b u⃗0 then C(nfresh ()) else w0) (We assume that n i is always require for w0) and
¬(b u⃗0) ∨ ϕnfresh,()fresh (u⃗0, C(nfresh ())) for ϕnfreshfresh(u⃗0, if b u⃗0 then C(nfresh ()) else w0) (since nfresh doesn’t appear in w0)
With Gε . E : B I - D E D U C E
Since the upper-bound is not changed by the transformation, we don’t write it. And we also show the transformation for only one context since it is very similar with
multiples context. The added Gε . E : R E W R I T E0 are on equality that hold immediately with G .β

Π

E; Θ ⊢ w⃗0, u⃗, C(nfresh ()) ∼ w⃗0, v⃗, v1

Πn

E; Θ ⊢
[
ϕn,i

fresh(w⃗0, u⃗, C(nfresh ())) ∨ ϕnfresh
fresh (w⃗0, u⃗, C(nfresh ()))

]
E; Θ ⊢ u⃗, u⃗0, C(n i) ∼ v⃗, v⃗0, v1

Gε . E : F R E S H

ΠD

E; Θ ⊢ advtD,o⃗D (D)

Πl⃗w

E; Θ ⊢ blenl⃗w (w⃗0) ∧̃ blenl⃗w (w⃗1)

Πl

E; Θ ⊢ blenl⃗(u⃗) ∧̃ blenl⃗(v⃗)

Πn

E; Θ ⊢ blenl⃗n(n⃗)

E; Θ ⊢ w⃗0, D w⃗0 u⃗ (C(n i)) n⃗ ∼ w⃗1, D w⃗1 v⃗ v1 n⃗
Gε . E : B I - D E D U C E ▶B I - D E D U C E

F R E S H

Π

E; Θ ⊢ w⃗0, u⃗, C(nfresh ()) ∼ w⃗0, v⃗, v1

ΠD

E; Θ ⊢ advtD,o⃗D (D)
Πl⃗w

E; Θ ⊢ blenl⃗w (w⃗0) ∧̃ blenl⃗w (w⃗1)

Πl

E; Θ ⊢ blenl⃗(u⃗) ∧̃ blenl⃗(v⃗)

Πn

E; Θ ⊢ blenl⃗n(n⃗)

E; Θ ⊢ w⃗0, D w⃗0 u⃗ (C(nfresh ())) n⃗ ∼ w⃗1, D w⃗1 v⃗ v1 n⃗
Gε . E : B I - D E D U C E

E; Θ ⊢ w⃗0, (λx.D w⃗0 u⃗ (C x) n⃗)(nfresh ()) ∼ w⃗1, D w⃗1 v⃗ v1 n⃗
Gε . E : R E W R I T E0

Πn

E; Θ ⊢
[
ϕn,i

fresh(w⃗0, u⃗, (λx.D w⃗0 u⃗ (C x) n⃗)(nfresh ())) ∨ ϕnfresh
fresh (w⃗0, u⃗, (λx.D w⃗0 u⃗ (C x) n⃗)(nfresh ()))

]
E; Θ ⊢ w⃗0, (λx.D w⃗0 u⃗ (C x) n⃗)(n i) ∼ w⃗1, D w⃗1 v⃗ v1 n⃗

Gε . E : F R E S H

E; Θ ⊢ w⃗0, D w⃗0 u⃗ (C(n i)) n⃗ ∼ w⃗1, D w⃗1 v⃗ v1 n⃗
Gε . E : R E W R I T E0

Where the two freshness condition ϕfresh() after transformation can be equal to those right before the transformation since D contains no name and
nfresh cannot appear in n⃗.
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Commutation between Gε . C C A 1 and the ascending rules
With Gε . E : C SR

We omit the auxilary proof obligation of Gε . E : C SR since there is no difficulty here (note that one of them is to prove that adv(b0) which allows to derive the
computation of b0 u0 ∧̃ b). We show the commutation with only one case-study, the case with multiple case-study is extremely similar. We also omit the details on the
upper-bound. We show a case where u⃗0 and α⃗ are vector of terms of kind 1.

Π

E; Θ; a⃗ ⊢c
t⃗ u⃗0, b, ir, ik, a⃗

ΠC

E; Θ; a⃗ ⊢c
t⃗C ,o⃗C

C

Πi

E; Θ ⊢ det(ir) ∧̃ det(ik)

Πϕ

E; Θ; ∅ ⊢εψ ϕ
k,ik
key (u⃗0, b, ir, ik, a⃗, C) ∧ ϕr,ir

rand(u⃗0, b, ir, ik, a⃗, C) ∧ ϕk,ik
dec (C)

Πlen

blenl(⃗a, enc m (r ir) (pk(k ik))) ∧̃ blenl(⃗a, enc (0len m) (r ir) (pk(k ik)))
Πl

E; Θ ⊢ u⃗0, if b then C (⃗a, enc (0len(m)) (r ir) (pk(k ik))) else v0 ∼εl u⃗1, v1

E; Θ ⊢ u⃗0, if b then C (⃗a, enc m (r ir) (pk(k ik))) else v0 ∼εr+εCCA1
+εaux u⃗1, v1

Gε . C C A 1
Πr

E; Θ ⊢ u⃗0, w0 ∼εr u⃗1, w1

E; Θ ⊢ u⃗0, if b0 u⃗0 then if b then C (⃗a, enc m (r ir) (pk(k ik))) else v0 else w0 ∼εr+εCCA1
+εaux+εl u⃗1, if b0 u⃗1 then v1 else w1

Gε . E : C SR

▶C S
C C A 1

Πl

E; Θ ⊢ u⃗0, if b then C (⃗a, enc (0len(m)) (r ir) (pk(k ik))) else v0 ∼ε′
l
u⃗1, v1

Πr

E; Θ ⊢ u⃗0, w0 ∼ε′r u⃗1, w1

E; Θ ⊢ u⃗0, if b0 u⃗0 then if b then C (⃗a, enc (0lenm) (r ir) (pk(k ik))) else v0 else w0 ∼ε′r+ε′l u⃗1, if b0 u⃗0 then v1 else w1
Gε . E : C SR

E; Θ ⊢ u⃗0, if b0 u⃗0 ∧ b then C (⃗a, enc (0lenm) (r ir) (pk(k ik))) else if b then v0 else w0 ∼ε′r+ε′l u⃗1, if b0 u⃗0 then v1 else w1
Gε . E : R E W R I T E0

Π′

E; Θ; a⃗ ⊢c

t⃗′
u⃗0, b0 u⃗0 ∧ b, ir, ik, a⃗

ΠC

E; Θ; a⃗ ⊢c
t⃗C ,o⃗C

C

Πi

E; Θ ⊢ det(ir) ∧̃ det(ik)

Πϕ

E; Θ; ∅ ⊢εψ ϕ
k,ik
key (u⃗0, b0 u⃗0 ∧ b, ir, ik, a⃗, C) ∧ ϕr,ir

rand(u⃗0, b0 u⃗0 ∧ b, ir, ik, a⃗, C) ∧ ϕk,ik
dec (C)

Πlen

blenl(⃗a, enc m (r ir) (pk(k ik))) ∧̃ blenl(⃗a, enc (0len m) (r ir) (pk(k ik)))

E; Θ ⊢ u⃗0, if b0 u⃗0 ∧ b then C (⃗a, enc m (r ir) (pk(k ik))) else if b then v0 else w0 ∼ε′r+ε′CCA1
+ε′aux+ε

′
l
u⃗1, if b0 u⃗1 then v1 else w1

Gε . C C A 1

E; Θ ⊢ u⃗0, if b0 u⃗0 then if b then C (⃗a, enc m (r ir) (pk(k ik))) else v0 else w0 ∼ε′r+ε′CCA1
+ε′aux+ε

′
l
u⃗1, if b0 u⃗0 then v1 else w1

Gε . E : R E W R I T E0

The commutation between Gε . C C A 1 and Gε . E : B I - D E D U C E is quite similar, the main point is that we can change

Du⃗ u⃗0 if b then C (⃗a, enc m (r ir) (pk(k ik))) else v0n⃗

(where D is the context for the Gε . E : B I - D E D U C E rule) to

(λx⃗ y⃗ z⃗ h.(D x⃗ y⃗ z⃗ h n⃗))u⃗ u⃗0 α⃗ enc m (r ir) (pk(k ik))

with Gε . E : R E W R I T E0 and that if we have E; Θ; a⃗ ⊢c
tC ,o⃗C

C and E; Θ ⊢ advt,o⃗() with all the annotation being polynomial (see Appendix C-E for a
exact definition) then we can deduce that E; Θ; a⃗ ⊢c

t′,o⃗′ λx⃗ y⃗ z⃗ h.(D x⃗ y⃗ z⃗ h n⃗) with t′ and o⃗′ also polynomial. And the ϕkey(),ϕrand(),ϕdec() are still
valid for this new context since D is without names and n⃗ are names that do not appear in the rest of the terms. Therefore, any occcurences of k or r
in this new context can only come from C and are thus already taken care off by the previous conditions.
We omit the commutation with G . W E A K since it is similar to every other commutation of G . W E A K but with more auxilary proofs.
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Commutation between G . L -∃̃ and the ascending rules
With Gε . E : C SR

Since the auxilary proofs of case-study are changed by the transformation exactly as the other branch, we don’t write them. We also omit the upper-bound And we also
show the transformation for only one case-study since it is very similar with multiples case-studies.

Πl

E, x : τ ; Θ, F ⊢ u⃗0, v0 ∼ u⃗1, v1

E; Θ, ∃̃(x : τ).F ⊢ u⃗0, v0 ∼ u⃗1, v1
G . L -∃̃

Πr

E; Θ, ∃̃(x : τ).F ⊢ u⃗0, w0 ∼ u⃗1, w1

E; Θ, ∃̃(x : τ).F ⊢ u⃗0, if b u⃗0 then v0 else w0 ∼ u⃗1, if b u⃗1 then v1 else w1

Gε . E : C SR
▶C S

∃̃

Πl

E, x : τ ; Θ, F ⊢ u⃗0, v0 ∼ u⃗1, v1

Πr

E; Θ, ∃̃(x : τ).F ⊢ u⃗0, w0 ∼ u⃗1, w1

E, x : τ ; Θ, ∃̃(y : τ).F, F ⊢ u⃗0, if b u⃗0 then v0 else w0 ∼ u⃗1, if b u⃗1 then v1 else w1

Gε . E : C SR

E; Θ, ∃̃(x : τ).F ⊢ u⃗0, if b u⃗0 then v0 else w0 ∼ u⃗1, if b u⃗1 then v1 else w1

G . L -∃̃

With Gε . E : B I - D E D U C E

Π

E, (x : τ); Θ, F ⊢ u⃗ ∼ε v⃗

E; Θ, ∃̃(x : τ).F ⊢ u⃗ ∼ε v⃗
G . L -∃̃

ΠC

E; Θ, ∃̃(x : τ).F ⊢
∧̃

i≤n
advti,o⃗i(Ci)

Πw

E; Θ, ∃̃(x : τ).F ⊢ blenl⃗w(w⃗0) ∧̃ blenl⃗w(w⃗1)

Πa

E; Θ, ∃̃(x : τ).F ⊢ blenl⃗(u⃗) ∧̃ blenl⃗(v⃗)

Πn

E; Θ, ∃̃(x : τ).F ⊢ blenl⃗n(n)

E; Θ, ∃̃(x : τ).F ⊢ w⃗0, (C1, . . . , Cn) w⃗0 u⃗ n⃗ ∼ε′ w⃗1, (C1, . . . , Cn) w⃗1 v⃗ n⃗
Gε . E : B I - D E D U C E

▶B I - D E D U C E
∃̃

Π

E, (x : τ); Θ, F ⊢ u⃗ ∼ε v⃗

Πw

E; Θ, ∃̃(x : τ).F ⊢ blenl⃗w(w⃗0) ∧̃ blenl⃗w(w⃗1)
Πa

E; Θ, ∃̃(x : τ).F ⊢ blenl⃗(u⃗) ∧̃ blenl⃗(v⃗)

Πn

E; Θ, ∃̃(x : τ).F ⊢ blenl⃗n(n)

E, (x : τ); Θ, ∃̃(y : τ).F, F ⊢ w⃗0, (C1, . . . , Cn) w⃗0 u⃗ n⃗ ∼ε′ w⃗1, (C1, . . . , Cn) w⃗1 v⃗ n⃗
Gε . E : B I - D E D U C E

E; Θ, ∃̃(x : τ).F ⊢ w⃗0, (C1, . . . , Cn) w⃗0 u⃗ n⃗ ∼ε′ w⃗1, (C1, . . . , Cn) w⃗1 v⃗ n⃗
G . L -∧̃

With G . W E A K

Π

E, (x : τ); Θ0, F ⊢ F0

E; Θ0, ∃̃(x : τ).F ⊢ F0

G . L -∃̃

E; Θ0, ∃̃(x : τ).F,Θ1 ⊢ F0

G . W E A K
▶W E A K

∃̃

Π

E, (x : τ); Θ0, F ⊢ F0

E, (x : τ); Θ0, F,Θ1 ⊢ F0

G . W E A K

E; Θ0, ∃̃(x : τ).F,Θ1 ⊢ F0

G . L -∃̃
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Commutation between G . L -∧̃ and the ascending rules
With Gε . E : C SR

Since the auxilary proofs of case-study are changed by the transformation exactly as the other branch, we don’t write them. We also omit the upper-bound And we also
show the transformation for only one case-study since it is very similar with multiples case-studies.

Πl

E; Θ, F0, F1 ⊢ u⃗0, v0 ∼ u⃗1, v1

E; Θ, F0 ∧̃ F1 ⊢ u⃗0, v0 ∼ u⃗1, v1
G . L -∧̃

Πr

E; Θ, F0 ∧̃ F1 ⊢ u⃗0, w0 ∼ u⃗1, w1

E; Θ, F0 ∧̃ F1 ⊢ u⃗0, if b u⃗0 then v0 else w0 ∼ u⃗1, if b u⃗1 then v1 else w1

Gε . E : C SR ▶C S
∧̃

Πl

E; Θ, F0, F1 ⊢ u⃗0, v0 ∼ u⃗1, v1

E; Θ, F0 ∧̃ F1, F0, F1 ⊢ u⃗0, v0 ∼ u⃗1, v1
G . W E A K

Πr

E; Θ, F0 ∧̃ F1 ⊢ u⃗0, w0 ∼ u⃗1, w1

E; Θ, F0 ∧̃ F1, F0, F1 ⊢ u⃗0, w0 ∼ u⃗1, w1

G . W E A K

E; Θ, F0 ∧̃ F1, F0, F1 ⊢ u⃗0, if b u⃗0 then v0 else w0 ∼ u⃗1, if b u⃗1 then v1 else w1

Gε . E : C SR

E; Θ, F0 ∧̃ F1, F0 ∧̃ F1 ⊢ u⃗0, if b u⃗0 then v0 else w0 ∼ u⃗1, if b u⃗1 then v1 else w1

G . L -∧̃

E; Θ, F0 ∧̃ F1 ⊢ u⃗0, if b u⃗0 then v0 else w0 ∼ u⃗1, if b u⃗1 then v1 else w1

G . D U P

With Gε . E : B I - D E D U C E

Π

E; Θ, F0, F1 ⊢ u⃗ ∼ε v⃗

E; Θ, F0 ∧̃ F1 ⊢ u⃗ ∼ε v⃗
G . L -∧̃

ΠC

E; Θ, F0 ∧̃ F1 ⊢
∧̃

i≤n
advti,o⃗i(Ci)

Πw

E; Θ, F0 ∧̃ F1 ⊢ blenl⃗w(w⃗0) ∧̃ blenl⃗w(w⃗1)

Πa

E; Θ, F0 ∧̃ F1 ⊢ blenl⃗(u⃗) ∧̃ blenl⃗(v⃗)

Πn

E; Θ, F0 ∧̃ F1 ⊢ blenl⃗n(n)

E; Θ, F0 ∧̃ F1 ⊢ w⃗0, (C1, . . . , Cn) w⃗0 u⃗ n⃗ ∼ε′ w⃗1, (C1, . . . , Cn) w⃗1 v⃗ n⃗
Gε . E : B I - D E D U C E

▶B I - D E D U C E
∧̃

Π

E; Θ, F0, F1 ⊢ u⃗ ∼ε v⃗

ΠC

E; Θ, F0 ∧̃ F1 ⊢
∧̃

i≤n
advti,o⃗i(Ci)

Πw

E; Θ, F0 ∧̃ F1 ⊢ blenl⃗w(w⃗0) ∧̃ blenl⃗w(w⃗1)

Πa

E; Θ, F0 ∧̃ F1 ⊢ blenl⃗(u⃗) ∧̃ blenl⃗(v⃗)

Πn

E; Θ, F0 ∧̃ F1 ⊢ blenl⃗n(n)

E; Θ, F0 ∧̃ F1, F0, F1 ⊢ w⃗0, (C1, . . . , Cn) w⃗0 u⃗ n⃗ ∼ε′ w⃗1, (C1, . . . , Cn) w⃗1 v⃗ n⃗
Gε . E : B I - D E D U C E

E; Θ, F0 ∧̃ F1 ⊢ w⃗0, (C1, . . . , Cn) w⃗0 u⃗ n⃗ ∼ε′ (C1, . . . , Cn) w⃗0 v⃗ n⃗
G . L -∧̃

With G . W E A K

Π

E; Θ0, F0, F1 ⊢ F
E; Θ0, F0 ∧̃ F1 ⊢ F

G . L -∧̃

E; Θ0, F0 ∧̃ F1,Θ1 ⊢ F
G . W E A K

▶W E A K
∧̃

Π

E; Θ0, F0, F1 ⊢ F
E; Θ0, F0, F1,Θ1 ⊢ F

G . W E A K

E; Θ0, F0 ∧̃ F1,Θ1 ⊢ F
G . L -∧̃
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Commutation between G . C U T and the ascending rules
Since the auxilary proofs of case-study are changed by the transformation exactly as the other branch, we don’t write them. We also omit the upper-bound And we also
show the transformation for only one case-study since it is very similar with multiples case-studies.

Πc

E; Θ ⊢ F
Πl

E; Θ, F ⊢ u⃗0, v0 ∼ u⃗1, v1

E; Θ ⊢ u⃗0, v0 ∼ u⃗1, v1
G . C U T

Πr

E; Θ ⊢ u⃗0, w0 ∼ u⃗1, w1

E; Θ ⊢ u⃗0, if b u⃗0 then v0 else w0 ∼ u⃗1, if b u⃗1 then v1 else w1

Gε . E : C SR ▶C S
C U T

Πc

E; Θ ⊢ F

Πl

E; Θ, F ⊢ u⃗0, v0 ∼ u⃗1, v1

Πr

E; Θ ⊢ u⃗0, w0 ∼ u⃗1, w1

E; Θ, F ⊢ u⃗0, if b u⃗0 then v0 else w0 ∼ u⃗1, if b u⃗1 then v1 else w1

Gε . E : C SR

E; Θ ⊢ u⃗0, if b u⃗0 then v0 else w0 ∼εl+εr u⃗1, if b u⃗1 then v1 else w1

G . C U T

With Gε . E : B I - D E D U C E

ΠF

E; Θ ⊢ F
Π

E; Θ, F ⊢ u⃗ ∼ε v⃗

E; Θ ⊢ u⃗ ∼ε v⃗
G . C U T

ΠC

E; Θ ⊢
∧̃

i≤n
advti,o⃗i(Ci)

Πw

E; Θ ⊢, blenl⃗w(w⃗0) ∧̃ blenl⃗w(w⃗1)

Πa

E; Θ ⊢, blenl⃗(u⃗) ∧̃ blenl⃗(v⃗)

Πn

E; Θ ⊢ blenl⃗n(n)

E; Θ ⊢ w⃗0, (C1, . . . , Cn) w⃗0 u⃗ n⃗ ∼ε′ w⃗1, (C1, . . . , Cn) w⃗1 v⃗ n⃗
Gε . E : B I - D E D U C E

▶B I - D E D U C E
C U T

ΠF

E; Θ ⊢ F

Π

E; Θ, F ⊢ u⃗ ∼ε v⃗

ΠC

E; Θ ⊢
∧̃

i≤n
advti,o⃗i(Ci)

Πw

E; Θ ⊢, blenl⃗w(w⃗0) ∧̃ blenl⃗w(w⃗1)

Πa

E; Θ ⊢, blenl⃗(u⃗) ∧̃ blenl⃗(v⃗)

Πn

E; Θ ⊢ blenl⃗n(n)

E; Θ, F ⊢ w⃗0, (C1, . . . , Cn) w⃗0 u⃗ n⃗ ∼ε′ w⃗1, (C1, . . . , Cn) w⃗1 v⃗ n⃗
Gε . E : B I - D E D U C E

E; Θ ⊢ w⃗0, (C1, . . . , Cn) w⃗0 u⃗ n⃗ ∼ε′ w⃗1, (C1, . . . , Cn) w⃗1 v⃗ n⃗
G . C U T

With G . W E A K

ΠF

E; Θ ⊢ F
Π

E; Θ0, F ⊢ F0

E; Θ0 ⊢ F0

G . C U T

E; Θ0,Θ1 ⊢ F0

G . W E A K
▶W E A K

C U T

ΠF

E; Θ ⊢ F

Π

E; Θ0, F ⊢ F0

E; Θ0, F,Θ1 ⊢ F0

G . W E A K

E; Θ0,Θ1 ⊢ F0

G . C U T
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