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RAPID STABILIZATION AND FINITE TIME STABILIZATION OF THE

BILINEAR SCHRÖDINGER EQUATION

HOAI-MINH NGUYEN

Abstract. We propose a method to establish the rapid stabilization of the bilinear Schrödinger
control system and its linearized system, and the finite time stabilization of the linearized system
using the Grammian operators. The analysis of the rapid stabilization involves a new quantity
(variable) which is inspired by the adjoint state in the optimal control theory and is proposed in
our recent work on control systems associated with strongly continuous group. The analysis of
the finite time stabilization follows the strategy introduced by Coron and Nguyen in the study of
the finite time stabilization of the heat equation and incorporate a new ingredient involving the
estimate of the cost of controls of the linearized system in small time derived in this paper.
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1. Introduction

1.1. Statement of the main results. We consider the following bilinear control Schrödinger
system, with I “ p0, 1q,

(1.1)

$

’

’

&

’

’

%

iΨt “ ´∆Ψ´ uptqµpxqΨpt, xq in R` ˆ I,

Ψpt, 0q “ Ψpt, 1q “ 0 in R`,

Ψp0q “ Ψ0 in I,

where Ψ0 is the initial data,
the control u is real,

and µ is a given real function, around the fundamental state. Here Ψ is the complex-valued wave
function of a particle confined in a 1d infinite square potential well. The particle is subjected

1



2 H.-M. NGUYEN

to an electric field inside the domain with the amplitude u, and µ is the dipolar moment of the
particle. For detailed approximations leading to this first-order interaction Hamiltonian we refer
for example to [25, Chapter 2].

Let λ1 ă λ2 ă . . . , λk ă . . . be the set of eigenvalues of the Laplace equation in I with the zero
Dirichlet boundary condition and let pϕkq be the standard orthogonal basis in L2pIq formed by
the corresponding eigenfunctions. Thus

#

´∆ϕk “ λkϕk in I,

ϕk “ 0 on BI.

Explicitly, for k ě 1,

(1.2) λk “ π2k2 and ϕkpxq “
?

2 sinpπkxq in I.

It is clear that

(1.3) e´iλ1tϕ1 is a solution of (1.1) with u “ 0 and Ψ0 “ ϕ1.

We are interested in the stabilization of the system (1.1) around the state e´iλ1tϕ1. To this end,
it is convenient to introduce

(1.4) rΨpt, xq “ eiλ1tΨpt, xq in R` ˆ I and rΨ0pxq “ Ψ0pxq in I.

We then have, by (1.1),

(1.5)

#

irΨt “ ´∆rΨ´ λ1
rΨ´ uptqµpxqrΨpt, xq in R` ˆ I,

rΨpt, 0q “ rΨpt, 1q “ 0 in R`.

The linearized system of (1.5) when rΨ is closed to ϕ1, i.e., Ψpt, xq is closed to e´iλ1tϕ1, is

(1.6)

#

irΨt “ ´∆rΨ´ λ1
rΨ´ uptqµpxqϕ1pxq in R` ˆ I,

rΨpt, 0q “ rΨpt, 1q “ 0 in R`.

In what follows, we always assume that

(1.7) µ P H3pI,Rq.

The following condition on µ is repeated used later:

(1.8) |xµϕ1, ϕkyL2pIq| ě
c

k3
for k P N`,

for some positive constant c unless stated differently 1 We are interested in the solutions of the above
Schrödinger systems with controls u in L2

locpr0,`8q;Rq (we insist again that we are interested in
the controls which are real).

The condition (1.8) is a sufficient condition to have the exact controllability of the linearized
systems in small time and this implies the local exact controllability of the nonlinear systems, as
shown by Beauchard and Laurent [6]. This condition is also a necessary condition to ensure that
the nonlinear systems are locally exactly controllable in small time, see the work of Beauchard and
Morancey [8]. The condition (1.8) is generic, see [6, Appendix A].

As in previous works, see, e.g., [6, 8, 18], we are interested in the solutions in the space H (for
each time t) defined by

(1.9) H “

!

Ψ P H1
0 pI;Cq;

ÿ

kě1

|k3xΨ, ϕkyL2pIq|
2 ă `8

)

,

1Hereafter, given a Hilbert space H, we denote x¨, ¨yH its scalar product.
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and

(1.10) H1,7 “

!

Ψ P H such that <xΨ, ϕ1yL2pIq “ 0
)

.

Here and in what follows, for a complex number z, we denote its real part, its complex part, and
its complex conjugate by <z, =z, and z̄, respectively. We equip the following scalar product for
the spaces H and H1,7:

(1.11) xΨ, rΨyH “ xΨ, rΨyH3pIq :“

ż

I

´

ΨrΨ`Ψ1rΨ1 `Ψ2rΨ
2

`Ψ3rΨ
3¯

ds for y, ry P H,

and

(1.12) xΨ, rΨyH1,7
“ xy, ryyH for Ψ, rΨ P H1,7.

One can show that, for the linearized system (1.6),

(1.13) Ψptq P H1,7 for t ě 0 if Ψ0 P H1,7.

This property does not hold for the nonlinear system. Note that the exact controllability has
been established for solutions in Cpr0, T s; Hq, which requires roughly three derivatives in the space
variable of the solutions. It is known from a general result of Ball, Marsden, and Slemrod [2]
that the Schrödinger system (1.5) is not exactly controllable for solutions in Cpr0, T s;H1

0 pIqq or in
Cpr0, T s;H1

0 pIq XH
2pIqq when µ is smooth since the control operator is bounded in this case.

It is convenient to consider the real part and the imaginary part of rΨ separately. Assume that

rΨ “ rΨ1 ` irΨ2 in R` ˆ I,

where rΨ1 and rΨ2 are the real and the imaginary parts of rΨ. System (1.5) can be written under
the form

(1.14)

#

rΨ1,t “ ´∆rΨ2 ´ λ1
rΨ2 ´ uptqµpxqrΨ2 in R` ˆ I,

rΨ2,t “ ∆rΨ1 ` λ1
rΨ1 ` uptqµpxqrΨ1 in R` ˆ I,

and system (1.6) can be written under the form

(1.15)

#

rΨ1,t “ ´∆rΨ2 ´ λ1
rΨ2 in R` ˆ I,

rΨ2,t “ ∆rΨ1 ` λ1
rΨ1 ` uptqµpxqϕ1 in R` ˆ I.

Denote

(1.16) H “
!

y “ py1, y2q
T P H1

0 pI;R2q;
2
ÿ

`“1

ÿ

kě1

|k3xy`, ϕkyL2pIq|
2 ă `8

)

,

and

(1.17) H1,7 “

!

y “ py1, y2q
T P H such that xy1, ϕ1yL2pIq “ 0

)

,

and we equip with the following scalar products for the spaces H and H1,7:
(1.18)

xy, ryyH :“ xy, ryyH3pIq “

ż

I

2
ÿ

`“1

´

y`ry` ` y
1
`ry
1
` ` y

2
` ry
2
` ` y

3
` ry
3
`

¯

ds for y “ py1, y2q
T, ry “ pry1, ry2q

T P H,

and

(1.19) xy, ryyH1,7
“ xy, ryyH for y, ry P H1,7.

It is clear that

Ψ P H if and only if pΨ1,Ψ2q
T P H
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and

Ψ P H1,7 if and only if pΨ1,Ψ2q
T P H1,7,

where Ψ1 and Ψ2 are the real part and the imaginary part of Ψ, respectively.
One can check, see e.g., [18], that

(1.20) H “
!

y “ py1, y2q
T P H3pI;R2q; y1pxq “ y2pxq “ y21pxq “ y22pxq “ 0 on BI

)

and

(1.21) H1,7 “

!

y “ py1, y2q
T P H3pI;R2q;

y1pxq “ y2pxq “ y21pxq “ y22pxq “ 0 on BI and xy1, ϕ1yL2pIq “ 0
)

.

Note that H1,7 is not a subspace of H (with respect to the scalar field C) whilst H1,7 is a subspace
of H (with respect to the scalar field R).

Consider A : DpAq Ă HÑ H defined by

(1.22) Ay “

˜

´∆y2 ´ λ1y2

∆y1 ` λ1y1

¸

and DpAq “
!

y P H;Ay P H
)

.

Then DpAq is dense in H and A is skew-adjoint (see Lemmas 2.1 and 2.2). We equip DpAq with the
standard scalar product for the graph-norm and denote DpAq1 the dual space of DpAq. It is worth
noting that our definition of A and the domain DpAq are different from [6, 18]. Our definitions are
motivated by the theory of stabilization developed for control systems associated with a strongly
continuous group [48] and will be clear later when the feedback operator is introduced (see, e.g.,
(1.34), see also (1.31)).

Let pA˚,DpA˚qq denote the adjoint of pA,DpAqq and let

B : RÑ H3pI;R2q XH1
0 pI;R2q Ă DpA˚q1

be defined by, with y “ py1, y2q
T P DpA˚q,

(1.23) xBu, yyDpA˚q1,DpA˚q “ u
´

xµϕ1, y2yH3pIq ´ pµϕ1qxxp1qy2,xxxp1q ` pµϕ1qxxp0qy2,xxxp0q
¯

.

The linear system (1.15) can be written under the form

(1.24) y1 “ Ay `Bu in R`
and the nonlinear system (1.14) can be written under the form

(1.25) y1 “ Ay `Bu` uF py ´ Φ1q in R`,

where

(1.26) Φ1 “ pϕ1, 0q
T and F pyq “ p´µy2, µy1q

T,

and, for all ϕ P DpA˚q,

(1.27) xuF pyq, ϕyDpA˚q1,DpA˚q

“ u
´

xF pyq, ϕyH3pIq ´ xpF pyqqxxp1q, ϕxxxp1qyR2 ` xpF pyqqxxp0q, ϕxxxp0qyR2

¯

(see Lemmas 3.3 and 3.7).
One cannot extend B as a bounded operator from R into H. This is the main source of the

difficulties in the study of the stabilization using feedback of the linearized system (1.24) and more
critical in the study of the nonlinear system (1.25) since uF pyq R L1pp0, T q;Hq. Nevertheless, B
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is an admissible control operator with respect to the semi-group
`

etA
˘

tě0
generated by A in the

sense that, for all u P L2pr0, T s;Rq, it holds that

(1.28) y P Cpr0, T s;Hq where yptq :“

ż t

0
ept´sqABupsq ds

(see Lemmas 3.2 and 3.3). As a consequence of the closed graph theorem, see e.g., [13], one has

(1.29) }y}Cpr0,T s;Hq ď CT }u}L2pp0,T q;Rq.

Thus, see e.g., [16, 54], that, for T ą 0, there exists CT ą 0 such that

(1.30)

ż T

0
|B˚e´sA

˚

z|2 ď CT }z}
2
H for all z P H,

where B˚ is the adjoint of B, and petA
˚

qtPR is the group generated by A˚ (recall that A is skew-
adjoint).

Note that
B˚ : DpA˚q Ñ R.

and, with v “ pv1, v2q
T P DpA˚q, which is also DpAq since A is skew-adjoint,

(1.31) B˚v “ xµϕ1, v2yH3pIq ´ pµϕ1qxxp1qv2,xxxp1q ` pµϕ1qxxp0q, v2,xxxp0q

since

(1.32) xBu, vyH “ xu,B
˚vyR.

This paper is devoted to the stabilization of the nonlinear system (1.5) and its linearized system
(1.6). The rapid stabilization of the linearized control system (1.6) was established by Coron,
Gagnon, and Morancey [18] using techniques related to backstepping methods. The idea is to
transform the original system into a damping one for which the stabilization is an easier task.
Their transformations are of Fredholm type and different from the standard Volterra ones in the
backstepping method. The existence of these transformations is ensured by the controllability
of the linearized system, which follows from (1.8). The main technical difficulty in the work of
Coron, Gagnon, and Morancey [18] is to deal with a control operator that is only admissible
but not bounded. It is worth noting that the backstepping technique and its extended versions
are useful tools to stabilize various equations in one-dimensional space such as heat equations
[38], Schrödinger equations [31], KdV equations [14, 20], hyperbolic systems [24, 22, 23] and the
reference therein. The backstepping can be also used to get finite-time stabilization for heat
equations, see [21]. A concise introduction to the backstepping technique can be found in [32].
At this stage, to our knowledge, [18] is the only work dealing with the rapid stabilization of
the linearized Schrödinger system using bilinear controls, and the analysis in [18] has not been
successfully extended to the nonlinear system.

The goal of this paper is to present another method to obtain the rapid stabilization of the
linearized control system (1.6) and of the bilinear control system (1.5), and the finite time sta-
bilization of the linearized control system (1.6). Our approach is inspired by our recent work
[48] in which we study the stabilization of systems associated with a strongly continuous group
for unbounded control operators using Gramian operators. For control systems associated with a
strongly continuous group, under the assumption that the systems are exactly controllable, it is
shown in [48] that one can obtain rapid stabilization using static feedback in a trajectory sense or
using dynamic feedback. The static trajectory feedback has its roots in the linear quadratic optimal
control theory, as developed in Flandoli, Lasiecka, and Triggiani [27] (see also [33, 57, 59, 51, 53]).
It is known from the optimal control theory that there exists static feedback in a weak sense to
rapidly stabilize the system. Such feedback is understood in a weak sense since it is defined only
on a dense set of the space state depending on the feedback operator (see [48, Proposition 4.1]).
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The use of Gramian operators to rapidly stabilize exactly controllable systems associated with a
strongly continuous group has been previously considered in [28, 55, 56] via the optimal control
theory, and the feedback is thus understood in the weak sense. One cannot use Gramian operators
to stabilize nonlinear settings using the theories developed in [28, 55, 56] as discussed in [48] (see
also [18]). In this paper, we show that, for the considered bilinear control Schrödinger systems,
even if the control operator is unbounded one can still obtain static feedback in the usual sense, the
feedback is defined for all elements in the state space, to achieve the rapid stabilization. Moreover,
we construct piecewise constant feedback to reach the stabilization in finite time for the linearized
system.

Before introducing the feedback, we state the observability inequality for the exact controllability
of the linearized system (1.6) as a consequence of the exact controllability result of Beauchard and
Laurent [6] and Lemmas 3.2, 3.3 and 3.7 (see also Proposition 5.4 for a more quantitative version
for small T ).

Lemma 1.1. Let µ P H3pI;Rq verify (1.8) and let T ą 0. We have

(1.33)

ż T

0
|B˚e´sA

˚

z|2 ě CT }z}
2
H for all z P H1,7,

for some positive constant CT independent of z.

We are ready to introduce the Gramian operator to stabilize the linearized system (1.6) and the
nonlinear system (1.5). Let µ P H3pI;Rq and λ ą 0. Define Q “ Qpλq : HÑ H by

(1.34) xQz, rzyH “

ż 8

0
e´2λsxB˚e´sA

˚

z,B˚e´sA
˚

rzyR ds for z, rz P H.

Since A is skew-adjoint by Lemma 2.2 in Section 2, it follows from (1.30) that Q is well-defined
and is symmetric in H. We also have, by [48, Proposition 5.1] (see also [28, 55]),

(1.35) AQ`QA˚ ´BB˚ ` 2λQ “ 0

in the following sense

(1.36) xQz,A˚rzyH ` xA
˚z,QrzyH ´ xB

˚z,B˚rzyH ` 2λxQz, rzyH for z, rz P DpA˚q.

Moreover, if the condition (1.8) on µ holds then, by Lemma 1.1,

(1.37) Q :“ projH1,7
˝Q : H1,7 Ñ H1,7 is positive, i.e., xQz, zyH1,7

ě C}z}H1,7
for all z P H1,7.

Concerning the rapid stabilization of (1.15), we prove the following result.

Theorem 1.1. Let µ P H3pI,Rq be such that (1.8) holds and let λ ą 0. Given y0 P H1,7, let
y P Cpr0, T s;Hq be the unique weak solution of the system

(1.38)

#

y1 “ Ay `Bu in R`,

yp0q “ y0,

with

(1.39) u “ ´B˚Q´1projH1,7
y.

Then yptq P H1,7 for t ě 0, and

}Q´1yptq}H “ e´2λ}Q´1y0}H for t ě 0.

Consequently, there exist two positive constants C1, C2 independent of y0 such that

(1.40) C1e
´2λt}y0}H ď }yptq}H ď C2e

´2λt}y0}H for t ě 0.
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Remark 1.1. The meaning of the weak solutions are given in Definition A.1 in Appendix A for
which one considers Bu as a source term. The well-posedness of (1.38) is a part of the conclusion
of Theorem 1.1. Note that B˚z is also well-defined for z P H by (1.31).

As a consequence of Theorem 1.1, the linearized system (1.15) is rapidly stabilizable by feedback
controls. Equivalently, the linearized system (1.6) is rapidly stabilizable by feedback controls.

Remark 1.2. Note that yptq P H1,7 for t ě 0. One can hence replace the term projH1,7
y by y in

Theorem 1.1.

Concerning the non-linear system (1.14), which is equivalent to system (1.5), we have the fol-
lowing result.

Theorem 1.2. Let µ P H3pI,Rq be such that (1.8) holds and let λ ą 0. For 0 ă λ̂ ă λ, there
exist two positive constants ε0 ą 0 and C ą 0 such that

(1.41) }ypt, ¨q ´ Φ1}H ď Ce´2λ̂t}yp0, ¨q ´ Φ1}H for t ě 0,

for all y0 P H1,7 with }y0}L2pIq “ 1 and }y0 ´ Φ1}H ď ε0, where ypt, ¨q P C
`

r0, T s;H
˘

is the unique
weak solution of the system

(1.42)

#

y1 “ Ay `Bu` uF py ´ Φ1q in R`,

yp0q “ y0,

with

u “ ´B˚Q´1projH1,7
py ´ Φ1q.

Remark 1.3. The meaning of the weak solutions are given in Definition A.1 in Appendix A for
which one considers Bu` uF py ´ Φ1q as the source term.

As a consequence of Theorem 1.2, the nonlinear bilinear control system (1.14) is locally rapidly
stabilizable by feedback controls. Equivalently, the nonlinear bilinear control system (1.6) is locally
rapidly stabilizable by feedback controls.

Concerning the finite time stabilization, we have the following result on the linearized bilinear
control system (1.24).

Theorem 1.3. Let µ P H3pI,Rq be such that (1.8) holds and let T ą 0. There exists K :
r0, T q ˆ H Ñ R such that K is piecewise constant with respect to the first variable and linear
continuous with respect to the second variable, and for every y0 P H1,7, there exists a unique
solution y P Cpr0, T q;Hq of the system

(1.43)

#

y1 “ Ay `Bu in r0, T q

yp0q “ y0,

with

(1.44) uptq “ Kpt, ypt, ¨qq.

Moreover,

(1.45) ypt, ¨q Ñ 0 in H as tÑ T´

and

(1.46) upt, ¨q Ñ 0 as tÑ T´.
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1.2. Ideas of the proof. The approach used in this paper is inspired by our recent work [48].
We first discuss the analysis of Theorem 1.1 and Theorem 1.2. Concerning the linearized system
(1.6) (whose results are given in Theorem 1.1), one of the main parts of the analysis is to de-
velop the theory in [48] to take into account the intrinsic constraint (1.13). Concerning the rapid
stabilization of the nonlinear system (1.5) (whose results are given in Theorem 1.2), in addition
to the ingredients used for the linearized system, we essentially use the fact that the solutions
of the Schrödinger system conserve the L2-norm. This fact is used to control the component of
the solution which is orthogonal to H1,7 with respect to the L2pIq-scalar product (or the H-scalar
product). Additional technical ingredients for all the stabilization results are the well-posedness of
the nonlinear feedback control systems, which are of nonlinear, nonlocal, and non-bounded nature
(see Section 3), and the way to translate the results between the original systems (1.5) and (1.6)
and the corresponding systems written under in the semi-group language (1.24) and (1.25) (see
Lemma 3.7 and Appendix A).

To take one step further from the rapid stabilization to obtain the finite time stabilization
(Theorem 1.3) for the linearized system, we follow the strategy of Coron and Nguyen [21]. The
idea is to stabilize the system more and more as the time t goes to T´. More precisely, we use
Q “ Qn :“ Qpλnq in the time interval rtn, tn`1q for a suitable positive sequence pλnq Ñ `8

and for a suitable increasing sequence ptnq Ñ T . To be able to apply the strategy in [21], one
needs to understand the size of }Q´1

n }LpH1,7q
2 as a function of λn (a good bound for the size of

}Qn}LpHq follows from the admissibility of the control operator B, see (1.30)). This is given in
Lemma 5.1 after establishing the cost of the control for small time (see Proposition 5.4). This
result is interesting in itself and its proof uses similar techniques as in [52]. The way to gain
suitable information in each time interval rtn, tn`1q here is different from the one in [21] for which
precise estimates of kernels of transformations from the backstepping technique are derived using
the information of the kernels. Our new way to get appropriate information to be able to apply the
strategy in [21] is quite robust and can be used in different contexts where the size of the control
cost is understood for small time. An application of this approach will be given in [49] to study
the finite-time stabilization of a KdV control system.

1.3. Previous related results. The controllability properties for the Schrödinger equation were
mostly studied in the usual linear setting (in contrast to the bilinear control problems considered
here). For the control of the linear Schrödinger equation with internal control (localized on a
subdomain), we refer to [35, 39], the survey [34], and the references therein. In this setting, we
mention [40] for the stabilization. The first local controllability results on the bilinear Schrödinger
equation appear in [3, 4]. These local controllability results have been extended under weaker
assumptions in [6, 8], in a more general setting in infinite time [45], and also in the case of simul-
taneous controllability of a finite number of particles [42], and the references therein. Note that,
despite the infinite speed of propagation, it was proved that a minimal amount of time is required
for the controllability of some bilinear Schrödinger equations, see [16, 5, 8] (see also [42, 12]) and
the references therein. In addition to the exact controllability and the stabilization, various aspects
of the controllability of the bilinear Schrödinger systems have been investigated. Concerning the
approximative controllability, this has been studied by the geometric control techniques via ap-
propriate Galerkin approximations, see e.g., [15, 10, 11] and the references therein. The Lyapunov
technique has been used to obtain the global controllability results, see, e.g., [41, 7, 43, 44] though
no indication of the convergence rate is given.

1.4. The organization of the paper. The paper is organized as follows. In Section 2, we estab-
lish several results on A and DpAq. In particular, we prove that A is skew-adjoint in Lemma 2.2.

2Hereafter, given a Hilbert space H, we denote LpHq the space of all continuous linear applications from H to H
equipped with the standard norm.
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In Section 3, we establish the well-posedness and the stability of various linear and nonlinear
Schrödinger systems. These results will be used in the proof of the main theorems mentioned
above. Section 4 is devoted to the rapid stabilization, in particular, we prove Theorems 1.1
and 1.2 there. In Section 5, we study the finite time stabilization. We prove Theorem 1.3 using
estimates on the cost of controls for the linearized system established there (see Propositions 5.1
and 5.3). The analysis of the upper bound (Proposition 5.1) is based on the moment method. The
analysis of the lower bound (Proposition 5.3) is based on a lower bound of the cost of a singular
perturbation control problem (Proposition 5.2). In Appendix A, we discuss a well-posedness result
on control systems associated with operator semi-groups, which is used throughout the paper.

2. Preliminaries

In this section, we will prove some properties related to A defined in (1.22) and Q defined in
(1.34). We begin with

Lemma 2.1. Let γ1, γ2 P R and let A : DpAq Ă HÑ H be defined by

(2.1) Ay “

˜

´∆y2 ` γ1y2

∆y1 ` γ2y1

¸

with DpAq “
!

y P H;Ay P H
)

.

We have

i) The set DpA8q is dense in H.
ii) The set DpA8q XH1,7 is dense in H1,7.
iii) The set DpA8q XH1,7 is dense in DpAq XH1,7 equipped the graph-norm of DpAq.

Recall that
DpA8q “

č

kě1

DpAkq.

Proof. We first prove iq. Let y “ py1, y2q
T P H. Then

(2.2) y1 “

8
ÿ

k“1

akϕk and y2 “

8
ÿ

k“1

bkϕk,

for some pakq, pbkq Ă R such that
ř

kě1 λ
3
kp|ak|

2 ` |bk|
2q ă `8. Denote

(2.3) y1,n “

n
ÿ

k“1

akϕk and y2,n “

n
ÿ

k“1

bkϕk,

and set
yn “ py1,n, y2,nq

T.

Since

(2.4) ϕ2k “ ´λkϕk in I and ϕk “ 0 on BI,

it follows from (1.20) that

(2.5) yn P DpA8q.
It is clear that

(2.6) yn “ py1,n, y2,nq
T Ñ y in H.

Assertion iq now follows from (2.5) and (2.6).

We next deal with iiq. We first note that

DpA8q XH1,7 “

"

y “ py1, y2q
T P DpA8q;

ż

I
y1ϕ1 “ 0

*
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Let y “ py1, y2q
T P H1,7 and define yn by (2.3) using (2.2). Then

(2.7) yn P DpA8q and yn Ñ y in H.
Define ŷn “ pŷ1,n, ŷ2,nq by

(2.8) ŷ1,n “ y1,n ´ xy1,n, ϕ1yL2pIqϕ1 and ŷ2,n “ y2,n,

and denote
ŷn “ pŷ1,n, ŷ2,nq

T.

It follows from (2.4) that

(2.9) ŷn P DpA8q XH1,7.

Using the fact

(2.10) xy1,n, ϕ1yL2pIq Ñ xy1, ϕ1yL2pIq

yPH1,7
“ 0,

we derive from (2.7) and (2.8) that
ŷn Ñ y in H.

Assertion iiq is proved.

We finally establish iiiq. Let y “ py1, y2q
T P DpAq X H1,7 and define yn by (2.3) using (2.2).

Then

(2.11) yn P DpA8q and yn Ñ y in DpAq.
Define ŷn “ pŷ1,n, ŷ2,nq

T by (2.8). Then, by (2.9),

ŷn P DpA8q XH1,7.

Using (2.10), we derive from (2.11) that

ŷn Ñ y in DpAq.
Assertion iiiq is established.

The proof is complete. �

We next establish a result which implies that A is skew-adjoint.

Lemma 2.2. Let γ P R and let A : DpAq Ă HÑ H be defined by

(2.12) Ay “

˜

´∆y2 ´ γy2

∆y1 ` γy1

¸

and DpAq “
!

y P H;Ay P H
)

.

Then A is skew-adjoint, i.e., DpA˚q “ DpAq and A˚ “ ´A in DpAq.

We recall, by Lemma 2.1, that DpAq is dense in H.

Proof. Since
ϕ2k “ ´λkϕk in I,

we derive from the definition of H that y “ py1, y2q P DpAq if and only if

(2.13) y P rH5pIqs2,

(2.14) y`pxq “ y2` pxq “ y4` pxq “ 0 for x P BI, ` “ 1, 2,

Using this fact, we derive, by integration by parts, for y “ py1, y2q
T P DpAq and z “ pz1, z2q P DpAq,

that

(2.15) ´

ż

I
∆y2z1 “ ´

ż

I
y2∆z1, ´

ż

I
∆y12z

1
1 “ ´

ż

I
y12∆z11,
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(2.16) ´

ż

I
∆y22z

2
1 “ ´

ż

I
y22∆z21 , ´

ż

I
∆y32 z

3
1 “ ´

ż

I
y32 ∆z31 ,

(2.17)

ż

I
∆y1z2 “

ż

I
y1∆z2,

ż

I
∆y11z

1
2 “

ż

I
y11∆z12,

(2.18)

ż

I
∆y21z

2
2 “

ż

I
y21∆z22 ,

ż

I
∆y31 z

3
2 “

ż

I
y31 ∆z32 .

It follows that, for y P DpAq and z P DpAq,
xAy, zyH “ xy,´AzyH.

It remains to show that DpA˚q Ă DpAq. This is equivalent to establish that if z P H is such that

(2.19) |xAy, zyH| ď C}y}H for all y P DpAq
for some positive constant C “ Cpzq independent of y, then z P DpAq.

Indeed, fix such a z. From (2.19), we deduce from (2.15) and (2.16) that, for y P DpAq,

(2.20)

ˇ

ˇ

ˇ

ˇ

´

ż

I
∆y32 z

3
1 `

ż

I
∆y31 z

3
2

ˇ

ˇ

ˇ

ˇ

ď C}y}H.

By taking y1 “ 0 in (2.20), we obtain that, for y2 P H
5pIq with y2 “ y22 “ y42 “ 0 on BI, it holds

(2.21)

ˇ

ˇ

ˇ

ˇ

´

ż

I
∆y32 z

3
1

ˇ

ˇ

ˇ

ˇ

ď C}y2}H3pIq.

Given ϕ P C8pĪ;Rq, define, for x P Ī,

(2.22) ξ3pxq “ ϕpxq ´
1

2
ϕ1p1qx2 `

1

2
ϕ1p0qp1´ xq2,

ξ2pxq “

ż x

0
ξ3psq ds´ x

ż 1

0
ξ3psq ds, ξ1pxq “

ż x

0
ξ2psq ds,

and

(2.23) y2pxq “

ż x

0
ξ1psq ds´ x

ż 1

0
ξ1psq ds.

Simple computations give, for x P Ī,

y12 “ ξ1 ´

ż 1

0
ξ1psq ds, y22 “ ξ2, y32 “ ξ3 ´

ż 1

0
ξ3psq ds, y42 “ ϕ1 ´ ϕ1p1qx´ ϕ1p0qp1´ xq.

One can then check that y2 P H
5pIq with y2 “ y22 “ y42 “ 0 on BI. It follows from (2.21) applied

to y2 given by (2.23) that
ˇ

ˇ

ˇ

ˇ

´

ż

I

`

∆ϕ´ ϕ1p1q ` ϕ1p0q
˘

z31

ˇ

ˇ

ˇ

ˇ

ď C}ξ3}L2pIq for ϕ P C8pĪq,

where ξ3 is defined by (2.22). Since z21 “ 0 on BI, we deduce that
ˇ

ˇ

ˇ

ˇ

´

ż

I
∆ϕz31

ˇ

ˇ

ˇ

ˇ

ď C}ξ3}L2pIq for ϕ P C8pĪq,

where ξ3 is defined by (2.22). By first considering ϕ P C8c pIq and then using ϕ P C8pĪq with
ϕ1 “ 0 on BI, we obtain

(2.24) z31 P H
2pIq and z41 “ 0 on BI.

Similarly, by taking y2 “ 0 in (2.20), we derive that

(2.25) z32 P H
2pIq and z42 “ 0 on BI.
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Combining (2.24) and (2.25) yields

z P DpAq.
The proof is complete. �

3. Well-posedness and stability of Schrödinger systems

In this section, we establish the well-posedness and the stability of various systems related
to the linear system (1.6) and the nonlinear system (1.5). The main goal is to formulate and
establish results which are compatible with the theory of control systems associated with semi-
group. Without the language of semi-group, some related results can be found in [6].

We first introduce A : DpAq Ă H Ñ H defined by

(3.1) AΨ “ i∆Ψ and DpAq “
!

Ψ P H; AΨ P H
)

.

We have

Lemma 3.1. We have

DpAq is dense in H and A is skew-adjoint.

Proof. The conclusion is a consequence of Lemmas 2.1 and 2.2 with γ “ 0 after considering the
real part and the imaginary part of Ψ and AΨ. �

We next introduce a useful operator related to the definitions of B in (1.23) and uF pyq in (1.27).

Definition 3.1. Given T ą 0. Define

T : L2pp0, T q;H3pI;Cq XH1
0 pI;Cqq Ñ L1pp0, T q;DpA˚q1q

by, for all ϕ P DpA˚q,

(3.2) xTpfqpt, ¨q, ϕyDpA˚q1,DpA˚q “ xfpt, ¨q, ϕyH3pIq ´ fxxpt, 1qϕxxxp1q ` fxxpt, 0qϕxxxp0q,

for f P L2pp0, T q;H3pI;Cq XH1
0 pI;Cqq.

We next discuss the well-posedness and the stability of linear systems.

Lemma 3.2. Let 0 ă T ă T0 and λ P R. Let Φ0 P H and f P L1pp0, T q;DpA˚q1q. There exists a
unique weak solution Φ P Cpr0, T s;DpA˚qq to the system

(3.3)

$

’

’

&

’

’

%

iΦt “ ´∆Φ´ λΦ` f in p0, T q ˆ I,

Φpt, 0q “ Φpt, 1q “ 0 in p0, T q,

Φp0, ¨q “ Φ0 in I,

i.e.

(3.4) i
d

dt
xΦ,ΨyH “ ´xΦ,∆ΨyH ´ λxΦ,ΨyH ` xf ,ΨyDpA˚q1,DpA˚q in p0, T q

in the distributional sense for all Ψ P DpA˚q. Let f P L2pp0, T q;H3pIq X H1
0 pIqq. Define f “

Tpfq P L1pp0, T q;DpA˚q1q. Then the weak solution Ψ of (3.3) satisfies Ψ P Cpr0, T s; Hq and

(3.5) }Φpt, ¨q}H3pIq ď C
´

}Φ0}H3pIq ` }f}L2pp0,tq;H3pIqq

¯

in r0, T s,

for some positive constant C depending only on T0.
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Proof of Lemma 3.2. The existence and uniqueness of solutions in Cpr0, T s;DpA˚q1q follows from
Proposition A.1 in the appendix. It then suffices to show the existence of a solution Ψ P Cpr0, T s; Hq
satisfying (3.5).

We first deal with the system

(3.6)

$

’

’

&

’

’

%

iΦt “ ´∆Φ` f in p0, T q ˆ I,

Φpt, 0q “ Φpt, 1q “ 0 in p0, T q,

Φp0, ¨q “ Φ0 in I

instead of (3.3), i.e., we consider (3.3) with λ “ 0. We search Φ P Cpr0, T s; Hq under the form

Φpt, xq “
ÿ

kě1

akptqϕkpxq in p0, T q ˆ I.

Using (3.16) with λ “ 0 and ϕ “ ϕk, we obtain

(3.7) ip1` λk ` λ
2
k ` λ

3
kqa

1
k “ λkp1` λk ` λ

2
k ` λ

3
kqak ` ck in p0, T q,

where

(3.8) ckptq “ xfpt, ¨q, ϕkyH3pIq ´ fxxpt, 1qϕk,xxxp1q ` fxxpt, 0qϕk,xxxp0q in p0, T q.

We derive from (3.7) that

a1k “ ´iλkak ´ ibk in p0, T q where bk “
ck

1` λk ` λ
2
k ` λ

3
k

.

We then get

(3.9) akptq “ e´iλktakp0q ´ i

ż t

0
e´iλkpt´sqbkpsq in p0, T q.

Combining (3.8) and (3.9) yields

(3.10)
ÿ

kě1

k6|akptq|
2 ď C}Φ0}

2
H3pIq ` C

ÿ

kě1

1

λ3
k

ż t

0
|xf, ϕkyH3pIq|

2 dt

` C
ÿ

kě1

ˇ

ˇ

ˇ

ż t

0
eiλksfxxps, 1q ds

ˇ

ˇ

ˇ

2
` C

ÿ

kě1

ˇ

ˇ

ˇ

ż t

0
eiλksfxxps, 0q ds

ˇ

ˇ

ˇ

2
.

Here and in what follows in this proof, C denotes a positive constant depending only on T0. We
have

(3.11)
ÿ

kě1

1

λ3
k

ż t

0
|xf, ϕkyH3pIq|

2 dt ď C

ż t

0
}fps, ¨q}2L2pp0,T q;H3pIqq ds.

Applying Ingham’s inequality (see, e.g., [29, Theorem 4.3 on page 59]) and using the properties of
Riesz basis, see, e.g., [58, Theorem 9 on page 32], we obtain

(3.12)
ÿ

kě1

ˇ

ˇ

ˇ

ż t

0
eiλksfxxps, 1q ds

ˇ

ˇ

ˇ

2
ď C

ż t

0
|fxxps, 1q|

2 ds

and

(3.13)
ÿ

kě1

ˇ

ˇ

ˇ

ż t

0
eiλksfxxps, 0q ds

ˇ

ˇ

ˇ

2
ď C

ż t

0
|fxxps, 0q|

2 ds.
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Combining (3.10), (3.11), (3.12), and (3.13) yields

}Φptq}2H3pIq ď C

ˆ

}Φ0}
2
H3pIq `

ż t

0
}fps, ¨q}2H3pIq ds

˙

in r0, T s.

One can also check that Φ P Cpr0, T s; Hq is also a weak solution of (3.3). The conclusion in the
case λ “ 0 follows.

To obtain the conclusion for (3.3) for a general λ, one first notes that if Φ is a solution of
(3.6) then Φpt, xqe´iλt is a solution of (3.3) with the same initial condition and with the source
e´iλtfpt, xq and then apply the result in the case λ “ 0 to reach the conclusion.

The proof is complete. �

The following simple result is useful to compare with previous results and motivates the definition
of the operator T in (3.2).

Lemma 3.3. Let 0 ă T ă T0 and λ P R. Let Φ0 P H and let f P L2pp0, T q;H3pIq X H1
0 pIqq.

Define f “ Tpfq P L1pp0, T q;DpA˚q1q. Then Φ P Cpr0, T s; Hq is a unique weak solution to the
system

(3.14)

$

’

’

&

’

’

%

iΦt “ ´∆Φ´ λΦ` f in p0, T q ˆ I,

Φpt, 0q “ Φpt, 1q “ 0 in p0, T q,

Φp0, ¨q “ Φ0 in I,

if and only if Φ P Cpr0, T s; Hq is a (weak) solution of the system

(3.15)

$

’

’

&

’

’

%

iΦt “ ´∆Φ´ λΦ` f in p0, T q ˆ I,

Φpt, 0q “ Φpt, 1q “ 0 in p0, T q,

Φp0, ¨q “ Φ0 in I,

in the sense that

(3.16) i
d

dt
xΦ, ϕkyL2pIq “ ´x∆Φ, ϕkyL2pIq ´ λxΦ, ϕkyL2pIq ` xf, ϕkyL2pIq in p0, T q

in the distributional sense for all k ě 1.

Proof. Let ϕ P H3pI;Cq XH1
0 pI;Cq. We have

p1` λk ` λ
2
k ` λ

3
kqxϕ,ϕkyL2pIq “ xϕ,ϕkyH3pIq ´ ϕxxp1qϕk,xxxp1q ` ϕxxp0qϕxxxp0q.

One can thus rewrite (3.9) under the form

(3.17) i
d

dt
xΦ, ϕkyL2pIq “ ´xΦ,∆ϕkyL2pIq ` xf, ϕkyL2pIq in p0, T q.

The conclusion follows in the case λ “ 0. The general case follows similarly. �

We next make a connection with the definition of weak solutions used in [6]. Let ei∆t :
L2pI;Cq Ñ L2pI;Cq be defined by, for ϕ P L2pI;Cq,

(3.18) eit∆ϕ “
8
ÿ

k“1

xϕ,ϕkyL2pIqe
´iλktϕk,

and, for γ P R, let eip∆`γqt : L2pI;Cq Ñ L2pI;Cq be defined by, for ϕ P L2pI;Cq,

(3.19) eitp∆`γqϕ “
8
ÿ

k“1

xϕ,ϕkyL2pIqe
ip´λk`γqtϕk.

We have
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Lemma 3.4. Let 0 ă T ă T0 and λ P R. Let Φ0 P H and let f P L2pp0, T q;H3pI;Cq XH1
0 pI;Cqq.

Define f “ Tpfq P L1pp0, T q;DpA˚q1q. Then Φ P Cpr0, T s; Hq is a weak solution of (3.3) if and
only if either

(3.20) Φpt, ¨q “ eitp∆`γqΦ0 ´ i

ż t

0
eipt´sqp∆`γq

`

fps, ¨q ` pγ ´ λqΦps, ¨q
˘

ds for t P r0, T s.

Proof. Assume that (3.20) holds for Φ P Cpr0, T s; Hq. By taking the scalar product in L2pIq of
the corresponding identity with ϕk, one derives that Φ is a weak solution of (3.3) by Lemma 3.3.

We next assume that Φ P Cpr0, T s; Hq is a weak solution of (3.3). We will prove (3.20). Since
Φ P Cpr0, T s; Hq is a weak solution of (3.3), we deduce from Lemma 3.3 that

(3.21) xΦpt, ¨q, ϕkyL2pIq “ xe
itp∆`γqΦ0, ϕkyL2pIq

´ xi

ż t

0
eipt´sqp∆`λq

`

fps, ¨q ` pγ ´ λqΦps, ¨q
˘

ds, ϕkyL2pIq for t P r0, T s.

Set

Ψpt, ¨q “

ż t

0
eipt´sqp∆`λq

`

fps, ¨q ` pγ ´ λqΦps, ¨q
˘

ds.

Since the space spanned by set of pϕkqkě1 is dense in L2pIq and Ψ P Cpr0, T s; Hq, we obtain
(3.20). �

Remark 3.1. In [6, Proposition 2], the definition of the weak solutions in the sense of (3.20) is
considered with γ “ 0.

We next establish the well-posedness and stability of linear feedback systems.

Lemma 3.5. Let 0 ă T ď T0 and Ψ P Cpr0, T s;H3pI;Cq X H1
0 pI;Cqq, and let L P LpH;Cq.

Let Φ0 P H and f P L2pp0, T q;H3pI;Cq X H1
0 pI;Cqq. There exists a unique weak solution Φ P

Cpr0, T s; Hq to the system 3

(3.22)

$

’

’

&

’

’

%

iΦt “ ´∆Φ´ λ1Φ` g in p0, T q ˆ I,

Φpt, 0q “ Φpt, 1q “ 0 in p0, T q,

Φp0, ¨q “ Φ0 in I,

where g P L1pp0, T q;DpA˚q1q is defined by g “ Tpgq with

gpt, ¨q “ LpΦpt, ¨qqΨpt, ¨q ` fpt, ¨q.

Moreover, there exist a positive constant C depending only on T0 such that

(3.23) }Φpt, ¨q}H3pIq ď e
Cp}L}2LpH;Cq}Ψ}

2
L2pp0,T q;H3pIqq

`1q
´

}Φ0}H3pIq ` }f}L2pp0,tq;H3pIq

¯

in r0, T s.

It is convenient to denote

(3.24) X :“ Cpr0, T s; Hq

and to equip this space with the following standard norm

(3.25) }Φ}X :“ sup
r0,T s

}Φpt, ¨q}H.

Then X is a Banach space.

3The weak solution is understood in the sense given in Lemma 3.2.
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Proof. Define F : X Ñ X by FprΦq “ Φ, where Φ is the unique weak solution of the system

(3.26)

$

’

’

&

’

’

%

iΦt “ ´∆Φ´ λ1Φ`TpLprΦpt, ¨qΨ` fpt, ¨qqq in p0, T q ˆ I,

Φpt, 0q “ Φpt, 1q “ 0 in p0, T q,

Φp0, ¨q “ Φ0 in I.

Let rΦ1, rΦ2 P X and denote Φ1 “ FprΦ1q and Φ2 “ FprΦ2q. Set, in r0, T s ˆ I,

δrΦ “ rΦ2 ´ rΦ1 and δΦ “ Φ2 ´ Φ1.

Define h P L1pp0, T q;DpA˚q1q by h “ Tphq where

hpt, ¨q “ LpδrΦpt, ¨qqΨpt, ¨q.
Then δΦ P Cpr0, T s; Hq is the unique weak solution of the system

(3.27)

$

’

’

&

’

’

%

iδΦt “ ´∆δΦ´ λ1δΦ` h in p0, T q ˆ I,

Φpt, 0q “ Φpt, 1q “ 0 in p0, T q,

δΦp0q “ 0 in I.

Applying Lemma 3.2 with f “ h, we obtain

}δΦ}X ď C}L}LpH,Cq}Ψ}L2pp0,T q;H3pIqq}δrΦ}X .

Here and in what follows in this proof, C denotes a positive constant depending only on T0.
Thus if C}L}LpH,Cq}Ψ}Cpr0,T s;H3pIqq ď 1{2, then F is a contracting map from X into itself.

Therefore, there exists a unique weak solution Φ P Cpr0, T s; Hq of the equation

FpΦq “ Φ,

which is also a unique weak solution of (3.22). Moreover, we have, by Lemma 3.2,

}Φ}X ď C}Φ0}H ` C}f}L2pp0,T q;H3pIqq `
1

2
}Φ}X ,

which yields

}Φ}X ď C
´

}Φ0}H ` }f}L2pp0,T q;H3pIqq

¯

.

The general case can be then proved as follows. Devide the interval r0, T s into subintervals
rT0, T1s, rT1, T2s, . . . , rTn´1, Tns (with T0 “ 0 and Tn “ T ) such that C}L}LpH,Cq}Ψ}L2ppTi´1,Tiq;H3pIqq ď

1{2 and note that n can be bounded above by Cp}L}2LpH,Cq}Ψ}
2
L2pp0,T q;H3pIqq ` 1q. We then have

(3.28) }Φ}X ď Cn
´

}Φ0}H ` }f}L2pp0,T q;H3pIqq

¯

ď e
Cp}L}2LpH,Cq}Ψ}

2
L2pp0,T q;H3pIqq

`1q
´

}Φ0}H ` }f}L2pp0,T q;H3pIqq

¯

,

which is the conclusion. �

Remark 3.2. Let u P L2pp0, T q;Rq. A related result corresponding to the case LpΦq “ Φ and
Ψpt, xq “ uptqµpxq is considered in [6, Proposition 2].

We next study the local well-posedness and the stability of nonlinear feedback systems.

Lemma 3.6. Let 0 ă T ă T0, Ψ P Cpr0, T s;H3pI;Cq X H1
0 pI;Cqq, and let L P LpH;Cq.

There exists a positive constant C depending only on T0 such that for Φ0 P H and for f P

L2pp0, T q;H3pI;Cq XH1
0 pI;Cqq satisfying

(3.29) }Φ0}H3pIq ď ε, }f}L2pp0,T q;H3pIqq ď ε,
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and

(3.30) }L}LpH;Cqe
Cp}L}2LpH;Cq}Ψ}

2
L2pp0,T q;H3pIqq

`1q
ε ď 1{2,

there exists a unique weak solution to the system

(3.31)

$

’

’

&

’

’

%

iΦt “ ´∆Φ´ λ1Φ` g in p0, T q ˆ I,

Φpt, 0q “ Φpt, 1q “ 0 in p0, T q,

Φp0, ¨q “ Φ0 in I,

where g P L1pp0, T q;DpA˚q1q is defined by g “ Tpgq with

g “ LpΦpt, ¨qqΨ` LpΦpt, ¨qqΦ` f.
Moreover,

(3.32) }Φpt, ¨q}H ď C
´

}Φ0}H ` }f}L2pp0,T q;H3pIqq

¯

in r0, T s.

Proof. Let X be defined in (3.24) with the norm given in (3.25). Let Φ̂ P Cpr0, T s; Hq be the
unique weak solution of the linear system

(3.33)

$

’

’

&

’

’

%

iΦ̂t “ ´∆Φ̂´ λ1Φ̂`T
`

LpΦ̂pt, ¨qqΨ` f
˘

in p0, T q ˆ I,

Φ̂pt, 0q “ Φ̂pt, 1q “ 0 in p0, T q,

Φ̂p0, ¨q “ Φ0 in I.

For ε ą 0, let BX pΦ̂, εq denote the open ball of radius ε centered at Φ̂ in X and let BX pΦ̂, εq be
its closure in X . Assume (3.29) with ε small.

Set
α “ }L}2LpH;Cq}Ψ}

2
L2pp0,T q;H3pIqq ` 1

and
Data “ }Φ0}H ` }f}L2pp0,T q;H3pIqq.

Define

F : BX pΦ̂, εq Ñ X ,

where, for rΦ P BX pΦ̂, εq, FprΦq “ Φ P Cpr0, T s; Hq is the unique weak solution of the system

(3.34)

$

’

’

&

’

’

%

iΦt “ ´∆Φ´ λ1Φ`T
`

LpΦpt, ¨qqΨ` LpΦpt, ¨qqrΦpt, xq ` f
˘

in p0, T q ˆ I,

Φpt, 0q “ Φpt, 1q “ 0 in p0, T q,

Φp0, ¨q “ Φ0 in I.

Applying Lemma 3.5 to Φ̂ and Φ, we have

(3.35) }Φ̂}X ď eCαData.

and

(3.36) }Φ}X ď eCα
´

Data` }LpΦpt, ¨qqrΦpt, xq}L2pp0,T q;H3pIqq

¯

ď eCα
´

Data` }L}LpH;Cq}Φ}X }rΦ}L2pp0,T q;H3pIqq

¯

ď eCα
´

Data` }L}LpH;Cq}Φ}X e
Cαε

¯

.

Here and in what follows C denotes a positive constant depending only on T0 and can change from
one place to another.
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In what follows, we assume that

(3.37) }L}LpH;Cqe
Cαε ď 1{2.

We derive from (3.36) that

(3.38) }Φ}X ď eCαData.

Combining (3.33) and (3.34) yields

ipΦ´ Φ̂qt “ ´∆pΦ´ Φ̂q ´ λ1pΦ´ Φ̂q `T
`

LpΦpt, ¨q ´ Φ̂pt, ¨qqΨ` LpΦpt, ¨qqrΦpt, ¨q
˘

in p0, T q ˆ I,

and

(3.39)

#

pΦ´ Φ̂qpt, 0q “ pΦ´ Φ̂qpt, 1q “ 0 in p0, T q,

pΦ´ Φ̂qp0, ¨q “ 0.

Applying Lemma 3.5 to Φ´ Φ̂, we derive that

(3.40) }Φ´ Φ̂}X ď eCα}LpΦpt, ¨qqrΦpt, xq}L2pp0,T q;H3pIqq

ď eCα}L}LpH;Cq}Φ}X }rΦ}X
(3.35),(3.38)

ď eCα}L}LpH;Cqε
2.

Thus F maps BX pΨ, εq into itself provided that

eCα}L}LpH;Cqε ď 1{2.

With Φ1 “ FprΦ1q and Φ2 “ FprΦ2q, one has

(3.41) ipΦ1 ´ Φ2qt “ ´∆pΦ1 ´ Φ2q ´ λ1pΦ1 ´ Φ2q `T
`

LpΦ1pt, ¨q ´ Φ2pt, ¨qqΨ

` LpΦ1pt, ¨qqrΦ1 ´ LpΦ2pt, ¨qqrΦ2

˘

in p0, T q ˆ I.

Since

LpΦ1pt, ¨qqrΦ1 ´ LpΦ2pt, ¨qqrΦ2 “ LpΦ1pt, ¨q ´ Φ2pt, ¨qqrΦ1 ` LpΦ2pt, ¨qqprΦ1 ´ rΦ2q,

it follows from (3.35) and (3.38) that

(3.42) }LpΦ1pt, ¨qqrΦ1 ´ LpΦ2pt, ¨qqrΦ2}L2pp0,T q;H3pIqq

ď eCα}L}LpH;Cqε}Φ1 ´ Φ2}X ` e
Cα}L}LpH;Cqε}rΦ1 ´ rΦ2}X

Combining (3.41) and (3.42) and applying Lemma 3.5 to Φ1 ´ Φ2, we derive that

(3.43) }Φ1 ´ Φ2}X ď eCα
´

}L}LpH;Cqε}Φ1 ´ Φ2}X ` }L}LpH;Cqε}rΦ1 ´ rΦ2}X

¯

.

Thus F is contracting provided that

}L}LpH;Cqe
Cαε ď 1{2.

The conclusion follows from a standard fixed point theorem and (3.36). �

We next translate the previous well-posedness result to the semi-group related to A defined in
(1.22), which involves the definition of Q and the feedback. We only do it for Lemma 3.2. The
statement and the proof of the corresponding variants of Lemma 3.5 and Lemma 3.6 are omitted
to avoid repetition. Concerning Lemma 3.2, we have
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Lemma 3.7. Let T ą 0, λ P R, and let A : DpAq Ă HÑ H be defined by

(3.44) Ay “

˜

´∆y2 ´ λy2

∆y1 ` λy1

¸

and DpAq “
!

y P H;Ay P H
)

.

Let y0 P H and g P L1pp0, T q;DpA˚q1q. There exists a unique weak solution y P Cpr0, T s;DpA˚q1q
to the system

(3.45)

#

yt “ Ay ` g in p0, T q ˆ I,

yp0, ¨q “ y0 in I.

Let g P L2pp0, T q;H3pIq X H1
0 pIqq. Define g “ T pgq P L1pp0, T q;DpA˚q1q (see Definition 3.2

below). Then y P Cpr0, T s;Hq. Moreover, y “ py1, y2q
T is a weak solution of (3.3) if and only if

Φ :“ y1 ` iy2 is a weak solution of (3.2) with

Φ0 “ y1p0, ¨q ` iy2p0, ¨q and f “ ´g2 ` ig1 where g “ pg1, g2q,

and f “ Tpfq. We also have

}yptq}H ď C
´

}y0}H ` }g}L2pp0,T q;H3pIqq

¯

in r0, T s,

where C is a positive constant depending only on T0.

In Lemma 3.7, we used the following definition.

Definition 3.2. Let T ą 0 and λ P R, and let pA,DpAqq be defined by (3.44). Define

T : L2pp0, T q;H3pI;R2q XH1
0 pI;R2qq Ñ L1pp0, T q;DpA˚q1q

by

(3.46) xT pgqpt, ¨q, ϕyDpA˚q1,DpA˚q “ xgpt, ¨q, ϕyH3pIq ´ xgpt, 1q, ϕxxxp1qyR2 ` xgpt, 0q, ϕxxxp0qyR2 .

Proof of Lemma 3.7. By Proposition A.1 in the appendix, there exists a unique weak solution
y P Cpr0, T s;DpA˚q1q. Let Φ P Cpr0, T s; Hq be the unique weak solution of (3.3) with

Φ0 “ y1p0, ¨q ` iy2p0, ¨q and f “ ´g2 ` ig1.

Let y1 and y2 be the real part and the imaginary part of Φ, respectively, and denote y “ py1, y2q
T.

Then

y P Cpr0, T s;Hq.

By Lemma 3.2, it suffices to prove that y is a weak solution of (3.45). This follows from the
definition of weak solutions associated with A. �

4. Rapid stabilization - Proof of Theorem 1.1 and Theorem 1.2

This section containing two subsections is devoted to the proof of Theorem 1.1 and Theorem 1.2.
The proof of Theorem 1.1 is given in the first subsection and the proof of Theorem 1.2 is given in
the second one.
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4.1. Proof of Theorem 1.1. Denote

Aλ “ A` λI.

Let pyλ, ryλq
T P Cpr0,`8q;Hq be the unique weak solution of the system

(4.1)

$

’

’

&

’

’

%

y1λ “ Aλyλ ´BB
˚
ryλ in p0, T q,

ry1λ “ ´A
˚
λryλ in p0, T q,

ŷλp0q “ y0, ryλp0q “ Q´1y0.

Let τ P p0, T s and ϕτ P H, and let ϕ P Cpr0, τ s;Hq be the unique weak solution of

(4.2)

#

ϕ1 “ ´A˚λϕ in p0, τq,

ϕpτq “ ϕτ .

Applying [48, Lemma 2.1] for Aλ with t “ τ , we derive from (4.1) and (4.2) that

(4.3) xyλpτq, ϕpτqyH ´ xyλp0q, ϕp0qyH “ ´

ż τ

0
xB˚ryλpsq, B

˚ϕpsqyR ds.

Applying [48, Lemma 3.1] to ryλpτ ´ ¨q and ϕpτ ´ ¨q, we obtain

(4.4) xQryλp0q, ϕp0qyH ´ xQryλpτq, ϕpτqyH “

ż τ

0
xB˚ryλpsq, B

˚ϕpsqyR ds.

Summing (4.3) and (4.4), after using the fact that Qryλp0q “ yλp0q, we deduce that

xyλpτq ´Qryλpτq, ϕpτqyH “ 0.

Since ϕpτq P H is arbitrary, we derive that

(4.5) yλpτq ´Qryλpτq “ 0.

Set

ŷptq “ e´λtyλptq, and ryptq “ e´λtryλptq.

Then, from (4.1) and (4.5), we have

(4.6)

$

’

’

&

’

’

%

ŷ1 “ Aŷ ´BB˚ry in p0, T q,

ry1 “ ´A˚ry ´ 2λry in p0, T q,

ŷp0q “ y0, ryp0q “ Q´1y0,

and

(4.7) ŷ ´Qry “ 0 in r0, T s.

Since ŷptq P H1,7 in r0, T s, it follows that

y “ ŷ in r0, T s.

Since

ry1 “ Ary ´ 2λry,

and A is skew-adjoint by Lemma 2.2, it follows that

(4.8) }ryptq}H “ e´2λt}ry0}H.

The conclusion now follows from (4.8) and the fact that yptq “ Qryptq for t ě 0. �
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4.2. Proof of Theorem 1.2. Let yP ptq be the projection of yptq into H1,7 using the H-scalar
product and set zptq “ yptq ´ yP ptq. Let b : r0,`8q Ñ R be the real function such that

(4.9) z “ bΦ1

(recall that Φ1 “ pϕ1, 0q
T). Note that

(4.10) uptq “ ´B˚Q´1yP ptq.

Since Az “ 0, we derive from (1.42) that

(4.11) y1 “ y1P ` z
1 “ AyP `Bu` uF py ´ Φ1q for t ą 0.

Taking the scalar product in rL2pIqs2 of this equation with Φ1 and integrating by parts, we obtain,
by Lemma 3.3,

(4.12) b1 “ uxF py ´ Φ1q,Φ1yL2pIq.

We derive from (4.11) and (4.12) that

(4.13) y1P “ AyP `Bu` uF py ´ Φ1q ´ z
1 “ AyP `Bu` uF py ´ Φ1q ´ b

1Φ1.

Fix T0 ą 0 and let 0 ă T ă T0. Applying Lemma 3.5 and Theorem 1.1, we have

(4.14) }yP ptq}H ď }Q´1}LpH1,7q
e´2λt}yP p0q}H ` Cλ,T0}uF py ´ Φ1q ´ b

1Φ1}L2pp0,T q;H3pIqq in r0, T s.

Since, for t P r0, T s,

}u}L2pIq

(1.31)
ď CT0}yP }L2pp0,T q;Hq,

}F py ´ Φ1q}L8pp0,T q;H3pIqq

(1.26)
ď CT0}y ´ Φ1}L8pp0,T q;Hq,

and

}b1}L2p0,T q

(4.12)
ď CT0}u}L2p0,T q}y ´ Φ1}L8p0,T q ď CT0}yP }L2pp0,T q;Hq}y ´ Φ1}L8pp0,T q;Hq,

it follows from (4.14) that

(4.15) }yP ptq}H ď }Q´1}LpH1,7q
e´2λt}yP p0q}H

` Cλ,T0}yP }L2pp0,T q;Hq}y ´ Φ1}L8pp0,T q;Hq in r0, T s.

By the conservation of L2-norm of y, we derive from the fact that z and yP are orthogonal in
L2pI;R2q,

bptq2 ` }yP ptq}
2
L2pIq “ 1.

It follows that if }yptq ´ Φ1}L2pIq ď 1{4 in r0, T s, then

(4.16) }bptq ´ 1}L2pIq ď C}yP ptq}
2
L2pIq.

By taking ε0 sufficiently small and }y0}H ď ε0, we derive from (4.15), and (4.16) that

(4.17) }yptq ´ Φ1}H ď 2}Q´1}LpH1,7q
e´2λt}yP p0q}H in r0, T0s.

Taking T0 large enough such that 2}Q´1}LpH1,7q
e´2λT0 ď e´2λ̂T0 , we then can repeat the argument

for the interval rT0, 2T0s, . . . , and obtain the conclusion.

5. Finite time stabilization - Proof of Theorem 1.3

This section containing two subsections is devoted to the proof of Theorem 1.3. In the first
subsection, we establish the cost of controls for the linearized system in small time. The proof of
Theorem 1.3 using the results in the first section is given in the second one.
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5.1. Cost of control of the linearized system for small time. We begin this section by
establishing an upper bound of the cost of control of the linearized system for small time.

Proposition 5.1. Let µ P H3pI,Rq be such that (1.8) holds. For all Ψ0 P H1,7, there exists
u P L2p0, T q;Rq such that

ΨpT, ¨q “ Ψ0

and

}u}L2p0,T q ď e
C
T }Ψ0}H,

where Ψ P Cpr0, T s; Hq is the unique weak solution of the system

(5.1)

$

’

’

&

’

’

%

iΨt “ ´∆Ψ´ λ1Ψ´Tpuptqµϕ1q in p0, T q ˆ I,

Ψpt, 0q “ Ψpt, 1q “ 0 in p0, T q,

Ψp0, ¨q “ 0 in I.

Recall that T is defined in Definition 3.1.

Proof. By a translation of time, it suffices to prove the following result. For all Ψ0 P H1,7, there
exists u P L2pp´T {2, T {2q;Rq such that

ΨpT {2, ¨q “ Ψ0

and

}u}L2p´T {2,T {2q ď e
C
T }Ψ0}H,

where Ψ P Cpr´T {2, T {2s; Hq is the unique weak solution of the system

(5.2)

$

’

’

&

’

’

%

iΨt “ ´∆Ψ´ λ1Ψ´Tpuptqµϕ1q in p´T {2, T {2q ˆ I,

Ψpt, 0q “ Ψpt, 1q “ 0 in p´T {2, T {2q,

Ψp´T {2, ¨q “ 0 in I.

The proof of this fact is based on the moment method, see, e.g., [52]. We represent Ψ under the
form

Ψpt, xq “
ÿ

kě1

akptqϕkpxq in p´T {2, T {2q ˆ I.

We then have, see the proof of Lemma 3.3,

ia1k “ pλk ´ λ1qak ´ ckuptq in p´T {2, T {2q,

where

(5.3) ck “ xµϕ1, ϕkyL2pIq in p´T {2, T {2q.

Thus

a1k “ ´ipλk ´ λ1qak ` ickuptq in p´T {2, T {2q.

Since akp´T {2q “ 0 for k ě 1, we then have

akpT {2q “ ick

ż T {2

´T {2
e´ipλk´λ1qpT {2´squpsq ds.

Set

(5.4) vptq “ upT {2´ tq, ωk “ λk ´ λ1 for k ě 1,

and

(5.5) dk “ akpT {2q{pickq for k ě 1.
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Since a1pT {2q “ =a1pT {2q for Φ0 P H1,7, it follows from (5.3) that

d1 P R.

We then have
ż T {2

´T {2
e´iωksvpsq ds “ dk in p´T {2, T {2q for k ě 1,

By (1.8) and (5.5), we have

(5.6)
ÿ

kě1

|dk|
2 ď C}Ψ0}

2
H.

By [52, Lemma 4.1] there exists β ą 0 such that, for all k ě 1, 4

(5.7)
ź

ně1,n‰k

ˇ

ˇ

ˇ

ˇ

1´
z

ωn ´ ωk

ˇ

ˇ

ˇ

ˇ

`
ź

ně1,n‰k

ˇ

ˇ

ˇ

ˇ

1`
z

ωn ` ωk

ˇ

ˇ

ˇ

ˇ

ď βeβ|z|
1{2

for z P C.

By [52, Lemma 4.2], for all γ ą 1, there exist C “ Cpγq (independent of T P p0, T0q) and an
analytic function H such that

(5.8) Hp0q “ 1 and |Hpzq| ď e
C
T e´γ|z|

1{2
for z P R, |Hpzq| ď CT e

T |=z|{4.

Fix γ ą 2β and a corresponding analytic function H. For N ě 2, we define the function
ξN : CÑ C as follows, for z P C,

(5.9) ξN pzq “
N
ÿ

k“2

dkHpz ´ ωkq
ź

ně1,n‰k

´

1´
z ´ ωk
ωn ´ ωk

¯

ź

lě1

´

1´
z ´ ωk
´ωl ´ ωk

¯

`

N
ÿ

k“2

d̄kHp´z ´ ωkq
ź

ně1,n‰k

´

1´
z ` ωk
´ωn ` ωk

¯

ź

lě1

´

1´
z ` ωk
ωl ` ωk

¯

` d1Hpzq
ź

ně2

´

1´
z

ωn

¯

ź

lě2

´

1´
z

´ωl

¯

.

It follows from (5.6), (5.7), and (5.8) that the function ξN is well-defined and is analytic on C.
From the definition of ξ, we have

(5.10) ξN pωkq “ dk, ξN p´ωkq “ d̄k for 2 ď k ď N,

and

(5.11) ξN p0q “ ξN pω1q “ d1.

For all c ą 0, there exists c1 ą 0 such that it holds
ż

R
e´c|z´ωm|

1{2
e´c|z´ωn|

1{2
dz `

ż

R
e´c|z`ωm|

1{2
e´c|z`ωn|

1{2
dz

`

ż

R
e´c|z´ωm|

1{2
e´c|z`ωn|

1{2
dz ď c1e

´ c
2
|ωn´ωn|1{2 .

We derive from (5.6), (5.7), and (5.8) that

(5.12) }ξN}L2pRq ď e
C
T }Ψ0}H.

4[52, Lemma 4.1] only gives the estimate for the first term; nevertheless, the estimate for the second term can be
done in the same manner.



24 H.-M. NGUYEN

and

the restriction of ξN on R is a Cauchy sequence in L2pRq.
By Paley-Wiener’s theorem, see, e.g., [50, Theorem 19.3], there thus exists vN P L

2p´T {2, T {2;Cq
such that v̂N “ ξN and ξN is a Cauchy sequence in L2p´T {2, T {2q. Let v be the limit of the
sequence pvN q in L2p´T {2, T {2q. Set

u “
1

2

´

v ` v
¯

.

Then, for k ě 1,

ûpωkq “
1

2
lim

NÑ`8

´

ξN pωkq ` ξN p´ωkq
¯

(5.10),(5.11)
“ dk.

Here we used the fact that d1 is real. The conclusion follows since

}u}L2pRq ď C}v}L2pRq ď C lim sup
NÑ`8

}ξN}L2pRq
(5.12)
ď e

C
T }Ψ0}H

The proof is complete. �

For the completeness, we next establish a lower bound of the cost of control of the linearized
system for small time. To this end, we first prove the following result.

Proposition 5.2. Let 0 ă ε ă 1{2, ε3 ă T ă 3{2. Let µ P L1pp0, T q;Rq be such that
ş

I µϕ
2
1 dx ‰ 0.

If u P L1pp0, T q;Cq is a control which steers the control system

(5.13)

#

ivt “ ´εvxx ´ ελ1v `
i

4εv ´ εuptqµpxqϕ1 in p0, T q ˆ p0, 1q,

vpt, 0q “ vpt, 1q in p0, T q

from ϕ1 at time 0 to 0 at the time T in the sense that there exists v P L2pp0, T q;H1
0 pIqq X

Cpr0, T s;L2pIqq such that

(5.14) i
d

dt
xv, ϕkyL2pIq “ ´εxv,∆ϕkyL2pIq ´ ελ1xv, ϕkyL2pIq

`
i

4ε
xv, ϕkyL2pIq ´ εuptqxµϕ1, ϕkyL2pIq in p0, T q

in the distributional sense for all k ě 1, and vp0, ¨q “ ϕ1 in I and vpT, ¨q “ 0 in I, then

ln }u}L1p0,T q ě
1

ε

´1

2
´
T

4

¯

´ C ln ε´1,

for some positive constant C independent of ε and T .

Proof. The proof uses tools from complex analysis, see, e.g., [30]. Define

Λk :“ ελk ´ ελ1 `
i

4ε
and Φkpt, xq “ ϕkpxqe

´iΛkt in R` ˆ p0, 1q.

One can check that

(5.15)

$

&

%

iΦk,t “ ´εΦk,xx ´ ελ1Φk `
i

4ε
Φk “ 0 in R` ˆ r0, 1s,

Φkpt, 0q “ Φkpt, 1q “ 0 for t P R`.

Multiplying the equation of v by Φk, integrating by parts, and using the fact vpT, ¨q “ 0, we have

(5.16) i

ż 1

0
vp0, xqΦkp0, xq dx “ ε

ż T

0
uptqe´iΛkt dt

ż

I
µϕ1ϕk dx.
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Define, for z P C,

(5.17) Fpzq :“

ż T {2

´T {2
upt` T {2qe´izt dt “ eiT z{2

ż T

0
uptqe´izt dt.

It follows from (5.16) that, with c1 “
ş

I µϕ
2
1 dx,

(5.18) FpΛ1q “
i

c1ε
eiΛ1T {2 and FpΛkq “ 0 for k ě 2.

Applying the representation of entire functions of exponential type for F , see e.g., [30, page 56],
we derive from (5.18) that, for z P C with =z ą 0,

(5.19) ln |Fpzq| ď I0pzq ` I1pzq ` σ=pzq,

where

(5.20) I0pzq “
ÿ

kě2

ln

ˇ

ˇΛk ´ z
ˇ

ˇ

ˇ

ˇΛ̄k ´ z
ˇ

ˇ

, I1pzq “
=pzq
π

ż 8

´8

ln |Fpτq|
|τ ´ z|2

dτ,

and

(5.21) σ “ lim sup
yÑ`8

ln |Fpiyq|
y

.

From the definition of F in (5.17), we have, for y P R`,

|Fpiyq| ď }u}L1p0,T qe
Ty{2.

This implies

(5.22) σ “ lim sup
yÑ`8

ln |Fpiyq|
y

ď T {2.

From (5.18), we derive that

(5.23) ln |F pΛ1q| ě ´
T

8ε
` C ln ε´1.

Here and in what follows in this proof, C denotes a positive constant independent of k and it can
change from one place to another. Similar to [17, (2.597)] (see also [19]), we obtain

(5.24) I0pΛ1q “
ÿ

kě2

ln
εpk2 ´ 1qπ2

`

rεpk2 ´ 1qπ2s2 ` r1{p2εqs2
˘1{2

ď
ÿ

kě2

ln
ε2k2π2

`

rε2k2π2s2 ` r1{2s2
˘1{2

ď

ż 8

1
ln

˜

ε2π2x2

pε4π4x4 ` 1{4
˘1{2

¸

dx “
1

επ
?

2

ż 8

επ
?

2
ln
´ x2

?
x4 ` 1

¯

dx.

Since
ż 8

0
ln
´ x2

?
x4 ` 1

¯

dx “ ´
π
?

2
,

it follows from (5.24) that

(5.25) I0pΛ1q ď ´
1

2ε
` C ln ε´1.

We next estimate I1pΛ1q. From (5.17), we have, for s P R,

ln |Fpsq| ď }u}L1p0,T q,
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which yields

(5.26) I1pΛ1q ď
1

4επ

ż 8

´8

ln }u}L1p0,T q

s2 ` p1{4εq2
ds.

Since, for a ą 0,
a

π

ż 8

´8

1

s2 ` a2
ds “ 1,

it follows from (5.26) that

(5.27) I1

`

Λ1

˘

ď ln }u}L1p0,T q.

Combining (5.19), (5.23), (5.25), and (5.27) yields

´
T

8ε
ď ´

1

2ε
` ln }u}L1p0,T q `

T

8ε
` C ln ε´1.

This implies

ln }u}L1p0,T q ě
1

ε

´1

2
´
T

4

¯

´ C ln ε´1.

The proof is complete. �

We are ready to obtain a lower bound for the cost of control viewing Lemma 3.3.

Proposition 5.3. Let µ P L1pp0, T q;Cq be such that
ş

I µϕ
2
1 dx ‰ 0, and let 0 ă T ă 1. Then if

u P L1pp0, T q;Cq is a control which steers the control system

(5.28)

#

ivt “ ´vxx ´ λ1v ´ uptqµpxqϕ1 in p0, T q ˆ p0, 1q,

vpt, 0q “ vpt, 1q in p0, T q

from ϕ1 at time 0 to 0 at the time T in the sense that there exists v P L2pp0, T q;H1
0 pIqq X

Cpr0, T s;L2pIqq such that

(5.29) i
d

dt
xv, ϕkyL2pIq “ ´xv,∆ϕkyL2pIq ´ λ1xv, ϕkyL2pIq ´ uptqxµϕ1, ϕkyL2pIq in p0, T q

in the distributional sense for all k ě 1, and vp0, ¨q “ ϕ1 in I and vpT, ¨q “ 0 in I, then

ln }u}L1p0,T q ě
1

4T
´ C lnT´1,

for some positive constant C independent of T .

Proof. Define

rvpt, xq :“ vpεt, xqe´
t
4ε for pt, xq P p0, T {εq ˆ p0, 1q

and set ruptq “ upεtqe´
t
4ε for t P p0, T {εq. Then

irvt “ ´εrvxx ´ ελ1rv `
i

4ε
rv ´ εruptqµpxqϕ1 in p0, T {εq ˆ p0, 1q.

Applying Proposition 5.2 to rv with pε, T q “ pT, T q, we have

ln }u}L1p0,T q ě ln }ru}L1p0,1q ě
1

T

´1

2
´

1

4

¯

´ C lnT´1 ě
1

4T
´ C lnT´1,

which is the conclusion. �

Remark 5.1. Similar arguments as in the proof of Proposition 5.3 can be found in [37]. For the

boundary controls, the cost of controls for small time is also of the order eC{T , see, e.g., [52].
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Remark 5.2. It is shown in [47] that the cost of controls of the heat equation depends on the
support of the data and the controlled region. This is based on the strategy of Lebeau and
Robbiano [36] and the three-sphere inequalities with partial data established by Nguyen [46]. It
would be interesting to study whether or not the cost of controls depends on the support of the
initial data for the KdV system.

5.2. Proof of Theorem 1.3. We first give an estimate for Q “ Qpλq. The following result is a
direct consequence of Proposition 5.1 and Hilbert uniqueness method.

Proposition 5.4. Let µ P H3pI;Rq be such that (1.8) holds and let 0 ă T ă T0. We have, for
some positive constant C independent of T ,

ż T

0
|B˚e´sA

˚

z|2 ě e´
C
T }z}2H for all z P H1,7.

Using Proposition 5.4, we can prove the following result.

Lemma 5.1. Let λ ě λ0 and let Q “ Qpλq be defined by (1.34). There exists a positive constant
C independent of λ such that

(5.30) xQz, zyH ě e´C
?
λ}z}2H for all z P H1,7.

Proof. We have

(5.31) xQz, zyH “

ż 8

0
e´2λs|B˚e´sA

˚

z|2 ds ě

ż 2{
?
λ

1{
?
λ
e´2λs|B˚e´sA

˚

z|2 ds

ě
1
?
λ
e´4

?
λ

ż 2{
?
λ

1{
?
λ
|B˚e´sA

˚

z|2 ds
Proposition 5.4

ě
C1
?
λ
e´4

?
λe´C2

?
λ}e

´ 1?
λ
A˚
z}H,

which yields

(5.32) xQz, zyH ě
C1
?
λ
e´4

?
λe´C2

?
λ}z}H.

The conclusion follows. �

Theorem 1.3 is now a consequence of the following result.

Proposition 5.5. Let µ P H3pI,Rq be such that (1.8) holds and let T ą 0. Let ptnq be an
increasing sequence that converges to T with t0 “ 0 and let pλnq Ă R` be an increasing sequence.
Define, for tn ď t ă tn`1 and n ě 0,

Kpt, zq “ ´B˚Q´1
n projH1,7

z for z P H,

where Qn “ Qpλnq defined by (1.34) with λ “ λn. Set s0 “ 0 and sn “
řn´1
k“0 λkptk`1 ´ tkq for

n ě 1. Let y P Cpr0, T q;Hq of system (1.24) with

uptq “ Kpt, ypt, ¨qq for t P r0, T q.

There exists a positive constant γ such that, if for large n,

ptn`1 ´ tnqλn ě γ
a

λn,

then it holds, for tn´1 ď t ď tn and for n ě 1,

}ypt, ¨q}H ď e´sn´1`Cn}y0}H

and

|uptq| ď Ce´sn´1{4`Cn}y0}H,



28 H.-M. NGUYEN

for some positive constant C independent of n. In particular, if, in addition, we have that

lim
nÑ`8

sn

n`
a

λn`1

“ `8,

then
ypt, ¨q Ñ 0 in H as tÑ T´

and
upt, ¨q Ñ 0 as tÑ T´.

Remark 5.3. There are sequences ptnq and pλnq which satisfy the conditions given in the above
proposition, for example, tn “ T ´ T {n2 and λn “ n8 for large n.

Proof. Applying Theorem 1.1 and Lemma 5.1, we have

(5.33) }yptnq}H ď e´2λn´1ptn´tn´1q`Cp1`
?
λn´1q}yptn´1q}H for n ě 1.

It follows that

(5.34) }yptnq}H ď e´sn´1`Cn}y0}H for n ě 1.

We have, by (1.31), for tn´1 ď t ď tn and for n ě 1,

|uptq| “ |B˚Q´1
n´1ypt, ¨q| ď CeC

?
λn´1}ypt, ¨q}H.

The conclusion now follows from Theorem 1.1 and Lemma 5.1. �

Remark 5.4. We are not able to extend the finite time stabilization to the nonlinear setting. This
is due to the fact we cannot ensure that the well-posedness for the time interval rtn, tn`1q for large
n.

Appendix A. Control systems associated with operator semi-groups

In this section, we recall and establish some facts on the control systems associated with a
strongly continuous semigroup. The standard references are [59, 26, 16, 9, 54].

Let H and U be two Hilbert spaces which denote the state space and the control space, respec-
tively. The corresponding scalar products are x¨, ¨yH and x¨, ¨yU , and the corresponding norms are
} ¨ }H and } ¨ }U . Let

`

Sptq
˘

tě0
Ă LpHq be a strongly continuous semi-group on H. Let pA,DpAqq

be the infinitesimal generator of
`

Sptq
˘

tě0
and denote Sptq˚ the adjoint of Sptq for t ě 0. Then

`

Sptq˚
˘

tě0
is also a strongly continuous semigroup of continuous linear operators and its infinites-

imal generator is pA˚,DpA˚qq, which is the adjoint of pA,DpAqq. As usual, we equip the domain
DpA˚q with the scalar product

xz1, z2yDpA˚q “ xz1, z2yH ` xA˚z1,A˚z2yH for z1, z2 P DpA˚q.
Then DpA˚q is a Hilbert space. Denote DpA˚q1 the dual space of DpA˚q with respect to H. Then

DpA˚q Ă H Ă DpA˚q1.
Let

B P LpU ,DpA˚q1q.
As usual, we equip the domain DpA˚q with the scalar product

xz1, z2yDpA˚q “ xz1, z2yH ` xA˚z1,A˚z2yH for z1, z2 P DpA˚q.
Then DpA˚q is a Hilbert space. Denote DpA˚q1 the dual space of DpA˚q with respect to H. Then

DpA˚q Ă H Ă DpA˚q1.
Let

B P LpU,DpA˚q1q.
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Consider the control system

(A.1)

#

y1 “ Ay ` f ` Bu in t P p0, T q,

yp0q “ y0,

with y0 P DpA˚q1, and f P L1pp0, T q; pDpA˚qq1q and u P L1pp0, T q;Uq. We are interested in weak
solutions of (A.1).

Definition A.1. A weak solution y of (A.1) is understood as an element y P Cpr0, T s;
`

DpA˚q
˘1
q

such that

(A.2)

#

d
dtxy, ϕyH “ xAy ` f ` Bu, ϕyH in p0, T q

yp0q “ y0

for all ϕ P DpA˚8q

for which

iq the differential equation in (A.2) is understood in the distributional sense,
iiq the term xAy ` f ` Bu ` My, ϕyH is understood as xy,A˚ϕyH ` xf, ϕyDpA˚q1,DpA˚q `
xu,B˚ϕyU .

The convention in iiq will be used from later on. Recall that DpA˚8q is dense in DpA˚q, see
e.g., [26, Proposition 1.7]. The following result is on the well-posedness of weak solutions of (A.1).

Proposition A.1. Let T ą 0, y0 P DpA˚q1, u P L1pp0, T q;Uq, and f P L1pp0, T q;DpA˚q1q. Then

y P Cpr0, T s,DpA˚q1q is a weak solution of (A.1) if and only if, with rf :“ f ` Bu, it holds 5

(A.3) yptq “ Sptqy0 `

ż t

0
Spt´ sq rfpsq ds for t P r0, T s.

Proof. We first prove that y P Cpr0, T s;DpA˚q1q is a weak solution of (A.1) if and only if y P
Cpr0, T s;DpA˚q1q and (A.3) holds.

Assume first that y P Cpr0, T s;DpA˚q1q and (A.3) holds. We will prove that y is a weak solution
of (A.1). Here and in what follows, for notational ease, we denote x¨, ¨yH by x¨, ¨y. From (A.3), we
obtain, with ϕ P DpA˚8q,

xyptq, ϕy “ xSptqy0 `

ż t

0
Spt´ sq rfpsq ds´ y0, ϕy for t P r0, T s.

Set

(A.4) ψptq “ xSptqy0 `

ż t

0
Spt´ sq rfpsq ds´ y0, ϕy for t P r0, T s.

Then, for t P r0, T s,

(A.5) ψptq “ xy0, Sptq
˚ϕy `

ż t

0
x rfpsq, Spt´ sq˚ϕy ds´ xy0, ϕy.

Since ϕ P DpA˚8q, we derive from (A.5) that, for t P r0, T s,

ψ1ptq “ xy0,A˚Sptq˚ϕy `
ż t

0
x rfpsq,A˚Spt´ sq˚ϕy dsy ` x rfptq, ϕy

“ xy0, Sptq
˚A˚ϕy `

ż t

0
x rfpsq, Spt´ sq˚A˚ϕy ds` x rfptq, ϕy,

5This identity is understood in DpA˚q1, i.e., xyptq, ϕyH “ xSptqy0, ϕyH `
şt

0
xSpt ´ sq rfpsq, ϕyH ds in r0, T s for all

ϕ P DpA˚8q. The solutions defined by (A.3) are called mild solutions.
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which yields, by (A.3),

(A.6) ψ1ptq “ xy,A˚ϕy ` x rfptq, ϕy.
Integrating (A.6) and using (A.5) and (A.3), we obtain, in r0, T s,

xyptq ´ y0, ϕy “

ż t

0
xy,A˚ϕy ` x rfptq, ϕy,

which in turn implies (A.2).

We now prove that if y is a weak solution of (A.1), then y satisfies (A.3). We first assume that
f P Cpr0, T s;Hq and y0 P DpAq. For t ą 0, set, with ϕ P DpA˚8q and s P r0, ts,

χpsq “ xSpt´ sqypsq, ϕy “ xypsq, Spt´ sq˚ϕy.

Then

χ1psq “ ´xypsq, Spt´ sq˚A˚ϕy ` xAypsq ` rfpsq, Spt´ sq˚ϕy “ xSpt´ sq rfpsq, ϕy.

It follows that

χptq ´ χp0q “

ż t

0
xSpt´ sq rfpsq, ϕy ds,

which yields the identity. The proof in the general case follows by density.
The proof is complete. �

Remark A.1. The equivalence between weak solutions and mild solutions was first proved in the
case B is bounded and f P Cpr0, T s;Hq by Ball [1], see also [9, Chapter 1 of Part II] for related
results when B is bounded.
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[12] Mégane Bournissou, Quadratic behaviors of the 1D linear Schrödinger equation with bilinear control, J. Differ-
ential Equations 351 (2023), 324–360. MR 4542546

[13] Haim Brezis, Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, New
York, 2011. MR 2759829



STABILIZATION OF BILINEAR SCHRÖDINGER EQUATION 31
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Paris, France
Email address: hoai-minh.nguyen@sorbonne-universite.fr


	1. Introduction
	1.1. Statement of the main results
	1.2. Ideas of the proof
	1.3. Previous related results
	1.4. The organization of the paper

	2. Preliminaries
	3. Well-posedness and stability of Schrödinger systems
	4. Rapid stabilization - Proof of thm1-S and thm2-S
	4.1. Proof of thm1-S
	4.2. Proof of thm2-S

	5. Finite time stabilization - Proof of thm-FT-LN
	5.1. Cost of control of the linearized system for small time
	5.2. Proof of thm-FT-LN

	Appendix A. Control systems associated with operator semi-groups
	References

