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STABILIZATION OF CONTROL SYSTEMS ASSOCIATED WITH A

STRONGLY CONTINUOUS GROUP

HOAI-MINH NGUYEN

Abstract. This paper is devoted to the stabilization of a linear control system y1
“ Ay ` Bu and

its suitable non-linear variants where pA,DpAqq is an infinitesimal generator of a strongly continuous
group in a Hilbert space H, and B defined in a Hilbert space U is an admissible control operator with
respect to the semigroup generated by A. Let λ P R and assume that, for some positive symmetric,
invertible Q “ Qpλq P LpHq, for some non-negative, symmetric R “ Rpλq P LpHq, and for some
non-negative, symmetric W “ W pλq P LpUq, it holds

AQ ` QA˚
´ BWB˚

` QRQ ` 2λQ “ 0

in the sense that

xQx,A˚yyH ` xA˚x,QyyH ´ xWB˚x,B˚yyU ` xRQx,QyyH ` 2λxQx, yyH “ 0 @x, y P DpA˚
q,

where A˚ is the adjoint of A and DpA˚
q is its domain. We present a new method to study the

stabilization of such a system and its suitable nonlinear variants. Both the stabilization using
dynamic feedback controls and the stabilization using static feedback controls in a weak sense are
investigated. To our knowledge, the stabilization by dynamic feedback controls is new even in the
linear setting. The nonlinear case is out of reach previously when B is unbounded for both types
of stabilization. Consequently, we derive that if the control system is exactly controllable in some
positive time, then it is rapidly stabilizable.
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1. Introduction and statements of the main results

In this paper, we study the stabilization of a linear control system associated with a strongly
continuous group and its related nonlinear systems. Let H and U be two Hilbert spaces which denote
the state space and the control space, respectively. The corresponding scalar products are x¨, ¨yH

1



2 H.-M. NGUYEN

and x¨, ¨yU, and the corresponding norms are } ¨ }H and } ¨ }U. Let
`

Sptq
˘

tPR Ă LpHq be a strongly
continuous group on H, i.e.,

Sp0q “ Id pthe identityq,

Spt1 ` t2q “ Spt1q ˝ Spt2q @t1, t2 P R,
and

lim
tÑ0

Sptqx “ x @x P H.

Here and in what follows, for two Hilbert spaces X1 and X2, we denote LpX1,X2q the Banach
space of all bounded linear applications from X1 to X2 with the usual norm, and we simply denote
LpX1,X1q by LpX1q.

Let pA,DpAqq be the infinitesimal generator of
`

Sptq
˘

tPR and denote Sptq˚ the adjoint of Sptq for

t P R. Then
`

Sptq˚
˘

tPR is also a strongly continuous group of continuous linear operators and its
infinitesimal generator is pA˚,DpA˚qq, which is the adjoint of pA,DpAqq. As usual, we equip the
domain DpA˚q with the scalar product

xz1, z2yDpA˚q “ xz1, z2yH ` xA˚z1, A
˚z2yH for z1, z2 P DpA˚q.

Then DpA˚q is a Hilbert space. Denote DpA˚q1 the dual space of DpA˚q with respect to H. Then

DpA˚q Ă H Ă DpA˚q1.

Let
B P LpU,DpA˚q1q.

In this paper, we consider the following control system, for T ą 0,

(1.1)

#

y1 “ Ay ` Bu for t P p0, T q,

yp0q “ y0,

where, at time t, the control is uptq P U and the state is yptq P H, and y0 P H is an initial datum. This
control setting is standard and used to model many control systems, see, e.g., [5, 28]. Interesting
aspects of the controllability and the stability of (1.1) can be found in [18, 23, 9, 10, 5, 33, 28, 26]
and the references therein.

As usual, see, e.g., [5, 28], we assume that B is an admissible control operator with respect to
the semi-group

`

Sptq
˘

tě0
in the sense that, for all u P L2pr0, T s;Uq, it holds that

(1.2) φ P Cpr0, T s;Hq where φptq :“

ż t

0
Spt ´ sqBupsq ds.

As a consequence of the closed graph theorem, see e.g., [4], one has

(1.3) }φ}Cpr0,T s;Hq ď CT }u}L2pp0,T q;Uq.

Let λ P R and assume that, for some positive, symmetric, invertible Q “ Qpλq P LpHq, for some
non-negative, symmetric R “ Rpλq P LpHq, and for some non-negative, symmetric W “ W pλq P

LpUq, it holds

(1.4) AQ ` QA˚ ´ BWB˚ ` QRQ ` 2λQ “ 0,

where (1.4) is understood in the following sense

(1.5) xQx,A˚yy ` xA˚x,Qyy ´ xWB˚x,B˚yy ` xRQx,Qyy ` 2λxQx, yy “ 0 @x, y P DpA˚q.

In this paper, given a Hilbert space rH and an operator rR P LprHq being symmetric, one says that rR
is non-negative if

x rRx, xy
rH ě 0 for all x P rH,

and one says that rR is positive if, for some positive constant C, it holds 1

x rRx, xy
rH ě C}x}2

rH for all x P rH.

1Thus positivity here means coercivity.
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Recall that system (1.1) is called to be exactly controllable in some positive time T if for all
y0, yT P H, there exists u P L2pp0, T q;Uq such that

ypT q “ yT ,

where y is the unique weak solution of (1.1) (the definition of the weak solutions is recalled in
Section 2). In this case, we also call that the pair pA,Bq is exactly controllable in some positive
time T . It is known that (1.1) is exactly controllable in time T ą 0 if and only if the following
observability inequality holds, see e.g., [5, 28],

(1.6)

ż T

0
}B˚esA

˚

x}2U ds ě C}x}2H for all x P H,

where C is a positive constant independent of x. Here and in what follows, if rA is the infinitesimal

generator of the semigroup
`

rSptq
˘

tě0
in a Hilbert space rH, we also denote rSptq by et

rA for t ě 0.

Identity (1.4) also appears in the linear quadratic optimal control theory under assumptions that
are discussed now. Given a non-negative, symmetric R “ Rpλq P LpHq, consider the cost function

(1.7) JT pu, yq “

ż T

0
xRy, yyHpsq ` xu, uyUpsq ds for T P p0,`8s.

For T P p0,`8s, one is interested in minimizing JT pu, yq overall u P L2pp0, T q;Uq where y is the
weak solution of (1.1). For 0 ă T ă `8, let PT P LpHq be symmetric and satisfy

xPT y0, y0yH “ inf
uPL2pp0,T q,Uq

JT pu, yq,

where y is the weak solution of (1.1) corresponding to u. The finite cost assumption is given by the
condition

inf
uPL2pp0,`8q,Uq

J8pu, yq ă `8,

for all y0 P H.
The following results are known from the linear quadratic optimal control theory, as developed

in Flandoli, Lasiecka, and Triggiani [12] (see also [17, 31, 34, 25]). Assume that the finite cost
condition holds. Let uopt and yopt be the unique solution corresponding to the minimizing problem
infuPL2pp0,`8q,Uq J8pu, yq, i.e.,

(1.8) J8puopt, yoptq “ inf
uPL2pp0,`8q,Uq

J8pu, yq,

where y is the weak solution of (1.1). Define

(1.9) Soptptqy0 “ yoptptq.

Then

(1.10) Soptptqy0 “ Sptqpy0q `

ż t

0
Spt ´ sqBuoptpsq ds for t ě 0.

Let
`

Aopt,DpAoptq
˘

be the infinitesimal generator of
`

Soptptq
˘

tě0
. Then the pointwise limit of PT

as T Ñ `8 exists. Denote this limit by P8. It follows that P8 : DpAoptq Ñ DpA˚q and

(1.11) uoptptq “ ´B˚P8yoptptq if y0 P DpAoptq.

Assume that the system is optimizable, i.e., the finite cost condition holds with R being invertible.
Then

(1.12)
`

Soptptq
˘

tě0
is exponentially stable.

Assertions (1.9)-(1.12) thus give the stabilization of (1.1) by static feedback controls in a weak sense
since ´B˚P8 is not defined for every element in H when B is not bounded or equivalently when
B˚ is not bounded.
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More information on P8 is known from the work of Flandoli, Lasieka, Triggiani [12] (see also
[20, 17]). First, P8 P LpHq is non-negative and symmetric; moreover, A˚P8 P LpDpAoptq,Hq,
B˚P8 P LpDpAoptq,Uq, and P8 satisfies the algebraic Riccati equation

(1.13) A˚P8 ` P8A ` R ´ P8BB˚P8 “ 0,

in the following sense

(1.14) xA˚P8x, zyH ` xx,A˚P8zyH ` xRx, zyH “ xB˚P8x,B˚P8zyU for all x, z P DpAoptq.

Second, assume that pA˚, R1{2q is exactly controllable in some positive time, then P8 is the unique
solution of (1.13) in the sense of (1.14); moreover, it is invertible. Denote

(1.15) Q8 “ P´1
8 .

When B is bounded, the algebraic Riccati equation (1.13) holds in the classic sense, i.e.,

(1.16) xP8x,AzyH ` xAx, P8zyH ` xRx, zyH “ xB˚P8x,B˚P8zyU for all x, z P DpAq,

and the stabilization by static feedback controls in the classic sense is fully understood via the
linear quadratic optimal control theory, see, e.g., [21, 33] and the references therein. When B is
unbounded, it might happen that P8 satisfies different Riccati equations on DpAoptq and DpAq, see
[32] (see also [31, 29]). These above facts partly reveal the subtleties of the theory of the Riccati
equation.

What has been mentioned so far does not require the group property. When pSptqqtPR is a
group, more information can be derived from the theory of linear quadratic optimal control theory.
Consider the dual system

(1.17)

#

z1 “ ´A˚z ` R1{2v for t P p0, T q,

zp0q “ z0,

and consider the dual cost

(1.18) ĴT pv, zq “

ż T

0
xB˚z,B˚zyUpsq ` xv, vyHpsq ds for T P p0,`8s.

Here and in what follows, for a Hilbert space X1 and an operator R1 P LpX1q being symmetric

and nonnegative, one denotes R
1{2
1 its non-negative square root. One also uses R

´1{2
1 to denote the

non-negative square root of R´1
1 if R1 is additionally positive.

For 0 ă T ă `8, let Q̂T P LpHq be symmetric and satisfy

xQ̂T z0, z0yH “ inf
uPL2pp0,T q,Uq

JT pu, yq,

where z is the solution of (1.17), for all z0 P H. The finite cost assumption of the dual system is
given by the condition

inf
vPL2pp0,`8q,Uq

Ĵ8pv, zq ă `8,

for all z0 P H, where z is the solution of (1.17). Under the finite cost condition of the dual system,
the following results are known from the work of Flandoli, Lasieka, and Triggiani [12] (see also

[17]). First, the pointwise limit of Q̂T as T Ñ `8 exists. Denote this limit by Q̂8. Then Q̂8 is
non-negative, symmetric, and satisfies the dual algebraic Riccati equation

(1.19) AQ̂8 ` Q̂8A˚ ` Q̂8RQ̂8 ´ BB˚ “ 0,

in the following sense

(1.20) xQ̂8x,A˚zyH ` xA˚x, Q̂8zyH ` xRQ̂8x, Q̂8zyH “ xB˚x,B˚zyU for all x, z P DpA˚q.
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Second, assume in addition that p´A,Bq is exactly controllable in some positive time, then Q̂8 is
the unique solution of (1.19) in the sense of (1.20) and is invertible. Moreover, the following result
holds

(1.21) Q8 “ Q̂8 when pA˚, R1{2q and p´A,Bq are exactly controllable in some positive time.

Identity (1.19) (in the sense of (1.20)) is a special case of (1.4) (in the sense of (1.5)) for which
W “ I and λ “ 0.

We next discuss known results related to (1.4) that come from Gramian operators. Let rλ ą 0
and assume that system (1.1) is exactly controllable in time T ą 0. Thus (1.6) holds. Set, with
T˚ “ T ` 1

2rλ
,

(1.22) epsq “

$

&

%

e´2rλs in r0, T s,

2rλe´2rλT pT˚ ´ sq in pT, T˚s.

It is showed in [16] that (1.4) holds for W being the identity, and for Q P LpHq being defined by

(1.23) xQx1, x2yH “

ż T˚

0
epsqxB˚e´sA˚

x1, B
˚e´sA˚

x2yU ds,

for λ “ 0, and for R P LpHq being symmetric and defined by

xRQx,QxyH “ ´

ż T˚

0
e1psq}B˚e´sA˚

}2U ds.

Previous results when B is bounded were due to Slemrod [23]. These works are inspired by the
ones of Lukes [19] and Kleinman [15] where the Gramian operators were introduced in the finite-

dimensional setting. In [29], Urquiza observed in the case A is skew-adjoint and rλ ą 0 that (1.4)
holds for W being identity, for Q being defined by

(1.24) xQx1, x2yH “

ż 8

0
e´2rλsxB˚e´sA˚

x1, B
˚e´sA˚

x2yU ds,

for λ “ 0, and for R “ 2rλQ´1. The result of Urquiza was inspired by the Bass method previously
discussed by Russell [22, page 114-115] following [5, Section 10.3].

In the settings of Komornik and Urquiza mentioned above, one can check that

Q is invertible by (1.6) using the fact A is an infinitesimal of a group,

and

pA˚, R1{2q is exactly controllable,

since A is an infinitesimal of a group and R is invertible and positive by (1.6) since A is an in-

finitesimal of a group and rλ ą 0. Thus, under the additional assumption that p´A,Bq is exactly
controllable in some positive time, one can apply the linear quadratic optimal control theory men-
tioned above. It then follows that system (1.1) is stabilizable by static feedback controls in the
weak sense (1.11). Urquiza [29] established that (1.1) is not only stabilizable but also stabilizable

with the rate 2rλ in the weak sense when A is skew-adjoint. Komornik also gave in [16] that (1.1) is

not only stabilizable but also stabilizable with the rate rλ in the weak sense without assuming that
p´A,Bq is exactly controllable in some positive time. Further information on the linear quadratic
optimal control theory was used in the analysis in [16, 29] (see also [30]).

The goal of this paper is to present a new method to study the stabilization of (1.1) and its suitable
nonlinear variants under condition (1.4). We study the stabilization of (1.1) by dynamic feedback
controls and by static feedback controls in a weak sense, which we call a trajectory sense. A system
is called dynamically stabilizable if it can be embedded as a subsystem of a larger, exponentially
stable well-posed system. This definition has been used for finite dimensions, see e.g., [5, chapter
11], and for linear systems in infinite dimension, see e.g., [31].
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Our approach is essentially based on the construction of new auxiliary dynamics for both types
of stabilization (see Theorem 1.3 and Theorem 1.4) and “integration by parts arguments” (see
Section 2 and Lemma 3.1). The new adding variable is inspired by the adjoint state in the linear
quadratic optimal control theory and the way to choose controls in the Hilbert Uniqueness Method
(HUM) principle. The advantage of our approach is at least twofold. First, the method works well in
both linear and nonlinear settings. Second, a Lyapunov function is also provided for static feedback
controls. To our knowledge, the stabilization of such systems by dynamic feedback controls is new
even in the linear setting. The nonlinear case is out of reach previously when B is unbounded for
both types of stabilization. Concerning the static feedback controls, as far as we know, a Lyapunov
function is not known even in the case where B is bounded and A is not; a Lyapunov function was
previously given in the finite-dimensional case [5, 15]. Consequently, we derive that if the system is
exactly controllable in some positive time, then the system is rapidly stabilizable.

Adding a new variable is very natural and has been used a long time ago in the control theory
even in finite dimensions, see e.g., [5, Section 11.3] and [24, Chapter 7], even for linear control
systems. Coron and Pradly [7] showed that there exists a nonlinear system in finite dimensions for
which the system cannot be stabilized by static feedback controls but can be stabilized by dynamic
feedback ones. Dynamic feedback controls of finite dimensional nature, i.e., the complement system
is a system of differential equations, have been previously implemented in the infinite dimensions,
see e.g., [8, 6]. It is interesting to know whether or not adding a new variable is necessary in the
setting in this paper.

The rest of this section is organized as follows. In the first subsection, we discuss the stabilization
(1.1) by dynamic feedback controls. In the second subsection, we discuss the stabilization of (1.1)
by static feedback controls (in the trajectory sense). In the last subsection, we give the organization
of the paper.

1.1. Stabilization by dynamic feedback controls. In this section, we present the results on the
dynamic stabilization of (1.1) and its suitable nonlinear variants. Given an infinitesimal generator
rA of a semigroup in a Hilbert space rH, set

ω0p rAq “ inf
tą0

log }et
rA}LprHq

,

which denotes the growth of the et
rA for t ě 0. It is known, see e.g., [10], that

´8 ď ω0p rAq ă `8.

Concerning the dynamic stabilization of (1.1), we have the following result.

Theorem 1.1. Let λ P R and assume (1.4) with R “ 0, and let λ1 P R. Let ω̂0pAq ě ω0pAq and
ω̂0p´A˚q ě ω0p´A˚q be two real constants such that, for some positive constant c,

}etA}LpHq ď cetω̂0pAq for t ě 0 and }e´tA˚

}LpHq ď cetω̂0p´A˚q for t ě 0,

and assume that

(1.25) λ1 ´ 2λ ą ω̂0pAq ´ ω̂0p´A˚q.

Given y0, ry0 P H arbitrary, let py, ryq P
`

C0pr0, T s;Hq
˘2

be the unique weak solution of the system

(1.26)

$

’

’

&

’

’

%

y1 “ Ay ´ BWB˚
ry in p0,`8q,

ry1 “ ´A˚
ry ´ 2λry ` λ1Q

´1py ´ Qryq in p0,`8q,

yp0q “ y0, ryp0q “ ry0.

Then

(1.27) }yptq}H ` }ryptq}H ď Cepω̂0p´A˚q´2λqt
`

}yp0q}H ` }ryp0q}H
˘

for t ě 0,
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where C is a positive constant independent of t and py0, ry0q. Consequently, if A is skew-adjoint and
λ1 ą 2λ, then

(1.28) }yptq}H ` }ryptq}H ď Ce´2λt
`

}yp0q}H ` }ryp0q}H
˘

for t ě 0.

Remark 1.1. The definition of weak solutions is recalled in Section 2. The well-posedness of the
weak solutions in Theorem 1.1 is established in Lemma 3.2.

We next illustrate how this result can be extended to a nonlinear setting. We just present here
a quite standard nonlinear setting to highlight the robustness of the method. Let f : H Ñ H be
continuous such that for all ε ą 0 there exists δ ą 0 such that

(1.29) }fpxq}H ď ε}x}H for x P H with }x}H ă δ,

and f is Lipschitz in a neighborhood of 0 in H, i.e., there exist r ą 0 and Λ ą 0 such that

(1.30) }fpxq ´ fpyq}H ď Λ}x ´ y}H for x, y P H with }x}H, }y}H ă r.

We consider the following control problem

(1.31)

#

y1 “ Ay ` fpyq ` Bu for t P p0, T q,

yp0q “ y0 P H.

Concerning the local stabilization of (1.31), we have the following stabilization results by dynamic
feedback controls.

Theorem 1.2. Let λ P R and assume that (1.4) holds with R “ 0, and let λ1, γ P R be such that
γ ă λ. Let ω̂0pAq ě ω0pAq and ω̂0p´A˚q ě ω0p´A˚q be two real constants such that, for some
positive constant c,

}etA}LpHq ď cetω̂0pAq for t ě 0 and }e´tA˚

}LpHq ď cetω̂0p´A˚q for t ě 0,

and assume that

(1.32) λ1 ´ 2λ ą ω̂0pAq ´ ω̂0p´A˚q, 2γ ´ ω̂0p´A˚q ą 0,

and (1.29) and (1.30) hold. There exists ε ą 0 (small) such that for y0, ry0 P H with }py0, ry0q}H ď ε,

there exists a unique solution py, ryq P
`

C0pr0, T s;Hq
˘2

of the system

(1.33)

$

’

’

&

’

’

%

y1 “ Ay ` fpyq ´ BWB˚
ry in p0,`8q,

ry1 “ ´A˚
ry ´ 2λry ` Q´1fpQryq ` λ1Q

´1py ´ Qryq in p0,`8q,

yp0q “ y0, ryp0q “ ry0.

Moreover, we have

(1.34) }yptq}H ` }ryptq}H ď Cepω̂0p´A˚q´2γqt
`

}yp0q}H ` }ryp0q}H
˘

for t ě 0,

where C is a positive constant independent of t and py0, ry0q. Consequently, if A is skew-adjoint and
λ1 ą 2λ ą 2γ ą 0 then

(1.35) }yptq}H ` }ryptq}H ď Ce´2γt
`

}yp0q}H ` }ryp0q}H
˘

for t ě 0.

Remark 1.2. The weak solutions given in Theorem 1.2 are understood in the sense of the weak
solutions given in Section 2 where the nonlinear terms play as a part of the source term.

Remark 1.3. The well-posedness of the weak solutions in Theorem 1.2 is a part of the proof.
In comparison with Theorem 1.1, λ is supposed to satisfy the condition 2λ ´ ω̂0p´A˚q ą 0 in
Theorem 1.2 to make sure that the solution remains small for large time to ensure the well-posedness.

As a consequence of Theorem 1.1 and Theorem 1.2 (see also Proposition 5.2), we obtain the
following results.

Proposition 1.1. Assume that system (1.1) is exactly controllable in some positive time. System
(1.1) is rapidly dynamically stabilizable.



8 H.-M. NGUYEN

Proposition 1.2. Assume that system (1.1) is exactly controllable in some positive time, and (1.29)
and (1.30) hold. System (1.31) is locally rapidly dynamically stabilizable.

Recall that system (1.1) is called rapidly dynamically stabilizable if it can be dynamically expo-
nentially stabilizable with an arbitrary decay rate. A similar meaning with suitable modifications
is used for system (1.31).

1.2. Stabilization by static feedback controls. In this section, we present the results on the
stabilization of (1.1) and its suitable nonlinear variants using static feedback controls in a weak
sense, which will be precise. We begin with (1.1).

Theorem 1.3. Let λ P R and assume (1.4). Given y0 P H, let py, ryq P
`

C0pr0, T s;Hq
˘2

be the
unique weak solution of the system

(1.36)

$

’

’

&

’

’

%

y1 “ Ay ´ BWB˚
ry in p0,`8q,

ry1 “ ´A˚
ry ´ 2λry ´ RQry in p0,`8q,

yp0q “ y0, ryp0q “ ry0 :“ Q´1y0.

Then

(1.37) ryptq “ Q´1yptq for t ě 0,

and

(1.38) }Q´1{2yptq}2H ´ }Q´1{2ypτq}2H

“ ´2λ

ż t

τ
}Q´1{2ypsq}2H ds ´

ż t

τ

´

}W 1{2B˚
rypsq}2U ` }R1{2ypsq}2H

¯

ds for t ě τ ě 0.

Consequently,

(1.39) }Q´1{2yptq}H ď e´λt}Q´1{2yp0q}H for t ě 0.

Some comments on Theorem 1.3 are in order. Since

ry1 “ ´A˚
ry ´ 2λry ´ RQry in p0,`8q

and ryp0q P H, it follows from Lemma 2.1 given in Section 2 that ry P Cpr0, T q;Hq is well-defined for
all T ą 0 and moreover,

B˚
ry P L2pp0, T q,Hq for all T ą 0.

We thus derive that system (1.36) is well-posed and (1.38) makes sense. Combing (1.37) and the
equation of y

y1 “ Ay ´ BWB˚
ry,

we have thus shown that the control system y1 “ Ay ` Bu with the static feedback control

(1.40) “u “ ´WB˚Q´1y” for t ě 0,

is well-posed in the sense given in Theorem 1.3. We only consider (1.40) as static feedback controls
in a weak sense, which we call a trajectory sense, since for y P H, it is not clear how to give the
sense to the action ´WB˚Q´1y. In comparison with the static feedback controls in the sense given
by (1.11), the static feedback controls given (1.40) are well-defined in the sense of Theorem 1.3 for
all initial data y0 P H. Theorem 1.3 can be considered as a new way to view the feedback controls
given in (1.11).

It is important in Theorem 1.3 that ry0 “ Q´1y0 in (1.36). Due to this fact, one cannot derive
from Theorem 1.3 that system (1.1) is dynamically stabilizable via the system

(1.41)

#

y1 “ Ay ´ BWB˚
ry in p0,`8q,

ry1 “ ´A˚
ry ´ 2λry ´ RQry in p0,`8q.

This is the reason to introduce the term λ1Q
´1py ´ Qryq in Theorem 1.1.
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Remark 1.4. Assertion (1.37) was known in the case where λ “ 0, W “ I, and under the additional

assumptions that pA˚, R1{2q and p´A,Bq are exactly controllable in some positive time, see [12,
Theorems 2.4, 2.6, and 2.7].

Remark 1.5. From (1.38), the quantity }Q´1{2yptq}2H can be viewed as the Lyapunov function of
the system. This fact seems new to us even in the case where B is bounded and A is not.

We next present a consequence of Theorem 1.3 in the case where A is also a skew-adjoint operator
and R “ 0.

Corollary 1.1. Let λ P R, and assume that (1.4) holds with R “ 0 and A is skew-adjoint. Given

y0 P H, let py, zq P
`

C0pr0, T s;Hq
˘2

be the unique weak solution of the system

(1.42)

$

’

’

&

’

’

%

y1 “ Ay ´ BWB˚
ry in p0,`8q,

ry1 “ ´A˚
ry ´ 2λry in p0,`8q,

yp0q “ y0, ryp0q “ ry0 :“ Q´1y0.

Then

(1.43) ryptq “ Q´1yptq for t ě 0

and, for some positive constants C1, C2, independent of y0,

(1.44) C1e
´2λt ď }yptq}H ď C2e

´2λt}y0}H for t ě 0.

Corollary 1.1 is a direct consequence of Theorem 1.3. Indeed, (1.43) is a consequence of Theo-
rem 1.3. Since A is skew-adjoint, it follows from the equation of ry that

(1.45) }ryptq} “ e´2λt}ryp0q} for t ě 0.

Assertion (1.44) is now a consequence of (1.43) and (1.45).

We next deal with the local stabilization of (1.31) by static feedback controls in the trajectory
sense.

Theorem 1.4. Let λ ą 0 and assume (1.4), (1.29), and (1.30). There exists ε ą 0 (small) such

that for y0 P H with }y0}H ď ε, there exists a unique weak solution py, ryq P
`

C0pr0, T s;Hq
˘2

of the
system

(1.46)

$

’

’

&

’

’

%

y1 “ Ay ` fpyq ´ BWB˚
ry in p0,`8q,

ry1 “ ´A˚
ry ´ 2λry ´ RQry ` Q´1fpQryq in p0,`8q,

yp0q “ y0, ryp0q “ ry0 :“ Q´1y0.

Moreover, we have

(1.47) ry “ Q´1y for t ě 0,

and

(1.48) }Q´1{2yptq}2H ´ }Q´1{2ypτq}2H “ ´2λ

ż t

τ
}Q´1{2ypsq}2H ds

´

ż t

τ

´

}W 1{2B˚
rypsq}2U ` }R1{2ypsq}2H

¯

ds ` 2

ż t

τ
xfpypsqq, Q´1ypsqy ds for t ě τ ě 0.

Consequently, for all 0 ă γ ă λ, there exists εγ such that for y0 P H with }y0}H ď εγ, it holds

(1.49) }Q´1{2yptq}H ď e´γt}Q´1{2yp0q}H for t ě 0.

Remark 1.6. The weak solutions given in Theorem 1.4 are understood in the sense of the weak
solutions given in Section 2 where the nonlinear term plays as a part of the source term.
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Remark 1.7. In comparison with Theorem 1.1, λ is supposed to be positive in Theorem 1.2 to
make sure that the solution remains small for large time.

Here is a variant of Corollary 1.2 in the nonlinear setting, which is a direct consequence of
Theorem 1.4, and the proof is omitted.

Corollary 1.2. Let λ ą 0, and assume that (1.4) holds with R “ 0 and A is skew-adjoint. Assume
(1.29) and (1.30). There exists ε ą 0 (small) such that for y0 P H with }y0}H ď ε, there exists a

unique solution py, ryq P
`

C0pr0, T s;Hq
˘2

of the system

(1.50)

$

’

’

&

’

’

%

y1 “ Ay ` fpyq ´ BWB˚
ry in p0,`8q,

ry1 “ ´A˚
ry ´ 2λry ` Q´1fpQryq in p0,`8q,

yp0q “ y0, ryp0q “ ry0 :“ Q´1y0.

Moreover, we have

(1.51) ry “ Q´1y for t ě 0,

and, for all 0 ă γ ă λ, there exists εγ such that for y0 P H with }y0}H ď εγ, it holds, for some
positive constants C, independent of y0,

(1.52) }yptq}H ď Ce´2γt}y0}H for t ě 0.

As a consequence of Theorem 1.3 and Theorem 1.4 (see also Proposition 5.1), we obtain the
following results.

Proposition 1.3. Assume that system (1.1) is exactly controllable in some positive time. System
(1.1) is rapidly statically stabilizable in the trajectory sense.

Proposition 1.4. Assume that system (1.1) is exactly controllable in some positive time, and (1.29)
and (1.30) hold. System (1.31) is locally rapidly statically stabilizable in the trajectory sense.

1.3. Organisation of the paper. The paper is organized as follows. Section 2 is devoted to
the well-posedness and some properties of various linear systems considered in this paper. Weak
solutions are mainly considered, however, their connections with mild solutions and transposition
solutions are also discussed. These are used later in establishing Theorems 1.1 to 1.4. Section 3 is
devoted to the proofs of Theorem 1.1 and Theorem 1.2. Section 4 is mainly devoted to the proofs of
Theorem 1.3 and Theorem 1.4, which seems new to us. In the last subsection of Section 4 (section
Section 4.3), we also discuss the infinitesimal generator of the semigroup associated with the static
feedback controls given in Theorem 1.3. In the last section, Section 5, we discuss choices of Q (and
also R and W ) when the system is exactly controllable.

2. Preliminaries

In this section, we state and prove the well-posedness and some properties of various linear control
systems considered in this paper. It is more convenient to consider a slightly more general system

(2.1)

#

y1 “ Ay ` f ` Bu ` My in t P p0, T q,

yp0q “ y0,

with y0 P H, and f P L1pp0, T q;Hq, and M P LpHq. Recall that B is assumed to be an admissible
control operator with respect to the semigroup

`

Sptq
˘

tě0
Ă LpHq generated by the operator A

throughout the paper. In this section, we only assume that
`

Sptq
˘

tě0
Ă LpHq is a strongly continuous

semigroup. Thus the condition that
`

Sptq
˘

tPR Ă LpHq is a strongly continuous group on H is not
required in this section. In this paper, we mainly consider the concept of weak solutions. We also
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discuss very briefly its connection with the notions of mild solutions and transposition solutions. A
weak solution y of (2.1) is understood as an element y P Cpr0, T s;Hq such that

(2.2)

#

d
dtxy, φyH “ xAy ` f ` Bu ` My,φyH in p0, T q

yp0q “ y0
for all φ P DpA˚q

for which

iq the differential equation in (2.2) is understood in the distributional sense,
iiq the term xAy ` f `Bu`My,φyH is understood as xy,A˚φyH ` xf `My,φyH ` xu,B˚φyU.

The convention in iiq will be used throughout this section.

We begin by recalling the well-posedness of (2.1), see [28, Sections 4.1 and 4.2] (in particular,
[28, Remark 4.1.2 and Proposition 4.2.5]) 2.

Proposition 2.1. Let T ą 0, y0 P H, f P L1pp0, T q;Hq, and M P LpHq. Then

iq y P Cpr0, T s,Hq is a weak solution of (2.1) if and only if, with rf :“ f `Bu`My, it holds 3

(2.3) yptq “ Sptqy0 `

ż t

0
Spt ´ sq rfpsq ds for t P r0, T s.

iiq there exists a unique weak solution y P Cpr0, T s,Hq of (2.1).

Remark 2.1. The equivalence between weak solutions and mild solutions was first proved in the
case B is bounded and f P Cpr0, T s;Hq by Ball [1], see also [3, Chapter 1 of Part II] for related
results when B is bounded.

The unique weak solution given in Proposition 2.1 also satisfies the transposition meaning as
established in the following result.

Lemma 2.1. Let T ą 0, y0 P H, f P L1pp0, T q;Hq, and M P LpHq, and let y P Cpr0, T s;Hq be the
unique weak solution of (2.1). We have, for t P p0, T s, for zt P DpA˚q, and for g P Cpr0, ts;DpA˚qq,

(2.4) xyptq, ztyH ´ xy0, zp0qyH “

ż t

0
xupsq, B˚zpsqyU ds

´

ż t

0
xgpsq, ypsqyH ds `

ż t

0
xfpsq, zpsqyH ds `

ż t

0
xMypsq, zpsqyH ds,

where z P Cpr0, ts;Hq is the unique weak solution of the backward system

(2.5)

#

z1 “ ´A˚z ´ g in p0, tq,

zptq “ zt.

Consequently, for zT P H and g P L1pp0, T q;Hq, the unique weak solution z P Cpr0, T s;Hq of (2.5)
with t “ T satisfies

(2.6) }B˚z}L2pp0,T q;Uq ď CT

´

}g}L1pp0,T q;Hq ` }zT }H

¯

,

and (2.4) holds for zt P H and g P L1pp0, tq;Hq. Here CT denotes a position constant independent
of g, f , and zT .

2There is no f in the statement of [28, Proposition 4.2.5] but the result also holds with f P L1
pp0, T q;Hq and the

analysis is the same.
3This identity is understood in DpA˚

q
1, i.e., xyptq, φyH “ xSptqy0, φyH `

şt

0
xSpt ´ sq rfpsq, φyH ds in r0, T s for all

φ P DpA˚
q.
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Remark 2.2. For 0 ă T ď T0, the constant CT in (2.6) can be chosen independent of T . In fact,
extend g by 0 for t ă 0 and denote this extension by rg. Consider the weak solution rz of the system

(2.7)

#

rz1 “ ´A˚
rz ´ g in pT ´ T0, T q,

rzpT q “ zT .

By (2.6), we have

}B˚
rz}L2ppT´T0,T q;Uq ď CT0

´

}rg}L1ppT´T0,T q;Hq ` }zT }H

¯

.

The desired assertion follows by noting that rz “ z in p0, T q and using the definition of g.

Before giving the proof of Lemma 2.1, let us give/recall the meaning of transposition solutions
of system (2.1).

Definition 2.1. Let T ą 0, y0 P H, f P L1pp0, T q;Hq, and M P LpHq. A function y P Cpr0, T s;Hq

is called a transposition solution of (2.1) if for all t P p0, T s, zt P H, and g P L1pp0, tq;Hq, identity
(2.4) holds where z P Cpr0, ts;Hq is the unique solution of (2.5).

In what follows, for notational ease, we use x¨, ¨, y to denote x¨, ¨, yH or x¨, ¨, yU in a clear context.
We now give the proof of Lemma 2.1.

Proof of Lemma 2.1. Let zt P DpA˚q and g P Cpr0, ts;DpA˚qq, and let z P Cpr0, ts;Hq be the unique
weak solution of (2.5). We have, for n ě 2,

xyptq, zptqy ´ xyp0q, zp0qy “

n
ÿ

i“1

´

xyptiq, zptiqy ´ xypti´1q, zpti´1qy

¯

,

where t0 “ 0 and ti “ ti´1 ` t{n for 1 ď i ď n.
Since zt P DpA˚q and g P Cpr0, ts;DpA˚qq, it follows that z P C

`

r0, ts;DpA˚q
˘

. We thus obtain

(2.8) xyptiq, zptiqy ´ xypti´1q, zpti´1qy “ xyptiq, zptiq ´ zpti´1qy ` xyptiq ´ ypti´1q, zpti´1qy

(2.5)
“ xyptiq,

ż ti

ti´1

`

´ A˚zpsq ´ gpsq
˘

dsy `

ż ti

ti´1

xAypsq ` rfpsq, zpti´1qy ds.

where rf “ f ` Bu ` My. Recall that the convention iiq in the definition of the weak solutions of
(2.2) is used here. Using the fact z P C

`

r0, ts;DpA˚q
˘

and y P C
`

r0, ts;H
˘

, we derive that

(2.9) xyptiq,

ż ti

ti´1

`

´ A˚zpsq ´ gpsq
˘

dsy `

ż ti

ti´1

xAypsq ` rfpsq, zpti´1qy ds

“

ż ti

ti´1

xypsq,
`

´ A˚zpsq ´ gpsq
˘

dsy `

ż ti

ti´1

xAypsq ` rfpsq, zpsqy ds ` opti ´ ti´1q.

Here the standard notation of op¨q is used: opsq{|s| Ñ 0 as s Ñ 0. Combining (2.8) and (2.9) yields

xyptiq, zptiqy ´ xypti´1q, zpti´1qy “ ´

ż ti

ti´1

xypsq, gpsq dsy `

ż ti

ti´1

x rfpsq, zpsqy ds ` opti ´ ti´1q.

Using the definition of rf , we derive that

xyptiq, zptiqy ´ xypti´1q, zpti´1qy “

ż ti

ti´1

xupsq, B˚zpsqy ds ´

ż ti

ti´1

xgpsq, ypsqy ds

`

ż ti

ti´1

xfpsq, zpsqy ds `

ż ti

ti´1

xMypsq, zpsqy ds ` opti ´ ti´1q.

Summing with respect to n and letting n Ñ `8, we reach (2.4) for zt P DpA˚q and g P Cpr0, ts;DpA˚qq.
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We next deal with (2.6). Fix zT P DpA˚q and g P Cpr0, T s;DpA˚qq. Let u P L2pp0, T q;Uq and let
y P Cpr0, T s;Hq be the unique weak solution of (2.1) with f “ 0, y0 “ 0, and M “ 0. Applying
(2.4) with t “ T , we have

(2.10)

ż T

0
xupsq, B˚zpsqy ds “ xypT q, zT y `

ż T

0
xgpsq, ypsqy ds.

Since

(2.11) |xypT q, zT y| `

ż T

0
|xgpsq, ypsqy| ds ď }ypT q}}zT } ` }g}L1pp0,T q;Hq}y}L8pp0,T q;Hq

(1.3),P roposition 2.1
ď C}u}L2pp0,T q;Uq

´

}zT } ` }g}L1pp0,T q;Hq

¯

.

Combining (2.10) and (2.11) yields

}B˚z}L2pp0,T q,Uq ď C
´

}zT } ` }g}L1pp0,T q;Hq

¯

.

Assertion of (2.6) in the case zT P H and g P L1pp0, T q;Hq follows from this case by density.
Finally, (2.4) with zt P H and g P L1pp0, tq;Hq also follows from the case zt P DpA˚q and

g P Cpr0, ts;DpA˚qq by density. □

We next prove that the solutions in the transposition sense (2.4) are also unique. Their existence
is a direct consequence of Proposition 2.1 and Lemma 2.1. More precisely, we have the following
result.

Lemma 2.2. Let T ą 0, y0 P H, and u P L2pp0, T q;Uq. There exists a unique transposition solution
y P C0pr0, T s;Hq of (2.1). Moreover,

(2.12) }ypτq}H ď CT

´

}y0} ` }u}L2pp0,T q;Uq

¯

,

for some positive constant CT , independent of y0 and u.

Remark 2.3. Let 0 ă T ď T0. By the arguments as in Remark 2.2, one can chose the constant
CT in (2.12) independent of T .

Proof. By Proposition 2.1 and Lemma 2.1, it suffices to prove the uniqueness.
Let µ ą 0 be large. We equip C0pr0, T s;Hq with the following norm

~y~ “ sup
tPr0,T s

e´µt}yptq}H.

Recall that y is a transposition solution if, for t ě 0,

(2.13) xyptq, zty ´ xy0, zp0qy “

ż t

0
xupsq, B˚zpsqy ds `

ż t

0
xfpsq, zpsqy ds `

ż t

0
xypsq,M˚zpsqy ds,

where zt P H and z is a solution of the backward system

(2.14)

#

z1 “ ´A˚z in p0, tq,

zptq “ zt.

Thus if y and ŷ are two transposition solutions, then

(2.15) xyptq ´ ŷptq, zty “

ż t

0
xypsq ´ ŷpsq,M˚zpsqy ds.

This implies

e´µt}yptq ´ ŷptq} ď Ce´µt

ż t

0
}ypsq ´ ŷpsq} ds ď

C

µ
~y ´ ŷ~.
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Here and in what follows in this proof, C denotes a positive constant independent of y, ŷ, and µ.
Thus

~y ´ ŷ~ ď
C

µ
~y ´ ŷ~.

The uniqueness follows and the proof is complete. □

Remark 2.4. Similar results in the case M “ 0, f “ 0, and g “ 0 can be found in [5, Section 2.3
of Chapter 2].

3. Dynamic feedback controls

This section is devoted to the proof of Theorem 1.1 and Theorem 1.2. It contains three subsections
and is organized as follows. In the first subsection, we state and prove two useful lemmas, which
will be used in the proofs of Theorem 1.1. The proofs of Theorem 1.1 and Theorem 1.2 are given
in the last two subsections, respectively.

3.1. Two useful lemmas. Note that (1.4) can be written under an equivalent form as follows

(3.1) AλQ ` QA˚
λ ´ BWB˚ ` QRQ “ 0,

where

(3.2) Aλ “ A ` λI.

The meaning of (1.5) can be rewritten as follows

(3.3) xQx,A˚
λyy ` xA˚

λx,Qyy ´ xWB˚x,B˚yy ` xRQx,Qyy “ 0 @x, y P DpA˚q.

We have the following result concerning (1.4).

Lemma 3.1. Assume (1.4), i.e., (1.5). Given x0, y0 P H and f, g P L1pp0, T q;Hq, let x, y P

Cpr0, T s;Hq be the unique weak solution of the systems
#

x1 “ A˚
λx ` f in p0, T q,

xp0q “ x0,
and

#

y1 “ A˚
λy ` g in p0, T q,

yp0q “ y0.

We have, for t P r0, T s,

(3.4) xQxptq, yptqy ´ xQx0, y0y

“

ż t

0

´

xWB˚xpsq, B˚ypsqy ´ xRQxpsq, Qypsqy

¯

ds `

ż t

0

´

xQfpsq, ypsqy ` xQgpsq, xpsqy

¯

ds.

Proof. We first assume that x0, y0 P DpA˚q and f, g P Cpr0, T s;DpA˚qq. Then x, y P Cpr0, T s;DpA˚qq

and x1, y1 P Cpr0, T s;Hq. We have

d

dt
xQx, yy “ xx1, Qyy ` xQx, y1y “ xA˚

λx,Qyy ` xQx,A˚
λyy ` xf,Qyy ` xQx, gy.

Using (1.5), since Q is symmetric, it follows that

d

dt
xQx, yy “ xWB˚x,B˚yy ´ xRQx,Qyy ` xQf, yy ` xQg, xy.

We thus obtain (3.4).

The proof in the general case is based on the previous case, a density argument, and Lemma 2.1.
□
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We next deal with the well-posedness of (1.36) in Theorem 1.1. It might be more convenient to
consider a slightly more general system

(3.5)

$

’

’

&

’

’

%

y1 “ Ay ` f ´ BWB˚
ry ` M1y ` M2ry for t P p0, T q,

ry1 “ ´A˚
ry ` rf ` ĂM1ry ` ĂM2y for t P p0, T q,

yp0q “ y0, ryp0q “ ry0,

with y0, ry0 P H, f, rf P L1pp0, T q;Hq, M1,M2, ĂM1, ĂM2 P LpHq, and W P LpUq. A weak solution y of

(3.5) is understood as an element py, ryq P
`

Cpr0, T s;Hq
˘2

such that

(3.6)

$

’

’

’

&

’

’

’

%

d

dt
xy, φyH “ xAy ` f ´ BWB˚

ry ` M1y ` M2ry, φyH in r0, T s

d

dt
xry, rφyH “ x´A˚

ry ` rf ` ĂM1ry ` ĂM2y, rφyH in r0, T s

yp0q “ y0, ryp0q “ ry0,

for all φ, rφ P DpA˚q,

for which

iq the differential equations are understood in the distributional sense,
iiq the term xAy ` f ´ BWB˚

ry ` M1y ` M2ry, φyH is understood as xy,A˚φyH ` xf ` M1y `

M2ry, φyH ´ xWB˚
ry,B˚φyU.

Note that B˚
ry P L2p0, T ;Uq since B is an admissible control operator.

We have the following result on the well-posedness of (3.5).

Lemma 3.2. Let A be an infinitesimal generator of a group, and let M1,M2, ĂM1, ĂM2 P LpHq and

W P LpUq. Let T ą 0, y0, ry0 P H, f, rf P L1pp0, T q;Hq. There exists a unique weak solution

py, ryq P
`

Cpr0, T s,Hq
˘2

of (3.5). Moreover, with g :“ f ´ BWB˚ ` My and rg :“ rf ` ĂM1ry ` ĂM2y,

we have 4

(3.7) yptq “ etAy0 `

ż t

0
ept´sqAgpsq ds for t P r0, T s,

and

(3.8) ryptq “ e´tA˚

y0 `

ż t

0
e´pt´sqA˚

rgpsq ds for t P r0, T s.

Moreover, we have

}yptq, ryptq}H ď C
´

}y0, ry0}H ` }pf, rfq}L1pp0,T q;Hq

¯

in r0, T s,

for some positive constant C, independent of y0, ry0, f , and rf .

Remark 3.1. In Lemma 3.2, we does not require that W is symmetric (or non-negative).

Proof. We first note that py, ryq P
`

Cpr0, T s;Hq
˘2

is a weak solution of (3.5) if and only if py, ryq P
`

Cpr0, T s;Hq
˘2

and (2.3) holds. This is a consequence of Proposition 2.1.
We now establish the existence and uniqueness. Let µ ą 0 be large. We equip Cpr0, T s;Hq the

following norm
~y~ “ sup

tPr0,T s

e´µt}yptq}H.

Define F :
`

Cpr0, T s;Hq
˘2

Ñ
`

Cpr0, T s;Hq
˘2

as follows

F

˜

yptq

ryptq

¸

“

¨

˚

˚

˝

etAy0 `

ż t

0
ept´sqAgpsq ds,

e´tA˚

ry0 `

ż t

0
e´pt´sqA˚

rgpsq ds

˛

‹

‹

‚

for t P r0, T s.

4These identities below are understood in DpA˚
q

1 and Dp´A˚
q

1, respectively.
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We have

F

˜

y2ptq

ry2ptq

¸

´ F

˜

y1ptq

ry1ptq

¸

“

¨

˚

˚

˝

ż t

0
ept´sqA

´

´ BWB˚pry2 ´ ry1q ` M1py2 ´ y1q ` M2pry2 ´ ry1q

¯

ds,
ż t

0
e´pt´sqA˚

´

ĂM1pry2 ´ ry1q ` ĂM2py2 ´ y1q

¯

ds

˛

‹

‹

‚

.

It follows that
›

›

›

›

›

F

˜

y2ptq

ry2ptq

¸

´ F

˜

y1ptq

ry1ptq

¸›

›

›

›

›

ď C

ˆ
ż t

0
}py2, ry2qpsq ´ py1, ry1qpsq} ds ` }B˚pry2 ´ ry1q}L2pp0,tq;Uq

˙

.

Here and in what follows in this proof, C denotes a positive constant independent of solutions and
µ.

This implies, by (2.6) of Lemma 2.1,

e´µτ

›

›

›

›

›

F

˜

y2ptq

ry2ptq

¸

´ F

˜

y1ptq

ry1ptq

¸›

›

›

›

›

ď Ce´µt

ż t

0
}py2, ry2qpsq ´ py1, ry1qpsq} ds.

This yields

e´µτ

›

›

›

›

›

F

˜

y2ptq

ry2ptq

¸

´ F

˜

y1ptq

ry1ptq

¸

ptq

›

›

›

›

›

ď
C

µ
~py2, ry2q ´ py1, ry1q~.

We derive that










F

˜

y2ptq

ry2ptq

¸

´ F

˜

y1ptq

ry1ptq

¸









ď
C

µ











˜

y2ptq

ry2ptq

¸

´

˜

y1ptq

ry1ptq

¸









.

By considering µ large enough, the existence and uniqueness of the weak solutions follow from a
standard fixed point theorem. □

3.2. Dynamic feedback controls in the linear case - Proof of Theorem 1.1. Set, for t ě 0,

(3.9) yλptq “ eλtyptq and ryλptq “ eλtryptq,

and denote
Aλ “ A ` λI.

We have

(3.10)

$

’

’

&

’

’

%

y1
λ “ Aλyλ ´ BWB˚

ryλ in p0,`8q,

ry1
λ “ ´A˚

λryλ ` λ1Q
´1pyλ ´ Qryλq in p0,`8q,

yλp0q “ yp0q, ryλp0q “ ryp0q.

Set, for t ě 0,
Zλptq “ yλptq ´ Qryλptq.

We formally have

d

dt
Zλ “ Aλyλ ´ BWB˚

ryλ ` QA˚
λryλ ´ λ1Zλ

“ Aλpyλ ´ Qryλq ` AλQryλ ´ BWB˚
ryλ ` QA˚

λryλ ´ λ1Zλ,
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which yields, since (1.4) holds with R “ 0, that

(3.11)
d

dt
Zλ “ AλZλ ´ λ1Zλ.

We now give the rigor proof of (3.11). Let τ ą 0, φτ P H and let φ P Cpr0, τ s;Hq be the unique
weak solution of the system

(3.12)

#

φ1 “ ´A˚
λφ in p0, τq,

φpτq “ φτ .

Applying Lemma 2.1 for Aλ with t “ τ , we derive from (3.10) and (3.12) that

(3.13) xyλpτq, φpτqy ´ xyλp0q, φp0qy “ ´

ż τ

0
xWB˚

ryλpsq, B˚φpsqy ds.

Applying Lemma 3.1 for Aλ, ryλpτ ´ ¨q and φpτ ´ ¨q (R “ 0), we obtain

(3.14) xQryλp0q, φp0qy ´ xQryλpτq, φpτqy

“

ż τ

0
xWB˚

ryλpτ ´ sq, B˚φpτ ´ sqy ds ´ λ1

ż τ

0
xZλpτ ´ sq, φpτ ´ sqy ds.

Summing (3.13) and (3.14), we deduce from (3.10) and (3.12) that

xZλpτq, φpτqy ´ xZλp0q, φp0qy “ ´λ1

ż τ

0
xZλpτ ´ sq, φpτ ´ sqy ds.

This yields

xZλpτq, φpτqy ´ xZλp0q, eτA
˚

φpτqy “ ´λ1

ż τ

0
xZλpτ ´ sq, esA

˚

φpτqy ds.

Since φpτq P H is arbitrary, we obtain

Zλpτq “ eτAZλp0q ´ λ1

ż τ

0
epτ´sqAZλpsq ds,

which implies (3.11).
We derive from (3.11) that

(3.15) }Zλptq}H ď Cep´λ1`λ`ω̂0pAqqt}Zλp0q}H,

which yields

(3.16) }yptq ´ Qryptq}H ď Cep´λ1`ω̂0pAqqt}yp0q ´ Qryp0q}H.

Here and in what follows in this proof, C is a positive constant independent of t and py0, ry0q.
Since

ry1 “ ´A˚
ry ´ 2λry ` λ1Q

´1py ´ Qryq in p0,`8q,

it follows that
ry1
2λ “ ´A˚

ry2λ ` fptq in p0,`8q,

where, in p0,`8q

ry2λ “ e2λryptq and fptq “ λ1e
2λtQ´1pyptq ´ Qryptqq.

We obtain

(3.17) ry2λptq “ e´tA˚

ry2λp0q `

ż t

0
e´pt´sqA˚

fpsq ds.

From the definition of f and (3.16), we have
›

›

›

›

ż t

0
e´pt´sqA˚

fpsq ds

›

›

›

›

H
ď C

ż t

0
eω̂0p´A˚qpt´sqe

`

´λ1`ω̂0pAq`2λ
˘

s
}yp0q ´ Qryp0q}H ds.
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Since

´ω̂0p´A˚q ` ω̂0pAq ` 2λ ´ λ1

(1.25)
ă 0,

it follows that

(3.18)

›

›

›

›

ż t

0
e´pt´sqA˚

fpsq ds

›

›

›

›

H
ď Ceω̂0p´A˚qt}yp0q ´ Qryp0q}H.

Combining (3.17) and (3.18) yields

}ry2λptq}H ď Ceω̂0p´A˚qt
`

}ryp0q}H ` }yp0q ´ Qry0}H
˘

,

which yields

(3.19) }ryptq}H ď Cepω̂0p´A˚q´2λqt
`

}yp0q}H ` }ryp0q}H
˘

.

Combining (3.16) and (3.19), we obtain

(3.20) }yptq}H ` }ryptq}H ď C
´

ep´λ1`ω̂0pAqqt ` epω̂0p´A˚q´2λqt
¯

`

}yp0q}H ` }ryp0q}H
˘

.

Since

λ1 ´ ω̂0pAq
(1.25)

ą 2λ ´ ω̂0p´A˚q,

it follows from (3.20) that

(3.21) }yptq}H ` }ryptq}H ď Cepω̂0p´A˚q´2λqt
`

}yp0q}H ` }ryp0q}H
˘

,

which is (1.27).

It is clear that (1.28) is a direct consequence of (1.27).

The proof is complete. □

3.3. Dynamic feedback controls in the nonlinear case - Proof of Theorem 1.2. For each
T ą 0 there exists ε “ εT ą 0 such that (1.33) is well-posed in the time interval r0, T s. The global
existence and uniqueness follow for small ε provided that (1.34) is established for each fixed time
interval r0, T s with εT sufficiently small.

As in the proof of Theorem 1.1, set, for t ě 0,

(3.22) yλptq “ eλtyptq and ryλptq “ eλtryptq,

and denote

Aλ “ A ` λI.

We have

(3.23)

$

’

’

&

’

’

%

y1
λ “ Aλyλ ` eλ¨fpe´λ¨yλq ´ BWB˚

ryλ in p0,`8q,

ry1
λ “ ´A˚

λryλ ` Q´1eλ¨fpe´λ¨Qryλq ` λ1Q
´1pyλ ´ Qryλq in p0,`8q,

yλp0q “ yp0q, ryλp0q “ ryp0q.

Set, for t ě 0,

Zλptq “ yλptq ´ Qryλptq.

As in the proof of Theorem 1.1, we formally have

(3.24)
d

dt
Zλ “ Aλyλ ` eλ¨fpe´λ¨yλq ´ BWB˚

ryλ ` QA˚
λryλ ´ eλ¨fpe´λ¨Qryλq ´ λ1Zλ

“ Aλpyλ ´ Qryλq ` AλQryλ ` eλ¨fpe´λ¨yλq ´ BWB˚
ryλ ` QA˚

λryλ ´ eλ¨fpe´λ¨Qryλq ´ λ1Zλ.

Using (1.4) with R “ 0, as in the proof of Theorem 1.1, we can rigorously derive that

(3.25)
d

dt
Zλ “ AλZλ ´ λ1Zλ ` g1,
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where

g1ptq “ eλt
´

fpe´λtyλptqq ´ fpe´λtQryλptqq

¯

.

It follows from (3.25) that

(3.26) }Zλptq}H ď Cep´λ1`λ`ω̂0pAqqt}Zλp0q}H ` C

ż t

0
ep´λ1`λ`ω̂0pAqqpt´sq}g1psq}H ds.

Here and in what follows in this proof, C is a positive constant independent of t and py0, ry0q.
From (3.26), we obtain

(3.27) }yptq ´ Qryptq}H

ď Cep´λ1`ω̂0pAqqt}yp0q ´ Qryp0q}H ` Cep´λ1`ω̂0pAqqt

ż t

0
e´p´λ1`λ`ω̂0pAqqs}g1psq}H ds.

Since

ry1 “ ´A˚
ry ´ 2λry ` eλ¨Q´1fpe´λ¨Qryλq ` λ1Q

´1py ´ Qryq in p0,`8q,

it follows that

ry1
2λ “ ´A˚

ry2λ ` f1ptq ` fptq in p0,`8q,

where, in p0,`8q,

ry2λ “ e2λryptq, fptq “ λ1e
2λtQ´1pyptq ´ Qryptqq, and f1ptq “ e3λtQ´1fpe´λtQryλptqq.

We obtain

(3.28) ry2λptq “ e´tA˚

ry2λp0q `

ż t

0
e´pt´sqA˚

pfpsq ` f1psqq ds.

As in the proof of Theorem 1.1, we have

(3.29)

›

›

›

›

ż t

0
e´pt´sqA˚

fpsq ds

›

›

›

›

H

ď Cetω̂0p´A˚q
´

}yp0q ´ Qryp0q}H `

ż t

0
e´p´λ1`λ`ω̂0pAqqs}g1psq}H ds

¯

for t ě 0.

Using (1.29), we derive from (3.16), (3.28), and (3.29) that for all ε ą 0, there exists δ ą 0 such
that if }pyptq, ryptqq}H ď δ in r0, T s for some T ą 0, then

}pyptq, ryptqq}H ď Cepω̂0p´A˚q´2λqt}py0, ry0q}H

` Cεepω̂0p´A˚q´2λqt

ż t

0
e´p´λ1`λ`ω̂0pAqqs}pypsq, rypsqq}H ds

` Cεepω̂0p´A˚q´2λqt

ż t

0
e´sω̂0p´A˚q}pypsq, rypsqq}H ds for t P r0, T s.

Here C is a positive constant independent of T , ε and δ. Thus, for all T ą 0, there exists δ ą 0
such that if }py0, ry0q}H ď δ then

(3.30) }pyptq, ryptqq}H ď Cepω̂0p´A˚q´2λqt}py0, ry0q}H in r0, T s.

In particular, we derive that if T is chosen sufficiently large,

(3.31) }pypT q, rypT qq}H ď epω0p´A˚q´2γqT }py0, ry0q}H.

The conclusion follows from (3.30) and (3.31) by considering the time nT ď t ď npT ` 1q for
n P N. □
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4. Static feedback controls in the trajectory sense

This section containing three subsections is mainly devoted to the proofs of Theorem 1.3 and
Theorem 1.4. The proofs of Theorem 1.3 and Theorem 1.4 are given respectively in the first
two subsections. The last subsection is devoted to the study of the infinitesimal generator of the
semigroup associated with the static feedback controls given in Theorem 1.3.

4.1. Static feedback controls in the linear case - Proof of Theorem 1.3. Set, for t ě 0,

(4.1) yλptq “ eλtyptq and ryλptq “ eλtryptq.

We then have, with Aλ “ A ` λI,

(4.2)

$

’

’

&

’

’

%

y1
λ “ Aλyλ ´ BWB˚

ryλ in p0,`8q,

ry1
λ “ ´A˚

λryλ ´ RQryλ in p0,`8q,

yλp0q “ yp0q, ryλp0q “ ryp0qp“ Q´1yp0qq.

Set, for t ě 0,

Zλptq “ yλptq ´ rzλptq.

Formally, we have

d

dt
Zλ “ Aλyλ ´ BWB˚

ryλ ` QA˚
λryλ ` QRQryλ

“ Aλpyλ ´ Qryλq ` AλQryλ ´ BWB˚
ryλ ` QA˚

λryλ ` QRQryλ,

which yields, by (1.4),

(4.3)
d

dt
Zλ “ AλZλ.

This can be proved rigorously as in the proof of Theorem 1.1. Since

Zλp0q “ 0,

it follows that

(4.4) Zλptq “ 0 for t ě 0.

In other words, (1.37) holds.
We next deal with (1.38). Formally, we have

(4.5)
d

dt
xy, ryy “ xAy ´ BWB˚

ry, ryyH ` xy,´A˚
ry ´ RQry ´ 2λryy

(1.37)
“ xAy ´ BWB˚

ry, ryyH ` xy,´A˚
ry ´ Ry ´ 2λQ´1yy

“ ´}W 1{2B˚
ry}2 ´ }R1{2y}2 ´ 2λxQ´1y, yy,

which yields (1.38). The rigor proof of (1.38) can be done by applying Lemma 2.1 for y and ry.
To derive (1.39) from (1.38), one just needs to set

ρptq “ xQ´1yptq, yptqy for t ě 0,

and note that, by (1.38),

ρ P W 1,1p0, T q for all T ą 0 and ρ1ptq ď ´2λρptq for t ě 0.

The proof is complete. □
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4.2. Static feedback controls in the nonlinear case - Proof of Theorem 1.4. For each T ą 0
there exists ε “ εT ą 0 such that (4.7) is well-posed in the time interval r0, T s. The global existence
and uniqueness follow for small ε provided that (1.47), (1.48), and (1.49) are established for each
fixed time interval r0, T s with εT sufficiently small.

We now establish (1.47), (1.48), (1.49) in r0, T s for ε ă εT (small). Set, in r0, T s,

(4.6) yλptq “ eλtyptq and ryλptq “ eλtryptq.

We then have, with Aλ “ A ` λI,

(4.7)

$

’

’

&

’

’

%

y1
λ “ Aλyλ ` eλtfpe´λtyλptqq ´ BWB˚

ryλ in p0, T q,

ry1
λ “ ´A˚

λryλ ´ RQryλ ` Q´1eλtfpe´λtQryλq in p0, T q,

yλp0q “ yp0q, ryλp0q “ ryp0qp“ Q´1yp0qq.

Set, for t P r0, T s,
Zλptq “ yλptq ´ Qryλptq.

As in the proof of (4.3), we obtain

(4.8)
d

dt
Zλ “ AλZλ ` eλ¨

´

fpe´λ¨yλq ´ fpe´λ¨Qryλp¨qq

¯

.

Since Zλp0q “ 0, we obtain

yλptq ´ Qryλptq “

ż t

0
ept´sqAλeλs

´

fpe´λsyλpsqq ´ fpe´λsQryλpsqq

¯

ds.

Using (1.30), we deduce that
yλptq “ Qryλptq for t ě 0,

which implies (1.47).

We next deal with (1.48). The proof of (1.48) is similar to the one of (1.38) by applying Lemma 2.1
for y and ry.

What have been done so far does not require λ ą 0. The fact λ ą 0 is used to derive (1.49) from
(1.48). Set

ρptq “ xQ´1yptq, yptqy for t ě 0,

Note that, by (1.48), as in the proof of (3.30) for all T ą 0, there exists δ ą 0 such that if }y0}H ď δ
in r0, T s, then

(4.9) ρptq ď Ce´2λtρp0q in r0, T s.

In particular, we have, if T is chosen sufficiently large,

(4.10) }pypT q, rypT qq}H ď e´2γT }py0, ry0q}H.

The conclusion follows from (4.9) and (4.10) by considering the time nT ď t ď npT ` 1q for n P N.
The proof is complete. □

4.3. The infinitesimal generator of the semigroup associated with the static feedback
controls. In this section, we derive the information of the infinitesimal generator of the semigroup
associated with the static feedback controls from Theorem 1.3.

Here is the main result of this section.

Proposition 4.1. Let λ P R and assume (1.4). Let y0 P H, set

(4.11) SQptqpy0q “ yptq,

where py, ryq is the solution of (1.36). Then

(4.12)
`

SQptq
˘

tě0
is a strongly continuous semigroup on H.
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Moreover, the semigroup
`

SQptq
˘

tě0
decays exponentially with the rate λ, i.e., there exists C ą 0

such that

(4.13) }SQptq} ď Ce´λt for t ě 0.

Let pAQ,DpAQqq be its infinitesimal generator. We have

(4.14) DpAQq “ QDpA˚q :“
!

Qx;x P DpA˚q

)

and

(4.15) AQz “ ´QA˚Q´1z ´ 2λz ´ QRz for z P DpAQq.

We also have

iq if BWB˚ is bounded, i.e., BWB˚ P LpHq, then

(4.16) DpAQq “ DpAq and AQx “ Ax ´ BWB˚Q´1x for x P DpAq “ DpAQq.

iiq if DpAQq “ DpAq, then BWB˚x P H for x P DpA˚q, and

(4.17) }BWB˚x}H ď }AQx}H ` Cp}A˚x}H ` }x}Hq for x P DpA˚q

for some positive constant C independent of x.

Remark 4.1. Related results from the linear quadratic optimal control theory can be found in
[11, 9, 2, 31, 27]. Known results established in the case λ “ 0 and W being identity are connections

between DpAQ˚
q and DpAq, see [27, Theorem 2.1]. This is different from (4.14) where a connection

between DpAQq and DpA˚q is given. Assertion iq is equivalent to the fact that B is bounded, i.e.,
B P LpU,Hq when W is positive; this case is well-known. Under additional appropriate assumptions
related to the original and the dual system, one might also derive (4.15) using the results in [12]
(see also [27]). The proof of Proposition 4.1 given below is quite simple.

Proof of Proposition 4.1. It is clear that (4.12) and (4.13) are the consequences of Theorem 1.3.

We now prove (4.14) and (4.15). Fix y0 P QDpA˚q (arbitrary). Let py, ryq be the unique weak solu-
tion of (1.36). Since ryp0q “ Q´1y0 P DpA˚q, it follows that ry P C1pr0,`8q;HqXC0pr0,`8q;DpA˚qq

and

(4.18) ry1p0q “ A˚
ryp0q ´ 2λryp0q ´ RQryp0q.

Since yptq “ Qryptq for t ě 0 by Theorem 1.3, we derive that y1p0q is well-defined and

y1p0q “ Qry1p0q
(4.18)

“ ´QA˚Q´1y0 ´ 2λy0 ´ QRQy0.

Hence y0 P DpAQq and

AQy0 “ ´QA˚Q´1y0 ´ 2λy0 ´ QRQy0.

To complete the proof of (4.14) and (4.15), we now show that if y0 P DpAQq then y0 P QDpA˚q.
Fix y0 P DpAQq (arbitrary) and let py, ryq be the unique solution of (1.36). Since y0 P DpAQq and
SQptqpy0q “ yptq, it follows that y P C1pr0,`8q;Hq X C0pr0,`8q;DpAQqq. In particular y1p0q is
well-defined. Since yptq “ Qryptq for t ě 0 by Theorem 1.3, it follows from the equation of ry in
(1.36) that ry1p0q is well-defined and thus ryp0q P DpA˚q. Since ryp0q “ Q´1y0, we derive that

Q´1y0 P DpA˚q.

In other words, y0 P QDpA˚q.

We next establish (4.16). We first assume that BWB˚ P LpHq. It follows that the generator of
the semigroup

`

SQptq
˘

tě0
is A ´ BWB˚Q´1 with the domain DpAq.

We finally derive (4.17). Assume that DpAQq “ DpAq. From (1.5), we have, for x, y P DpA˚q,

|xWB˚x,B˚yyU| ď|xQx,A˚yyH| ` |xQy,A˚xyH| ` |xRQx,QyyH| ` 2|λ||xQx, yyH|

ďp}AQx}H ` C}A˚x}H ` C}x}Hq}y}H.
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It follows that

}BWB˚x}H ď }AQx}H ` Cp}A˚x}H ` }x}Hq for x P DpA˚q,

which is (4.17).

The proof is complete. □

5. Choices of Q for exactly controllable systems

In this section, we discuss how to choose Q for exactly controllable systems. Assume that the
system is exactly controllable at time T . This is equivalent to the fact that (1.6) holds. Fix λ P R
and T˚ ą T and let ρ : r0, T˚s Ñ R be such that

(5.1) ρ is Lipschitz, ρ is decreasing, ρp0q “ 1, ρpT q ą 0, and ρpT˚q “ 0.

Let W P LpUq be symmetric and positive. Define Q : H Ñ H as follows

(5.2) xQz1, z2y “

ż T˚

0
ρpsqe´2λsxWB˚e´sA˚

z1, B
˚e´sA˚

z2y ds for z1, z2 P H.

Then Q is linear, continuous, and symmetric. Moreover, since ρ is decreasing and ρpT q ą 0, A is
an infinitesimal of a group, it follows from (1.6) that

(5.3) Q is invertible.

Formally, it follows from (5.2) that

pA ` λIqQ ` QpA ` λIq˚ “

ż T˚

0
ρpsq

d

ds

´

e´spA`λIqBWB˚e´spA`λIq˚
¯

ds.

Since ρp0q “ 1 and ρpT˚q “ 0, an integration by parts yields,

pA ` λIqQ ` QpA ` λIq˚ “ ´BWB˚ ´

ż T˚

0
ρ1psqe´spA`λIqBWB˚e´spA`λIq˚

ds.

We then obtain

(5.4) AQ ` QA˚ ´ BWB˚ ` QRQ ` 2λQ “ 0

with R : H Ñ H being defined by

(5.5) xRQz1, Qz2y “

ż T˚

0
ρ1psqxWB˚e´spA`λIq˚

z1, B
˚e´spA`λIq˚

z2y ds.

We thus reach (1.4).
Let us make these arguments rigorously, i.e., we verify (1.5):

(5.6) xQz1, A
˚z2y ` xA˚z1, Qz2y ´ xWB˚z1, B

˚z2y

` xRQz1, Qz2y ` 2λxQz1, z2y “ 0 @ z1, z2 P DpA˚q.

Indeed, for z1, z2 P DpA˚2q, we have, from (5.2),

(5.7) xQz1, pA ` λIq˚z2y ` xpA ` λIq˚z1, Qz2y

“

ż T˚

0
ρpsqe´2λsxWB˚e´sA˚

z1, B
˚e´sA˚

pA ` λIq˚z2y ds

`

ż T˚

0
ρpsqe´2λsxWB˚e´sA˚

pA ` λIq˚z1, B
˚e´sA˚

z2y ds.
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This implies

(5.8) xQz1, pA ` λIq˚z2y ` xpA ` λIq˚z1, Qz2y

“

ż T˚

0
ρpsqxWB˚e´spA`λIq˚

z1, B
˚e´spA`λIq˚

pA ` λIq˚z2y ds

`

ż T˚

0
ρpsqxWB˚e´spA`λIq˚

pA ` λIq˚z1, B
˚e´spA`λIq˚

z2y ds.

Since
ż T˚

0
ρpsqxWB˚e´spA`λIq˚

z1, B
˚e´spA`λIq˚

pA ` λIq˚z2y ds

“

ż T˚

0
ρpsqxWB˚e´spA`λIq˚

z1, B
˚ d

ds
pe´spA`λIq˚

z2qy ds

and
ż T˚

0
ρpsqxWB˚e´spA`λIq˚

pA ` λIq˚z1, B
˚e´spA`λIq˚

z2y ds

“

ż T˚

0
ρpsqxWB˚ d

ds
pe´spA`λIq˚

z1q, B˚e´spA`λIq˚

z2y ds,

it follows from (5.8) that

(5.9) xQz1, pA ` λIq˚z2y ` xpA ` λIq˚Qz1, z2y

“ ´xWB˚z1, B
˚z2y ´

ż T˚

0
ρ1psqxWB˚e´spA`λIq˚

z1, B
˚e´spA`λIq˚

z2y ds,

which is (5.6) for z1, z2 P DpA˚2q. The general case follows by density.

We have just proven the following result which is on the choice of Q in the Gramian spirit when
the system is exactly controllable.

Proposition 5.1. Assume that pSptqqtPR Ă LpHq is a strongly continuous group in H, B is an
admissible control operator, and system (1.1) is exactly controllable in time T for some T ą 0. Let
λ P R, T˚ ą T , and ρ : r0, T˚s Ñ R be a function satisfying (5.1), and let W P LpUq be symmetric
and positive. Define Q : H Ñ H by

(5.10) xQz1, z2y “

ż T˚

0
ρpsqe´2λsxWB˚e´sA˚

z1, B
˚e´sA˚

z2y ds for z1, z2 P H.

Then Q is linear, continuous, symmetric, and invertible and (1.4) holds with R defined by (5.5),
i.e., (1.5) is valid.

Remark 5.1. Proposition 5.1 covers the setting considered by Komornik. Indeed, set, with T˚ “

T ` 1
2λ

(5.11) ρptq “

#

1 for 0 ď t ď T,

2λe´2λpT´tqpT˚ ´ tq for T ă t ď T˚.

Then
eλptq “ eλtρptq in r0, T˚s.

Since, for T ď t ď T˚ “ T ` 1
2λ ,

ρptq “ eτe´τ with τ “ 2λpT˚ ´ tq,



STABILIZATION OF CONTROL SYSTEMS 25

and the function τe´τ is increasing in r0, 1s, it follows that ρ defined in (5.11) verifies (5.1).

When A is skew-adjoint and R “ 0, one has the following result. This result was previously
obtained by Urquiza [29] by a different approach using results of Grabowski in [13] (see also [14]),
and can be derived in the same manner as the one of Proposition 5.1.

Proposition 5.2. Assume that
`

Sptq
˘

tPR Ă LpHq is a strongly continuous group, B is an admissible
control operator, and system (1.1) is exactly controllable in time T for some T ą 0. Let λ P R and
let W P LpUq be symmetric and non-negative, and assume that λ ą ω0p´A˚q. Define Q : H Ñ H
by

(5.12) xQz1, z2y “

ż 8

0
e´2λsxWB˚e´sA˚

z1, B
˚e´sA˚

z2y ds for z1, z2 P H.

Then Q is linear, continuous, symmetric, and invertible, and (1.4) holds with R “ 0, i.e., (1.5) is
valid with R “ 0.

Proof. The proof of (5.1) is almost the same as the one of Proposition 5.1. One just needs to note
that the RHS of (5.12) is well-defined for λ ą ω0p´A˚q. The details are omitted. □
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[29] Jose Manuel Urquiza, Rapid exponential feedback stabilization with unbounded control operators, SIAM J. Control
Optim. 43 (2005), no. 6, 2233–2244. MR 2179485

[30] Ambroise Vest, Rapid stabilization in a semigroup framework, SIAM J. Control Optim. 51 (2013), no. 5, 4169–
4188. MR 3120757

[31] George Weiss and Richard Rebarber, Optimizability and estimatability for infinite-dimensional linear systems,
SIAM J. Control Optim. 39 (2000), no. 4, 1204–1232. MR 1814273

[32] George Weiss and Hans Zwart, An example in linear quadratic optimal control, Systems Control Lett. 33 (1998),
no. 5, 339–349. MR 1623882

[33] Jerzy Zabczyk, Mathematical control theory, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA,
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