
HAL Id: hal-04577755
https://hal.science/hal-04577755

Submitted on 17 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computation of Isolated Periodic Solutions for Forced
Response Blade-Tip/Casing Contact Problems

Thibaut Vadcard, Fabrice Thouverez, Alain Batailly

To cite this version:
Thibaut Vadcard, Fabrice Thouverez, Alain Batailly. Computation of Isolated Periodic Solutions for
Forced Response Blade-Tip/Casing Contact Problems. Journal of Engineering for Gas Turbines and
Power, 2024, 146 (4), pp.041011. �10.1115/1.4063704�. �hal-04577755�

https://hal.science/hal-04577755
https://hal.archives-ouvertes.fr


Computation of isolated periodic solutions for forced response
blade-tip/casing contact problems
T. Vadcard1,2, F. Thouverez2, A. Batailly1

Abstract
This article introduces a numerical procedure dedicated to the identification of isolated branches of solutions for nonlinear
mechanical systems. It is here applied to a fan blade subject to rubbing interactions and harmonic forcing. Both contact,
which is initiated by means of the harmonic forcing, and dry friction are accounted for. The presented procedure relies on
the computation of the system’s nonlinear normal modes and their analysis through the application of an energy principle
derived from the Melnikov function. The dynamic Lagrangian frequency-time strategy associated with the harmonic
balance method (DLFT-HBM) is used to predict the blade’s dynamics response as well as to compute the autonomous
nonlinear normal modes. The open industrial fan blade NASA rotor 67 is employed in order to avoid confidentiality
issues and to promote the reproducibility of the presented results. Previous publications have underlined the complexity
of NASA rotor 67’s dynamics response as it undergoes structural contacts, thus making it an ideal benchmark blade
when searching for isolated solutions. The application of the presented procedure considering a varying amplitude of the
harmonic forcing allows to predict isolated branches of solutions featuring nonlinear resonances. With the use of the
Melnikov energy principle, nonlinear modal interactions are shown to be responsible for the separation of branches of
solutions from the main response curve. In the end, the application of the presented procedure on an industrial blade
model with contact interactions demonstrates it is both industry-ready and applicable to highly nonlinear mechanical
systems.
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Calcul de branches de solutions périodiques isolées pour des problèmes de
contact aube/carter en réponse forcée
T. Vadcard1,2, F. Thouverez2, A. Batailly1

Résumé
Cet article présente une procédure numérique dédiée à l’identification de branches de solutions isolées pour les systèmes
mécaniques non linéaires. Cette procédure est appliquée à une aube de soufflante soumise à des interactions de contact
aube/carter et à un forçage harmonique. Le contact, qui est initié au moyen du forçage harmonique, et le frottement sec
sont pris en compte. La procédure présentée repose sur le calcul des modes normaux non linéaires du système et leur
analyse par l’application d’un principe d’énergie dérivé de la fonction de Melnikov. La stratégie Dynamic Lagrangian
Frequency-Time associée à la méthode d’équilibrage harmonique (DLFT-HBM) est utilisée pour prédire la réponse
dynamique de l’aube ainsi que pour calculer les modes normaux non linéaires. L’aube de soufflante industrielle NASA
rotor 67 à géométrie ouverte est utilisée afin d’éviter les problèmes de confidentialité et de promouvoir la reproductibilité
des résultats présentés. Des publications antérieures ont souligné la complexité de la réponse dynamique du NASA
rotor 67 lorsqu’il subit des contacts structurels ce qui en fait une aube de référence idéale pour la recherche de solutions
isolées. L’application de la procédure présentée avec une amplitude variable pour le forçage harmonique permet de
prédire l’existence de branches de solutions isolées associées à des résonances non linéaires. L’utilisation du principe
d’énergie de Melnikov permet de montrer que les interactions modales non linéaires sont impliquées dans la séparation
des branches de solutions de la courbe de réponse principale. Enfin, l’application de la procédure présentée sur un modèle
d’aube industrielle dans une configuration d’interaction de contact aube/carter démontre qu’elle est à la fois utilisable en
conception industrielle et applicable à des systèmes mécaniques hautement non linéaires.

Mots-clés
Méthode d’équilibrage harmonique, rotor/stator interaction, aube de soufflante, modes normaux non linéaires, isolat,
principe énergétique de Melnikov
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1 Introduction
In order to comply with international roadmaps for net carbon neutrality [1], aircraft engine manufacturers are
committed to designing increasingly efficient turbomachines. To achieve this goal, the reduction of operating tip
clearances is considered as a way to mitigate leakage flows and subsequent aerodynamic losses. However, this choice
raises new challenges in the field of mechanical design as structural contacts between blades and their surrounding
casing become more likely within nominal operating conditions [2, 3]. Therefore, accounting for these interactions in
early design stages is now required. This calls for the development of efficient industry-ready predictive numerical
strategies.

Strategies suitable for predictive simulations of rubbing interactions are of two types. (1) Those based on time
marching simulations are the industrial state-of-the-art [4, 5, 6, 7]. However, such strategies face significant challenges
for the prediction of periodic solutions, since reaching steady state can be computationally costly. This is the reason
why (2) strategies in the frequency domain, specifically the harmonic balance method (HBM) [8, 9, 10, 11, 12],
have known a renewed interest. Frequency domain strategies are also well-suited to provide a qualitative view of a
system’s dynamics including the stability analysis of predicted periodic solutions [13, 14, 15] and the connectivity of
branches of solutions [9, 11, 16, 17].

Key features of numerical strategies dedicated to nonlinear dynamics simulations are inherently related to the
type of investigated nonlinearity. Newly developed strategies are oftentimes applied to low-dimensional systems
featuring smooth nonlinearities [17, 18, 19, 20, 21]. While such system may exhibit a very rich dynamics response,
smooth nonlinearities do not present the same numerical challenges as those that may be found when dealing
with nonsmooth nonlinearities such as contact. Because strategies developed for smooth nonlinearities rely on
differentiability hypotheses, they may not apply to nonsmooth nonlinearities. Besides, even for smooth nonlinearities,
industrial applications of predictive numerical strategies are scarce, thus justifying the development of numerical
strategies dedicated to nonsmooth nonlinearities on large scale industrial systems.

Among the wide variety of nonlinear phenomena, the detection of isolated branches of solutions for mechanical
systems is of particular interest. Indeed, isolated solutions have been identified as critical from a design viewpoint,
notably due to the fact that they may feature higher amplitudes in frequency ranges beyond the predicted nonlinear
resonances [16, 22, 23, 24]. Isolas—closed branches of solutions that are not connected to the main nonlinear
frequency response curve of a system—have been predicted for many nonlinear applications [9, 16, 17, 18, 19, 21, 23,
25, 26, 27, 28]. Yet, no industrial standard strategy exist to systematically locate them accurately and efficiently. The
use of homotopy [29], Gröbner bases [18, 30], limit-point bifurcation tracking [17] or the global terrain method [21]
can lead to the identification of isolated solutions on low-dimensional systems, but these methodologies remain
ill-suited for large scale non-regularized contact problems.

Recently, the analysis of nonlinear normal modes through the Melnikov energy principle was shown to accurately
locate isolas on low-dimensional systems featuring both geometrical nonlinearities [19] and dry friction [26] at a low
computational cost. Cenedese and Haller [19] provided mathematical justifications for the use of the energy balance
method [31] that aims to predict nonlinear resonances in forced responses. The latter was recently extended to
damped nonlinear normal modes [32, 33]. It allowed to locate isolated branches of solutions on a phenomenological
model with friction contacts [33]. The study presented in this article demonstrates the applicability of the Melnikov
energy principle on an industrial system featuring rubbing interactions, i.e. including both vibro-impact and dry
friction. It provides an industry-ready numerical strategy for the prediction of high amplitude isolated branches
of solutions. The second section presents all the methodological tools used in this paper including the HBM, the
continuation procedure, the evaluation of nonlinear forces, the computation of complex nonlinear modes and the
application of the Melnikov energy principle. The third section introduces the NASA rotor 67 model and the contact
scenario. Finally, in the fourth section, results obtained by the application of the proposed isola detection procedure
on the blade as well as an analysis focusing on the physical mechanisms favoring the apparition of isolated branches
are presented in details.
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2 Numerical isola detection procedure
2.1 Harmonic balance method
The time and space-normalized nonlinear equation of motion for a n-dof (degrees of freedom) mechanical system
with respect to time reads

α

β2
Mẍ(t) +

α

β
Cẋ(t) + αKx(t) + fnl(x(t), ẋ(t), ω) = fex(ω, t) (1)

with x(t) the unknown displacement field, M, C and K respectively the mass, damping and stiffness matrices of
the system. fnl(x(t), ẋ(t), ω) is the vector of nonlinear forces and fex(ω, t) the vector of monoharmonic excitation
forces of pulsation ω. Overdots refer to derivatives with respect to time t. α and β are respectively space and time
normalization coefficients, chosen so that ‖αx(t)‖ ' 1 and ω/β ' 1.

The HBM relies on the assumption that x(t), fnl(x(t), ẋ(t), ω) and fex(ω, t) can be written as a Nh-truncated
Fourier series of fundamental pulsation ω, such as

x(t) ' 1

2
a0 +

Nh∑
k=1

(ak cos(kωt) + bk sin(kωt))

fnl(t) '
1

2
anl
0 +

Nh∑
k=1

(
anl
k cos(kωt) + bnl

k sin(kωt)
)

fex(t) '
1

2
aex
0 +

Nh∑
k=1

(aex
k cos(kωt) + bex

k sin(kωt))

(2a)

(2b)

(2c)

where a•k and b•
k with • ∈ {−,nl, ex} are the real coefficients of the Fourier decompositions of each variable.

By carrying out a Fourier-Galerkin procedure on the equation of motion, the differential nonlinear equation of
motion Eqs. (1) becomes the nonlinear algebraic equation

H(x̃, ω) = Z(ω)x̃+ f̃nl(x̃)− f̃ex = 0. (3)

All Fourier coefficients are gathered in so-called multiharmonic vectors of size n(2Nh + 1), such as

x̃ = [
1

2
a>0 a>1 b>

1 . . . a>Nh
b>
Nh

]>

f̃nl = [
1

2
(anl

0 )
>
(anl

1 )
>
(bnl

1 )
>
. . . (anl

Nh
)
>
(bnl

Nh
)
>
]>

f̃ex = [
1

2
(aex

0 )
>
(aex

1 )
>
(bex

1 )
>
. . . (aex

Nh
)
>
(bex

Nh
)
>
]>.

(4a)

(4b)

(4c)

The multiharmonic vector x̃ is the new unknown vector of the problem.The dynamic stiffness matrix Z(ω) contains
the linear part of the problem and is block-diagonal with its Nh + 1 blocks Z0 and Zk for k ∈ J1, NhK being

Z0 = αK and Zk(ω) = α

K−
(
kω

β

)2

M
kω

β
C

−kω

β
C K−

(
kω

β

)2

M

 . (5)

For the sake of computational efficiency, the size of the HBM equation Eqs. (3) is reduced by using an exact
condensation procedure of the linear dof [34]. The final size of the system becomes nnl(2Nh + 1) where nnl is the
number of nonlinear dof. The resulting quantities are subscripted •r and the condensed algebraic equation of motion
reads

Hr(x̃r, ω) = Zr(ω)x̃r + f̃nl,r − f̃ex,r = 0. (6)
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2.2 Path following
2.2.1 Arc-length continuation
For highly nonlinear applications such as contact, nonlinear frequency response curves (NFRC) feature complex
behaviors such as turning points thus yielding multiple solutions for given values of the control parameter ω. To go
through the NFRC, a path following technique must be employed. The arc-length continuation [35] is used in this
study. It is based on a prediction-correction scheme. The correction phase is carried out by a Newton-Raphson
solver according to the so-called arc-length parameterization of the curve. The control parameter ω is considered as
an unknown of the problem, thus increasing the dimension of the problem to solve. The augmented unknown vector
is noted y =

[
x̃>

r , ω
]>.

Prediction The arc-length path following technique is based on a Newton-Raphson root-finding technique. A
secant prediction is used to obtain an initial guess of the solution. This estimate y0

i+1 for the (i+ 1)-th point is
computed by using the last two solutions yi and yi−1, so that

y0
i+1 = yi +∆si

∆yi

‖∆yi‖2
(7)

where ∆yi = yi − yi−1 and ∆si is the size of the prediction step at the i-th iteration.

Parameterization A parameterization equation Pω(y) must be added to solve the augmented problem. The solution
at iteration (i+1) is searched on an hypersphere of radius ∆si centered around yi in the (nnl(2Nh+1)+1)-dimensional
resolution space. It is done by ensuring the respect of

Pω(y) = ‖x̃r − x̃r,i‖22 + (ω − ωi)
2 −∆s2i = 0. (8)

Correction The correction step is carried out with an iterative Newton-Raphson root-finding technique solving for y
the equation G(y) =

[
Hr

>(y),Pω(y)
]>

= 0, including both the equation of motion Eqs. (6) and the parameterization
equation Eqs. (8). The solution is found by successively correcting the estimate of the solution, such as at the (k+1)-

th correction ∆yk+1 is computed following ∂G
∂y

(yk)∆yk+1 = −G(yk) with the next iterate being yk+1 = yk+∆yk+1.
A solution is found when the residual function is sufficiently close to zero, ensured by a user-defined tolerance δ, such
that a solution is considered to be converged when ‖G(y)‖22 < δ. The arc-length procedure is illustrated in Fig. 1a.

2.2.2 Closed loop control
Isolated branches of solutions are encountered in this study, justifying the need of a closed loop detection procedure.
Since these branches are isolated, the continuation must stop when it has looped over the whole branch. For this
purpose, a geometric condition is used in this article.

At the beginning of the continuation procedure, the first point y0 =
[
x̃>

r,0, ω0

]> is saved as a reference point.
Then, if two successive points cross the reference value ω0 of the control parameter such as ωi < ω0 < ωi+1 or
ωi+1 < ω0 < ωi, then a closed loop test is carried out. An estimation of the solution x̃r,int at ω = ω0 is interpolated
between ωi and ωi+1 by means of

x̃r,int = x̃r,i +
ω0 − ωi

ωi+1 − ωi
(x̃r,i+1 − x̃r,i). (9)

If the relative distance dint between x̃r,int and x̃r,0, computed by the formula

dint =
‖x̃r,int − x̃r,0‖2

‖x̃r,int‖2
, (10)

is lower than the user-defined tolerance dtol, an isolated branch of solutions is detected and the continuation stops.
The closed loop test is illustrated in Fig. 1b.

Vadcard et al. 5

mailto:thibaut.vadcard@ec-lyon.fr


Computation of isolated periodic solutions for forced response blade-tip/casing contact problems

x̃r,i−1̃

xr,i
x̃r,i+1

x̃0
r,i+1

∆si

Hr(y) = 0

ω

||x̃r||

(a) arc-length continuation

.

x̃r,i+1

x̃r,i x̃r,0

x̃r,int

Hr(y) = 0

ω0 ω

||x̃r||

(b) closed loop control

Figure 1. Continuation strategy, solutions subspace ( ), direction of research ( ), solutions ( ), prediction ( ), correction
iterations ( ).

2.3 Dynamic Lagrangian frequency-time
The dynamic Lagrangian frequency-time procedure [8] is used to compute the nonlinear forces associated with
contact interactions. This strategy is an extension of the alternating frequency-time (AFT) methodology [36]. It
has been widely used to predict the dynamics of blade/disk assemblies [21, 28, 37, 38]. The DLFT-HBM was also
recently shown to be well-suited for stiff vibro-impact contexts [16, 34].

2.3.1 Fourier matrices
The IDFT consists in reconstructing a time-discrete signal on Nt evenly spaced instants from the knowledge of the
coefficients of its Nh-truncated Fourier series and using the associated Fourier basis BNh(t) that read

BNh(t) =

[
1

2
, cos(ωt), sin(ωt), . . . , cos(Nhωt), sin(Nhωt)

]>
. (11)

The IDFT is carried out by means of a matrix multiplication of the multiharmonic vector z̃. For a given time-
dependent scalar variable z(t), an IDFT corresponds to the computation of z such as

z = [z(t1), z(t2), . . . , z(tNt−1), z(tNt)]
>
= F1z̃ (12)

with the IDFT matrix F1 being

F1 =
[
[BNh(t1)| . . . |BNh(ti)| . . . |BNh(tNt)]

>
]
. (13)

The DFT matrix is defined as the Moore-Penrose pseudo-inverse of F1, i.e. so that F1F1 = INt , and it reads

F1 = F>
1

(
F1.F

>
1

)−1

. (14)

The DFT and IDFT matrices can be extended to the transformation of vectorial variables of size n by Kronecker
products, such as

Fn = F1 ⊗ In and Fn = F1 ⊗ In. (15)

2.3.2 Evaluation of nonlinear forces
The computation of the nonlinear forces with DLFT-HBM is based on a prediction-correction algorithm. The
underlying mathematical formalism relies on augmented Lagrangians [39]: unilateral contact constraints are ensured
by the introduction of a penalization term including a supplementary unknown displacement field ỹr. The purpose
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and properties of ỹr are addressed further in the section. The normal contact forces associated with the augmented
Lagrangian formalism leads to

f̃N
nl,r = f̃ex,r − Zr(ω)x̃r − ε(g̃x,r − g̃y,r) (16)

where g̃x,r and g̃y,r are multiharmonic vectors representing the gap functions respectively associated with x̃r and ỹr
such as g̃x,r = Fnnld − x̃r and g̃y,r = Fnnld − ỹr with d = {d(ti)}i=1...Nt

vector containing the distance between
the undeformed structure and the obstacle on each nonlinear node at each instant. ε is a weighting coefficient and
x̃r is the estimate of the solution displacement field at the current iteration of the Newton-Raphson procedure.
The DLFT-HBM procedure relies on the fact that ỹr is strictly admissible in terms of contact conditions, so that
at convergence, i.e. when x̃r is also admissible in terms of contact conditions, the term ε(g̃x,r − g̃y,r) vanishes.
This hypothesis is satisfied by the way the contact constraints are handled in DLFT-HBM. Indeed, the term ỹr is
computed in a manner so that all unilateral contact conditions are enforced in the time domain.

The computation of the contact forces is carried out by a prediction-correction scheme. The contact forces of (16)
are decomposed such as f̃N

nl,r = f̃N
nl,pre + f̃N

nl,cor where f̃N
nl,pre = f̃ex,r − Zr(ω)x̃r − εg̃x,r and f̃N

nl,cor = εg̃y,r. Following
the hypothesis that ỹr is admissible in terms of unilateral contact conditions, the corrections should be computed in
the time domain so that they ensure

0 ≤ fN
nl,r ⊥ gy,r ≥ 0. (17)

In order to correct the nonlinear forces as stated, it is necessary to transform f̃N
nl,pre into the time domain, such as

fN
nl,pre = Fnnl f̃

N
nl,pre. The state of contact is predicted thanks to the sign of the prediction fN

nl,pre(ti) at every time ti.
The state of contact is then used to decide whether gy,r(ti) should be zero or not, determining in the mean time the
value of the correction since f̃N

nl,cor = εg̃y,r:
• contact (fN

nl,pre(ti) > 0): gy,r(ti) = 0 implying that fN
nl,cor(ti) = 0,

• separation (fN
nl,pre(ti) ≤ 0): gy,r(ti) 6= 0 implying that fN

nl,r(ti) = 0, thus fN
nl,cor(ti) = −fN

nl,pre(ti).
At this point, the value of ỹr is fully known because it is expressed as a function of g̃y,r. After this phase of
correction, the contact forces are transformed back to the frequency domain where they are used to evaluate the
residual function Hr(x̃r, ω) following

Hr(x̃r, ω) = Zr(ω)x̃r − f̃ex,r + f̃ex,r − Zr(ω)x̃r − ε(g̃x,r − g̃y,r)︸ ︷︷ ︸
f̃N
nl,r

= 0, (18)

which finally yields

Hr(x̃r, ω) = −ε(g̃x,r − g̃y,r) = 0. (19)

Once the residual function Eqs. (18) has reached zero, g̃x,r = g̃y,r so x̃r is admissible in terms of unilateral contact
conditions. The equation of equilibrium is then also verified because (16) ensures that x̃r is a solution of the equation
of motion when ε(g̃x,r − g̃y,r) = 0. The whole contact problem is then solved. The prediction-correction procedure
is summed up in Fig. 2. In order to guarantee the convergence of the strategy in the iterative solver, the jacobian
matrix J = ∂Hr

∂x̃r
(x̃r, ω) is evaluated through an analytical procedure [34, 40].

2.4 Complex nonlinear normal modes
In a nonlinear framework, the modal properties (eigenfrequencies and mode shapes) of a system are dependent on
the energy of the response. For that reason, linear modal analysis may only be considered in a nonlinear context
for low amplitudes or weakly nonlinear phenomena. In the literature, several mathematical formalisms have been
introduced [41, 42, 43, 44] to go beyond this roadblock which led to various definitions of nonlinear normal modes
(NNM). In this article, the notion of complex nonlinear mode [44] is retained as it is well-suited in a HBM framework:
it is based on the resolution of the nonconservative autonomous equation of motion

α

β2
Mẍ(t) +

α

β
Cẋ(t) + αKx(t) + fnl(x(t), ẋ(t)) = 0 (20)
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Newton-Raphson
correction
k = k + 1

solution found

x̃k
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f̃
N,k

nl,pre(x̃
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r )

IDFT
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nl,pre(x̃

k
r )

fN,k
nl (x̃k

r )

DFT
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correction||Hr(x̃r
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(t
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Figure 2. DLFT-HBM procedure, c•j =
√

(a•
j )

2 + (b•j )
2.

In order to account for the nonconservative nature of the equation, the shape of the solution x(t) is assumed to be
an exponentially decaying Nh-truncated Fourier series, such as

x(t) ' a0
2

+

Nh∑
k=1

e−kζt (ak cos(kωt) + bk sin(kωt)) . (21)

Under the hypothesis that the decaying factor ζ is small compared to ω, i.e. ζ � ω, the DLFT-HBM can be
employed to solve (20). It only requires a modification of the dynamic stiffness matrix Z(ω). Its blocks Zk for
k ∈ J1, NhK become

Zk = α

[
A −B

B A

]
(22)

with

A = K− kζ

β
C− k2ω2 − k2ζ2

β2
M (23)

and

B =
2k2ωζ

β2
M− kω

β
C. (24)
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NNM are computed with an arc-length continuation procedure. Since ζ is a new unknown of the problem, the
arc-length parameterization equation should be changed to

Pω(x̃r, ω, ζ) = ‖x̃r − x̃r,i−1‖2 + (ω − ωi−1)
2 + (ζ − ζi−1)

2 −∆s2i = 0. (25)

An additional equation is needed in order to close the augmented system of dimension (nnl(2Nh + 1) + 2). In this
work, a phase condition on the displacement of a control dof is imposed by

Pζ(x̃r) = 〈bcontr, (BNh(t1))
>
x̃r〉 = xcontr(t1) = 0 (26)

where bcontr is a boolean vector composed of zeros but on the control dof where it contains a one, restraining the
phase condition to the control dof. Equation Eqs. (26) ensures that the displacement of the control dof xcontr is null
when t = t1 = 0. In practice, the continuation of a NNM is initialized at a low amplitude in the linear domain where
the NNM is coincident with the linear free vibration mode.

2.5 Melnikov energy principle for nonconservative systems
The analysis of conservative autonomous solutions through the Melnikov energy principle, proposed by Cenedese
and Haller [19], was recently shown to accurately predict the existence of isolated branches of solutions on low-
dimensional models featuring geometrical nonlinearities [19] and dry friction [26]. From the knowledge of a
conservative autonomous solutions family, the Melnikov energy principle allows to state if these solutions persist
when adding a nonconservative perturbation Q of the form

Q(x, ẋ, τ) = Afex cos(ωτ)−Cẋ− fnl(x, ẋ, ω) (27)

to the conservative equation of motion, where fex is a normalized excitation shape and A a dimensionless amplitude.
The Melnikov energy principle relies on the analysis of the estimated work of the perturbation Q associated with a
conservative NNM trajectory xc(t). In this paper, the case of a perturbation Q with the same periodicity as the
autonomous solutions xc(t) is investigated, noted by the •1:1 superscript. The work of the perturbation can be
written as the so-called Melnikov function

M1:1 = w1:1(A, fex, t)−Rln(C)−Rnl(fnl) (28)

with

Rln(C) =

∫ T

0

〈ẋc(t+ τ),Cẋc(t+ τ)〉dτ, (29)

Rnl(fnl) =

∫ T

0

〈ẋc(t+ τ), fnl(t+ τ)〉dτ (30)

and

w1:1(A, fex, t) = W 1:1(A, fex) cos (ωt− α1,ex) (31)

where W 1:1(A, fex) = Aπ
√
〈ac

1, fex〉2 + 〈bc
1, fex〉2 and α1,ex is a phasing angle.

The Melnikov energy principle states that, for a given solution xc(t), if the amplitude of the work provided by
the excitation forces W 1:1 is larger than the dissipation of both linear Rln and nonlinear Rnl nonconservative effects,
then the autonomous solution is associated with two periodic solutions in the actual perturbed system [19]. Three
different cases are identified:

•
∣∣W 1:1

∣∣ > |Rln|+ |Rnl|, two periodic solutions persist,
•

∣∣W 1:1
∣∣ = |Rln|+ |Rnl|, a single periodic solution persists,

•
∣∣W 1:1

∣∣ < |Rln|+ |Rnl|, no periodic solution persists.
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The analysis of the sign of the function M =
∣∣W 1:1

∣∣− |Rln| − |Rnl| is sufficient to state on the existence of periodic
solutions in the vicinity of autonomous conservative solutions [19].

In this paper, the methodology is based on the analysis of nonconservative autonomous solutions of complex
nonlinear modes to estimate the Melnikov function, similarly to recent work carried out in the context of friction
related nonlinearities [33]. For industrial models, damping effects can not be neglected in the computation of NNM
justifying the use of nonconservative NNM. The slow exponential decay hypothesis made for the computation of
complex nonlinear modes (see Sec. 2.4) reduces the influence of this choice on the accuracy of the method. Indeed,
the dissipation associated with the damping ratio ζ is small over a single period. The use of damped NNM instead
of conservative NNM is examined in the light of the results of Sec. 4.

2.6 Numerical isola detection procedure
The proposed numerical strategy for the research of isolated branches of solutions is composed of four steps:

1. a NFRC is computed for a given level of forcing and damping, see Fig. 3a,
2. the damped NNM of the system is computed, see Fig. 3b,
3. Melnikov’s indicator is used to predict the location of solutions in forced response, see Fig. 3c,
4. new NFRC calculations are run in the area where isolated branches of solutions are predicted, see Fig. 3d.

(a) step 1: NFRC (b) step 2: NNM

(c) step 3: Melnikov analysis (d) step 4: continuation
Figure 3. Numerical isola detection procedure, NFRC ( ), NNM ( ), Melnikov energy principle predicts persistence ( ),
isolated branch of solutions ( ).

Figure 3 illustrates the proposed isola detection procedure, it also explains how isolated solutions are found in the
vicinity of a NNM.
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3 Blade tip/casing interaction on NASA rotor 67
3.1 Blade model
The industrial case study used in this work is the NASA rotor 67 fan blade [45], developed at NASA’s Lewis
research center as a benchmark blade for computational fluid dynamics codes [46]. More recently, it was used for the
benchmark of numerical strategies accounting for blade-tip/casing interactions [16] where its intricate dynamics
response was exhibited. The rotor is made out of a titanium alloy of grade 5: TA6V (Ti 6Al 4V). The material
properties of this alloy are given in Tab. 1.

Young’s modulus E density ρ Poisson coefficient ν

108GPa 4,400 kg·m−3 0.34

Table 1. Material properties retained for TA6V.

The full finite element mesh is composed of 129181 quadratic pentahedron elements adding up to 201287 nodes1,
see Fig. 4b. A reduced-order model is computed by using a Craig-Bampton procedure [47] where the root of the
blade is assumed to be clamped. The reduced-order model is composed of nb = 9 boundary nodes evenly spaced
along the blade tip and η = 12 internal modes. Modal damping is used with ξ1−2 = 1 · 10−3 for the first two bending
modes (1B and 2B) and ξ3+ = 5 · 10−3 for the remaining modes. The eigenfrequencies of the first three modes
are given in Tab. 2. The full NASA rotor 67 bladed disk is represented in Fig. 4a. In agreement with previous
publications, only a single blade is considered in this study. In this paper, all the figures with NFRC are displayed
for the radial displacement of the leading edge r1(t).

mode • 1B 2B 1T 4 5

ω• (rad·s−1) 2,039.8 6,343.7 10,745.3 14,830.3 18,680.9

f (Hz) 324.6 1,009.6 1,710.2 2,973.2 2,973.2

Table 2. First eigenfrequencies of the blade.

(a)

𝑦

𝑥

𝑧 𝜔

LETE

(b)
Figure 4. NASA rotor 67: full bladed disk [48] (a), finite element mesh (b).

1mesh available at https://lava-wiki.meca.polymtl.ca/public/modeles/rotor_67/
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3.2 Contact scenario
Experimental findings highlighted that the vibration amplitudes of the casing are negligible in rubbing interactions.
These observations allow to model the casing by a rigid mathematical profile. In this paper, a cylindrical casing
is assumed, each boundary node is at a distance of cj = 4 · 10−4 m for j ∈ J1, nbK at rest. Contact is initiated
through the excitation of the whole blade along its first bending mode with a dimensionless amplitude A on the first
harmonic, so that

fex(t) = AMΦ1B cos(ωt). (32)

Aforementioned key quantities are depicted in Fig. 5.

cj
ωj

fex

Figure 5. Circular casing ( ) in front of the j-th boundary node ( ).

Given the high relative speeds involved in rubbing interactions, permanent sliding is assumed for the computation
of dry friction forces. For the j-th boundary node at time ti, it yields

fθ
nl,j(ti) = µ

vθj (ti) + ρjω√
(vθj (ti) + ρjω)2 + vzj (ti)

2
fN

nl,j(ti) (33)

and

fz
nl,j(ti) = µ

vzj (ti)√
(vθj (ti) + ρjω)2 + vzj (ti)

2
fN

nl,j(ti) (34)

where fθ
nl,j and fz

nl,j are the circumferential and axial friction forces, µ = 0.15 is the dry friction coefficient, vθj and
vzj are the circumferential and axial velocities. ρj is the radial distance of the j-th boundary node from the rotation
axis.

4 Numerical results
4.1 Isola detection procedure
A dynamic analysis of the investigated system is carried out with A = 140. The NNM of the system associated with
the 1B mode is also computed as it is required for the Melnikov analysis. Nh = 10 harmonics and Nt = 512 instants
are considered for the HBM computations and the DLFT-HBM parameter ε is set to ε = 1 · 107 N·m−1.

4.1.1 Melnikov energy principle

Both the work and dissipative terms of the Melnikov function M1:1 are represented in Fig. 6: several wells of energy
delimited by high amplitude peaks are observed for the dissipative term. The Melnikov energy principle states that
if the work term ( ) is greater than the dissipative term (also referred to as resistance) ( ), then solutions persist
in forced response. Accordingly, wells of energy are privileged areas for the existence of solutions in forced response.
These areas translate into portions of the NNM—represented in black ( )—where the Melnikov energy principle
states that solutions may exist in forced response, see Fig. 7. Conversely, areas of the NNM for which the dissipative
term is greater than the work term are depicted using a lighter color ( ). In total, six distinct portions of the NNM
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Figure 6. Energy principle for A = 140, dissipative term |Rln|+ |Rnl| ( ), work term
∣∣W 1:1

∣∣ ( ).
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Figure 7. Application of the energy principle for A = 140, main NFRC ( ), isolated branches of solutions ( ), NNM
(M1:1

> 0) ( ), NNM (M1:1
< 0) ( ), c1 ( ).

for which solutions may exist are identified with the Melnikov energy principle. It is noticeable in Fig. 7 that the two
first portions correspond almost perfectly to the main NFRC computed by DLFT-HBM ( ). The four remaining
portions however, correspond to much larger pulsations (ω ≥ 2,750 rad·s−1) and amplitudes (‖r1(t)‖∞ ≥ 1.5mm).
Carrying out DLFT-HBM computations using as initial guess the center of these areas yields the discovery of two
distinct isolated branches of solutions ( ) which underlines the relevance of the results obtained by application of
the Melnikov energy principle. The isolated branch associated to the highest amplitudes corresponds to two small
persistence areas and is not identified with the same level of precision as the other branch of isolated solutions. This
slight defect is attributed to the fact that the resistance term displayed in Fig. 6 features small oscillations around
ω = 3,250 rad·s−1 that cause M1:1 to oscillate around zero.

Considering the small computational cost of the application of the Melnikov energy principle as well as the
accuracy achieved on the predicted areas where solutions may exist, these first results underline the potential of the
Melnikov energy principle for structural design purposes. The orders of magnitude of computational times associated

Vadcard et al. 13

mailto:thibaut.vadcard@ec-lyon.fr


Computation of isolated periodic solutions for forced response blade-tip/casing contact problems

with the isola detection procedure on a computer equipped with a i7 CPU, say for the results of Fig. 7, is around 80
minutes (including the NNM, the Melnikov energy principle, the computation of the main NFRC and each isolated
branch). For comparison purposes, the computational time of TI simulations—presented in Sec. 4.1.2—on the whole
frequency range adds up to about 150 minutes (3 minutes per point), making it slower than the whole frequency
domain strategy. Moreover, one can note that the computation of the NNM and the energy principle are carried out
only once for all forcing amplitudes, making DLFT-HBM computations at other values of A even faster (around 30
minutes per level of forcing amplitude). In addition, it is important to emphasize that the DLFT-HBM based isola
detection procedure also provides access to isolated branches that the TI is unable to account on its own.

Looking closely at the results, there remains small discrepancies between the Melnikov energy principle and
DLFT-HBM simulations that are worth investigating. In particular, while the Melnikov energy principles yields
six distinct portions of the NNM—which suggests that four isolated branches of solutions may exist beside of the
main NFRC—only two isolated branches of solutions are found with DLFT-HBM. Interestingly, one may notice
that portions of the NNM over which solutions are expected to be found are all separated by narrow areas of high
amplitudes of the NNM, see Fig. 7. Peaks in the NNM—that translate into peaks of resistance in Fig. 6—cause the
Melnikov energy principle to predict an interruption in solution persistence.

4.1.2 Numerical verification of DLFT-HBM solutions
In order to assess the physical relevance of the isolated branches of solutions detected in Fig. 7, TI simulations are
run throughout the considered pulsation range. These simulations are carried out over a hundred periods using
initial conditions taken from DLFT-HBM predicted solutions. Almost all TI simulations depicted in Fig. 8 reach

2,000 2,500 3,000 3,500
0

1

2

3

4
·10−3

ω (rad/s)

||r
1
(t
)||

∞
(m

)

Figure 8. Correlation of TI and HBM simulations for A = 140, main NFRC ( ), isolated branches ( ), TI ( ), c1 ( ).
Displacement graphs : DLFT-HBM ( ), TI ( ), casing ( ).

the same periodic orbits as the DLFT-HBM solutions. Contrarily to the DLFT-HBM, contact treatment in TI
simulations is based on Lagrange multipliers [4]. Due to the distinct contact treatment algorithm and to the HBM
implied harmonic truncation, the transfer of initial conditions from DLFT-HBM to TI is considered as a perturbation
of the periodic solutions. For that reason, it is assumed that, if perturbed solutions reach the same periodic orbit
after being integrated over many periods, these solutions are stable. From a design standpoint, because most of the
solutions depicted in Fig. 8 are predicted to be stable, they could be of critical importance.

In addition, it is also shown in Fig. 8 that an excellent agreement is observed between TI and DLFT-HBM
solutions in the time domain. This provides an a posteriori confirmation that the numerical parameters of the
DLFT-HBM are properly chosen for the characterization of this nonlinear configuration. As pointed out in the
literature [49], complex nonlinear normal modes may provide erroneous results in some cases. In this work, the fact
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Figure 9. NFRC from A = 20 to A = 120, A = 60 ( ), A = 80 ( ), A ∈ {20, 40, 100, 120} ( ), NNM ( ), c1 ( ).

that DLFT-HBM and TI solutions are a perfect match in areas where the complex nonlinear normal mode predicted
the existence of solutions provides an a posteriori proof that the use of complex nonlinear modes is reliable for this
application.

4.2 Influence of the forcing amplitude
4.2.1 Nonlinear resonance frequency
In order to further analyze the dynamics of the blade, multiple forced responses are computed for various values of
A from A = 20 to A = 120, see Fig. 9. The NNM of the system accurately describes the backbone curve of the
system, to the exception of the narrow areas where peaks of amplitude are observed, as discussed in Sec. 4.1.1.

Looking at the NFRC obtained for each value of A, there is a very sudden increase of the predicted nonlinear
resonance frequency between A = 60 ( ) and A = 80 ( ). Indeed, the computed NFRC for A = 80 features high
amplitude solutions for pulsations as high as 2,700 rad·s−1 ( ), while the peak of amplitude for A = 60 is reached
around 2,100 rad·s−1 ( ). These preliminary results indicate that the value of the nonlinear resonance frequency
predicted by DLFT-HBM is discontinuous with respect to A.

4.2.2 Isolated branches of solutions
The Melnikov energy principle is here applied for A = 60 and the results are depicted in Fig. 10. In addition to a
portion of the NNM corresponding to the NFRC ( ) plotted in Fig. 9, the Melnikov energy principle yields four
additional areas—marked as 2, 3, 4 and 5 in Fig. 10—where solutions are expected. In a similar fashion to what was
done in Sec. 4.1.1, solutions belonging to these areas are used to run DLFT-HBM simulations and three isolated
branches of solutions ( ) are found. The first isolated branch of solutions includes portions 2 and 3 of the NNM
while the two other isolated branches respectively correspond to portions 4 and 5 of the NNM, see Fig. 10.

A better understanding of the previously witnessed discontinuity of the nonlinear resonance frequency predicted
by DLFT-HBM with respect to A is thus obtained. Indeed, it seems that as A increases, the isolated branch of
solution predicted for A = 60 around areas 2 and 3 becomes connected to the main NFRC. From a DLFT-HBM point
of view, because a standard continuation algorithm is employed—and no isolated branch of solutions is computed—,
this implies a sudden increase of the nonlinear resonance frequency. One may assume that similar phenomena are to
be expected with the other isolated branches of solutions for much greater values of A.
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Figure 10. Application of the energy principle for A = 60, main NFRC ( ), isolated branches of solutions ( ), NNM
(M1:1

> 0) ( ), NNM (M1:1
< 0) ( ), c1 ( ).
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Figure 11. Application of the energy principle for A = 20, main NFRC ( ), isolated branches of solutions ( ), NNM
(M1:1

> 0) ( ), NNM (M1:1
< 0) ( ), c1 ( ).

In order to investigate the isolated branches at lower amplitudes, the value A = 20 is now studied. The application
of the Melnikov energy principle to this configuration yields the results depicted in Fig. 11. Three portions are
identified along the NNM for which solutions are expected in forced response. Same as above, in addition to the
main NFRC ( ) isolated branches of solutions ( ) are found using the DLFT-HBM. For this lower value of A,
it appears that the two isolated branches of solutions that are predicted emanate from a split of the first isolated
branch of solutions predicted for A = 60. These observations indicate that branches of solutions may split in the
vicinity of high amplitude areas on the NNM as A decreases.

At this point, the application of the Melnikov energy principle leads to the accurate prediction of areas where
solutions exist for all levels of forcing amplitude. Moreover, it is possible to find solutions very remote from the
DLFT-HBM predicted nonlinear resonance frequency. The use of a damped NNM, instead of a conservative one,
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as proposed by Cenedese and Haller [19], still allows to accurately identify areas where solutions may exist. This
observation allows to consider a wider variety of numerical strategies for the computation of autonomous families of
solutions [33, 43, 44].

4.2.3 Evolution of the nonlinear resonance
In order to illustrate the assets of the proposed methodology, the stiffening phenomenon—the shift of the nonlinear
resonance frequency due to contact interactions ∆ω = max(ω)− ω1B—and the maximum amplitude obtained for
different values of A are depicted in Fig. 12. These quantities are obtained by three different approaches: the classical
DLFT-HBM with arc-length continuation ( ), the use of the Melnikov energy principle ( ) and the combination
of the Melnikov energy principle with the computation of isolated branches of solutions with DLFT-HBM ( ). As
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Figure 12. Evolution of the nonlinear resonance with respect to A, (a) stiffening effect, (b) maximum amplitude, main
NFRC ( ), energy principle alone ( ), nonlinear resonance (with isolas) ( ).

it can be seen in Fig. 12, this comparison underlines how the classical use of the DLFT-HBM with an arc-length
continuation algorithm fails to accurately predict both the actual nonlinear resonance frequency and the maximum
amplitude. The application of the Melnikov energy principle alone ( ) allows to make a cheap, yet accurate,
estimation of nonlinear resonance frequencies. A finer estimate may be obtained by computing associated isolated
branches of solutions ( ), but this comes at a significant computational cost.
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4.3 Damping effects
The resistance term is directly related to the damping matrix C. Because modal damping is here used to compute
this matrix, individual modal damping ratios can numerically be adjusted at will so as to observe certain trends on
the resistance curve. One may note that, since damped NNM are used in this work, the computation of a new NNM
is required every time damping ratios are modified.

As an illustration, the influence of the modal damping of the fourth mode of eigenfrequency ω4 = 14,830 rad·s−1

is assessed. The result of this study is depicted in Fig. 13. By increasing the modal damping ratio of the fourth mode

2,000 2,250 2,500 2,750 3,000 3,200
0

1

2

3

·10−3

ω4
6

ω4
5

ω (rad/s)

||r
1
(t
)||

∞
(m

)

(a)

2,000 2,250 2,500 2,750 3,000 3,200
0

1

2
ω4
6

reference

over-damped

ω4
5

ω (rad/s)

re
sis

ta
nc

e
(J

)

(b)
Figure 13. Impact of the value of the fourth mode modal damping ratio, (a) NNM, (b) resistance, ξ4 = 5 · 10−3 ( ),
ξ4 = 0.5 ( ).

to ξ4 = 0.5, the fourth mode is filtered away. In the mean time, two local peaks in the vicinity of ω = ω4
5 and ω = ω4

6
are attenuated on the NNM, as depicted in Fig. 13a. This supports the hypothesis that the peaks in the NNM are
caused by nonlinear modal interactions as previously suggested in the literature [22, 24]. Moreover, the evolution
of the resistance term is depicted in Fig. 13b where it is seen that the peaks in the resistance are also strongly
attenuated so that the barriers of energy have almost vanished. Even though new—smaller and narrower—peaks
appeared further on the curve, the well of energy associated with the barrier around ω = ω4

6 has become wider, as
represented in Fig. 13b. Without the proposed isola detection procedure, this observation could be considered as
detrimental because the stiffening phenomenon is increased by filtering the fourth mode. However, by analyzing the
resistance curve in Fig. 13b, one can see that the increase of ξ4 only affects the connectivity of branches of solutions
that would otherwise be isolated, thus not fundamentally impacting contact stiffening itself.

Additional investigations are conducted in order to explain why the two resistance peaks attributed to the fourth
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mode remain even though the mode is filtered away. The relative modal contributions ||γj(t)||∞,rel of each mode
along the NNM are examined. The relative modal contributions are computed following

γj(ti) = Φ>
j Mx(ti) ∀(i, j) ∈ J1, NtK × J1, nK (35)

and

||γj(t)||∞,rel =

max
i∈J1,NtK

|γj(ti)|
n∑

k=1

max
i∈J1,NtK

|γk(ti)|
. (36)

The 39 relative modal contributions of the NNM of Fig. 13 are depicted in Fig. 14 for both damping ratios.
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Figure 14. Relative modal contributions, 1B mode ( ), 2B mode ( ), 1T mode ( ), fourth mode ( ), fifth mode ( ),
seventh mode ( ), eighth mode ( ), other modes ( ).

Analyzing Fig. 14 yields that all peaks in the resistance curve in Fig. 13b and in the amplitude curve of the
NNM in Fig. 13a can be attributed to a sudden decrease of the 1B mode contribution in Fig. 14. Each drop
is also associated with an increase of the contribution of another mode. This phenomenon happens close to
frequencies associated with fractions of the linear eigenfrequency of the mode that features a peak of contribution.
Though, linear eigenfrequencies underestimate the frequencies of nonlinear modal interactions because all modes
are stiffened due to contact interactions. By using a higher damping ratio for the fourth mode ξ4 = 0.5, the drops
in 1B modal contribution are annihilated around fractions of ω4. However the seventh mode ( ) and eighth
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mode ( )—respectively associated with ω7 = 23,579.1 rad·s−1 and ω8 = 29,975.8 rad·s−1—now feature peaks of
contributions, explaining why two peaks of resistance still exist in Fig. 13 after the fourth mode has been damped.

All these observations support the hypothesis that nonlinear modal interactions can be responsible for the
separation of isolated branches of solutions from the main NFRC on this highly nonlinear application.

5 Conclusion
This paper demonstrates the applicability and accuracy of an isola detection procedure relying on the analysis of the
damped NNM of a system featuring contact interfaces in the presence of harmonic forcing. The methodology is
applied on the NASA rotor 67 industrial fan blade that constitutes a challenging case study for the characterization
of rubbing interactions. A discontinuity of the nonlinear resonance frequency with respect to the amplitude of the
applied harmonic forcing is evidenced. It is investigated in the light of the Melnikov energy principle and multiple
isolated branches of solutions are captured. The isola detection procedure proves to be very accurate for multiple
forcing levels when it comes to predict the existence of solutions in the vicinity of a NNM. It is shown that the use
of typical continuation techniques alone underestimate both the response amplitude and the contact stiffening at the
nonlinear resonance. Indeed, the use of the isola detection procedure allows to precisely locate the isolated nonlinear
resonance without even computing the isolated branches yielding a large decrease in computational expense. A
reference time marching strategy relying on Lagrange multipliers is used to demonstrate the stability of the periodic
orbits belonging to isolated branches. The stability of these solutions could be assessed with the use of dedicated
stability analyses, however the application of these strategies on industrial systems with contact interfaces is very
recent [13], therefore exceeding the scope of this article. By using the proposed approach based on the Melnikov
energy principle, new quantitative elements were highlighted in order to confirm the involvement of nonlinear modal
interactions in the birth of isolated branches [22, 24].

Finally, this contribution opens up perspectives for the detection of isolated branches on systems featuring
nonconservative and nonsmooth nonlinearities on high-dimensional industrial systems, such as friction damping
applications [21].
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