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ABSTRACT

Effective computer aided breast-cancer diagnosis models using
2D mammography images must maintain consistent performance
across varying image acquisition systems and post-processing tech-
niques. Nevertheless, Deep Learning (DL) models have shown di-
minished performance with variations in image style and contrast [1,
2]. We propose two models trained for classifying respectively 2D
mammography patches and complete images, using heterogeneous
datasets distinguished by different image post-processing methods.
We propose a Domain Adaptation (DA) methodology using Super-
vised Contrastive Learning (SCL) to achieve domain-invariant rep-
resentations and improved class-separability. This approach is com-
pared to a standard training using the Cross Entropy (CE) loss. The
domain invariant models outperform those trained with CE in binary
classification of full mammograms (cancer vs. no cancer), increas-
ing the AUC from 0.745 to 0.816 in an independent test set. For
patch classification, we show that the Domain Adaptation effective-
ness varies with weight initialization and dataset size.

Index Terms— Breast cancer, Deep Learning, Computer Aided
Detection or Diagnosis (CAD), Domain Adaptation, Contrastive
Learning

1. INTRODUCTION

X-ray imaging techniques, like Full Field Digital Mammography
(FFDM), also known as 2D mammography, are widely used for
breast cancer screening, but suffer from low specificity and high
patient recall rates. Deep Learning (DL)-based Computer Aided
Detection or Diagnosis (CAD) systems emerge today as one of the
most promising techniques for improving the overall effectiveness
of mammography as a screening tool for cancer detection. The de-
velopment of CAD systems that match or surpass radiologists’ per-
formance is a challenging task, due to the high variability of mam-
mography images. Moreover, the existence of multiple acquisition
systems and post-processing algorithms, including variations intro-
duced by different vendors and their product versions, adds another
layer of variability that directly affects image style and contrast. It
has been shown that performance strongly degrades when a CAD
is tested on images with different style or contrast to those used for
training [3].

1.1. Domain Adaptation

The work presented here is focused on the development of a FFDM
classifier that is invariant to image post-processing differences. This

is modeled as a Domain Adaptation (DA) problem, in which two
or more domains are adapted during training. This formulation is
slightly different from the classical Domain Adaptation setting, in
which there is a source domain from which we intend to do Transfer
Learning to a target domain. Let X ∈X denote an input or covariate
(in our case, a mammography image), and Y ∈Y its associated label,
with a joint probability density P : X ×Y →R≥0. The two domains
considered in this work are then formalized as D1 = {X ×Y,P1}
and D2 = {X ×Y,P2}. If P1(X ,Y ) ̸= P2(X ,Y ), there is a domain
shift. The image post-processing variability can be modeled as a
hidden covariate shift, as defined in [4], also known as covariate
observation shift [5]. It is a particular case of the concept shift, which
occurs when P1(X |Y ) ̸= P2(X |Y ), for which it is assumed that there
exists a linear transformation of the covariates φ : X → X under
which the shift is non-existent, i.e., P1(φ(X),Y ) = P2(φ(X),Y ). For
more details on the types of domain shift, refer to [4, 5, 6, 7].

In the Domain Adaptation literature, feature-based methods are
used to tackle the hidden covariate shift by learning a feature rep-
resentation in which the domains are indistinguishable [4]. That is,
to learn a function φ : X →X such that P1(φ(X),Y ) = P2(φ(X),Y ).
The most widely used feature-based DA method is Discriminative
Adversarial Neural Network (DANN) [8], in which an encoder is
trained to fool a domain discriminator, while providing features that
are useful for the classification task. The three networks (encoder,
classifier, and discriminator) are optimized by jointly minimizing the
classifier loss and maximizing the discriminator loss. DANN has al-
ready been applied to the medical imaging domain [9, 10, 11], and
has shown promising results. However, this approach needs an addi-
tional network (the domain discriminator), which increases training
time and resource consumption, mostly in terms of GPU RAM. This
can be especially problematic for some medical imaging applica-
tions, like classification and detection in mammography images, in
which reducing the image resolution can highly impact performance
[12]. In addition, the gradients of the two losses usually have dif-
ferent directions, which makes DANNs hard to train [13]. Another
widely used approach consists in minimizing a dissimilarity mea-
sure between features from the two domains [14, 15], typically the
Mean Maximum Discrepancy (MMD) [16] or some of its variants.
However, minimizing the MMD can reduce feature-label correla-
tion, which decreases class separability and can negatively impact
downstream task performance.

Contrastive Learning (CL) is a learning paradigm, widely used in
a Self-supervised Learning (SSL) setting, which consists in learning
a representation where semantically similar features are close to one
another and are distant to semantically different features. In Self-



supervised Contrastive Learning (SSCL), positive pairs are typically
different views or transformed versions of the same input, while
transformed inputs coming from different original inputs are con-
sidered as negative pairs. This training setting does not require ex-
pert annotations. SSCL is mostly used as a pretext task, that enables
to exploit large unlabeled datasets, otherwise useless, for provid-
ing good weight initializations. The learnt representation is usually
invariant to input transforms that are not present or are not espe-
cially relevant when training in the downstream task or for inference
and evaluation, such as resizing, cropping, blurring, etc. [17]. In
this context, SSCL has been widely applied in the medical imaging
domain [18, 19], and for mammography images [20]. Supervised
Contrastive Learning (SCL) is another variant of CL that uses anno-
tations to assign positive and negative pairs: images with the same
label are positive pairs, and images with different labels are negative
pairs. SCL has been shown to improve robustness to corruptions in
natural images, like noise, blur, and JPEG compression [21].

In this work, we seek to show the potential of SCL for Domain
Adaptation, when training data consist in images with different
post-processing. We argue that, by dragging features extracted
by the DL-model with the same class to the same region of the
feature space, SCL inherently performs Domain Adaptation and
learns domain-invariant representations. In addition, SCL induces
class-separability in the feature space, which improves classification
performance. Supervised Contrastive Learning is compared to a
training based on the Cross Entropy (CE) loss, a standard classifica-
tion loss that does not perform Domain Adaptation.

2. MATERIALS AND METHODS

2.1. Classification model

Our ultimate goal was to develop a Convolutional Neural Network
(CNN) model for whole 2D mammography images aiming to gener-
ate a per-image malignancy score, thresholded for binary cancer/no
cancer classification. To achieve this, the process was divided into
two stages.

First, a modified version of a previously proposed patch classi-
fier [12] architecture was evaluated (Figure 1 – top). This involved
training a DenseNet-121 to classify 512× 512 pixels patches into
five categories based on lesion type and pathology: normal, benign
calcification, malignant calcification, benign mass, and malignant
mass. DenseNet-121 was selected as backbone, as it achieved higher
performance than other benchmarked CNNs [12]. The impact of the
CNN architecture is out of the scope of this work. A Multi-layer
Perceptron (MLP) projector was added to the model. This projec-
tor featured two hidden layers with 2048 units each, and an out-
put layer of 1024 units. The projector was key to avoid perfect in-
variance, which can lower the classification effectiveness and it was
used solely for the model training phase with Supervised Contrastive
Learning (SCL) but not in the inference and evaluation stages. To
initialize the patch classifier, two methods were explored: one using
the ImageNet dataset and the other using the CBIS-DDSM dataset
[22], a public scanned film mammography image collection

Next, the whole-image classifier was developed (Figure 1 – bot-
tom). This classifier integrated the DenseNet-121 from the patch-
classifier and a residual block was added. The whole-image classi-
fier was trained on full mammograms. A similar MLP projector to
that in the patch-classifier was added, consisting of one hidden layer
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Fig. 1: Patch-classifier and whole image classifier architectures. FC: Fully
Connected layer, MLP: Multi-layer Perceptron.

with 2048 units and an output layer of 1024 units. This projector
was also employed only during training with SCL.

2.2. Datasets and post-processing

In this work, two distinct image domains, given by image post-
processing differences, were considered. A sigmoid Look-Up Table
(LUT) function, which is a contrast enhancement technique com-
monly used in mammography, was used for defining the two do-
mains. However, the methodology developed in this work is appli-
cable to any other image style or contrast transformation. Figure 2
shows an example image without LUT (domain 1) and with LUT ap-
plied (domain 2), and the pixel intensity histograms in logarithmic
scale. Applying the LUT flattens the value of low-intensity and high-
intensity pixels, but increases the intensity difference between pixels
in the middle range, which contain the most useful information for
diagnosis.

For training and evaluating the models, an internal GE Health-
Care (GEHC) FFDM dataset was used. It contains 1539 cases, of
which 363 are biopsy-proven cancers. The anonymized data were
collected from a single institution in France following the EU Gen-
eral Data Protection Regulation. The dataset was split into training
(1237 cases), validation (201 cases), and testing (101 cases) sets,
using the method outlined in [12].

From the GEHC dataset, three distinct datasets were created for
training and validation purposes:

• An augmented dataset, which includes two versions of each im-
age: one with the LUT applied and the other without.

• Mixed datasets, formed by randomly dividing the GEHC dataset
into two groups. One group had images with the LUT applied,
while the other did not.

• Mixed downsampled datasets, generated by initially randomly
excluding some images from the GEHC dataset using four keep
ratios (0.6, 0.7, 0.8, and 0.9), followed by the creation of mixed
datasets as described above.

Four mixed datasets and four mixed downsampled datasets for
each keep ratio were constructed. The test set used for evaluation
contained the two versions of each image (with and without LUT).

2.3. Contrastive-based Domain Adaptation

To learn a domain-invariant representation where classes are sep-
arated, the Supervised Contrastive loss was used [21]. This loss,



(a) Without LUT (b) With LUT (c) Pixel intensity histogram

Fig. 2: Illustration of a single FFDM image: (a) without LUT application,
(b) with LUT application, and (c) the pixel intensity histogram in logarithmic
scale for both post-processings.

calculating the similarity between pairs of features of the last convo-
lutional layer with a temperature parameter τ , is given by:

LB =
B

∑
i=1

−1
|Pi| ∑

j∈Pi

log
ezT

i ·z j/τ

∑l∈Ai
ezT

i ·zl/τ
. (1)

In Equation (1), B is the batch size, zi is the i-th feature vector,
Pi the set of all features that form positive pairs with zi, and Ai the
set of all the other features (positive and negatives), excluding fea-
ture zi. Pairs of features of the same class are considered as positive,
while pairs of features with different class are considered as nega-
tive. When the loss in Equation (1) is minimized, the features that
correspond to images of the same class are pulled to the same re-
gion of the feature space, and the features corresponding to different
classes are pushed to different regions of the feature space.

A model trained solely with the Cross Entropy (CE) loss, and
thus without Domain Adaptation, was compared to a model trained
using the Supervised Contrastive loss. As suggested in [21], the
model was first trained with the Supervised Contrastive loss to ex-
tract domain-invariant features. Then, the feature extraction layers
were frozen, and only the final linear classification layer was trained
with CE. This model is denoted as SupContr, as the feature extrac-
tion was solely trained with the Supervised Contrastive loss. As a
third training strategy, the SupContr model was fully re-trained us-
ing the Cross Entropy loss (without freezing the feature extraction
layers), resulting in a model denoted as SupContr+CE. These three
training strategies (CE, SupContr, and SupContr+CE) were com-
pared for the patch-classifier and whole image classifier.

The CE, SupContr, and SupContr+CE models were trained on the
four mixed datasets, and on the augmented dataset, for patch clas-
sification and whole image classification. The impact of the dataset
size on the patch classifier was assessed, by training it on the mixed
downsampled datasets and evaluating it on the same test set. In ad-
dition, the generalization capability of the whole image classifier
was assessed on InBreast [23], a publicly available dataset of 2D
mammography images. As InBreast does not contain biopsy-proven
cancer labels, our model was fine-tuned for BIRADS 4 and 5 (i.e.
suspicious and highly suggestive for malignancy) vs. BIRADS 1,
2, and 3 (i.e. negative, benign, probably benign) binary classifica-
tion. For this, the InBreast dataset was split into training (288 cases),
validation (46 cases) and testing (75 cases) sets, with the same strat-
ification strategy used for the GEHC dataset. To keep the learnt rep-
resentation fixed, the feature extractor was frozen during InBreast

CE SupContr SupContr + CE
mixed dataset 1 0.737 ± 0.008 (n.a.) 0.836 ± 0.006 (< 0.001) 0.840 ± 0.006 (< 0.001)
mixed dataset 2 0.692 ± 0.008 (n.a.) 0.820 ± 0.007 (< 0.001) 0.833 ± 0.006 (< 0.001)
mixed dataset 3 0.750 ± 0.008 (n.a.) 0.850 ± 0.006 (< 0.001) 0.842 ± 0.006 (< 0.001)
mixed dataset 4 0.745 ± 0.007 (n.a.) 0.846 ± 0.005 (< 0.001) 0.846 ± 0.006 (< 0.001)

augmented dataset 0.871 ± 0.006 (n.a.) 0.878 ± 0.005 (< 0.001) 0.887 ± 0.005 (< 0.001)

Table 1: Mean one-vs-one AUC, 95% CI, and p-value of the patch-
classifier, with ImageNet weight initialization.

fine-tuning, and only the output linear layer was updated.
The patch-classifiers were evaluated and compared in terms of the

mean one-vs-one AUC, a standard multi-class classification metric,
and the whole image classifiers in terms of the AUC. Bootstrapping
was used for calculating the 95% Confidence Intervals (CI) and the
p-values with respect to the CE models, using the Welch’s t-test. In
addition, t-SNE [24] was used for visualizing the extracted features.

3. RESULTS

3.1. Patch-classifier

Table 1 shows the results of the patch-classifier with ImageNet ini-
tialization. The best performing models of each dataset are noted in
bold. From Table 1, SupContr and SupContr+CE outperform the CE
for training on all the mixed datasets and on the augmented dataset.
Figure 4a shows the t-SNE plot of the extracted features for the three
models. While for the CE model features are more separated by
domain than by class, the SupContr and SupContr+CE models are
domain-invariant.

Table 2 shows the results of the patch-classifier with weights ini-
tialized from CBIS-DDSM. It can be seen that the AUC is generally
higher than in Table 1, as the model was pre-trained on mammog-
raphy images. In contrast to the results of Table 1, SupContr and
SupContr+CE fail to outperform CE in all the datasets. In Figure
4b, which shows the features t-SNE plot, it can be seen that the
CE model is more feature invariant when pre-trained with CBIS-
DDSM than with ImageNet, which decreases the impact of Domain
Adaptation on AUC. However, the features of normal patches are not
adapted in the CE model, while they are adapted in the SupContr and
SupContr+CE models. SupContr+CE trades-off an invariant repre-
sentation with a slight or no decrease in AUC, depending on the
dataset. The patch-classifiers pre-trained on CBIS-DDSM were used
for extension to the whole image classifiers, as they all outperform
the ones initialized from ImageNet.

Figure 3 shows the mean one-vs-one AUC of the patch-classifier
with CBIS-DDSM initialization trained on 4 mixed downsampled
datasets for each keep ratio, and on the 4 mixed datasets (i.e., keep
ratio = 1.0). It can be seen that SupContr+CE outperforms CE (and
SupContr) when the dataset size decreases, despite failing to outper-
form CE in the mixed datasets (keep ratio = 1.0). This dataset size
effects shows that Domain Adaptation increases AUC when train-
ing with smaller datasets, even when weights are initialized from
another mammography image dataset.

Similar results to the ones observed in Tables 1 and 2 were ob-
served in terms of the accuracy and mean one-vs-rest AUC. The only
exception is in the augmented dataset, in which SupContr+CE fails
to outperform CE in terms of one-vs-rest AUC for ImageNet initial-
ization. This can be explained by the dataset size effect observed in
Figure 3, as the augmented dataset contains twice as many images
as the mixed datasets. A detailed comparison of the results on these
two metrics is out of the scope of this work.



CE SupContr SupContr + CE
mixed dataset 1 0.905 ± 0.005 (n.a.) 0.898 ± 0.005 (< 0.001) 0.920 ± 0.005 (< 0.001)
mixed dataset 2 0.922 ± 0.004 (n.a.) 0.889 ± 0.005 (< 0.001) 0.910 ± 0.005 (< 0.001)
mixed dataset 3 0.926 ± 0.004 (n.a.) 0.876 ± 0.005 (< 0.001) 0.922 ± 0.004 (< 0.001)
mixed dataset 4 0.919 ± 0.004 (n.a.) 0.867 ± 0.005 (< 0.001) 0.920 ± 0.004 (n.s.)

augmented dataset 0.927 ± 0.004 (n.a.) 0.880 ± 0.005 (< 0.001) 0.919 ± 0.004 (< 0.001)

Table 2: Mean one-vs-one AUC, 95% CI, and p-value of the patch-
classifier, with CBIS-DDSM weight initialization.

Fig. 3: Mean one-vs-one AUC with 95% CI in the test set, of the models
trained on the 4 mixed downsampled datasets, by keep ratio.

3.2. Whole image classifier

Table 3 shows the AUC in the test set for the CE, SupContr, and
SupContr+CE models for the whole image classifier. Each model
used the corresponding patch-classifier of Section 3.1, with CBIS-
DDSM initialization. In Table 3, the SupContr and SupContr+CE
models significantly outperform the CE model in all the considered
datasets. In the augmented dataset, SupContr+CE reaches an AUC
of 0.816±0.042, a 10% increase with respect to the CE model. Sup-
Contr+CE outperforms SupContr in all the datasets, except for the
mixed dataset 3, in which the AUC between the two models is not
statistically significant. Furthermore, the contrastive-based models
trained on all the mixed datasets outperform the CE model trained
on the augmented dataset, despite the latter having been trained on
twice the amount of data. In addition, the SupContr+CE model ex-
hibits superior generalization by achieving a 13% AUC increase in
InBreast, with the value rising from 0.733±0.096 to 0.831±0.071.
The higher CI in InBreast with respect to the GEHC dataset can be
explained by the size of the two datasets (409 and 1539 cases, re-
spectively). In the t-SNE plot of Figure 5 it can be seen that the
features of the CE model can be easily separated by domain, de-
spite the features of the CE patch-classifier being domain-invariant
for most classes. We hypothesize that this is caused by the maladap-
tation of the normal patches for the CE model in Figure 4b, as every
mammography image contains many normal regions. On the other
hand, the features of the SupContr and SupContr+CE models are
domain-invariant.

CE SupContr SupContr + CE
mixed dataset 1 0.723 ± 0.056 (n.a.) 0.772 ± 0.053 (< 0.001) 0.793 ± 0.049 (< 0.001)
mixed dataset 2 0.747 ± 0.046 (n.a.) 0.801 ± 0.041 (< 0.001) 0.811 ± 0.047 (< 0.001)
mixed dataset 3 0.716 ± 0.062 (n.a.) 0.786 ± 0.049 (< 0.001) 0.781 ± 0.054 (< 0.001)
mixed dataset 4 0.714 ± 0.061 (n.a.) 0.762 ± 0.051 (< 0.001) 0.794 ± 0.048 (< 0.001)

augmented dataset 0.745 ± 0.050 (n.a.) 0.763 ± 0.058 (< 0.001) 0.816 ± 0.042 (< 0.001)
InBreast 0.733 ± 0.096 (n.a.) 0.746 ± 0.083 (n.s.) 0.831 ± 0.071 (< 0.001)

Table 3: AUC, 95% CI, and p-value of the whole image classifier

CE SupContr SupContr+CE

(a) ImageNet initialization.

CE SupContr SupContr+CE

(b) CBIS-DDSM initialization.

Fig. 4: t-SNE plots of the features from the patch-classifier, indicating class
and domain.

CE SupContr SupContr+CE

Fig. 5: t-SNE plot of the features from the whole image classifier, indicating
class and domain.

4. CONCLUSION

This work shows the potential of Contrastive Learning as a Domain
Adaptation technique, that solves the hidden covariate shift. It sig-
nificantly increased AUC for whole mammography image classifi-
cation, and showed higher generalization in InBreast. For the patch-
classifier, DA increased AUC when training with smaller sub-sets of
the GEHC dataset, or when initializing weights from natural images.
This suggests that the benefits of DA might increase when less train-
ing data is available, or when the model does not benefit from Trans-
fer Learning from a similar dataset and task. The Contrastive-based
DA methodology developed in this work does not depend on the
LUT post-processing used for the experiments, and its applicability
can be extended to other modalities and beyond medical imaging.

However, as our approach is based on the Supervised Contrastive
loss, it relies on lesion-level (for sampling the patches from the mam-
mography images) and image-level annotations. This introduces an
important challenge due to the required workload in obtaining ac-
curate annotations from clinicians and radiologists, which in turn
increases the economic cost. A potential solution to mitigate this
challenge is to adopt Self-supervised variants of the Contrastive loss,
such as the NT-Xent loss [25], which could reduce the reliance on
extensive manual annotations.
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