
HAL Id: hal-04577465
https://hal.science/hal-04577465v1

Submitted on 16 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

Efficient tensor decomposition-based filter pruning
Van Tien Pham, Yassine Zniyed, Thanh Phuong Nguyen

To cite this version:
Van Tien Pham, Yassine Zniyed, Thanh Phuong Nguyen. Efficient tensor decomposition-based filter
pruning. Neural Networks, In press, pp.106393. �10.1016/j.neunet.2024.106393�. �hal-04577465�

https://hal.science/hal-04577465v1
https://hal.archives-ouvertes.fr

Efficient tensor decomposition-based filter pruning

Van Tien Phama,∗, Yassine Zniyeda, Thanh Phuong Nguyena

aUniversité de Toulon, Aix Marseille University, CNRS, LIS, France

Abstract

In this paper, we present CORING, which is short for effiCient tensOr decomposition-based filteR prunING, a
novel filter pruning methodology for neural networks. CORING is crafted to achieve efficient tensor decomposition-
based pruning, a stark departure from conventional approaches that rely on vectorized or matricized filter repre-
sentations. Our approach represents a significant leap forward in the field by introducing tensor decompositions,
specifically the HOSVD, which preserves the multidimensional nature of filters while providing a low-rank approx-
imation, thus substantially reducing complexity. Furthermore, we introduce a versatile method for calculating filter
similarity by using the low-rank approximation offered by the HOSVD. This obviates the need for using full filters
or reshaped versions and enhances the overall efficiency and effectiveness of our approach. Extensive experimen-
tation across diverse architectures and datasets spanning various vision tasks, including image classification, object
detection, instance segmentation, and keypoint detection, validates CORING’s prowess. Remarkably, it outperforms
state-of-the-art methods in reducing MACs and parameters, consistently enhancing validation accuracy. Furthermore,
we supplement our quantitative results with a comprehensive ablation study, providing substantial evidence of the ef-
ficiency of our tensor-based approach. Beyond quantitative outcomes, qualitative results vividly illustrate CORING’s
ability to retain essential features within pruned neural networks. Our code is available for research purposes.

Keywords: network compression, tensor decompositions, filter pruning

1. Introduction

Network pruning is an important technique for designing efficient models of convolutional neural networks
(CNNs) because it reduces the memory footprint and computation requirements while maintaining or improving
the overall performance. This is particularly crucial when deploying CNNs on resource-constrained devices such
as mobile phones or embedded systems. The hypothesis behind network pruning is that many models are over-
parameterized, i.e., they contain a large number of unnecessary or redundant parameters [56, 83]. Pruning redundant
parameters can lead to a smaller and more efficient model that can be deployed on resource-constrained devices, while
also improving the model’s generalization in some cases [5].

Among existing pruning techniques, filter pruning and weight pruning are both popular approaches. Weight
pruning is a form of unstructured pruning [14], where individuals deemed insignificant weights are pruned without
considering any specific structure or pattern. On the other hand, filter pruning is an example of structured pruning [1,
3, 16, 29, 31, 38, 63, 83], where entire filters are pruned based on some criteria while maintaining the overall structure
of the network. Compared to its counterpart, filter pruning is more interpretable, less sensitive to initialization, more
computationally efficient, and allows direct deployment on terminal devices [56].

Undoubtedly, the choice of filters is the foundation of filter pruning. Early works [29, 38, 75, 83] determine
the filter importance by measuring only the information of individual filters themselves. However, these approaches
neglect the correlation between inter-filters, resulting in high redundancy. Recent advancements [61, 62, 63, 71, 79,
85] have demonstrated the potential benefits of leveraging the correlations or similarities between filters/feature maps

∗Corresponding author
Email addresses: van-tien-pham@etud.univ-tln.fr (Van Tien Pham), zniyed@univ-tln.fr (Yassine Zniyed),

tpnguyen@univ-tln.fr (Thanh Phuong Nguyen)

Preprint submitted to Neural Networks May 16, 2024

https://github.com/pvtien96/CORING

to reduce redundancy. This is based on the hypothesis that similar filters may generate duplicate features, and that
eliminating this redundancy can be compensated during the fine-tuning process. Similarity-based pruning approaches
evaluate the importance of filters by measuring the pairwise distance between filters in order to construct the similarity
matrix of each network’s layer. This distance/similarity metric quantifies the correlation or similarity between each
pair of filters in the layer. Based on this similarity matrix, the importance or saliency of filters can be determined and
filters that are deemed less important can be pruned.

Despite their promising results, many state-of-the-art (SOTA) methods for filter pruning suffer from some limi-
tations that have yet to be fully addressed. Existing works [8, 16, 61, 71, 79, 85] often flatten 3-order tensor filters
into 2-D matrices or 1-D vectors, which can result in loss of spatial or temporal information. The multidimensional
structure of filters is important, and neglecting it through flattening can lead to loss of crucial information [27, 59].
Moreover, inter-filter approaches [8, 61, 71, 79] can require more complex and computationally expensive analysis
compared to methods that only consider intra-filter information. Iterative pruning can be computationally expensive
due to the need to compute the similarity matrix at each iteration. Thus, there is a demand for computationally effi-
cient methods to address this issue. Lastly, several works [26, 30, 31, 36, 38, 49, 58, 63, 66, 73, 78] try to rank the
filters through their corresponding feature maps or channels. With their feature-guided nature, such data-dependent
methods are sensitive to the distribution of input data, making it difficult to accurately estimate average feature map
values. This can require a large set of input images [31, 36, 38, 63] to estimate the average ranks of each feature map
on a fixed dataset, further complicating the pruning process.

In this paper, we propose a novel approach, called CORING, for effiCient tensOr decomposition-based filteR
prunING. It is a filter pruning technique using tensor decompositions [27]. Specifically, we decompose each layer’s
filters using the higher-order singular value decomposition (HOSVD) [9] and use this representation to measure simi-
larity between filters, rather than considering the entire filter in its tensor, matrix, or vector form. This method allows
to (i) preserve the multidimensional structure of the filters and their essential information while providing a low-rank
approximation, and (ii) reduce computational time as we will show later. This approach is general and can work with
any similarity metric. In our experiments, we assess our approach using the Euclidean and cosine distances, as well as
VBD (Variance-Based Distance), which is an adaptation of the Signal to Noise Ratio (SNR) distance [77]. We show
that our approach is effective across all these metrics.

This work brings the following contributions:
• Introduces tensor decompositions, specifically HOSVD, for filter pruning. This method preserves the multidi-

mensional structure of filters while providing a low-rank approximation, effectively reducing complexity. This
decomposition allows a novel and versatile way of calculating filter similarity using the representation derived
from HOSVD, avoiding the need for the entire filter or its reshaped versions. The proposed method is tested
with Euclidean, cosine, and VBD distances.

• Presents a straightforward and efficient filter selection method based on the similarity matrix. This method
considers relationships between filters through a distance measure between the corresponding HOSVD factors
of each pair of filters.

• Evaluates the proposed framework across various computer vision tasks, including image classification, object
detection, instance segmentation, and keypoint detection. Through extensive experiments, the effectiveness
of CORING is demonstrated in terms of accuracy, parameter reduction, and MACs reduction, showcasing its
superiority over SOTA.

2. Related Works

Network pruning can be classified into three primary types based on the granularity of the pruning process: un-
structured pruning, N:M sparsity, and structured pruning. Unstructured pruning, often termed weight pruning, involves
removing individual weights deemed insignificant [14, 44, 82]. This typically entails setting small weights to zero,
leading to a sparse network structure without altering the overall architecture. Despite its effectiveness in compres-
sion, weight pruning can be sensitive to the network’s initial weights and often results in an unstructured sparsity
pattern, introducing inefficiencies in hardware acceleration. N:M sparsity [84] involves setting N out of M contiguous
weights to zero, offering advantages like reduced computational complexity and improved memory efficiency [81].
However, it may pose challenges during training and generalization, potentially introducing overhead in sparse ma-
trix operations. On the other hand, structured pruning, exemplified by filter pruning, aims to eliminate unimportant

2

filters from the network [1, 29, 38, 63]. Unlike unstructured pruning, this method directly reduces the number of
computations needed during the inference phase, leading to significant reductions in the network’s memory footprint
by directly decreasing the number of parameters.

Pioneering works in filter pruning determine the filter’s importance by measuring the information of the filter
itself. By supposing that filters with smaller norms are less important, [7, 29, 72] adopt the L1 or L2-norm to measure
the filter saliency. A regularization-based amplitude saliency pruning evaluation criterion was investigated in [83].
However, methods that rely only on individual filter information neglect the correlation between filters, leading to
redundancy in the resulting pruned models. Recently, similarity-based filter pruning [62, 71, 73, 79] has become an
emerging approach to eliminate redundant filters that contribute similarly to the final output. To achieve this, filters
are compared to each other based on a similarity metric, and those with the highest similarity are removed during
the pruning process. Several works tried to apply common similarity metrics to measure filters correlation, such as
Euclide [8, 79], Manhattan [79], Chebyshev [61, 79], Hamming [31] distances, cosine similarity [16, 30, 61, 71, 85],
Pearson correlation [62, 71], to mention a few. Most of these works overlook the multidimensional structure of filters
and rely on flattened versions of filters to compute similarity, resulting in information loss. Notably, the k-Reciprocal
Nearest Filter (RNF) selection scheme proposed in [37] shares a core idea with our approach in considering the
collective importance of a filter with other candidates rather than focusing solely on individual importance, as seen
in previous works [29, 38, 75, 83]. However, RNF employs the entire filter version to calculate the similarity matrix,
whereas our approach relies on the low-rank representation containing essential information.

When comparing filters for pruning, there are two main approaches: inter-layer comparison and intra-layer com-
parison. The filter selection is a crucial factor in filter pruning, as it determines the scope for filter removal, and
refers to whether the comparison is limited to filters within a single layer, or extends across all layers in the network.
It is worth mentioning that some researchers [63, 71] argue that inter-layer comparison is more reasonable for filter
pruning. However, in this work, we use an intra-layer comparison, as each layer of a neural network serves a unique
purpose in feature extraction.

Concerning pruning strategy, there exist two main approaches: one-shot pruning [38, 63, 79] and multi-shot
pruning [4, 14]. With the first one, the entire network is pruned in a single shot, and the filters or weights in each layer
are either preserved or pruned at once. This method is faster than the last one because it only requires one round of
training and pruning. In contrast, multi-shot pruning is a pruning strategy in which the network is iteratively pruned,
and each iteration involves pruning a portion of the redundant filters or weights. As discussed in [4, 14], this approach
allows the network to adapt to the pruning process, preserving the most important elements and improving the overall
accuracy. This method allows for more flexibility in choosing which filters to prune, which results in more effective
pruning.

Tensor decompositions find widespread applications in network compression, as evidenced by various studies [33,
51, 52, 69, 70, 74]. The tensor ring factorization, for instance, was proposed to compress the weights of convolutional
networks in [70] and recurrent networks in [51]. In [74], the hierarchical Tucker decomposition was introduced to
convert weight matrices and compress convolutional kernels. Notably, [33] presented a progressive genetic algorithm
to determine the optimal rank for decomposition. A recent survey by Wang et al. [69] provides a comprehensive
overview of tensorial neural networks, highlighting the multilinearity structure of weight tensors. Despite the natural
representation of filters in CNNs as multidimensional arrays, current practices in structured pruning [38, 63, 10, 79]
often involve treating 3-order tensor filters by flattening them into matrices or vectors for ease of use. This approach,
commonly applied in filter pruning [10, 79] and feature pruning [38, 63], results in information loss and may not fully
exploit the multidimensional structure of the data, as far as our knowledge extends.

3. The CORING Framework

3.1. Notations and Preliminaries

The notations used throughout the rest of this paper are now defined. The outer product is denoted by ◦. The
variance is denoted as Var(.). The floor function ⌊x⌋ denotes the greatest integer less than or equal to x. Tensors are
represented by bold calligraphic capital letters, e.g., X . The norm of a tensor X is the square root of the sum of the

squares of all its elements, i.e., ||X || =
√∑N1

i=1

∑N2
j=1

∑N3
k=1 X 2

i,j,k. unfoldqX refers to the unfolding of tensor X
over its q-th mode [27]. We now recall some definitions that will be useful in the sequel. The q-mode product is one

3

of the most important operations in tensor processing. It is defined as a product of a tensor X ∈ RN1×...×NQ and a
matrix U ∈ RJ×Nq as:

(X ×n U)i1...iq−1jiq+1...iD
≜

Nq∑
iq=1

Xi1i2...iQujiq . (1)

Definition 1. Based on the definition of the q-mode product, we can recall the definition of a Tucker decomposition
(TD) [67]. Consider a core tensor S ∈ RR1×R2×R3 and 3 factor matrices A ∈ RN1×R1 ,B ∈ RN2×R2 ,C ∈
RN3×R3 . The Tucker decomposition of T ∈ RN1×N2×N3 is given by:

T = S ×1 A×2 B×3 C ≜ [[S;A,B,C]]. (2)

The triplet of minimal values of {R1, R2, R3} forms the multilinear rank of T . An easy way to obtain the TD of a
tensor is to use the HOSVD algorithm [9]. In the case of the HOSVD, the factor matrices in (2) are constrained to be
orthonormal, which can simplify the computation and interpretation of the factor matrices.

Let us consider a pre-trained CNN model with L layers, denoted as C1,C2, . . . ,CL. The parameters of Cl can be
represented as a set of 3-order filters F l1 ,F l2 , . . . ,F lcl containing cl filters F li ∈ Rcl−1×hl×wl , where cl, cl−1, hl

and wl denote the number of output channels, the number of input channels, the kernel height and the kernel width,
respectively. In general, if we define a 4-order tensor s.t. W l

:,:,:,i = F li , then the objective of filter pruning is to
optimize the following loss function:

min
{Wl}L

l=1

L(Y , f(X ,W l)), s.t. g(W l) ≤ κl, (3)

where L(·, ·) is the loss function, Y is the ground-truth labels, X is the input data, f(·, ·) is the output of the CNN
model, κl is the number of filters to be kept in the lth layer, and g(.) is the number of non-zero filters of its argument.

Layer

Layer 1

≈

≈

...
...

1 ...

1

... 1
1

 Filter decomposition Similarity measure Filters selection

La
ye

r -shots
strategy

Compact
model

La
ye

r

...
...

...
...

...

...
...

...

...
...

... ...

Sa
lie

nc
y

Layer 1

Layer

6

1

True

False

Finetune

Filter

Figure 1: The CORING approach for filter pruning in one layer, summarized in three steps.

Fig. 1 provides an overview of the proposed methodology. Our approach begins with a pre-trained model, as de-
fined in Section 3.1. The model is systematically processed layer by layer. Firstly, the tensor decomposition module,
as elaborated in Subsection 3.2, transforms third-order filters into a low-rank representation through approximation.
Subsequently, in Subsection 3.3, we calculate the distance between two filters by performing pairwise computations
on their corresponding representative vectors, resulting in the formation of a similarity matrix. To determine the
importance of filters and eliminate redundant ones, we introduce a filter selection algorithm in Subsection 3.4. The
pruned model at iteration k undergoes calibration and serves as the base model for the subsequent iteration, as eluci-
dated in Subsection 3.5. Ultimately, CORING produces a compact model that maintains comparable accuracy while
significantly improving computation time and reducing memory usage.

4

3.2. Filter Decomposition

In this section, for the sake of clarity and to simplify the notation, we consider a filter without its subscript as F of
size cl−1 × hl ×wl. Now, if we apply the TD in (2) to F by considering that R1 = R2 = R3 = 1, the model reduces
to

F ≈ s×1 a×2 b×3 c = [[s;a,b, c]], (4)

where a ∈ Rcl−1 , b ∈ Rhl , c ∈ Rwl , and s is a scalar that can also be seen as a 3-order tensor s ∈ R1×1×1. Without
loss of generality, we can now denote F simply as

F ≈ [[a,b, c]]. (5)

To decompose F as in (5), there are multiple tensor decomposition methods available. In this work, we choose to
use the HOSVD algorithm [9]. This choice is justified by several factors. Firstly, the HOSVD is a non-iterative
algorithm, unlike ALS-based techniques [20], which can be computationally expensive. Secondly, it is based on the
SVD, which ensures that the approximation with respect to the decomposed matrices is optimal [17]. Finally, the
HOSVD is relatively easy to implement, making it a practical choice for many applications. Indeed, the HOSVD of
F involves the computation of the SVD of the three unfolding matrices [27] unfold1F , unfold2F and unfold3F ,
of size, respectively, cl−1 × (hl · wl), hl × (wl · cl−1) and wl × (hl · cl−1). Following the HOSVD algorithm,
the three vectors a, b, and c in (5) represent, respectively, the first dominant left singular vector of the matrices
mentioned before. By applying rank-1 SVD to the matrices unfoldqF (for 1 ≤ q ≤ 3), it is guaranteed, by the
Eckart-Young theorem [13], that the obtained approximation is the best rank-1 approximation in the Frobenius norm.
However, the overall low-rank tensor approximation is generally not optimal. Nevertheless, it has been shown that the
obtained decomposition is a good approximation of F , and it is bounded by a certain limit [27]. From a computational
complexity standpoint, the choice of R1 = R2 = R3 = 1 provides the most efficient approximation method for a
given tensor. While it is true that increasing the multilinear rank can potentially lead to a better approximation of
the original tensor, we decide to use multilinear rank all equal to 1. This choice is motivated by considerations of
computational complexity as well as the results we obtained during our experiments. Specifically, we find that using
this approximation provides a good trade-off between approximation accuracy and computational efficiency, which
makes it a practical choice for our method. In this way, not only the multidimensional information is preserved, but
also computational efficiency is attained as shown in Subsection 5.1.

3.3. Similarity Measure

The aim of this subsection is twofold. First, we present VBD, a measure of similarity between two filters. Second,
we describe the process by which we calculate the distance using the low-rank approximations of the filters.

The authors of [77] proposed an SNR-based metric to measure the similarity of image pairs for deep metric
learning. While this quasi-metric has been shown to be effective, it has one major caveat that should be noted: it does
not satisfy the symmetry property, which is important for distance functions. To remedy this, we define the VBD as

dV BD

(
F i,F j

)
=

Var
(
F i −F j

)
Var

(
F i

)
+Var

(
F j

) . (6)

Let us now consider d(., .) as a general distance function. To calculate the distance between a pair of filters F i,
F j , we will use their HOSVD as in (5). Let us assume that F i = [[ai,bi, ci]] and F j = [[aj ,bj , cj]]. In this case, we
can calculate the distance between F i and F j as follows.

d(F i,F j) = d
(
[[ai,bi, ci]], [[aj ,bj , cj]]

)
. (7)

A simple way to calculate this distance is to take the average of the distances between the corresponding factors of
the two filters as follows.

d(F i,F j) =
d(ai,aj) + d(bi,bj) + d(ci, cj)

3
. (8)

5

Depending on the chosen distance metric, a similarity matrix S of size c × c can be constructed such that Sij =
d(F i,F j). Sij represents the similarity between the i-th and j-th filters, and d(·, ·) is the chosen distance function.
Fig. 2 illustrates the cosine similarity among three layers of the ResNet-56 model [22] on CIFAR-10 [28] and ResNet-
50 on ImageNet [54]. Notably, the presence of numerous yellow points indicates the existence of similarity in the
models, aligning with our hypothesis of pruning based on similarity. Additionally, the redundancy tends to be more
prevalent and pronounced in the later layers of the architecture. This observation is consistent with findings from
recent research on automatic pruning rate search [64].

(a) Layer 1 of ResNet-56 on CIFAR-10 (b) Layer 24 of ResNet-56 on CIFAR-10 (c) Layer 54 of ResNet-56 on CIFAR-10

(d) Layer 12 of ResNet-50 on Imagenet (e) Layer 25 of ResNet-50 on Imagenet (f) Layer 42 of ResNet-50 on Imagenet

Figure 2: Visual representation of the similarity matrix across three layers of the ResNet-56 [22] model on CIFAR-10 dataset [28] and ResNet-50
on ImageNet [54] dataset.

3.4. Filters Selection

Algorithm 1 presents the filter selection procedure used in CORING. The algorithm takes as input a similarity
matrix between all pairs of filters, the set of filters, and a sparsity target. The output of the algorithm is a set of κ
selected filters. The core idea is to consider the collective importance of a filter with other candidates rather than
focusing solely on individual importance, as seen in previous works [29, 38, 75, 83]. The procedure works by
iteratively deleting filters that are most similar to the other filters. The algorithm starts by finding the pair of filters
with the highest similarity and deleting one of the filters. The choice of the filter to delete is based on the sum of its
similarities with the other filters in the layer. The algorithm then updates the similarity matrix by deleting the row and
column of the deleted filter and continues to delete filters until the desired sparsity target is reached. The efficacy of
our proposed algorithm is demonstrated through a representative example in Subfigure 2a. The algorithm detects the
saliency of filters, yielding a sequence of indices such as [5, 14, 7, 13, 4, 1, 15, 6, 10, 0, 3, 8, 9, 2, 12, 11]. This sequence
effectively identifies the most (index 0, darkest-blue) and least (index 9, brightest-yellow) important filters. In contrast,
the L1 norm-based method [29] produces a different sequence, e.g., [1, 11, 15, 0, 6, 7, 12, 5, 4, 8, 2, 13, 3, 14, 9, 10],
ranking filter index 2 as the most important. However, it is evident that this filter is highly similar to filter index 13,
indicating redundancy between them.

6

Algorithm 1 Filters selection

Require: Similarity matrix S ∈ Rc×c, filters F1,F2, . . . ,Fc, sparsity target κ.
Ensure: Selected filters Fp1 ,Fp2 , . . . ,Fpκ .

1: for t = 1 to c− κ do
2: Find the highest similarity:

(i, j) = argmax
(x,y)

x ̸=y

Sx,y

3: if
c∑

k=1

Si,k ≥
c∑

k=1

Sj,k then

4: Delete F i.
5: else
6: Delete F j .
7: end if
8: Delete the row, column of the deleted filter in S.
9: end for

For the sake of simplicity, we omitted the index l in the pseudo-code, but the pruning is addressed for each convo-
lutional layer by considering κl filters to preserve at layer l. The most different κl filters, named Fp1 ,Fp2 , . . . ,Fpκl ,
are preserved, while the rest is pruned. This process is parallelly executed on all layers.

3.5. Pruning Strategy
Fig. 3 illustrates our proposed K-shots pruning strategy. It is a variation of multi-shot pruning, which prunes the

network in K rounds with the possibility of fine-tuning between rounds. By fixing the number of pruning rounds,
K-shots pruning provides better control over the pruning process and allows for a more efficient use of computational
resources. In K-shots pruning, the number of filters to prune in each round is calculated based on the total number of
filters in the network and the desired overall sparsity level. After each round of pruning, the pruned network can be
fine-tuned to recover any loss in accuracy. This fine-tuning step can be repeated between rounds to further improve the
performance of the pruned network. As a form of the multi-shot strategy, a major benefit of K-shots is that it allows
one to benefit from the advantages of multi-shot pruning while maintaining a controlled computational complexity.
By fixing the number of pruning rounds, we can ensure that the pruning process terminates after a specific number of
steps, which can be useful in scenarios where computational resources are limited.

True
Prune Finetune Finetune

 epochs
Compact

model
False

Pretrained
model

Budget for
finetune:

Budget for
calibration:

Number of
shots:

Target pruning
ratio:

Figure 3: K-shots pruning strategy.

We denote by ε the predefined total number of calibrating epochs, P the target pruning ratio. The number of
fine-tuning epochs εk (resp. the pruning ratio Pk) after each shot is defined as:

εk = ⌊ ε

K
⌋, (9)

Pk =
P
K

. (10)

Our strategy can improve performance by iterative fine-tuning like the multi-shot strategy while respecting the pre-
defined budget for pruning as the one-shot strategy.

7

4. Experiments

4.1. Experimental Settings

Datasets and Architectures: CORING is evaluated on various benchmark datasets [28, 54, 42] with well-known
and representative architectures including the classic plain structure VGG-16-BN [60], the GoogLeNet with inception
modules [65], the ResNet-56 with residual blocks [22], the DenseNet-40 with dense blocks [24] and the MobileNetV2
with inverted residuals and linear bottlenecks [55]. Due to a large number of simulations, these models are all con-
sidered on CIFAR-10 [28]. Also, to validate the scalability of CORING, we conduct experiments on the challenging
ImageNet dataset [54], with ResNet-50. Furthermore, the compressed ResNet-50 model is employed as the backbone
network for FasterRCNN-FPN [53], MaskRCNN, and KeypointRCNN [21] on the COCO-2017 dataset [42].

Comparison. CORING is compared with 44 SOTAs in the fields of structured pruning [1, 3, 5, 6, 7, 11, 12, 15,
16, 18, 19, 23, 26, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 43, 45, 46, 47, 48, 49, 56, 58, 63, 64, 66, 68, 73, 76,
78, 79, 80, 83, 85]. For a fair comparison, all available baseline models are identical. The reduction in parameters and
MACs are kept similar and the accuracy is compared or vice versa.

Evaluation Protocols: The performance of the pruned model is assessed via three criteria: accuracy, required
Float Points Operations (MACs), and number of parameters. The FLOP and parameter counts reflect the cost of
computation and storage consumption. Concerning the performance, top-1/top-5 accuracy is used on classification
tasks while mean average precision (AP) and recall (AR) are used on detection/segmentation tasks.

Configuration: The experiments were conducted on A40s using PyTorch. SGD is used as the optimizer for fine-
tuning. After pruning, fine-tuning is performed for 300 epochs on CIFAR-10 with a batch size of 256, momentum
of 0.9, weight decay of 0.05, and an initial learning rate of 0.01. On ImageNet, fine-tuning was performed for 180
epochs with a batch size of 512, momentum of 0.99, weight decay of 0.0001, and an initial learning rate of 0.1. In the
case of K-shots strategy, the total number of calibration epochs was fixed at 100. On COCO, models are fine-tuned
following the default recipe of torchvision [50].

4.2. Results and Analysis

Our proposed framework is flexible, enabling the combination of various distance metrics and the number of shots.
For consistency, we present the results of CORING deployed with VBD and K = 15 in Tables 1-7. Ablation studies
on the influences of distance metrics and K are discussed in Subsections 5.3 and 5.4, respectively.

VGG-16-BN. Table 1 shows the pruning results of VGGNet on CIFAR-10. In all compression levels, compared
with other methods, CORING consistently gets the highest accuracy while maintaining the same level of pruning.
Specifically, our method improves the model generalization by increasing the accuracy score from 93.96% to 94.42%
while decreasing more than 81% of parameters. To provide a visual representation, we depict the accuracy-MACs
reduction Pareto curves in Fig. 4, illustrating the effectiveness of CORING.

8

Table 1: Pruning results of VGG-16-BN on CIFAR-10

Model Top1 Params (↓%) MACs (↓%)

VGG-16-BN 93.96 14.98M(00.0) 313.73M(00.0)
CHIP [63] 93.86 2.76M(81.6) 131.17M(58.1)
EZCrop [40] 93.01 2.76M(81.6) 131.17M(58.1)
DECORE-500 [1] 94.02 5.54M(63.0) 203.08M(35.3)
FPAC [76] 94.03 2.76M(81.6) 131.17M(58.1)
DMPP [32] 94.18 N/A 166.59M(54.1)
CORING (Ours) 94.42 2.76M(81.6) 131.17M(58.1)

HRank-2 [38] 92.34 2.64M(82.1) 108.61M(65.3)
EZCrop [40] 93.70 2.50M(83.3) 104.78M(66.6)
CHIP [63] 93.72 2.50M(83.3) 104.78M(66.6)
FPAC [76] 93.86 2.50M(83.3) 104.78M(66.6)
APIB [19] 94.00 3.30M(77.9) 106.67M(66.0)
AutoBot [3] 94.01 6.44M(57.0) 108.71M(65.3)
CORING (Ours) 94.20 2.50M(83.3) 104.78M(66.6)

LAP [5] 89.95 N/A 75.01M(76.1)
QSFM [73] 92.17 3.68M(75.0) 79.00M(74.8)
RGP-64 16 [6] 92.76 3.81M(74.6) 78.78M (74.8)
CHIP [63] 93.18 1.90M(87.3) 66.95M(78.6)
FSM [12] 93.73 2.05M(86.3) 108.24M(66.0)
CORING (Ours) 93.83 1.90M(87.3) 66.95M(78.6)

RASP-70M [83] 92.81 1.13M(92.4) 70.15M(77.7)
CLR-RNF-0.86 [37] 93.32 0.74M(95.0) 81.31M(74.1)
DECORE-100 [1] 92.44 0.51M(96.6) 51.20M(81.5)
WhiteBox [80] 93.47 1.80M(87.8) 75.80M (75.9)
CORING (Ours) 93.52 0.51M(96.6) 48.52M(84.6)

HRank-3 [38] 91.23 1.78M(88.1) 73.70M(76.5)
FSM [12] 92.86 1.40M(90.6) 67.45M(81.0)
CORING (Ours) 93.07 1.40M(90.6) 37.06M(88.3)

0 20 40 60 80 90 100

91

92

93

94

95

91.55

93.07

93.7

94.42
94.6794.75

93.96

MACs reduced (%)
To

p-
1

ac
cu

ra
cy

(%
)

CORING (2023) ours RASP (2023) [83]
AutoBot (2023) [3] Zhang et. al (2023) [78]
Li et. al (2023) [31] LAASP (2023) [16]

HRel (2022) [56] DECORE (2022) [1]
EZCrop (2022) [40] FPFS (2022) [79]

WSP (2021) [18] CHIP (2021) [63]
GFBS (2021) [45] HRank (2020) [38]

Figure 4: Pruning methods for VGG-16 baseline on CIFAR-10.

GoogLeNet. Table 2 shows pruning results of GoogLeNet on CIFAR-10. In all conducted cases, CORING
consistently outperforms other methods [35, 37, 46] in every way. Therefore, inception modules can use our method
to achieve high performance in comparison to cutting-edge techniques.

Table 2: Pruning results of GoogLeNet on CIFAR-10

Model Top1 Params (↓%) MACs (↓%)

GoogLeNet 95.05 6.15M(00.0) 1.52B(00.0)
DECORE-500 [1] 95.20 4.73M(23.0) 1.22B(19.8)
CORING (Ours) 95.30 4.72M(23.3) 1.21B(20.4)

L1 [29] 94.54 3.51M(42.9) 1.02B(32.9)
GAL-0.05 [41] 93.93 3.12M(49.3) 0.94B(38.2)
HRank-1 [38] 94.53 2.74M(55.4) 0.69M(54.9)
FPAC [76] 95.04 2.85M(53.5) 0.65B(57.2)
CC-0.5 [35] 95.18 2.83M(54.0) 0.76B(50.0)
CORING (Ours) 95.32 2.85M(53.5) 0.65B(57.2)

FPAC [76] 94.42 2.09M(65.8) 0.40B(73.9)
EACP(k = 30%) [46] 94.80 2.49M(59.6) 0.58B(62.3)
CLR-RNF-0.91 [37] 94.85 2.18M(64.7) 0.49B(67.9)
CC-0.6 [35] 94.88 2.26M(63.3) 0.61B(59.9)
CORING (Ours) 95.03 2.10M(65.9) 0.39B(74.3)

ResNet-56. Table 3 shows pruning results of ResNet on CIFAR-10. We can see that CORING can boost the accu-
racy by 1.5% compared to the baseline model with 22.4% and 27.3% model size and MACs reductions, respectively.
In the scenario involving significant compression, with approximately 70% compression, CORING outperforms a

9

recent SOTA method [34] in all aspects.

Table 3: Pruning results of ResNet-56 on CIFAR-10

Model Top1 Params (↓%) MACs (↓%)

ResNet-56 93.26 0.85M(00.0) 125.49M(00.0)
HRank-1 [38] 93.52 0.71M(16.8) 88.72M(29.3)
DECORE-450 [1] 93.34 0.64M(24.2) 92.48M(26.3)
TPP [68] 93.81 N/A 86.50M(31.1)
CORING (Ours) 94.76 0.66M(22.4) 91.23M(27.3)

HRank-2 [38] 93.17 0.49M(42.4) 62.72M(50.0)
DECORE-200 [1] 93.26 0.43M(49.0) 62.93M(49.9)
TPP [68] 93.46 N/A 62.99M(49.8)
FSM [12] 93.63 .048M(43.6) 61.24M(51.2)
CC-0.5 [35] 93.64 0.44M(48.2) 60M(52.0)
FPAC [76] 93.71 0.48M(42.8) 65.94M(47.4)
ResRep [11] 93.71 N/A 59.3M(52.7)
DCP [43] 93.72 0.43M(49.7) 56.72M(54.8)
EZCrop [40] 93.80 0.48M(42.8) 65.94M(47.4)
Zhang et. al [78] 93.88 0.48M(42.8) 65.94M(47.4)
RASP-60M [83] 94.02 0.67M(22.2) 80.66M(36.5)
CHIP [63] 94.16 0.48M(42.8) 65.94M(47.4)
CORING (Ours) 94.22 0.48M(42.8) 65.94M(47.4)

HRank-3 [38] 90.72 0.27M(68.1) 32.52M(74.1)
LAP [5] 91.72 N/A 29.01M(76.9)
QSFM [73] 91.88 0.25M(71.3) 50.62M(60.0)
CHIP [63] 92.05 0.24M(71.8) 34.79M(72.3)
TPP [68] 92.35 N/A 36.89M(70.6)
FPAC [76] 92.37 0.24M(71.8) 34.79M(72.3)
Li et. al [34] 92.46 0.26M(70.0) 37.02M(70.5)
Zhang et. al [78] 92.48 0.24M(71.8) 34.79M(72.3)
CORING (Ours) 92.84 0.24M(71.8) 34.79M(72.3)

Table 4: Pruning results of DenseNet-40 on CIFAR-10

Model Top1 Params (↓%) MACs (↓%)

DenseNet-40 94.81 1.06M(00.0) 290.14M(00.0)
DECORE-175 [1] 94.85 0.83M(20.7) 228.96M(19.1)
CORING (Ours) 94.88 0.80M(24.2) 224.12M(22.8)

GAL-0.01 [41] 94.29 0.67M(35.6) 182.92M(35.3)
HRank-1 [38] 94.24 0.66M(36.5) 167.41M(40.8)
FPAC [76] 94.51 0.62M(40.1) 173.39M(38.5)
CORING (Ours) 94.71 0.62M(41.2) 173.39M(39.6)

FPAC [76] 93.66 0.39M(61.9) 113.08M(59.9)
HRank-2 [38] 93.68 0.48M(53.8) 110.15M(61.0)
EZCrop [40] 93.76 0.39M(61.9) 113.08M(59.9)
DECORE-70 [1] 94.04 0.37M(65.0) 128.13M(54.7)
CORING (Ours) 94.30 0.45M(57.3) 134.86M(53.5)

Table 5: Pruning results of MobileNetv2 on CIFAR-10

Model Top1 Params (↓%) MACs (↓%)

MobileNetv2 94.43 2.24M(00.0) 94.54M(00.0)
DCP [43] 94.02 1.71M(23.6) 69.58M(26.4)
CATRO [23] 94.27 N/A 55.21M(41.6)
CORING (Ours) 94.81 1.26M(43.8) 55.16M(42.0)

QSFM-PSNR [73] 92.06 1.67M(25.4) 57.27M(39.4)
DMC [15] 94.49 N/A 56.72M(40.0)
SCOP [66] 94.24 1.43M(36.1) 56.44M(40.3)
GFBS [45] 94.25 N/A 54.83M(42.0)
CORING (Ours) 94.44 0.77M(65.6) 38.00M(60.0)

DenseNet-40. Managing DenseNet architecture can be challenging because removing a single channel from the
architecture requires removing that channel from all subsequent layers [1]. Table 4 shows the pruning results of
DenseNet-40 on CIFAR-10. Again, with a soft compression, CORING allows to increase in the baseline accuracy
while achieving 23.3% parameter compression and 20.4% MACs reduction. Compared with FPAC [76], CORING
has advantages in all aspects.

MobileNetv2. Pruning MobileNet-v2 presents a significant challenge due to its exceedingly low computational
cost. However, CORING exhibits superior performance compared to other candidate methods [45, 66], achieving a
top-1 accuracy of 94.81% while pruning 42% of the network’s MACs, as illustrated in Table 5. Even when com-
pressing more than 60% of the network, the accuracy is not reduced, which suggests that CORING can be applied to
optimize the hand-crafted design networks.

ResNet-50. To assess the scalability of CORING, we conduct experiments on the extensive dataset ImageNet
by addressing ResNet-50 as shown in Table 6. Our approach excels at moderate compression ratios, achieving over
40% reductions while increasing accuracy by 0.63%. In contrast, DECORE [1] provides a mere 0.16% accuracy gain
but is four times less efficient in terms of compression (11% reduction). When we further increase the compression
ratio, our approach still achieves superior performance than SOTA. For instance, under the high MACs compression
of 77%, we obtain an accuracy of 74%, outperforming very recent works including RASP [83] (71.05%), HRel [56]
(73.67%) and the method presented by Zhang et. al [78] (73.18%).

10

Table 6: Pruning results of ResNet-50 on ImageNet

Model Top1 Top5 Params (↓%) MACs (↓%)

ResNet-50 76.15 92.87 25.55M(00.0) 4.11B(00.0)
AutoPruner-0.3 [48] 74.76 92.15 N/A 3.76B(08.1)
ABCPruner-100% [39] 72.84 92.97 18.02M(29.3) 2.56B(37.4)
CLR-RNF-0.2 [37] 74.85 92.31 16.92M(33.6) 2.45B(40.1)
WSP-40 [18] 75.49 92.57 17.12M(33.0) 2.51B(38.6)
APRS [64] 75.58 N/A 16.17M(35.4) 2.29B(44.0)
PFP [36] 75.91 92.81 20.88M(18.1) 3.65B(10.8)
LeGR [7] 76.20 93.00 N/A 3.01B(27.0)
MetaPruning-0.85 [47] 73.20 N/A N/A 3.00B(27.0)
DECORE-8 [1] 76.31 93.02 22.69M(11.0) 3.54B(13.4)
CHIP [63] 76.30 93.02 15.10M(40.8) 2.26B(44.8)
TPP [68] 76.44 N/A N/A 2.76B(32.9)
CORING (Ours) 76.78 93.23 15.10M(40.8) 2.26B(44.8)

AutoPruner-0.5 [48] 73.05 91.25 N/A 2.64B(35.5)
HRank-1 [38] 74.98 92.33 16.15M(36.7) 2.30B(43.8)
DECORE-6 [1] 74.58 92.18 14.10M(44.7) 2.36B(42.3)
PFP [36] 75.21 92.43 17.82M(30.1) 2.29B(44.0)
FPAC [76] 75.62 92.63 15.09M(40.9) 2.26B(45.0)
EZCrop [40] 75.68 92.70 15.09M(40.9) 2.26B(45.0)
LeGR [7] 75.70 92.70 N/A 2.38B(42.0)
SCOP [66] 75.95 92.79 14.59M(42.8) 2.24B(45.3)
DMPP [32] 75.44 92.69 N/A 2.21B(46.3)
Zhang et. al [78] 75.83 92.76 14.23M(44.2) 2.10B(48.7)
CLCS [85] 76.06 N/A N/A 2.14B(48.1)
CHIP [63] 76.15 92.91 14.23M(44.2) 2.10B(48.7)
CORING (Ours) 76.34 93.06 14.23M(44.2) 2.10B(48.7)

HRank-2 [38] 71.98 91.01 13.77M(46.0) 1.55B(62.1)
MFMI [58] 72.02 90.69 11.41M(55.2) 1.84B(55.0)
WSP-60 [18] 73.91 91.66 11.60M(54.6) 1.55B(62.1)
FPAC [76] 74.17 91.84 11.05M(56.7) 1.52B(62.8)
EZCrop [40] 74.33 92.00 11.05M(56.7) 1.52B(62.8)
RASP-1G [83] 74.48 92.02 16.29M(36.3) 1.50B(63.6)
HRel-2 [56] 74.54 92.12 13.23M(48.2) 1.69B(58.9)
APRS [64] 74.72 N/A N/A(52.9) 1.76B(57.2)
DMPP [32] 74.78 92.40 N/A 1.81B(56.1)
Zhang et. al [78] 74.80 92.39 11.04M(56.7) 1.52B(62.8)
TPP [68] 75.12 N/A N/A 1.61B(60.9)
Li et. al [34] 75.24 N/A N/A 1.61B(60.9)
SCOP [66] 75.26 92.53 12.29M(51.8) 1.86B(54.6)
CHIP [63] 75.26 92.53 11.04M(56.7) 1.52B(62.8)
LeGR [7] 75.30 92.40 N/A 1.93B(53.0)
ResRep [11] 75.30 92.47 N/A 1.52B(62.1)
CORING (Ours) 75.55 92.61 11.04M(56.7) 1.50B(63.6)

MFMI [58] 69.91 89.46 8.51M(66.6) 1.41B(34.4)
RASP-1G [83] 71.05 90.13 8.81M(65.6) 1.00B(75.7)
WSP-70 [18] 72.04 90.82 9.07M(64.5) 1.12B(72.6)
DECORE-5 [1] 72.06 90.82 8.87M(65.2) 1.60B(60.9)
FPAC [76] 72.30 90.74 8.02M(68.6) 0.95B(76.7)
HRank-3 [38] 72.30 90.74 8.27M(67.6) 0.98B(76.0)
ABCPruner-50% [39] 72.58 90.91 9.10M(64.3) 1.30B(68.2)
CLR-RNF-0.44 [37] 72.67 91.09 9.00M(64.7) 1.23B(69.9)
Zhang et. al [78] 73.18 91.32 8.01M(68.6) 0.95B(76.7)
CHIP [63] 73.54 90.58 8.01M(68.6) 0.95B(76.7)
MetaPruning-0.5 [47] 73.40 N/A N/A 1.00B(75.7)
HRel-3 [56] 73.67 91.70 9.10M(64.4) 1.38B(66.4)
CORING (Ours) 74.00 91.71 8.01M(68.6) 0.95B(76.7)

Faster/Mask/Keypoint-RCNN. The results presented in Table 7 underscore the practical advantages of the COR-
ING method when applied to downstream tasks like Faster/Mask/Keypoint-RCNN on the COCO dataset. By em-
ploying our compressed ResNet-50/Imagenet model as the backbone network, we achieved substantial reductions in

11

Table 7: Compression results of Faster/Mask/Keypoint-RCNN-ResNet50-FPN on COCO-2017

Model AP0.5:0.95 AP0.5 AP0.75 AR1 AR10 AR100 MACs(↓%) Params(↓%) FPS

FasterRCNN [53, 50] 36.91 58.53 39.61 30.73 48.46 50.84 134.85G(00) 41.81M(00) 12
CORING (Ours) 35.57 56.05 37.81 30.21 48.28 50.79 92.23G(32) 24.04M(43) 25

MaskRCNN [21, 50] 34.54 55.97 36.81 29.53 45.47 47.45 134.85G(00) 44.46M(00) 10
CORING (Ours) 32.77 53.53 34.57 28.93 44.94 47.11 92.23G(32) 26.68M(40) 22

AR0.5:0.95 AR0.5 AR0.75

KeypointRCNN [21, 50] 65.05 86.08 71.37 71.75 90.71 77.42 137.42G(00) 59.19M(00) 9
CORING (Ours) 64.24 86.01 69.91 70.94 90.57 76.01 96.59G(30) 41.42M(30) 17

computational complexity and the number of parameters, highlighting the efficiency of our approach. Particularly
noteworthy is the significant boost in inference throughput, with CORING achieving up to a 2× improvement in
Frames Per Second (FPS) compared to the baseline models. It’s worth emphasizing that these performance mea-
surements were conducted on an RTX 3060 GPU, providing tangible evidence of the real-world applicability of our
approach. These outcomes underscore CORING’s potential as a valuable tool for enhancing the efficiency and ef-
fectiveness of neural network models across challenging tasks such as object detection, instance segmentation, and
keypoint detection in real-world scenarios.

5. Discussions

5.1. The Advantages of CORING in Comparison to Flatten-based Approaches
Our low-rank tensor approximation method outperforms conventional techniques that flatten filters in terms of

computational efficiency and effectiveness [8, 61, 71, 79]. Generally, to obtain the similarity matrix of a layer with
N filters, the complexity of these methods is O(Nchw) + O(N2chw), while our method requires O(Nchw) +
O(N2max(c, h, w)). The justification for these complexities lies in the detailed computation of the pairwise dis-
tances. When considering the flattened filters, the pairwise distance computation incurs a complexity of O(chw)
for each pair, leading to a total complexity of O(N2chw) for all pairwise. In contrast, our approach, after applying
HOSVD, simplifies this process. Given that the complexity for computing the r-truncated SVD for a matrix of size
m×n is O (r(m+ n) + rmn) [17], and considering that the HOSVD involves three rank-1 SVDs on matrices resized
according to the tensor dimensions c, h and w, the HOSVD complexity is O(chw). The subsequent pairwise distance
calculation, then, is O(c+h+w) for each pair, culminating in a total complexity of O(Nchw)+O

(
N2max(c, h, w)

)
after including the HOSVD step. Note that for common architectures, the number of input channels of each filter is
usually higher than the kernel size. For example, for the 10-th convolution layer of VGG-16, {c, h, w} = {512, 3, 3},
so our method’s complexity is O(N2c). In this case, CORING is 9 times faster than the other methods. This proves
that our approach is computationally more efficient in dealing with larger and deeper models with increasing num-
bers of layers and filters. Furthermore, when applying iterative pruning or pruning during training, which requires
updating the similarity matrix at each iteration, our method can significantly reduce computational costs. In terms of
effectiveness, the low-rank representation in CORING preserves the multidimensional nature of filters. This preser-
vation offers a more efficient and accurate means of measuring similarity compared to traditional methods that rely
on vectorized or matricized filter representations. Consequently, CORING facilitates more efficient filter pruning
without compromising valuable information. It’s crucial to note that low-rank matrix approximation methods are not
as effective as low-rank tensor approximation methods, and may result in loss of information. This is an easy and
intuitive example that demonstrates the advantages of using tensor decompositions over matrix decompositions for
higher-dimensional data in the case of rank decomposition: a 3-order 6 × 6 × 6 tensor can be decomposed uniquely
[27] into 8 rank-1 tensors, while flattening the tensor into a matrix yields a 6× 36 matrix that can be approximated by
only 6 rank-1 matrices. This illustrates that tensor decompositions are able to extract more meaningful components
or factors from the data, which is particularly important for higher-dimensional data.

5.2. Comparative Evaluation of Tensor-Based and Matrix-Based Approaches
To assess the comparative efficacy of tensor-based and matrix-based methodologies, we conduct an experimental

study utilizing the K-means clustering algorithm with custom distance metrics. We generate a set of synthetic datasets

12

(a) Groundtruth normal (b) Matrix ARI=0.78 (c) Tensor ARI=0.99

(d) Groundtruth moderate (e) Matrix ARI=0.56 (f) Tensor ARI=0.85

(g) Groundtruth hard (h) Matrix ARI=0.48 (i) Tensor ARI=0.72

Figure 5: Visualizing the performance of tensor-based and matrix-based methods.

(D in total) characterized by c clusters, where each cluster features a centroid tensor of dimensions Cin × h × w,
along with n filters of identical dimensions. The dataset complexity is governed by the standard deviations of centroids
(σcentroids) and filters (σfilters). We evaluate the K-means algorithm’s performance using the Adjusted Rand Index
(ARI) α ∈ [−1, 1], a measure of similarity between ground truth and predictions [25]. Higher α values indicate
superior predictive accuracy (e.g., α = 0 implies predictions are no better than random chance concerning ground
truth). Due to the initialization sensitivity of the K-means algorithm, we perform i initializations and select the one
yielding the best inertia value, defined as the sum of distances between samples and their corresponding centroids,
upon convergence, following sklearn guidelines [2]. All random processes in our study follow continuous uniform
distributions. Our experimental settings are as follows: D = 1000, c = 5, n = 100, Cin = 64, h = w = 3, and i =
100. We design datasets with three difficulty levels: normal (σcentroids ∈ [1.7, 1.8], σfilters ∈ [0.2, 0.3]), moderate
(σcentroids ∈ [1.5, 2.0], σfilters ∈ [0.1, 0.3]), and hard (σcentroid ∈ [1.0, 2.0], σfilters ∈ [0.1, 0.5]). The mean
ARIs, as presented in Table 8, unequivocally establish the superior performance of the tensor-based approach. Both
approaches exhibit proficiency on less intricate datasets; however, in scenarios where dataset complexity escalates,
our tensor-based methodology consistently demonstrates heightened consistency and effectiveness. This enhanced
performance can be attributed to our method’s ability to preserve the multidimensionality of the filters, allowing it to
capture and retain crucial information effectively.

We choose representative datasets based on the ARI of predictions that closely align with the mean ARI across the
entire dataset (3 scenarios, each containing 1000 datasets). These representative datasets are employed to illustrate
typical outcomes of both methods, as presented in Fig. 5. It is worth noting that the Principal Component Analysis
(PCA) technique is employed for visualizing the three-dimensional samples. These visualizations not only align with
the numerical results but also showcase the prowess of the tensor-based method, further reinforcing the evidence of
its superiority.

13

Table 8: ARI of the tensor-based and matrix-based method.

Method Dataset difficulty
Normal Moderate Hard

Matrix 0.83 0.61 0.54
Tensor 0.91 0.82 0.73

5.3. Distance Metrics

Figure 6 provides a comprehensive visualization of the influence of different distance metrics on the accuracy of
diverse neural network architectures across various datasets. In Subfigure 6a, we assess the accuracy on the CIFAR-
10 dataset for prominent architectures, including VGG, GoogLeNet, DenseNet, and ResNet. The chosen metrics,
encompassing Cosine, Euclidean, and VBD, exhibit distinct impacts on the model accuracies. Extending this analysis
to the CIFAR-100 and Imagenet datasets in Subfigure 6b and Subfigure 6c, respectively, provides valuable insights
into the robustness of these metrics across diverse datasets. This empirical exploration underscores the importance of
choosing appropriate metrics tailored to specific neural network architectures and datasets. While VBD, derived from
SNR, consistently demonstrates promising results in the majority of cases (6 out of 9), a theoretical justification for
the superiority of a particular metric remains elusive. It is crucial to clarify that VBD is not the primary focus of our
contribution. Instead, our work centers around incorporating a multidimensional structure for more accurate tensor
filter metrics, as demonstrated in comparison with SOTA methods in Section 4. It is imperative to emphasize that
this empirical evidence does not offer a conclusive verdict on the optimal distance metric for use with CORING.
The selection of a specific metric is contingent on various factors, including the application context and dataset
characteristics.

VGG-16-BN

GoogLeNet

DenseNet40

ResNet-56

90

92

94

96

9
3
.8
6

9
5
.2
2

9
4
.8
5

9
3
.9
8

9
3
.8
1

9
5
.3

9
4
.4
5

9
3
.9
7

9
3
.8
6

9
5
.0
9

9
4
.5
3

9
4
.1
7

A
cc

ur
ac

y
(%

)

(a) CIFAR-10.

VGG-16-BN

GoogLeNet

DenseNet40

ResNet-56

70

72

74

76

78

7
2
.4
6

7
7
.1
2

7
4
.5
8

7
3
.3
9

7
2
.3
1

7
7
.2
9

7
4
.5
1

7
3
.6
7

7
2
.5
5

7
7
.1
8

7
4
.6
9

7
3
.8
4

A
cc

ur
ac

y
(%

)

(b) CIFAR-100.

ResNet-50

73

74

75

7
5
.4
9

7
5
.4
4

7
5
.5
5

A
cc

ur
ac

y
(%

)

(c) Imagenet.

Cosine Euclide VBD

Figure 6: The influence of distance metrics on model accuracy for different architectures and datasets.

5.4. K-shots Analysis

To thoroughly examine the impact of the K-shots strategy, with a specific emphasis on the influence of the pa-
rameter K, we undertake a comprehensive ablation study. This investigation delves into the ramifications of varying
the parameter K on the accuracy of various architectures across diverse datasets. The results, depicted in Fig. 7, are
expounded in Subfigures 7a, 7b, and 7c, illustrating outcomes for the VGG-16-BN and ResNet-56 architectures on
CIFAR-10 and CIFAR-100 datasets, respectively. Furthermore, Subfigure 7d provides insights into the performance
of the ResNet-50 architecture on the ImageNet dataset. In each subfigure, three distinct distance metrics (Cosine,

14

Euclidean, and VBD) are plotted against the achieved accuracy at different K values (1, 5, 10, 15). The outcomes un-
derscore that the adoption of multi-shot pruning strategies, denoted by K-shots, consistently outperforms single-shot
pruning in the majority of cases (11 out of 12). Notably, on CIFAR-10, where the dataset size is relatively modest,
the accuracy trend concerning K appears ambiguous, as observed in subfigures 7a and 7b. Conversely, on more
intricate datasets, such as CIFAR-100 and ImageNet, the accuracy trend implies that higher values of K correlate
with enhanced accuracy, evident in subfigures 7c and 7d. This can be attributed to the complexity of the task, where
each round of the pruning process may incur errors, and a heightened value of K proves beneficial in mitigating such
errors. In summary, these visualizations offer nuanced insights into how the selection of K significantly influences
model accuracy across varying distance metrics, facilitating the optimization of model performance for specific tasks
and datasets. Nevertheless, it is imperative to acknowledge that determining the optimal number of shots is a nuanced
undertaking, as the efficacy of this parameter may fluctuate based on specific contextual factors and requirements.

1 5 10 15
93.8

94

94.2

K

A
cc

ur
ac

y
(%

)

(a) VGG-16-BN on CIFAR-10.

1 5 10 15

93.8

94

94.2

K

A
cc

ur
ac

y
(%

)

(b) ResNet-56 on CIFAR-10.

1 5 10 15

73.4

73.6

73.8

K

A
cc

ur
ac

y
(%

)

(c) ResNet-56 on CIFAR-100.

1 5 10 15

72.5

72.6

72.7

K

A
cc

ur
ac

y
(%

)

(d) ResNet-50 on Imagenet

Cosine Euclide VBD

Figure 7: The influence of K, the number of shots, on model accuracy for different architectures and datasets.

5.5. Pruning Efficiency Analysis

To assess the time overheads and accuracy trade-offs associated with the K-shots pruning strategy, we conducted
an experiment on VGG-16/CIFAR, measuring both pruning and fine-tuning times. As indicated in Table 9, pruning
time increases with K since the importance of filters needs recalculation in each round. However, this increment is
relatively small compared to fine-tuning time. Given that the number of epochs for fine-tuning (e.g., 300 epochs)
remains invariant to K, the difference in fine-tuning time is insignificant. Consequently, while the total time increases
with K, it remains comparable in all cases. The accuracy achieved with the K-shots strategy surpasses that of the
one-shot strategy. Nevertheless, determining the optimal number of shots is non-trivial, as its effectiveness may vary
depending on specific contextual factors and requirements.

Table 9: Time overhead vs accuracy trade-off varied by K - the number of shots

K Pruning time (s) Finetuning time (s) Total time (s) Accuracy (%)

1 138 3925 4063 93.63
5 492 3931 4423 93.71

10 810 3935 4745 93.68
15 975 3942 4917 93.83

Considering the pruning strategy, there exist two representative approaches: Pruning-and-Fine-tuning (PaF) [38,
63] and Training-aware-Pruning (TaP) [80]. Each approach has its pros and cons. While TaP brings many benefits
such as dynamic adaptation and reduced fine-tuning overheads, it also has some inconveniences, such as increased
training complexity, potential for slow training convergence, and compatibility issues. In this work, we adopted the
PaF scheme due to its conceptual straightforwardness, allowing for ease of implementation, and its compatibility with
pre-trained models, making it a practical choice for compression. We conduct an experiment on VGG-16-BN/CIFAR,
comparing the time overheads of CORING and WhiteBox [80], a representative TaP method. The main overheads
arise from the number of training epochs. Using the baseline model from HRank [38], CORING requires 300 epochs

15

to fine-tune the pruned network, while WhiteBox first trains the full network (heavier than the target sparse network)
for 30 epochs and then continues fine-tuning the pruned network for 300 epochs. In the pruning phase, WhiteBox’s
training is more complicated due to embedding the class-aware mask into the baseline network, making it take 2901
seconds for only 30 epochs, compared to CORING’s 138 seconds for the pruning step. The total time consumption
of CORING and WhiteBox is 4063 and 6905 seconds, respectively. CORING achieves a pruned model with better
performance (93.63% vs 93.47%) and higher MACs reduction (79% vs 76%). Although CORING might take more
time if it has to train the baseline model from scratch, pre-trained models are readily available, such as those provided
by PyTorch [50]. Consequently, in our view, if the baseline model is available, CORING incurs less overhead than
WhiteBox, and vice versa.

5.6. Qualitative Assessment of Feature Preservation

In this subsection, we provide a qualitative assessment of filter preservation within the context of CORING. While
the numerical results in Section 4 have already established the efficiency of CORING, our aim is to offer deeper
insights by exploring the preservation of crucial filters and features.

To achieve this, we randomly selected 8 images from the ImageNet validation dataset and conducted a comprehen-
sive evaluation. Our approach involved three levels of pruning ratios for the original ResNet-50 model, corresponding
to 49%, 64%, and 77% reduction in MACs operations. The baseline model, ResNet-50, initially boasted an accuracy
of 76.15%. After applying CORING and the respective pruning techniques, we observed accuracy scores of 76.34%,
75.55%, and 74% for the three levels of compression, respectively (see Table 6).

To gain a deeper understanding of filter preservation, we utilize GradCAM [57], a standard tool for neural network
explanation and interpretation, to visualize and analyze feature maps in the original and compressed models. In
Fig. 8, we showcase the effectiveness of CORING in retaining vital features of the original models across a diverse
range of classes, including humans, animals, vehicles, objects, and architectures. Additionally, it’s worth noting that
under different levels of pruning ratios, CORING consistently demonstrates its robustness in capturing and preserving
essential information. This robustness implies that CORING maintains its effectiveness and reliability in different
scenarios and under varying pruning ratios, making it a versatile choice for filter pruning across a wide range of
applications and datasets.

These observations align with our quantitative results, emphasizing the robustness and effectiveness of CORING
in neural network compression. By leveraging GradCAM, we substantiate our argument that CORING is capable of
retaining important filters and features, contributing to its superior performance.

6. Conclusion

In conclusion, we have introduced CORING, a novel filter pruning method designed around a tensor decomposi-
tion approach that effectively preserves the multidimensional nature of filters and seamlessly integrates with various
metrics and pruning strategies. Our introduction of the K-shots pruning strategy achieves a balanced trade-off be-
tween accuracy and predetermined pruning budgets. Key contributions of our work include the development of a
tensor-based approach for network compression and the introduction of a filter selection algorithm grounded in the
similarity matrix. Furthermore, our method has demonstrated a remarkable ability to enhance model generalization
through pruning, showcasing its versatility across different datasets and a wide range of network architectures. The ex-
tensive evaluation results underscore the efficiency and effectiveness of this innovative approach to network pruning,
providing valuable insights for advancing neural network performance.

Acknowledgment

This work was granted access to the HPC resources of IDRIS under the allocation 2023-103147 made by GENCI.
The work of T.P. Nguyen is partially supported by ANR ASTRID ROV-Chasseur.

16

(a) Query image (b) Original model (c) 49% pruned (d) 64% pruned (e) 77% pruned

Figure 8: Qualitative assessment of feature preservation in pruned networks.

17

References

[1] Alwani, M., Madhavan, V., Wang, Y., 2022. Decore: Deep compression with reinforcement learning. CVPR .
[2] Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., Niculae, V., Prettenhofer, P., Gramfort, A., Grobler, J., Layton,

R., VanderPlas, J., Joly, A., Holt, B., Varoquaux, G., 2013. API design for machine learning software: experiences from the scikit-learn
project, in: ECML PKDD Workshop: Languages for Data Mining and Machine Learning, pp. 108–122.

[3] Castells, T., Yeom, S.K., 2023. Automatic neural network pruning that efficiently preserves the model accuracy, in: AAAI.
[4] Chang, J., Lu, Y., Xue, P., Xu, Y., Wei, Z., 2023. Iterative clustering pruning for convolutional neural networks. Knowledge-Based Sys-

tems 265, 110386. URL: https://www.sciencedirect.com/science/article/pii/S0950705123001363, doi:https:
//doi.org/10.1016/j.knosys.2023.110386.

[5] Chen, Z., Liu, C., Yang, W., Li, K., Li, K., 2022. Lap: Latency-aware automated pruning with dynamic-based filter selection. Neural Networks
152, 407–418. URL: https://www.sciencedirect.com/science/article/pii/S0893608022001745, doi:https://
doi.org/10.1016/j.neunet.2022.05.002.

[6] Chen, Z., Xiang, J., Lu, Y., Xuan, Q., Wang, Z., Chen, G., Yang, X., 2023. Rgp: Neural network pruning through regular graph with edges
swapping. IEEE Transactions on Neural Networks and Learning Systems .

[7] Chin, T.W., Ding, R., Zhang, C., Marculescu, D., 2019. Towards efficient model compression via learned global ranking. CVPR , 1515–1525.
[8] Chu, C., Chen, L., Gao, Z., 2020. Similarity based filter pruning for efficient super-resolution models, in: 2020 IEEE International Symposium

on Broadband Multimedia Systems and Broadcasting (BMSB), pp. 1–7.
[9] De Lathauwer, L., De Moor, B., Vandewalle, J., 2000. A multilinear singular value decomposition. SIAM Journal on Matrix Analysis and

Applications , 1253–1278.
[10] Ding, X., Ding, G., Han, J., Tang, S., 2018. Auto-balanced filter pruning for efficient convolutional neural networks, in: AAAI Conference

on Artificial Intelligence.
[11] Ding, X., Hao, T., Tan, J., Liu, J., Han, J., Guo, Y., Ding, G., 2021. Resrep: Lossless cnn pruning via decoupling remembering and forgetting,

in: ICCV, pp. 4490–4500.
[12] Duan, Y., Zhou, Y., He, P., Liu, Q., Duan, S., Hu, X., 2022. Network pruning via feature shift minimization, in: Proceedings of the Asian

Conference on Computer Vision, pp. 4044–4060.
[13] Eckart, C., Young, G.M., 1936. The approximation of one matrix by another of lower rank. Psychometrika 1, 211–218.
[14] Frankle, J., Carbin, M., 2019. The lottery ticket hypothesis: Training pruned neural networks. ICLR .
[15] Gao, S., Huang, F., Pei, J., Huang, H., 2020. Discrete model compression with resource constraint for deep neural networks, in: CVPR, pp.

1896–1905.
[16] Ghimire, D., Lee, K., heum Kim, S., 2023. Loss-aware automatic selection of structured pruning criteria for deep neural network ac-

celeration. Image and Vision Computing 136, 104745. URL: https://www.sciencedirect.com/science/article/pii/
S0262885623001191, doi:https://doi.org/10.1016/j.imavis.2023.104745.

[17] Golub, G.H., Van Loan, C.F., 1996. Matrix Computations. Third ed., The Johns Hopkins University Press.
[18] Guo, Q., Wu, X.J., Kittler, J., Feng, Z., 2021. Weak sub-network pruning for strong and efficient neural networks. Neural Networks 144,

614–626. URL: https://www.sciencedirect.com/science/article/pii/S0893608021003658, doi:https://doi.
org/10.1016/j.neunet.2021.09.015.

[19] Guo, S., Zhang, L., Zheng, X., Wang, Y., Li, Y., Chao, F., Wu, C., Zhang, S., Ji, R., 2023. Automatic network pruning via hilbert-schmidt
independence criterion lasso under information bottleneck principle, in: ICCV.

[20] Harshman, R.A., 1970. Foundations of the parafac procedure: Models and conditions for an ’explanatory’ multi-modal factor analysis. UCLA
Working Papers in Phonetics 16, 1–84.

[21] He, K., Gkioxari, G., Dollár, P., Girshick, R., 2020. Mask r-cnn. IEEE Transactions on Pattern Analysis and Machine Intelligence 42,
386–397.

[22] He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition, in: CVPR, pp. 770–778.
[23] Hu, W., Che, Z., Liu, N., Li, M., Tang, J., Zhang, C., Wang, J., 2023. Catro: Channel pruning via class-aware trace ratio optimization. IEEE

Transactions on Neural Networks and Learning Systems .
[24] Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q., 2017. Densely connected convolutional networks, in: CVPR, pp. 2261–2269.
[25] Hubert, L., Arabie, P., 1985. Comparing partitions. Journal of Classification 2, 193–218.
[26] Jiang, P., Xue, Y., Neri, F., 2023. Convolutional neural network pruning based on multi-objective feature map selection for image

classification. Applied Soft Computing 139, 110229. URL: https://www.sciencedirect.com/science/article/pii/
S1568494623002478, doi:https://doi.org/10.1016/j.asoc.2023.110229.

[27] Kolda, T.G., Bader, B.W., 2009. Tensor decompositions and applications. SIAM Review , 455–500.
[28] Krizhevsky, A., Hinton, G., 2009. Learning multiple layers of features from tiny images. Technical Report 0. University of Toronto. Toronto,

Ontario.
[29] Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P., 2016. Pruning filters for efficient convnets. ICLR .
[30] Li, H., Ma, C., Xu, W., Liu, X., 2020. Feature statistics guided efficient filter pruning, in: IJCAI.
[31] Li, J., Shao, H., Zhai, S., Jiang, Y., Deng, X., 2023a. A graphical approach for filter pruning by exploring the similarity relation between

feature maps. Pattern Recognition Letters 166, 69–75. URL: https://www.sciencedirect.com/science/article/pii/
S0167865522003968, doi:https://doi.org/10.1016/j.patrec.2022.12.028.

[32] Li, J., Zhao, B., Liu, D., 2022. Dmpp: Differentiable multi-pruner and predictor for neural network pruning. Neural Networks 147, 103–112.
URL: https://www.sciencedirect.com/science/article/pii/S0893608021004998, doi:https://doi.org/10.
1016/j.neunet.2021.12.020.

[33] Li, N., Pan, Y., Chen, Y., Ding, Z., Zhao, D., Xu, Z., 2021a. Heuristic rank selection with progressively searching tensor ring network.
Complex & Intelligent Systems , 1–15.

[34] Li, Y., van Gemert, J.C., Hoefler, T., Moons, B., Eleftheriou, E., Verhoef, B.E., 2023b. Differentiable transportation pruning, in: ICCV.

18

https://www.sciencedirect.com/science/article/pii/S0950705123001363
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2023.110386
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2023.110386
https://www.sciencedirect.com/science/article/pii/S0893608022001745
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2022.05.002
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2022.05.002
https://www.sciencedirect.com/science/article/pii/S0262885623001191
https://www.sciencedirect.com/science/article/pii/S0262885623001191
http://dx.doi.org/https://doi.org/10.1016/j.imavis.2023.104745
https://www.sciencedirect.com/science/article/pii/S0893608021003658
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2021.09.015
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2021.09.015
https://www.sciencedirect.com/science/article/pii/S1568494623002478
https://www.sciencedirect.com/science/article/pii/S1568494623002478
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2023.110229
https://www.sciencedirect.com/science/article/pii/S0167865522003968
https://www.sciencedirect.com/science/article/pii/S0167865522003968
http://dx.doi.org/https://doi.org/10.1016/j.patrec.2022.12.028
https://www.sciencedirect.com/science/article/pii/S0893608021004998
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2021.12.020
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2021.12.020

[35] Li, Y., Lin, S., Liu, J., Ye, Q., Wang, M., Chao, F., Yang, F., Ma, J., Tian, Q., Ji, R., 2021b. Towards compact cnns via collaborative
compression, in: CVPR, pp. 6434–6443.

[36] Liebenwein, L., Baykal, C., Lang, H., Feldman, D., Rus, D., 2020. Provable filter pruning for efficient neural networks, in: ICLR.
[37] Lin, M., Cao, L., Zhang, Y., Shao, L., Lin, C.W., Ji, R., 2022a. Pruning networks with cross-layer ranking & k-reciprocal nearest filters. IEEE

Transactions on Neural Networks and Learning Systems , 1–10.
[38] Lin, M., Ji, R., Wang, Y., Zhang, Y., Zhang, B., Tian, Y., Shao, L., 2020. Hrank: Filter pruning using high-rank feature map. CVPR .
[39] Lin, M., Ji, R., Zhang, Y., Zhang, B., Wu, Y., Tian, Y., 2021. Channel pruning via automatic structure search, in: Proceedings of the

Twenty-Ninth International Joint Conference on Artificial Intelligence.
[40] Lin, R., Ran, J., Wang, D., Chiu, K., Wong, N., 2022b. Ezcrop: Energy-zoned channels for robust output pruning, in: WACV, pp. 3595–3604.
[41] Lin, S., Ji, R., Yan, C., Zhang, B., Cao, L., Ye, Q., Huang, F., Doermann, D.S., 2019. Towards optimal structured cnn pruning via generative

adversarial learning. CVPR , 2785–2794.
[42] Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L., 2014. Microsoft coco: Common objects in

context, in: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (Eds.), Computer Vision – ECCV 2014, Springer International Publishing, Cham.
pp. 740–755.

[43] Liu, J., Zhuang, B., Zhuang, Z., Guo, Y., Huang, J., Zhu, J., Tan, M., 2022. Discrimination-aware network pruning for deep model compres-
sion. IEEE Transactions on Pattern Analysis and Machine Intelligence , 4035–4051.

[44] Liu, S., Chen, T., Chen, X., Atashgahi, Z., Yin, L., Kou, H., Shen, L., Pechenizkiy, M., Wang, Z., Mocanu, D.C., 2021a. Sparse training via
boosting pruning plasticity with neuroregeneration. Advances in Neural Information Processing Systems 34, 9908–9922.

[45] Liu, X., Li, B., Chen, Z., Yuan, Y., 2021b. Exploring gradient flow based saliency for dnn model compression, in: Proceedings of the 29th
ACM International Conference on Multimedia, p. 3238–3246.

[46] Liu, Y., Wu, D., Zhou, W., Fan, K., Zhou, Z., 2023. Eacp: An effective automatic channel pruning for neural networks. Neurocomputing 526,
131–142. URL: https://www.sciencedirect.com/science/article/pii/S0925231223000255, doi:https://doi.
org/10.1016/j.neucom.2023.01.014.

[47] Liu, Z., Mu, H., Zhang, X., Guo, Z., Yang, X., Cheng, K.T., Sun, J., 2019. Metapruning: Meta learning for automatic neural network channel
pruning, in: Proceedings of the IEEE/CVF international conference on computer vision, pp. 3296–3305.

[48] Luo, J.H., Wu, J., 2020a. Autopruner: An end-to-end trainable filter pruning method for efficient deep model inference. Pattern Recogni-
tion 107, 107461. URL: https://www.sciencedirect.com/science/article/pii/S0031320320302648, doi:https:
//doi.org/10.1016/j.patcog.2020.107461.

[49] Luo, J.H., Wu, J., 2020b. Neural network pruning with residual-connections and limited-data, in: CVPR, pp. 1455–1464.
[50] maintainers, T., contributors, 2016. Torchvision: Pytorch’s computer vision library. https://github.com/pytorch/vision.
[51] Pan, Y., Xu, J., Wang, M., Ye, J., Wang, F., Bai, K., Xu, Z., 2019. Compressing recurrent neural networks with tensor ring for action

recognition, in: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 4683–4690.
[52] Pham, V.T., Zniyed, Y., Nguyen, T.P., 2024. Enhanced network compression through tensor decompositions and pruning. IEEE Transactions

on Neural Networks and Learning Systems , 1–13doi:10.1109/TNNLS.2024.3370294.
[53] Ren, S., He, K., Girshick, R., Sun, J., 2017. Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence 39, 1137–1149.
[54] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M.S., Berg, A.C., Fei-Fei,

L., 2014. Imagenet large scale visual recognition challenge. IJCV , 211–252.
[55] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C., 2018. Mobilenetv2: Inverted residuals and linear bottlenecks, in: CVPR, pp.

4510–4520.
[56] Sarvani, C., Ghorai, M., Dubey, S.R., Basha, S.S., 2022. Hrel: Filter pruning based on high relevance between activation maps and class labels.

Neural Networks 147, 186–197. URL: https://www.sciencedirect.com/science/article/pii/S0893608021004962,
doi:https://doi.org/10.1016/j.neunet.2021.12.017.

[57] Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D., 2020. Grad-cam: Visual explanations from deep networks via
gradient-based localization. Int. J. Comput. Vision 128, 336–359.

[58] Shao, L., Zuo, H., Zhang, J., Xu, Z., Yao, J., Wang, Z., Li, H., 2021. Filter pruning via measuring feature map information. Sensors (Basel) ,
6601.

[59] Sidiropoulos, N.D., De Lathauwer, L., Fu, X., Huang, K., Papalexakis, E.E., Faloutsos, C., 2017. Tensor decomposition for signal processing
and machine learning. IEEE Transactions on Signal Processing , 3551–3582.

[60] Simonyan, K., Zisserman, A., 2015. Very deep convolutional networks for large-scale image recognition. ICLR .
[61] Singh, A., Plumbley, M.D., 2022. A passive similarity based cnn filter pruning for efficient acoustic scene classification. arXiv preprint

arXiv:2203.15751 .
[62] Singh, P., Verma, V.K., Rai, P., Namboodiri, V.P., 2020. Leveraging filter correlations for deep model compression. WACV .
[63] Sui, Y., Yin, M., Xie, Y., Phan, H., Zonouz, S., Yuan, B., 2021. Chip: Channel independence-based pruning for compact neural networks, in:

NeurIPS.
[64] Sun, Q., Cao, S., Chen, Z., 2022. Filter pruning via automatic pruning rate search, in: ACCV, pp. 4293–4309.
[65] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A., 2015. Going deeper with

convolutions, in: CVPR, pp. 1–9.
[66] Tang, Y., Wang, Y., Xu, Y., Tao, D., XU, C., Xu, C., Xu, C., 2020. Scop: Scientific control for reliable neural network pruning, in: NeurIPS.
[67] Tucker, L.R., 1966. Some mathematical notes on three-mode factor analysis. Psychometrika 31, 279–311.
[68] Wang, H., Fu, Y., 2023. Trainability preserving neural pruning, in: ICLR.
[69] Wang, M., Pan, Y., Yang, X., Li, G., Xu, Z., 2023. Tensor networks meet neural networks: A survey. arXiv preprint arXiv:2302.09019 .
[70] Wang, W., Sun, Y., Eriksson, B., Wang, W., Aggarwal, V., 2018. Wide compression: Tensor ring nets, in: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pp. 9329–9338.
[71] Wang, W., Yu, Z., Fu, C., Cai, D., He, X., 2021a. Cop: customized correlation-based filter level pruning method for deep cnn compression.

19

https://www.sciencedirect.com/science/article/pii/S0925231223000255
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2023.01.014
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2023.01.014
https://www.sciencedirect.com/science/article/pii/S0031320320302648
http://dx.doi.org/https://doi.org/10.1016/j.patcog.2020.107461
http://dx.doi.org/https://doi.org/10.1016/j.patcog.2020.107461
https://github.com/pytorch/vision
http://dx.doi.org/10.1109/TNNLS.2024.3370294
https://www.sciencedirect.com/science/article/pii/S0893608021004962
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2021.12.017

Neurocomputing 464, 533–545. URL: https://www.sciencedirect.com/science/article/pii/S0925231221012959,
doi:https://doi.org/10.1016/j.neucom.2021.08.098.

[72] Wang, Z., Li, C., Wang, X., 2021b. Convolutional neural network pruning with structural redundancy reduction, in: CVPR, pp. 14908–14917.
[73] Wang, Z., Liu, X., Huang, L., Chen, Y., Zhang, Y., Lin, Z., Wang, R., 2022. Qsfm: Model pruning based on quantified similarity between

feature maps for ai on edge. IEEE Internet of Things Journal , 24506–24515.
[74] Wu, B., Wang, D., Zhao, G., Deng, L., Li, G., 2020. Hybrid tensor decomposition in neural network compression. Neural Networks 132,

309–320. URL: https://www.sciencedirect.com/science/article/pii/S0893608020303294, doi:https://doi.
org/10.1016/j.neunet.2020.09.006.

[75] Yang, C., Liu, H., 2022. Channel pruning based on convolutional neural network sensitivity. Neurocomputing 507, 97–106.
URL: https://www.sciencedirect.com/science/article/pii/S0925231222009110, doi:https://doi.org/10.
1016/j.neucom.2022.07.051.

[76] Yang, H., Liang, Y., Liu, W., Meng, F., 2023. Filter pruning via attention consistency on feature maps. Applied Sciences .
[77] Yuan, T., Deng, W., Tang, J., Tang, Y., Chen, B., 2019. Signal-to-noise ratio: A robust distance metric for deep metric learning. CVPR .
[78] Zhang, S., Gao, M., Ni, Q., Han, J., 2023a. Filter pruning with uniqueness mechanism in the frequency domain for efficient neural networks.

Neurocomputing 530, 116–124. URL: https://www.sciencedirect.com/science/article/pii/S0925231223001364,
doi:https://doi.org/10.1016/j.neucom.2023.02.004.

[79] Zhang, W., Wang, Z., 2022. Fpfs: Filter-level pruning via distance weight measuring filter similarity. Neurocomputing 512, 40–51.
URL: https://www.sciencedirect.com/science/article/pii/S092523122201164X, doi:https://doi.org/10.
1016/j.neucom.2022.09.049.

[80] Zhang, Y., Lin, M., Lin, C.W., Chen, J., Wu, Y., Tian, Y., Ji, R., 2022a. Carrying out cnn channel pruning in a white box. IEEE Transactions
on Neural Networks and Learning Systems , 1–10.

[81] Zhang, Y., Lin, M., Lin, Z., Luo, Y., Li, K., Chao, F., Wu, Y., Ji, R., 2022b. Learning best combination for efficient n: M sparsity. Advances
in Neural Information Processing Systems 35, 941–953.

[82] Zhang, Y., Lin, M., Zhong, Y., Chao, F., Ji, R., 2023b. Lottery jackpots exist in pre-trained models. IEEE Transactions on Pattern Analysis
and Machine Intelligence .

[83] Zhen, C., Zhang, W., Mo, J., Ji, M., Zhou, H., Zhu, J., 2023. Rasp: Regularization-based amplitude saliency pruning. Neural Networks
URL: https://www.sciencedirect.com/science/article/pii/S0893608023004963, doi:https://doi.org/10.
1016/j.neunet.2023.09.002.

[84] Zhou, A., Ma, Y., Zhu, J., Liu, J., Zhang, Z., Yuan, K., Sun, W., Li, H., 2021. Learning n: m fine-grained structured sparse neural networks
from scratch. ICLR .

[85] Zu, X., Li, Y., Yin, B., 2023. Consecutive layer collaborative filter similarity for differentiable neural network pruning. Neurocomput-
ing 533, 35–45. URL: https://www.sciencedirect.com/science/article/pii/S0925231223002114, doi:https:
//doi.org/10.1016/j.neucom.2023.02.063.

20

https://www.sciencedirect.com/science/article/pii/S0925231221012959
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2021.08.098
https://www.sciencedirect.com/science/article/pii/S0893608020303294
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2020.09.006
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2020.09.006
https://www.sciencedirect.com/science/article/pii/S0925231222009110
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2022.07.051
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2022.07.051
https://www.sciencedirect.com/science/article/pii/S0925231223001364
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2023.02.004
https://www.sciencedirect.com/science/article/pii/S092523122201164X
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2022.09.049
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2022.09.049
https://www.sciencedirect.com/science/article/pii/S0893608023004963
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2023.09.002
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2023.09.002
https://www.sciencedirect.com/science/article/pii/S0925231223002114
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2023.02.063
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2023.02.063

	Introduction
	Related Works
	The CORING Framework
	Notations and Preliminaries
	Filter Decomposition
	Similarity Measure
	Filters Selection
	Pruning Strategy

	Experiments
	Experimental Settings
	Results and Analysis

	Discussions
	The Advantages of CORING in Comparison to Flatten-based Approaches
	Comparative Evaluation of Tensor-Based and Matrix-Based Approaches
	Distance Metrics
	K-shots Analysis
	Pruning Efficiency Analysis
	Qualitative Assessment of Feature Preservation

	Conclusion

