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REGIONAL CORTICAL THICKNESS HERITABILITY STUDY
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'Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Saclay, France

ABSTRACT

In this study, we subdivided a widely used cortical surface at-
las into a group parcellation based on the structural connectiv-
ity obtained from white matter tractography. This group par-
cellation was further adapted to the specificity of each individ-
ual’s white matter. The interest of this strategy was validated
in a study of the heritability of cortical thickness, via com-
parison with random subdivisions of the initial atlas. Firstly,
this validation shows that in certain morphological regions,
the individual data-driven subdivisions of the atlas capture
homogeneous architectural entities in terms of cortical thick-
ness. Subsequently, in such regions, it is shown that one par-
cel obtained through the data-driven strategy retains the high
thickness heritability of the initial atlas region. This property
probably means that the spatial adaptation of the group par-
cellation to individual subjects enables the method to track
the architectural entity that generates this heritability.

Index Terms— parcellations, heritability, structural con-
nectivity, cortical thickness, inter-subjects variability

1. INTRODUCTION

Because a better understanding of the genetic origin of cor-
tical architecture is of paramount interest, pioneering works
have examined the genetic influences of structural phenotypes
[1, 2, 3], sulcal features [4, 5], connectomes [6] or diffusion
MRI-derived measurements [7, 8]. However, fine cortical ar-
chitecture presents unique spatial specificities in each individ-
ual, making the inter-subject variability within a population
especially difficult to assess. Current studies often consider
surface phenotypes defined from regions of an atlas - usually
projected onto individuals via spatial normalisation driven by
cortical folding measurements. This strategy is sub-optimal
given that the architectural entities making up the cortical sur-
face are subject to inter-individual variations in terms of spa-
tial organization - such as particular region topography [9] or
rare folding architecture [10].

One classical surface phenotype is the regional thick-
ness, where the vertex-based thickness is averaged for each
region of an atlas. The inter-subject variability of this region-
averaged phenotype is expected to truly reflect the differences

in thickness between these subjects, but may also stem from
the slight misalignment of the atlas mentioned above.

In line with a recent proposal to perform individual spa-
tial adaptations of an atlas using machine learning [9], we first
propose to refine the spatial resolution of a widely used coarse
atlas [11] using structural connectivity - a measure derived
from diffusion MRI of white matter fibers. We then propose
to adapt the finer group parcellation obtained to the speci-
ficity of each individual subject using connectivity-based sig-
natures. The individual parcellations obtained through this
process are supposed to reflect the specificity of each sub-
ject’s white matter, which act as a proxy of the underlying ar-
chitecture, especially in highly connected regions. We there-
fore hypothesize that this parcellation scheme should improve
the inter-subject stability of the cortical thickness estimation
compared with random subdivisions of the coarse atlas re-
gions. To substantiate this hypothesis, we will compare the re-
gional thickness estimated from the data-driven parcellations
with the regional thickness estimated from randomized splits
of the coarse atlas (fixed from one subject to the other). We
will then examine the potential improvement obtained with
the data-driven parcellation scheme when attempting to track
high thickness heritability from large morphological regions
to finer areas reflecting unique architectural entities.

2. METHODS

2.1. MRI data acquision and pre-processing

Imaging data are issued from the Human Connectome Project
[12] (HCP) S1200 release dataset.

3T MRI were acquired at 0.7 mm isotropic voxels resolu-
tion and pre-processed with the HCP minimal pre-processing
pipeline [13]. Freesurfer [14] recon-all pipeline was applied
on each pre-processed individual MRI to obtain a cortical seg-
mentation and a mesh extraction of the white matter-grey mat-
ter interface. These meshes were then re-sampled to the lat-
erilized Freesurfer fs_LR referential (32492 vertices by hemi-
sphere) using an embedded Brainvisa [15] toolbox.

Diffusion MRI were acquired at 1.25 mm isotropic voxels
resolution and processed using probtrackx2 matrix1 mode of
FSL software [16] with a brain mask sampled in the fs_ LR
referential. This probabilistic streamline reconstruction algo-



rithm led to whole-brain tractograms for 1004 individuals of
the dataset.

Group | Relatives | MZ | Females | Males
2008 58 12 111 89
1004S 889 266 544 460

Table 1. Groups repartition

2.2. Individual parcellations generation

We used a group-based clustering algorithm [17] (Constel-
lation) to create a subdivision of the Desikan-Killiany [11]
atlas. To build this group parcellation, we selected the 200
first subjects of the dataset (200S, see Table 1 for characteris-
tics) whose tractograms were regionally filtered and reduced
to produce structural connectivity profiles for each vertex of
the fs_ LR referential. These connectivity fingerprints were
then clustered using a k-medoids algorithm to propose candi-
date subdivisions with different number of parcels, for each of
the 72 regions of the Desikan atlas. The final subdivision of
each region was selected by computing the best clustering sil-
houette score: this yielded a whole-brain parcellation of 193
regions (Constellation atlas).

To project this group parcellation onto each of the 1004
subjects of the dataset (1004S, see Table 1 for characteris-
tics), the first part of the previous process was repeated to ob-
tain vertex-based structural connectivity profiles. Each vertex
was then labeled according to the closest connectivity profile
- in terms of euclidean distance - in the group parcellation,
resulting in 1004 individual parcellations [18].

2.3. Statistical analysis of the regional thickness esti-
mated from individual parcellations

To assess the relevance of these individual parcellations for
the study of the cortical thickness phenotype, we performed a
large scale statistical analysis based on randomly generated
subdivisions of Desikan-Killiany regions. To this end, we
computed 1000 Voronoi diagrams: first, we randomly sam-
pled each region of the Desikan-Killiany atlas with as many
seeds as the number of parcels selected for the Constellation
atlas. To build a whole-brain parcellation, a Voronoi-based
algorithm was applied regionally using seed growth geodesic
to the cortical surface, producing random subdivisions of De-
sikan regions. This process was repeated 1000 times to gen-
erate 1000 different high resolution atlases.

For each parcellation scheme (the data-driven Constella-
tion one and the 1000 fixed Voronoi diagrams) and for each of
the 1004 subjects, we computed the mean and standard devi-
ation of each parcel thickness using Freesurfer software out-
puts. Note that the Voronoi diagrams granularity is exactly

the same as the Constellation granularity in each region of
the Desikan atlas. The key difference is that Voronoi parcels
are fixed across subjects in the Freesurfer referential while
Constellation parcels are spatially adapted to each subject us-
ing the individual tractograms. Consequently, Constellation
parcels vary in terms of location, shape and topography.

In order to select the relevant regions of interest for fur-
ther study, we evaluated the pertinence of each regional
data-driven subdivision for the study of the regional cortical
thickness phenotype: for each Desikan region, we separately
aggregated the thickness standard deviations of Voronoi-
based parcels and Constellation-based parcels, resulting in
two distributions. We then performed a Student T-test on
these distributions, under the null hypothesis Hy : {Given
a Desikan region, the thickness standard deviations esti-
mated from Constellation parcels are smaller than the ones
estimated from Voronoi parcels}. As a result, we selected re-
gions that remained significant after a Bonferroni correction
for the number of Desikan regions (72). We argue that the
data-driven parcels of these regions provide a better estimate
of the regional thickness phenotype than random splits of
similar granularity.

To better understand why these regions perform bet-
ter with the Constellation method, we studied how the re-
gional thickness of the Constellation parcels relates to that
of Voronoi parcellations. As regions cannot be matched be-
tween template parcellations (Voronoi and Constellation), we
constructed a matching for each vertex of the mesh: a given
vertex is part of a specific parcel for each of the Voronoi
parcellations and for the Constellation atlas, allowing us to
match the corresponding regional thicknesses of all parcel-
lations at this vertex. Using this matching at each vertex,
we were able to calculate a standard score (Z-score) of the
Constellation regional thickness in the distribution composed
of the regional thickness estimates from all parcellations. The
resulting contrast maps represent how the mean over 1004
subjects of the regional thickness differs for the Constella-
tion method compared to randomly generated subdivisions.
We interpret the Z-score on these maps as a statistic indicat-
ing whether we can reject the null hypothesis: “’the regional
thickness estimates issued from Constellation-based individ-
ual parcellations do not differ from the ones issued from a
random parcellation”

2.4. Heritability of the regional thickness estimated from
individual parcellations

We then conducted a twin-based heritability study of the re-
gional thickness phenotype. Heritability is defined as the ad-
ditive variance that can be explained by genetic influences,
and can be estimated using a twin-based design by assuming
that monozygotic (MZ) twins share all of their genetic her-
itage whereas dizygotic (DZ) and relatives in the same house-
hold share half of their genetic heritage, on average. To this



end, we used the SOLAR algorithm [19] on the regional thick-
ness phenotype. As covariates, we took into account influ-
ences of age, age?, sex and age x sex. We obtained regional
heritability scores for the Desikan-Killiany atlas and the Con-
stellation atlas. We kept scores that remained significant after
a Bonferroni correction for the number of regions considered
in each parcellation, i.e. p-values of: p < 0,05/72 for the
Desikan atlas and p < 0,05/192 for the Constellation atlas
- we excluded the region containing unassigned vertices as it
was not relevant for our study.

3. RESULTS

3.1. Analysis of the regional thickness phenotype

Desikan region P-value
lh.caudalanteriorcingulate | 3.05e — 22
Ih.entorhinal 5.97e — 103
lh.frontalpole 1.88¢ — 05
lh.inferiorparietal 1.0le — 45
lh.isthmuscingulate 1.37e — 66
Ih.middletemporal 8.56e — 31
lh.paracentral 3.7le — 97
lh.parsorbitalis 5.12¢ — 12
lh.parstriangularis 4.15e — 29
lh.postcentral 3.30e — 06
Ih.posteriorcingulate 1.31e — 06
lh.precuneus 2.13e — 20
lh.supramarginal 1.43e — 34
rh.frontalpole 1.50e — 05
rh.isthmuscingulate 1.32e — 67
rh.middletemporal 6.03e — 27
rh.paracentral 1.59e — 04
rh.parsorbitalis 4.62e — 72
rh.supramarginal 2.33e — 40

Table 2. P-values of left hemisphere and bilaterally
significant regions where Constellation method better
estimate regional thickness than chance

Among the 23 regions with significant improvement of
the stability of the thickness phenotype, we present in Table
2 those of the left hemisphere, and those bilaterally present.
All these regions remained highly significant after Bonferroni
correction: maximal p-value of p = 1.6e — 4. The results ap-
pear fairly symmetrical as among these regions 6 appeared bi-
laterally: paracentral, supramarginal, middletemporal, par-
sorbitalis, isthmuscingulate et frontalpole. Interestingly, re-
gions seem slightly more significant in the left hemisphere
(13) than in the right hemisphere (10).

The comparison of the Constellation average (across sub-
jects) regional thickness with Voronoi parcellations are shown

Fig. 1. Standard score of the average (across subjects)
Constellation regional thickness by comparison with the
ones of Voronoi parcellations, printed for regions where
Constellation better aggregates regional thickness. Left

hemisphere (resp. right) on the left (resp. right).

in Figure 1. We focused these maps on the regions where
Constellation method better aggregates regional thickness,
and used a contrast colormap: lower Z-scores (resp. higher)
mean that the regional thickness is, on average, smaller (resp.
larger) than chance when defined with Constellation method.
Overall, we can observe a high contrast inside each Desikan
region, meaning that Constellation subdivisions have extreme
regional thicknesses compared with random subdivisions.
Consequently, this result hints that the Constellation method
performs a better separation of underlying structural enti-
ties with respect to cortical thickness. For example, the left
supramarginal region yield Z-scores between -2.5 and 1.8.

3.2. Heritability of the regional thickness phenotype

We show the results of the regional thickness heritability
study in Figure 2. Overall, Constellation regions present
fairly high heritability scores: mean 0.54, min 0.25, max
0.75. Among the significant heritability scores of the se-
lected Constellation regions (see Table 3 for details), some
present a relatively high contrast. For instance, the Desikan
left paracentral has a heritability score of 0.6, but using the
Constellation method one subdivision has a score of 0.65



Desikan region Desikan h2r | Constellation h2r
lh.caud. ant. cing. 0.44 [0.32, ns]
lh.frontalpole 0.49 [0.45, 0.32]
lh.inferiorparietal 0.66 [0.59, 0.51, 0.45]
lh.isthmuscingulate 0.44 [0.44, 0.31, ns]
Ih.middletemporal 0.58 [0.50, 0.39]
lh.paracentral 0.60 [0.65, 0.38, ns]
lh.parsorbitalis ns [0.26, ns]
lh.parstriangularis 0.57 [0.30, 0.28, 0.27]
lh.postcentral 0.59 [0.59, 0.58]
lh.posteriorcingulate 0.49 [0.48, ns]
lh.precuneus 0.72 [0.60, 0.56, 0.48]
lh.supramarginal 0.70 [0.65, 0.56]
rh.bankssts 0.54 [0.36, ns, ns]
rh.isthmuscingulate ns [0.36, 0.36, 0.33]
rh.middletemporal 0.58 [0.50, 0.39]
rh.paracentral 0.64 [0.38, ns, ns]
rh.parahippocampal 0.57 [0.58, 0.40]
rh.posteriorcingulate ns [0.34, ns, ns, ns]
rh.rostral. mid. front. 0.64 [0.66, ns]
rh.supramarginal 0.71 [0.65, 0.55]

Table 3. Heritabilities of Desikan and Constellation
subdivisions for significant Constellation regions. ns stands
for non significant.

whereas another has a score of 0.38, suggesting that our
method focused the heritability on one subdivision. Addi-
tionally, in the left precuneus, the heritability score is 0.72 for
the base Desikan region, but 0.6 for one subdivision and 0.48
for another, indicating that heritability scores of sub-regions
may present a lower maxima but with a better separation. The
supramarginal gyrus, highly heritable with a score of around
0.7 as a whole, bilaterally presents a fair contrast inside its
subdivisions yielding scores of 0.65 and 0.56 on the left hemi-
sphere and 0.65 and 0.55 on the right hemisphere. The left
inferiorparietal region, a complex structure of the brain, also
presents contrast with scores of 0.59, 0.51 and 0.45. Other
regions present a lower yet significant heritability score for
all of their subdivisions such as left isthmuscingulate and left
parstriangularis, suggesting that genetic influences may not
be as important as featured when using the Desikan atlas.
Finally, some Desikan regions such as left posteriorcingu-
late and left isthmuscingulate are not significantly heritable
whereas they have one heritable subdivision, suggesting that
Constellation method successfully captured some structural
entities.

4. DISCUSSION

The results presented in this study have several interesting
implications. First of all, the finer the parcellation, the more
difficult it is to obtain high heritability scores, and their sta-

heritability
0.1 0.33 0.66 0.9

Fig. 2. Heritability of the regional thickness phenotype of
Constellation parcellations. Desikan borders are represented
in black and Constellation borders in white. Left hemiphere

(resp. right) on the left (resp. right).

tistical significance, on regional phenotypes. Indeed, a coarse
parcellation yield less variability between subjects by mixing
structural entities that are inconsistent with each others: by
construction of the heritability score it is easier to explain
the phenotypic variance with the genetic variance thus result-
ing in high heritability scores. However, such high scores
with relatively low anatomical significance, would have low
significance in terms of genetic influences, potentially com-
promising further genetic studies. The granularity of the
subdivisions we proposed was greater than that of the origi-
nal atlas (193 vs 72), but the heritability of regional thickness
decreased only slightly overall. Even more interestingly,
some regions became significantly heritable, such as in right
isthmuscingulate and right posteriorcingulate, and others
became more heritable, such as in left paracentral. Fur-
thermore, our data-driven framework for selecting regions of
interest is based on the anatomical relevance of the phenotype
definition and is therefore free from any selection bias, unlike
conventional methods. Some Constellation subdivisions may
not be relevant for the study of cortical thickness - for exam-
ple regions with very long afferent fibers may not be correctly
subdivided - but the regions highlighted in this study are of
great importance for the regional thickness phenotype. Last
but not least, our individual parcellations were not defined on
the basis of cortical thickness data, but were built using struc-
tural connectivity as a proxy for the underlying white matter
configuration. To conclude, the results presented here are in
line with recent work proposing that highly connected regions
are more heritable [6], and may help further association and
transcriptomic studies to better understand the influence of
genes expression on anatomical regions of the brain.
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